

ABOUT THE RELEVANCE OF MULTISPECULATION IN HLS

Alberto A. Del Barrio García¹, Román Hermida ${ }^{1}$, Seda Ogrenci Memik², María C. Molina ${ }^{1}$, José M. Mendías ${ }^{1}$
${ }^{1}$ Complutense University of Madrid ${ }^{2}$ Northwestern University

OUTLINE

- Introduction
- Speculative Functional Units
- Multispeculative Functional Units
- Multispeculative datapaths
- Addition Chains
- Binary Addition Trees
- Generic Additive Trees
- Some results
- Conclusions and future lines of work

OUTLINE

- Introduction
- Speculative Functional Units
- Multispeculative Functional Units
- Multispeculative datapaths
- Addition Chains
- Binary Addition Trees
- Generic Additive Trees
- Some results
- Conclusions and future lines of work

INTRODUCTION

- HPC big question
- High Performance ... but at what cost ??!
- Power, Energy, Area must be considered too
\odot Additions and products are the most common operations in datapaths
- Products are based on additions
- Efficient Adders and Additive Structures
- Building efficient basic blocks is essential
- But the ability to handle them is the key

INTRODUCTION

- Classical Adders [Hwa79, Kor02]
- Examples
- Ripple Carry, Carry Select, Carry Skip
- Carry Lookahead, Prefix Adders
- Always work with the longest calculus time
- Huge area/power penalty in the fastest designs
- Many cases do not really need the longest path
- Variable Latency FUs
- Relax some logic conditions to mostly work in fast mode
- Less area/power than Fixed Latency counterparts
- Asynchronous and synchronous designs
- Speculative Fus
- Synchronous VLFUs based on carry prediction

INTRODUCTION: SPECULATIVE FUNCTIONAL UNITS

Synchronous principle: 1 short cycle if the adder hits, 2 if it does not

Speculative Multiplier is basically a CSA array with a Speculative Adder in the last stage

INTRODUCTION: VLFUS AND HLS

STATE OF THE ART

- Raghunathan. et al. (2000); Telescopic Units by Benini et. al (1998)
- Treat the VLFUs as conditional branches
- This is only feasible with very few VLFUs
- Exponential number of cases to control
- Solution: Distributed Controller (Del Barrio et al. 2011)

INTRODUCTION: VLFUS AND HLS

 STATE OF THE ART

- Distributed Controller
- 1 local controller per FU + Supervisor
- Supervisor
- Derived automatically from DFG
- Supervisor fires the transitions
- Dynamic scheduling
- Different approach
- Checks mispredictions for every operation

controller

1 state value per operation

INTRODUCTION: VLFUS AND HLS STATE OF THE ART

OUTLLINE

- Introduction
- Speculative Functional Units
- Multispeculative Functional Units
- Multispeculative datapaths
- Addition Chains
- Binary Addition Trees
- Generic Additive Trees
- Some results
- Conclusions and future lines of work

MULTISPECULATIVE FUNCTIONAL UNITS

MULTIISPECULATIVE FUNCTIONAL

- Same interface: hit signal
- Distanced carries are quasi-independent [Nowick 1996, Lu 2004, Verma et al. 2008]
- If the fragment size, k, is large enough, the probability of propagating a misprediction is close to 0
- Corollary. 2 very short cycles are enough to execute most of additions
- Gains in execution time, area and energy
\odot Increase in the number of mispredictions

MULTIISPECULATIVE FUNCTIONAL

- n-bit Kogge-Stone Adder

Complex carry
propagation tree
Very fast
$O(\log (n))$
Huge area
$O\left(n^{*} \log (n)\right)$ with large n
High switching activity

- n-bit Multispeculative KS
n / k simpler carry propagation trees
Extremely fast
O($\log (k))$
Predictors accuracy
Reduced area
Small KS have area O(n)
Area: $n / k^{*} O(k) \cong$ O(n)
- Low switching activity

OUTLINE

- Introduction
- Speculative Functional Units
- Multispeculative Functional Units
\bigcirc Multispeculative datapaths
- Addition Chains
- Binary Addition Trees
- Generic Additive Trees
- Some results
- Conclusions and future lines of work

DATAPATH OPTIMMZATIONS:

 ADDITION CHANNS

MULTISPECULATIVE DATAPATHS: ADDITION CHANS

MULTIISPECULATIVE FUNCTIONAL UNITS: A MSADD FOR DATAPATHS

OUTLINE

- Introduction
- Speculative Functional Units
- Multispeculative Functional Units
\odot Multispeculative datapaths
- Addition Chains
- Binary Addition Trees
- Generic Additive Trees
- Some results
- Conclusions and future lines of work

MULTISPECULATIVE DATAPATHS: BINARY ADDITION TREES

If $k>1$, this carries array will become 0 for sure.

