

ABOUT THE RELEVANCE OF MULTISPECULATION IN HLS

<u>Alberto A. Del Barrio García¹</u>, Román Hermida¹, Seda Ogrenci Memik², María C. Molina¹, José M. Mendías¹ ¹Complutense University of Madrid ²Northwestern University

Introduction

- Speculative Functional Units
- Multispeculative Functional Units

Multispeculative datapaths

- Addition Chains
- Binary Addition Trees
- Generic Additive Trees
- Some results
- Conclusions and future lines of work

Introduction

- Speculative Functional Units
- Multispeculative Functional Units

Multispeculative datapaths

- Addition Chains
- Binary Addition Trees
- Generic Additive Trees
- Some results
- Conclusions and future lines of work

INTRODUCTION

• HPC big question

- High Performance ... but at what cost ??!
- Power, Energy, Area must be considered too
- Additions and products are the most common operations in datapaths
 - Products are based on additions

• Efficient Adders and Additive Structures

- Building efficient basic blocks is essential
- But the ability to handle them is the key

INTRODUCTION

- Classical Adders [Hwa79, Kor02]
 - Examples
 - Ripple Carry, Carry Select, Carry Skip
 - Carry Lookahead, Prefix Adders
 - Always work with the longest calculus time
 - Huge area/power penalty in the fastest designs
 - Many cases *do not really need* the longest path

• Variable Latency FUs

- Relax some logic conditions to mostly work in *fast* mode
- Less area/power than Fixed Latency counterparts
- Asynchronous and synchronous designs
- Speculative Fus
 - Synchronous VLFUs based on carry prediction

5

INTRODUCTION: SPECULATIVE FUNCTIONAL UNITS

INTRODUCTION: VLFUS AND HLS STATE OF THE ART

- Raghunathan. et al. (2000); Telescopic Units by Benini et. al (1998)
 - Treat the VLFUs as conditional branches
 - This is only feasible with very few VLFUs
 - Exponential number of cases to control
 - Solution: Distributed Controller (Del Barrio et al. 2011)

INTRODUCTION: VLFUS AND HLS STATE OF THE ART

INTRODUCTION: VLFUS AND HLS STATE OF THE ART

9

Introduction

Speculative Functional Units

Multispeculative Functional Units

Multispeculative datapaths

- Addition Chains
- Binary Addition Trees
- Generic Additive Trees

Some results

• Conclusions and future lines of work

10

MULTISPECULATIVE FUNCTIONAL UNITS

• Same interface: hit signal

- Distanced carries are quasi-independent [Nowick 1996, Lu 2004, Verma et al. 2008]
 - If the fragment size, k, is large enough, the probability of propagating a misprediction is close to 0
 - Corollary. 2 very short cycles are enough to execute most of additions
- Gains in execution time, area and energy
- Increase in the number of mispredictions

WULTISPECULATIVE FUNCTIONAL UNITS 15 14 13 12 11 10 9 8 7 6 5 4 3 2

- *n*-bit Kogge-Stone Adder
 - Complex carry propagation tree
 - Very fast
 - $\circ \quad O(\log(n))$
 - Huge area
 - O(n*log(n)) with large n
 - High switching activity
- *n*-bit Multispeculative KS
 - n/k simpler carry propagation trees
 - Extremely fast
 - $\circ \quad O(\log(k))$
 - Predictors accuracy
 - Reduced area
 - Small KS have area O(n)
 - Area: $n/k^*O(k) \cong O(n)$
 - Low switching activity

Introduction

- Speculative Functional Units
- Multispeculative Functional Units

Multispeculative datapaths

- Addition Chains
- Binary Addition Trees
- Generic Additive Trees
- Some results
- Conclusions and future lines of work

DATAPATH OPTIMIZATIONS: ADDITION CHAINS

MULTISPECULATIVE DATAPATHS: ADDITION CHAINS

Misprediction \rightarrow 2 cycles will be enough for the last addition, in most of the cases

MULTISPECULATIVE FUNCTIONAL UNITS: A MSADD FOR DATAPATHS

Introduction

- Speculative Functional Units
- Multispeculative Functional Units

Multispeculative datapaths

- Addition Chains
- Binary Addition Trees
- Generic Additive Trees
- Some results
- Conclusions and future lines of work

