ABOUT THE
RELEVANCE OF
MULTISPECULATION
IN HLS

Alberto A. Del Barrio Garcia’, Roman
Hermida', Seda Ogrenci Memik?,
Maria C. Molina'l, José M. Mendias'

'Complutense University of Madrid
ZNorthwestern University

O
-l ‘
L / |

) L 4

@ Introduction
Speculative Functional Units

® Multispeculative Functional Units

® Multispeculative datapaths
Addition Chains
Binary Addition Trees
Generic Additive Trees

® Some results
® Conclusions and future lines of work

N

‘ —
A\
\\

O
-l ‘
L / |

) L 4

® Introduction
Speculative Functional Units

® Multispeculative Functional Units

® Multispeculative datapaths
Addition Chains
Binary Addition Trees
Generic Additive Trees

® Some results
® Conclusions and future lines of work

N

‘ —
A\
\\

INTRODUCTION

® HPC big question
High Performance ... but at what cost ??!
Power, Energy, Area must be considered too
@ Additions and products are the most common
operations in datapaths
Products are based on additions

@ Efficient Adders and Additive Structures
Building efficient basic blocks is essential
But the ability to handle them is the key

@ Classical Adders [Hwa79, Kor02]

Examples
Ripple Carry, Carry Select, Carry Skip
Carry Lookahead, Prefix Adders

Always work with the longest calculus time
Huge area/power penalty in the fastest designs
Many cases do not really need the longest path
@ Variable Latency FUs

Relax some logic conditions to mostly work in fast
mode

Less area/power than Fixed Latency counterparts
Asynchronous and synchronous designs

Speculative Fus
Synchronous VLFUs based on carry prediction

HNTL L U(TL)N: SPECULATIVE

MS part 7_'_\ LS part
< Q D b .

n/2 bits Pre é n/2 bits
E
Ctrue
""""""" E/E""""""C"""" Hi}"""j""""E/E"'"""J
Synchronous principle: 1 short cycle if the SO A
adder hits, 2 if it does not Dea 9] ea |

INTRODUCTION® VLFUS AND HLS
W\ = Y e o — = N = s Py
- -

) s A\ S | p— TN [N[
((. / .)
o LW | A ‘7‘ — VN

@ Raghunathan. et al. (2000); Telescopic Units by Benini et.
al (1998)

Treat the VLFUs as conditional branches
This is only feasible with very few VLFUs
Exponential number of cases to control
Solution: Distributed Controller (Del Barrio et al. 2011)

hity py="1"

P P Controller S1 hity, ry.=‘0’
\ \/ /hityLFyq ‘
VLFU1 / >

3 Correction

W — o

T A\ SN [
‘W [/ = N =

Distributed Controller

1 local controller per FU +
Supervisor

Supervisor
Derived automatically from DFG
Supervisor fires the transitions
Dynamic scheduling
Different approach

Checks mispredictions for every
operation

M1 M2 A1 A2
controller controller controller controller
Cm1 Sm2 €A1 €2
ew| (so) (9 © &
Cm1 €2 €A1

N == *‘ AN TN T = 2 D\]
\ <d BE UH KK [PEN ©
AN &Y & \ 4 O

() A\ VRN — A PN E—|
[R A / A)
o) ’/ 0\ | . \: L // N Q

Issued Committed Cycle M1 M2 A1 A2

S1/0|S2| 0S5/ 0(S9|0

S6| 0 [S3| 0 |S5/0(|S9| 0

S7, 0S4/ 0 |S8| 0|S9| 0

S1/1|S2| 1 |S10| 0 [S11| O

S6| 1 |S3|1|S5/ 1S9 1

S7|1(S4|1|S8|1]|S9| 1

S7|1(S2| 0 |S8| 1 |S11] 1

S1/ 0 |S2| 0 [S10] 1 [S11] 1

State T State T State T State T

9

,/,/'7’\ \ \
OUTLINE
A =

@ Introduction
Speculative Functional Units

® Multispeculative Functional Units

® Multispeculative datapaths
Addition Chains
Binary Addition Trees
Generic Additive Trees

