
About the Relevance of Multispeculation in High-
Level Synthesis

Abstract—Nowadays circuits possess stringent area or power
constraints. Nevertheless, the increase of performance is still an
obligation while designing them. The recent appearance of
Variable Latency Functional Units (VLFUs) has raised the
possibilities for designers because they offer a good tradeoff.
However, the VLFU behaviour depends on the inputs, so the use
of many of them increases the probability of working in long
latency mode. In this paper we propose the use of
Multispeculative FUs to improve performance with a negligible
area penalty. By judiciously speculating the carry vectors of
concrete operations, and hiding the possible mispredictions, the
probability of working in long latency mode is reduced. Hence,
the average latency is diminished and thus performance is
increased. Our experiments show a 24% improvement on
execution time when considering logarithmic modules.

Keywords: multispeculation, additive trees, HLS

I. INTRODUCTION
Additive structures are the basis of nowadays’ datapaths.

Addition chains or trees usually appear in signal processing
applications such as: ECG, numerical integration methods,
filters, multimedia applications, etc [2-3]. Therefore, it is
crucial to improve the quality of adders and adder-dominated
structures without incurring significant area or power overhead.
The optimization of these structures has been historically
performed with fast Fixed Latency FUs [1] or with Carry Save
Adders (CSAs). Nevertheless, despite recent contributions
towards Dataflow Graph (DFG) transformations to optimize
the use of CSAs [4], the application of these structures requires
the appearance of similar cluster of nodes in the DFG for
reusing them and thus avoiding an excessive overhead. The
introduction of Variable Latency Functional Units (VLFUs)
has augmented the possibilities in the design space [5-7].
Opposite to the aforementioned fixed latency FUs, VLFUs are
characterized by a low area/power and the varying total number
of cycles to complete a computation, depending on the specific
inputs. The performance of the datapath will be higher if the
VLFUs work in the short latency mode as many times as
possible. However, they are still subject to the long latency
mode. Moreover, when utilizing several VLFUs the probability
of working in long latency mode for any of them will increase,
penalizing thus the datapath latency. Hence, it is critical to
devise mechanisms able to hide possible penalties due to
VLFUs working in long latency mode.

Multispeculative FUs (MSFUs) are VLFUs based on
various forms of speculation over the carry signals. This carry
speculation helps to shorten the critical path of the FU. The
average case performance of these units is determined by the
hit rate of the prediction. However, in spite of utilizing more
than a predictor, none or only one additional cycle is enough
for producing the correct result in the majority of the cases [5-

6]. Our proposal consists of utilizing MSFUs to reduce the
average latency of the circuit, and applying some techniques to
hide the long latency penalties when possible.

II. MULTISPECULATIVE DATAPATHS
An n-bit Multispeculative Adder (MSADD) is composed of

n/k k-bit fragments interconnected with n/k-1 predictors [7]. In
order to implement datapaths, we apply Static Zero Prediction
(SZP) in some points of the DFG, so in our case predictors are
simple D-flipflops. These elements will be used to save the
intermediate carries and pipeline them from a cstep to the
following during the first cycles, avoiding thus the additional
penalty cycles during this first set of operations. Finally in the
last cycles, predictors will be utilized as usual, reducing the
critical path of the last stage, which is the main limitation of
CSA structures, and thus increasing performance. In this last
stage, SZP will be assumed. Hence, in the last cycles a failure
will be produced iff a carry-out from any fragment is ‘1’, i.e.
different from the prediction. In this last cstep/state a control
mechanism similar to [7] is utilized, i.e. if the hit signal is false
there will be a transition to an intermediate or correction state,
and otherwise there will be a transition to the following state.