$Z^{\prime}=Z \rightarrow$ It can be possible, but the extra cycle will be unavoidable unless the result coming from A 2 is 0
$Z "=Z \rightarrow$ True with an extremely high probability

MULTISPECULATIVE DATAPATHS: BINARY ADDITION TREES

In this case no extra addition for accumulating carries is

$Z^{\prime}=Z \rightarrow$ It can be possible, but the extra cycle will be unavoidable unless the result coming from A2 is 0

Z"=Z $\boldsymbol{\rightarrow}$ True with an extremely high probability

OUTLINE

- Introduction
- Speculative Functional Units
- Multispeculative Functional Units
\bigcirc Multispeculative datapaths
- Addition Chains
- Binary Addition Trees
- Generic Additive Trees
- Some results
- Conclusions and future lines of work

MULTISPECULATIVE DATAPATHS:

GENERIC ADDITIVE TREES

MULTIISPECULATIVE DATAPATHS:

GENERIC ADDITIVE TREES

- Algorithm
- Step 1: Identify the additive trees
- Additive trees can include products in the leaf nodes
- Step 2: Introduce a recovery addition per tree
- Step 3: Combined scheduling and binding
- Resource constrained
- Free MSFUs
- Finished operation
- Evaluate if carries have been consumed
- Evaluate if scheduling/binding an operation can block the algorithm

MULTISPECULATIVE DATAPATHS:

GENERIC ADDITIVE TREES

MULTISPECULATIVE DATAPATHS:

GENERIC ADDITIVE TREES

OUTLINE

- Introduction
- Speculative Functional Units
- Multispeculative Functional Units
- Multispeculative datapaths
- Addition Chains
- Binary Addition Trees
- Generic Additive Trees
- Some results
- Conclusions and future lines of work

EXPERIMENTAL RESULTS: MSTREES

- Logarithmic modules: KSbased
- Less ExTime reduction
- Negligible area increase
- Linear modules: RCAbased
- Slight Increase in area
- Splitting a RCA does not reduce its area
- Greater ExTime reduction
- RCA carry chain is not optimized
- Best results with larger bitwidths
- 32-bits: Simpson38, Trapezoid
- 16-bits: the rest

EXPERIMENTAL RESULTS: WITH OR

WITHOUT MSTREES
Multispeculative KS without and with MS-Trees

- Advantages of MS-Tree Management
- Greater ExTime Reduction
- Lower Area Penalty

OUTLINE

- Introduction
- Speculative Functional Units
- Multispeculative Functional Units
- Multispeculative datapaths
- Addition Chains
- Binary Addition Trees
- Generic Additive Trees
- Some results
- Conclusions and future lines of work

CONCLUSIONS AND FUTURE LINES
OF WORK

- (Multi)Speculative FUs are efficient
- We propose strategies for utilizing these efficient (M)SFUs in the Design Automation context
- Distributed Management
- MSTrees Management
- More applications
- MSFUs behave better with large bitwidths
- Design of Floating Point Units
- Next step
- Integration with Distributed Management
- Integrate CSA and MS-Trees

THANK YOU FOR YOUR ATTENTION !!!

And remember ... The important thing is not to stop questioning; curiosity has its own reason for existing (Einstein)

You can em@il me to: abarriog@ucm.es

MULTISPECULATIVE DATAPATHS: GENERIC ADDITIVE TREES

Moderate CSA

- Latencies
- L (*): 4 cycles
- L(+, CPA): 2 cycles
- L(+, CSA): 1 cycle
- Limited performance
- Extreme CSA
- Latencies
- L(*, CSA): 2 cycles
- L(+, CPA): 2 cycles

L(+, CSA): 1 cycle

- Increase in area
- CSAs. CPAs are still necessary
- Routing and registers. CSAs produce 2 bitvectors
- Low performance difference
- Limitation imposed by CPAs still exists
- In our flow, a CPA is substituted by a MSADD+recovery addition
- Solution: Integration with Distributed controller

EXPERIMENTAL RESULTS: MSTREES

 VS EXTREME CSA

- MSTrees vs Extreme CSA (16-bits)
- Slight performance difference
- Less area
- Overall: better Area Delay Product

EXPERIMENTAL RESULTS: MSTREES

 VS EXTREME CSA

- MSTrees vs Extreme CSA (32-bits)
- ExTime reduction (CPAs greater penalty)
- Less area reduction (Multipliers weight)
- Overall: better Area Delay Product