® Some results
® Conclusions and future lines of work

10

A B
An k- Bn k-
An-1..n-k Bn-1 1..n-2k 1..n-2k A2k-1 Kk BZk 1.k Ak-1..D Bk—1..0
k + AiV AiV AiV k k
c pred, i1 pred,
t
— Frag. n/lk-1 (e Pn,-‘k-1 Frag. n/k-2 | --- Frag. 1 — |3'1 Frag. 0

fk Mkt fk fk err, fk

hit_ﬂ;

’l’n

11

R B —

ANATN NN SO0/~ — =0 100 N\ T /7 W T T N AT

PN ‘ F‘ N ‘ —— ‘: 'R , = N (DN AN

/ L& = & = = &Y =0 | = A VA O |
W ==

: ‘ \ ‘ ’7)

| \ 4 h >)

— o

® Same interface: hit signal

@ Distanced carries are quasi-independent
[Nowick 1996, Lu 2004, Verma et al. 2008]
If the fragment size, k, is large enough, the
probability of propagating a misprediction is
closeto 0

Corollary. 2 very short cycles are enough to
execute most of additions

@ Gains in execution time, area and energy
@ Increase in the number of mispredictions

12

@ n-bit Kogge-Stone Adder

Complex carry
propagation tree

Very fast
O(log(n))
Huge area
O(n*log(n)) with
large n
o High switching activity

@ n-bit Multispeculative KS

n/k simpler carry
propagation trees

Extremely fast
O(log(k))
Predictors accuracy
Reduced area

Small KS have area
O(n)

Area: n/k*O(k) =
0o(n)

o Low switching activity

O
-l ‘
L / |

) L 4

@ Introduction
Speculative Functional Units

® Multispeculative Functional Units

® Multispeculative datapaths
Addition Chains
Binary Addition Trees
Generic Additive Trees

® Some results
® Conclusions and future lines of work

N

‘ —
A\
\\

14

WAL A OP HIMIZATIONS:

0000 + 1111 0000 + 0000 1111 + 0001 0111 + 0011
0« Frag3 |40 0« Frag2 |40 1+ Frag1 [0 0+ Frag0 |«
= s Y. s svsen Y s Sussn i S a—
-3 g 0000 o191 /0000 goq1 /1010 1011
Q v ; v r / v
| 4 | 4
O« Frag3 |« 0| 0« Frag2 |d 1| 0« Frag1l |« 0| 1+ Frag0 |
A 2] Y e . A [Y ..
c 1110 o000 | 0100 40p1 /0011 4911 /0101 gqq0
2 v / v / Vo / ¥
% 'f r=1 " - r! r=
o 1+« Frag3 |40 |10« Frag2 |0 | oL Frag1 le 1110 Frag0 |«
o LI L1 L1
S Y e Y M.
/ 1110 1101 1111 1011
/ It is only necessary to apply prediction

for the last addition = Only the last
addition can mispredict

15

A+B+C+D
Cycle 3

Pipeline

Prediction

\ \ \ : / \ \ \)
L 4 | — O O ==// \ | = [/ \) L7\ L7\ o O

0000 + 1111 0000 + 0000 1111 + 0001 0111 + 0011
A+B
0o« Frag3 0| o« Frag2 |« 0| 14 Fragl [« 0| 0« Frag0 |«
! /! / Cycle 1
_______ VN ¥ ¥ ____.
"t 4119 0000 ooy / 0000 goy1 / 1010 1014
v / vy */ | ‘/ vy
¥ A+B+C
0«4 Frag3 |« 0| 0«4 Frag2 |« 1| 0« Fragl |« 0| 14 Frag0 |« Cycle 2
_______ L2 A 25 S 20 A AU
1110 gooo / 0100 1101 I/ 0011 1110 / 0101 o110
v / vy / v / vy
yo__ v __ v o__ A+B+C+D
1« Frag3 |0 |, 1« Frag2 |40 '1% Fragl |« 1| 0% Frag0 [«
~ - ~ - — = Cycle 3
_______ Y Y Y Y .
1110 0000 / 0001 gooo /0010 gooo ;1011 qgoo
* II l * /I l * / l *
yo__ A A A+B+C+D
14 Frag3 |« 1| 0« Frag2 |« 1 !0of Fragl |« 0| 0 Frag0 [« Cycle 4
v v v v
1111 0010 0010 1011 CLEAR

