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Abstract—Nowadays circuits possess stringent area or power 
constraints. Nevertheless, the increase of performance is still an 
obligation while designing them. The recent appearance of 
Variable Latency Functional Units (VLFUs) has raised the 
possibilities for designers because they offer a good tradeoff. 
However, the VLFU behaviour depends on the inputs, so the use 
of many of them increases the probability of working in long 
latency mode. In this paper we propose the use of 
Multispeculative FUs to improve performance with a negligible 
area penalty. By judiciously speculating the carry vectors of 
concrete operations, and hiding the possible mispredictions, the 
probability of working in long latency mode is reduced. Hence, 
the average latency is diminished and thus performance is 
increased. Our experiments show a 24% improvement on 
execution time when considering logarithmic modules. 
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I.  INTRODUCTION 
Additive structures are the basis of nowadays’ datapaths. 

Addition chains or trees usually appear in signal processing 
applications such as: ECG, numerical integration methods, 
filters, multimedia applications, etc [2-3]. Therefore, it is 
crucial to improve the quality of adders and adder-dominated 
structures without incurring significant area or power overhead. 
The optimization of these structures has been historically 
performed with fast Fixed Latency FUs [1] or with Carry Save 
Adders (CSAs). Nevertheless, despite recent contributions 
towards Dataflow Graph (DFG) transformations to optimize 
the use of CSAs [4], the application of these structures requires 
the appearance of similar cluster of nodes in the DFG for 
reusing them and thus avoiding an excessive overhead. The 
introduction of Variable Latency Functional Units (VLFUs) 
has augmented the possibilities in the design space [5-7]. 
Opposite to the aforementioned fixed latency FUs, VLFUs are 
characterized by a low area/power and the varying total number 
of cycles to complete a computation, depending on the specific 
inputs. The performance of the datapath will be higher if the 
VLFUs work in the short latency mode as many times as 
possible. However, they are still subject to the long latency 
mode. Moreover, when utilizing several VLFUs the probability 
of working in long latency mode for any of them will increase, 
penalizing thus the datapath latency. Hence, it is critical to 
devise mechanisms able to hide possible penalties due to 
VLFUs working in long latency mode.  

Multispeculative FUs (MSFUs) are VLFUs based on 
various forms of speculation over the carry signals. This carry 
speculation helps to shorten the critical path of the FU. The 
average case performance of these units is determined by the 
hit rate of the prediction. However, in spite of utilizing more 
than a predictor, none or only one additional cycle is enough 
for producing the correct result in the majority of the cases [5-

6]. Our proposal consists of utilizing MSFUs to reduce the 
average latency of the circuit, and applying some techniques to 
hide the long latency penalties when possible. 

II. MULTISPECULATIVE DATAPATHS 
An n-bit Multispeculative Adder (MSADD) is composed of 

n/k k-bit fragments interconnected with n/k-1 predictors [7]. In 
order to implement datapaths, we apply Static Zero Prediction 
(SZP) in some points of the DFG, so in our case predictors are 
simple D-flipflops. These elements will be used to save the 
intermediate carries and pipeline them from a cstep to the 
following during the first cycles, avoiding thus the additional 
penalty cycles during this first set of operations. Finally in the 
last cycles, predictors will be utilized as usual, reducing the 
critical path of the last stage, which is the main limitation of 
CSA structures, and thus increasing performance. In this last 
stage, SZP will be assumed. Hence, in the last cycles a failure 
will be produced iff a carry-out from any fragment is ‘1’, i.e. 
different from the prediction. In this last cstep/state a control 
mechanism similar to [7] is utilized, i.e. if the hit signal is false 
there will be a transition to an intermediate or correction state, 
and otherwise there will be a transition to the following state. 

A comparison between a conventional flow and our proposal 
is illustrated in Figure 1. Let us consider non-speculative FUs 
and MSFUs. Note that MS-multipliers (MSMULs) are 
composed of a CSA tree and an MSADD in the last stage. And 
let´s suppose a latency of 4 and 2 cycles for the non-speculative 
FUs and 3 and 1 for the MSMULs and MSADD, respectively. 
Figure 1 a) shows the DFG of the Discrete Wavelet Transform 
[2], while figure 1 b) depicts its corresponding scheduling and 
binding with non-speculative FUs, which takes 28 cycles with 
1 adder and 2 multipliers. Figures 1 c) to 1 e) show the 
application of our methodology. First, we identify the additive 
trees in the DFG, as it can be observed in figure 1 c). These 
additive trees are only composed of additions, but for the 
leaves, that can be products too. Second, a recovery addition 
per tree is introduced, as depicted in figure 1 d) with the 
operations labeled with ‘. Finally, the additive trees are 
scheduled and bound applying a modified combined resource 
constrained scheduling and binding, as shown in figure 1 e). 
Dotted lines indicate how the intermediate carries are pipelined 
from an operation to the following. Recovery additions will 
apply SZP until a correct result is reached. According to 
previous studies [5-7], they will be required none or once at the 
most, with a high probability. Hence, if the original operations 
(those labeled without a ‘) produce a hit, the csteps that are 
only composed of recovery additions can be skipped in 
execution time. In figure 1 e), these csteps are those labeled 



with ‘. For instance, if Operation 7 hits, cstep 10’ is not 
necessary. If the cstep contains conventional operations too, 
they will provide a recovery slot to hide one additional cycle. 
This is the case of csteps 6, 8 and 12 with Operations 4, 8 and 
12. Thereby, provided that a cycle is enough for correcting the 
results, the latency of our proposed implementation will range 
between 19 and 22 cycles, providing besides 3 recovery slots 
for 3 of the 6 recovery additions in the datapath. 

III. EXPERIMENTAL RESULTS 
Several benchmarks have been simulated and synthesized 

with a 65 nm library, utilizing Design Compiler by Synopsys. 
Our results considering non-speculative and MS logarithmic 
modules can be observed in figure 2, where the percentage 
variation in execution time, area and Area Delay Product 
(ADP) are shown. The baseline flow is composed of 
conventional list-scheduling and left-edge binding algorithms 
using non-speculative FUs [2-3].  

As it is shown, MS results improve execution time by 24% 
on average (44% in the best case). The average area penalty is 
close to zero because the reduction in FUs area is compensated 
for the additional routing and control. Finally, when 
considering ADP, there is a 24% reduction.  

IV. CONCLUSIONS 
This work describes the application of multispeculation 

over additive trees. The main idea consists of pipelining the 
carry vectors in the inner nodes of the trees. Thanks to the 
associative property of addition, carry vectors that cannot be 
consumed by active adders can be accumulated at a later stage. 
The last stage delay will be reduced by multispeculating these 
carry vectors. Results show that multispeculation open a new 

window of possibilities in datapath design, as the study of the 
number of required predictors or the development of new 
MSFUs able to provide new optimizations to the datapaths. 
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Figure 1. a) Discrete Wavelet Transform (DWT) DFG [2], b) conventional scheduling with non-speculative FUs, c) additive 

structures in the DWT DFG without and d) with the recovery additions, e) scheduling and FU-binding with multicycle MSFUs 

 
Figure 2. Execution time gain, area penalty and area per 

delay variation percentages for logarithmic FUs 