A comparison between a conventional flow and our proposal
is illustrated in Figure 1. Let us consider non-speculative FUs
and MSFUs. Note that MS-multipliers (MSMULs) are
composed of a CSA tree and an MSADD in the last stage. And
let´s suppose a latency of 4 and 2 cycles for the non-speculative
FUs and 3 and 1 for the MSMULs and MSADD, respectively.
Figure 1 a) shows the DFG of the Discrete Wavelet Transform
[2], while figure 1 b) depicts its corresponding scheduling and
binding with non-speculative FUs, which takes 28 cycles with
1 adder and 2 multipliers. Figures 1 c) to 1 e) show the
application of our methodology. First, we identify the additive
trees in the DFG, as it can be observed in figure 1 c). These
additive trees are only composed of additions, but for the
leaves, that can be products too. Second, a recovery addition
per tree is introduced, as depicted in figure 1 d) with the
operations labeled with ‘. Finally, the additive trees are
scheduled and bound applying a modified combined resource
constrained scheduling and binding, as shown in figure 1 e).
Dotted lines indicate how the intermediate carries are pipelined
from an operation to the following. Recovery additions will
apply SZP until a correct result is reached. According to
previous studies [5-7], they will be required none or once at the
most, with a high probability. Hence, if the original operations
(those labeled without a ‘) produce a hit, the csteps that are
only composed of recovery additions can be skipped in
execution time. In figure 1 e), these csteps are those labeled

with ‘. For instance, if Operation 7 hits, cstep 10’ is not
necessary. If the cstep contains conventional operations too,
they will provide a recovery slot to hide one additional cycle.
This is the case of csteps 6, 8 and 12 with Operations 4, 8 and
12. Thereby, provided that a cycle is enough for correcting the
results, the latency of our proposed implementation will range
between 19 and 22 cycles, providing besides 3 recovery slots
for 3 of the 6 recovery additions in the datapath.

III. EXPERIMENTAL RESULTS
Several benchmarks have been simulated and synthesized

with a 65 nm library, utilizing Design Compiler by Synopsys.
Our results considering non-speculative and MS logarithmic
modules can be observed in figure 2, where the percentage
variation in execution time, area and Area Delay Product
(ADP) are shown. The baseline flow is composed of
conventional list-scheduling and left-edge binding algorithms
using non-speculative FUs [2-3].

As it is shown, MS results improve execution time by 24%
on average (44% in the best case). The average area penalty is
close to zero because the reduction in FUs area is compensated
for the additional routing and control. Finally, when
considering ADP, there is a 24% reduction.

IV. CONCLUSIONS
This work describes the application of multispeculation

over additive trees. The main idea consists of pipelining the
carry vectors in the inner nodes of the trees. Thanks to the
associative property of addition, carry vectors that cannot be
consumed by active adders can be accumulated at a later stage.
The last stage delay will be reduced by multispeculating these
carry vectors. Results show that multispeculation open a new

window of possibilities in datapath design, as the study of the
number of required predictors or the development of new
MSFUs able to provide new optimizations to the datapaths.

REFERENCES
[1] I. Koren, “Computer Arithmetic Algorithms”, A K Peters, 2nd ed, 2002.
[2] S.P. Mohanty, N. Ranganathan, E. Kougianos, P. Patra. “Low-Power

High-Level Synthesis for Nanoscale CMOS”, Springer, 2008.
[3] P. Coussy, A. Morawiec, “High-Level Synthesis. From Algorithm to

Circuit Design.”, Springer, 2008.
[4] H. Parandeh-Afshar et al., “Improving FPGA Performance for Carry-

Save Arithmetic”, IEEE TVLSI, Vol. 18, no. 4, pp. 578-590, April 2010.
[5] S.M. Nowick, “Design of a low-latency asynchronous adder using

speculative completion”, IEE Proc. Comput. Digit. Tech., 1996, vol 143,
no. 5, pp. 301-307.

[6] A.K. Verma et al., “Variable Latency Speculative Addition: A New
Paradigm for Arithmetic Circuit Design”, DATE 2008, pp. 1250-1255.

[7] A.A. Del Barrio et al., “Multispeculative Addition Applied to Datapath
Synthesis”, IEEE TCAD, 2012 (on press).

Figure 1. a) Discrete Wavelet Transform (DWT) DFG [2], b) conventional scheduling with non-speculative FUs, c) additive

structures in the DWT DFG without and d) with the recovery additions, e) scheduling and FU-binding with multicycle MSFUs

Figure 2. Execution time gain, area penalty and area per

delay variation percentages for logarithmic FUs