Misprediction = 2 cycles will be enough for the
last addition, in most of the cases

16

ILTISFECULATNIVE rUNC T IUNAL
NI TS AN EQAR NATADAT EHC
UNIT S UD rUR DATAPAIT .
A B
¢ N
e >l~ ,\f\ ;\Q \{. S N
S , g W N N
v Q)(\’ V‘ QT ¥ Q¥
k + + A~V k
C C n-k-1 Ck-1
:om Frag. n/k-1 |e— Qj— Frag. n/k-2 Frag.1 |« QDj Frag. 0
clr < clr «
J{k fk fk fk
n1 .n-k nk1 .n-2k Z2k1 Kk Zk-1..0
hit

z T

17

O
-l ‘
L / |

) L 4

@ Introduction
Speculative Functional Units

® Multispeculative Functional Units

® Multispeculative datapaths
Addition Chains
Binary Addition Trees
Generic Additive Trees

® Some results
® Conclusions and future lines of work

N

‘ —
A\
\\

18

7Q‘ — 1 RN — ‘,\ —

If kK >1, this carries array will
become 0 for sure.

SN ONCORERON
C2 c4

cstep 1
c1
e AN NN 0--1
... \ \ c2 |
—_ %
c1 \Y;
cstep2 (4) U4) LN /R
o
® &
e 1 l N
cstep 3

cstep 3’ 0

Z’=Z = It can be possible, but the extra cycle will be
unavoidable unless the result coming from A2 is 0

Z”=Z =» True with an extremely high probability

19

cstep 1

cstep 2

cstep 3

cstep 4

c UAIAPA
| REL. |
In this case no extra
A B C D addition for
accumulating carries is
necessary
cstep 1

cstep 2

cstep 3

cstep 4’

Z’=/Z =» It can be possible, but the extra cycle will be
unavoidable unless the result coming from A2 is 0

Z’=Z =» True with an extremely high probability
20

O
-l ‘
L / |

) L 4

@ Introduction
Speculative Functional Units

® Multispeculative Functional Units

® Multispeculative datapaths
Addition Chains
Binary Addition Trees
Generic Additive Trees

® Some results
® Conclusions and future lines of work

N

‘ —
A\
\\

21

;’ AT T | E— r,l, ’, N — /3 1l — 1 B 7 — — 1
MmULTISPECU \ 1 \:
Al [— \,\ = == —

GENERIC

N

@@@
Y:D

. 5 6
Discrete
Wavelet . 8
Transform

'y
~

L(+): 2 cycles
L(*): 4 cycles

!

Overall latency:

28 cycles

—_

ULTIS
ﬁENEk

CULATIVE DATAPATHS:
. Sl NN . N s =

J@ tLH IVE TREES

@ Algorit

Step 1:

1M
|dentify the additive trees

Additive trees can include products in the leaf nodes
Step 2: Introduce a recovery addition per tree
Step 3: Combined scheduling and binding

Resource constrained

Free

MSFUs

Finished operation
Evaluate if carries have been consumed

Evaluate if scheduling/binding an operation can
block the algorithm

23

N O 5=

AWWLT IS
q r NE| ,1 CA

Additive
Tree
Detection

Step 1

[

~N

1

7

'_

(: :Nr

”
9
11

(13 14
15 16
17

\ _/

10
12
\

Recovery
Additions
introduction,
1 per tree

Step 2

L(+): 1 cycle
L(*): 3 cycles

Avg. latency:
19-22 cycles

L (I — — S~
MULTISPECULA]
0 SY m e = O O ==l
[\ D F~ N N i
7‘: | \JH: A ‘ Oy ‘ : ‘ : ‘ ‘ F\ o

Always executed: provides a

L(+): 1 cycle

L(*): 3cycles 7 recovery cstep/slot for operations 4
2 .. and 8, if necessary
"19-0 --------- Repeated iff operations 4’ or 8’ do
o T not hit, respectively
LN AS-ITY Y

