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INTRODUCTION

® HPC big question
High Performance ... but at what cost ??!
Power, Energy, Area must be considered too
@ Additions and products are the most common
operations in datapaths
Products are based on additions

@ Efficient Adders and Additive Structures
Building efficient basic blocks is essential
But the ability to handle them is the key




@ Classical Adders [Hwa79, Kor02]

Examples
Ripple Carry, Carry Select, Carry Skip
Carry Lookahead, Prefix Adders

Always work with the longest calculus time
Huge area/power penalty in the fastest designs
Many cases do not really need the longest path
@ Variable Latency FUs

Relax some logic conditions to mostly work in fast
mode

Less area/power than Fixed Latency counterparts
Asynchronous and synchronous designs

Speculative Fus
Synchronous VLFUs based on carry prediction
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INTRODUCTION® VLFUS AND HLS
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@ Raghunathan. et al. (2000); Telescopic Units by Benini et.
al (1998)

Treat the VLFUs as conditional branches
This is only feasible with very few VLFUs
Exponential number of cases to control
Solution: Distributed Controller (Del Barrio et al. 2011)

hity py="1"

P P Controller S1 hity, ry.=‘0’
\ \/ /hityLFyq ‘
VLFU1  / >

3 Correction
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Distributed Controller

1 local controller per FU +
Supervisor

Supervisor
Derived automatically from DFG
Supervisor fires the transitions
Dynamic scheduling
Different approach

Checks mispredictions for every
operation

M1 M2 A1 A2
controller controller controller controller
Cm1 Sm2 €A1 €2
ew| (so) (9 © &
Cm1 €2 €A1




N == *‘ AN TN T = 2 D\ ]
\ <d BE UH KK [ PEN ©
AN &Y & \ 4 O

() A\ VRN — A PN E—|
[ R A / A )
o) ’/ 0\ | . \: L // N Q

Issued Committed Cycle M1 M2 A1 A2

S1/0|S2| 0S5/ 0(S9|0

S6| 0 [S3| 0 |S5/0(|S9| 0

S7, 0S4/ 0 |S8| 0|S9| 0

S1/1|S2| 1 |S10| 0 [S11| O

S6| 1 |S3|1|S5/ 1S9 1

S7|1(S4|1|S8|1]|S9| 1

S7|1(S2| 0 |S8| 1 |S11] 1

S1/ 0 |S2| 0 [S10] 1 [S11] 1

State T State T State T State T
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® Same interface: hit signal

@ Distanced carries are quasi-independent
[Nowick 1996, Lu 2004, Verma et al. 2008]
If the fragment size, k, is large enough, the
probability of propagating a misprediction is
closeto 0

Corollary. 2 very short cycles are enough to
execute most of additions

@ Gains in execution time, area and energy
@ Increase in the number of mispredictions
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@ n-bit Kogge-Stone Adder

Complex carry
propagation tree

Very fast
O(log(n))
Huge area
O(n*log(n)) with
large n
o High switching activity

@ n-bit Multispeculative KS

n/k simpler carry
propagation trees

Extremely fast
O(log(k))
Predictors accuracy
Reduced area

Small KS have area
O(n)

Area: n/k*O(k) =
0o(n)

o  Low switching activity
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WAL A OP HIMIZATIONS:
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/ It is only necessary to apply prediction

for the last addition = Only the last
addition can mispredict

15

A+B+C+D
Cycle 3




Pipeline

Prediction
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Misprediction = 2 cycles will be enough for the
last addition, in most of the cases
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If kK >1, this carries array will
become 0 for sure.