MULTISPECULATIVE DATAPATHS: BINARY ADDITION TREES

 $Z'=Z \rightarrow$ It can be possible, but the extra cycle will be unavoidable unless the result coming from A2 is 0

 $Z''=Z \rightarrow$ True with an extremely high probability

MULTISPECULATIVE DATAPATHS: BINARY ADDITION TREES

 $Z'=Z \rightarrow$ It can be possible, but the extra cycle will be unavoidable unless the result coming from A2 is 0

 $Z''=Z \rightarrow$ True with an extremely high probability

Introduction

- Speculative Functional Units
- Multispeculative Functional Units

Multispeculative datapaths

- Addition Chains
- Binary Addition Trees
- Generic Additive Trees
- Some results
- Conclusions and future lines of work

• Algorithm

- Step 1: Identify the additive trees
 - Additive trees can include products in the leaf nodes
- Step 2: Introduce a recovery addition per tree
- Step 3: Combined scheduling and binding
 - Resource constrained
 - Free MSFUs
 - Finished operation
 - Evaluate if carries have been consumed
 - Evaluate if scheduling/binding an operation can block the algorithm

Introduction

- Speculative Functional Units
- Multispeculative Functional Units

Multispeculative datapaths

- Addition Chains
- Binary Addition Trees
- Generic Additive Trees

• <u>Some results</u>

• Conclusions and future lines of work

EXPERIMENTAL RESULTS: MSTREES VS BASELINE

- Logarithmic modules: KSbased
 - Less ExTime reduction
 - Negligible area increase
- Linear modules: RCAbased
 - Slight Increase in area
 - Splitting a RCA does not reduce its area
 - Greater ExTime reduction
 - RCA carry chain is not optimized
- Best results with larger bitwidths
 - 32-bits: Simpson38, Trapezoid
 - 16-bits: the rest

ExTime Area ADP

EXPERIMENTAL RESULTS: WITH OR WITHOUT MSTREES

Multispeculative KS without and with MS-Trees

• Advantages of MS-Tree Management

- Greater ExTime Reduction
- Lower Area Penalty

Introduction

- Speculative Functional Units
- Multispeculative Functional Units

Multispeculative datapaths

- Addition Chains
- Binary Addition Trees
- Generic Additive Trees
- Some results

• Conclusions and future lines of work

CONCLUSIONS AND FUTURE LINES OF WORK

- (Multi)Speculative FUs are efficient
- We propose strategies for utilizing these efficient (M)SFUs in the Design Automation context
 - Distributed Management
 - MSTrees Management
- More applications
 - MSFUs behave better with large bitwidths
 Design of Floating Point Units
- Next step
 - Integration with Distributed Management
 - Integrate CSA and MS-Trees

30

THANK YOU FOR YOUR ATTENTION !!!

And remember ... The important thing is not to stop questioning; curiosity has its own reason for existing (*Einstein*)

You can em@il me to: *abarriog@ucm.es*

Moderate CSA Latencies L(*): 4 cycles 0 L(+, CPA): 2 cycles 0 L(+, CSA): 1 cycle 0 Limited performance Extreme CSA Latencies L(*, CSA): 2 cycles 0 L(+, CPA): 2 cycles 0 L(+, CSA): 1 cycle 0 Increase in area CSAs. CPAs are still 0 necessarv Routing and registers. CSAs produce 2 bit-0 vectors Low performance difference Limitation imposed by CPAs still exists In our flow, a CPA is 0 substituted by a MSADD+recovery addition Solution: Integration with 0 Distributed controller

EXPERIMENTAL RESULTS: MSTREES VS EXTREME CSA

• MSTrees vs Extreme CSA (16-bits)

- Slight performance difference
- Less area
- Overall: better Area Delay Product

EXPERIMENTAL RESULTS: MSTREES VS EXTREME CSA

■ %ExTime ■ %Area ■ %ADP

• MSTrees vs Extreme CSA (32-bits)

- ExTime reduction (CPAs greater penalty)
- Less area reduction (Multipliers weight)
- Overall: better Area Delay Product

34