Overall latency: 2

19-22 cycles - F S P . .
R - S Not necessary iff operations 7, 11
BN /A and 17 hit, respectively
15
s _\X]18 ’ Repeated as many times as needed
LU /A (expected: 0 or 1 cycles)
18 i
R
19’

L et 25

PN \

| U N =
OUTLIN
o O/ AN

@ Introduction
Speculative Functional Units

® Multispeculative Functional Units

® Multispeculative datapaths
Addition Chains
Binary Addition Trees
Generic Additive Trees

® Some results
® Conclusions and future lines of work

26

% Variation

% Variation

o)
PR
& < 600 Q:\’o D
& @ & e & E
10
. I
M _
20 - =
-30
40 Linear
Modules
-50
B ExTime MArea ADP
>
> '\b
& Q& < S & %
Q&Z"Q VS’C) Q$ ((\Q\ ?gﬁ((—)\((\Q ,\«@Q Qo\,/ @(’)
20
10
0lem W m m m m 0 = N
10 | {]
-20 1 —
-30 1 —
-40
-50 v 5
" Logarithmic
20 Modules

W ExTime M Area ADP

@ Logarithmic modules: KS-
based

Less ExTime reduction

Negligible area
increase

@ Linear modules: RCA-
based
Slight Increase in area

Splitting a RCA does not
reduce its area

Greater ExTime
reduction

RCA carry chain is not
optimized

@ Best results with larger
bitwidths

32-bits: Simpson38,
Trapezoid

16-bits: the rest

27

EXPERIMENTAL RESULTS: WITH OR
WITHOUT MSTREES

Multispeculative KS without and with MS-Trees

% Variation

M CenM ExTime W MS-KS ExTime CenMArea M MS-KS Area

@ Advantages of MS-Tree Management
Greater ExTime Reduction
Lower Area Penalty

28

PN \

| U N =
OUTLIN
o O/ AN

@ Introduction
Speculative Functional Units

® Multispeculative Functional Units

® Multispeculative datapaths
Addition Chains
Binary Addition Trees
Generic Additive Trees

® Some results
® Conclusions and future lines of work

29

CONCLUSIONS AND FUTURE LINES
® (Multi)Speculative FUs are efficient

® We propose strategies for utilizing these
efficient (M)SFUs in the Design Automation
context

Distributed Management
MSTrees Management

® More applications

MSFUs behave better with large bitwidths
Design of Floating Point Units

@ Next step

Integration with Distributed Management
Integrate CSA and MS-Trees

30

THANK YOU FOR YOUR
ATTENTION !!!

And remember ... The
important thing is not to stop
questioning; curiosity has its
own reason for existing
(Einstein)

You can em@il me to:
abarriog@ucm.es

—

= L= ‘ / ‘ﬁ ‘ /7

JOITIVE TRE

® Moderate CSA

Latencies
L(*): 4 cycles
L(+, CPA): 2 cycles
L(+, CSA): 1 cycle
Limited performance
® Extreme CSA

A _‘ ~— — A -

VA ‘ / \

O\
=

[S—

Latencies
L(*, CSA): 2 cycles
L(+, CPA): 2 cycles
L(+, CSA): 1 cycle
Increase in area

CSAs. CPAs are still
necessary

Routing and registers.
CSAs produce 2 bit-
vectors

Low performance
difference

Limitation imposed by
CPAs still exists
In our flow, a CPA is

substituted by a
MSADD+recovery addition

Solution: Integration with
Distributed controller

% Variation

15.00

10.00

5.00

0.00

-5.00

-10.00

-15.00

-20.00

-25.00

DWT FIR ARF Dot_8

B %ExTime ™M %Area M %ADP

® MSTrees vs Extreme CSA (16-bits)
Slight performance difference

Less area
Overall: better Area Delay Product

33

% Variation

DWT FIR ARF Dot_8

30.00

20.00

10.00

0.00 -

-10.00 -

-20.00 I

-30.00

B %ExTime ™M %Area M %ADP

@ MSTrees vs Extreme CSA (32-bits)
ExTime reduction (CPAs greater penalty)
Less area reduction (Multipliers weight)
Overall: better Area Delay Product

34