SN ONCORERON
C2 c4

cstep 1
c1
e AN NN 0--1
....................................................................... \ \ c2 |
—_ %
c1 \Y;
cstep2 (4 ) U4 ) LN /R
o
® &
e 1 l N
cstep 3

cstep 3’ 0

Z’=Z = It can be possible, but the extra cycle will be
unavoidable unless the result coming from A2 is 0

Z”=Z =» True with an extremely high probability
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cstep 1

cstep 2

cstep 3

cstep 4

c UAIAPA
| REL. |
In this case no extra
A B C D addition for
accumulating carries is
necessary
cstep 1

cstep 2

cstep 3

cstep 4’

Z’=/Z =» It can be possible, but the extra cycle will be
unavoidable unless the result coming from A2 is 0

Z’=Z =» True with an extremely high probability
20
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Discrete
Wavelet . 8
Transform
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L(+): 2 cycles
L(*): 4 cycles

!

Overall latency:

28 cycles
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@ Algorit

Step 1:

1M
|dentify the additive trees

Additive trees can include products in the leaf nodes
Step 2: Introduce a recovery addition per tree
Step 3: Combined scheduling and binding

Resource constrained

Free

MSFUs

Finished operation
Evaluate if carries have been consumed

Evaluate if scheduling/binding an operation can
block the algorithm
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Recovery
Additions
introduction,
1 per tree

Step 2

L(+): 1 cycle
L(*): 3 cycles

Avg. latency:
19-22 cycles
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Always executed: provides a

______________________________________

L(+): 1 cycle

L(*): 3cycles 7 recovery cstep/slot for operations 4
2 .. and 8, if necessary
"19-0 --------- Repeated iff operations 4’ or 8’ do
o T not hit, respectively
LN AS-ITY Y

Overall latency: 2

19-22 cycles - F S P . .
R - S Not necessary iff operations 7, 11
BN /A and 17 hit, respectively
15
s _\X]18 ’ Repeated as many times as needed
LU /A (expected: 0 or 1 cycles)
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R
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% Variation

% Variation
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@ Logarithmic modules: KS-
based

Less ExTime reduction

Negligible area
increase

@ Linear modules: RCA-
based
Slight Increase in area

Splitting a RCA does not
reduce its area

Greater ExTime
reduction

RCA carry chain is not
optimized

@ Best results with larger
bitwidths

32-bits: Simpson38,
Trapezoid

16-bits: the rest
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EXPERIMENTAL RESULTS: WITH OR
WITHOUT MSTREES

Multispeculative KS without and with MS-Trees

% Variation

M CenM ExTime W MS-KS ExTime CenMArea M MS-KS Area

@ Advantages of MS-Tree Management
Greater ExTime Reduction
Lower Area Penalty
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CONCLUSIONS AND FUTURE LINES
® (Multi)Speculative FUs are efficient

® We propose strategies for utilizing these
efficient (M)SFUs in the Design Automation
context

Distributed Management
MSTrees Management

® More applications

MSFUs behave better with large bitwidths
Design of Floating Point Units

@ Next step

Integration with Distributed Management
Integrate CSA and MS-Trees
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THANK YOU FOR YOUR
ATTENTION !!!

And remember ... The
important thing is not to stop
questioning; curiosity has its
own reason for existing
(Einstein)

You can em@il me to:
abarriog@ucm.es
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® Moderate CSA

Latencies
L(*): 4 cycles
L(+, CPA): 2 cycles
L(+, CSA): 1 cycle
Limited performance
® Extreme CSA

A _‘ ~— — A -
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Latencies
L(*, CSA): 2 cycles
L(+, CPA): 2 cycles
L(+, CSA): 1 cycle
Increase in area

CSAs. CPAs are still
necessary

Routing and registers.
CSAs produce 2 bit-
vectors

Low performance
difference

Limitation imposed by
CPAs still exists
In our flow, a CPA is

substituted by a
MSADD+recovery addition

Solution: Integration with
Distributed controller




% Variation
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® MSTrees vs Extreme CSA (16-bits)
Slight performance difference

Less area
Overall: better Area Delay Product
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% Variation

DWT FIR ARF Dot_8
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@ MSTrees vs Extreme CSA (32-bits)
ExTime reduction (CPAs greater penalty)
Less area reduction (Multipliers weight)
Overall: better Area Delay Product
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