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1 Introduction

This abstract presents the authors’ recent results on noise-enhanced computation, with specialized
application to an error-correction decoding algorithm widely used in digital communication systems.
Random defects are an increasingly troublesome problem for densely integrated electronic circuits. In
this work we focus specifically on noise-induced transient upsets that can occur in nano-scale switching
devices. There has recently been increasing interest in noise-tolerant design, since there is continual
pressure to reduce the signal energy in electronic circuits, and eventually it will be necessary to perform
computation at a very low signal-to-noise ratio. Some researchers propose sacrificing reliability in order
to reduce energy consumption, which is acceptable for some applications that are inherently tolerant
to momentary or intermittent faults (audio or image processing, for example).

In contrast to noise-tolerant design, some researchers argue for noise enhanced solutions by using
algorithms that benefit in some way from random upsets. Noise-enhanced solutions are partly motivated
by biological examples, particularly neural signal processing, in which there are several instances where
neural function is enabled or improved by some form of noise [3]. In this work, we present a case study
showing how one algorithm is transformed into a noise-enhanced form. The transformation is not quite
automatic, but nevertheless sheds light on a heuristic procedure that may be applied more broadly.
The transformation is based on the stochastic gradient ascent heuristic, which is a well-known method
for constrained optimization problems. The challenge is to transform the problem into a form suitable
for applying the stochastic gradient ascent heuristic.

2 Gradient Descent Bit-Flip (GDBF) Decoding

LDPC codes are a high-performance solution for error correction, used in many standards for wireless
networking, mobile data communication, digital broadcast, and satellite communication. These codes
have also been used in disc drive and solid-state memory applications, among others. The goal of using
LDPC codes is to reduce the system’s bit error rate (BER) when data is communicated across a noisy
channel. A simplified version of the LDPC decoding problem is stated as follows (see MacKay [2],
chapter 47, for a tutorial introduction). A vector of arbitrary data is encoded to produce a codeword c,
which is a column vector of n bits generated subject to the constraint Hc = 0, where H is an m× n
matrix of parity-check constraints — there are m parity constraints (rows) applied to n bits (columns)

— and the multiplication Hc is performed modulo-2. The codeword is then modulated to obtain a
message ĉ = 1− 2c. After modulation, each parity-check constraint can be expressed as the product
sj =

∏
i∈N (j) ĉi = +1, where sj is referred to as the jth syndrome and N (j) = {k : hjk = 1}.

The message is transmitted across a noisy channel that adds a vector of independent, identically
distributed Gaussian noise, n, to the message. At the receiver, a vector of samples, y, is obtained,
given by y = ĉ+ n. The maximum-likelihood (ML) decoding problem is to find the decision d that
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maximizes the correlation

d = arg max
x∈Ĉ

n∑
i=1

yixi, (1)

where Ĉ is the codebook, i.e. the set of all possible messages subject to the parity constraint.
In order to solve the ML decoding problem with minimal complexity, many algorithms have been

devised. One low-complexity method is the gradient descent bit-flip (GDBF) algorithm devised by
Wadayama [5]. To obtain the GDBF algorithm, the ML problem is modified by adding the code’s
syndrome information as a penalty term

d = arg max
x∈Ĉ

n∑
i=1

yixi +

m∑
j=1

sj ≈ arg max
x∈{−1,+1}n

n∑
i=1

yixi +

m∑
j=1

sj . (2)

This approximation is motivated by the intuition that the summation
∑m

j=1 sj is maximized when

x ∈ Ĉ, since all sj are equal to +1 in this case. When x 6∈ Ĉ, at least one of the sj is equal to −1 due
to parity violation.

Thanks to the penalty term, the gradient descent heuristic may be applied to the objective function
f(x) =

∑n
i=1 yixi +

∑m
j=1 sj . By taking the gradient of f(x) with respect to each symbol, Wadayama

defined the inversion function as

∆i (x) , xi
δf

δxi
= xi

yi +
m∑
j=1

δsj
δxi

 = xiyi +
∑

j∈M(i)

sj , (3)

where M(i) = {j : hij = 1}.
Based on the gradient (3), Wadayama proposed a steepest-ascent procedure in which we iteratively

flip the sign of bits for which ∆i(x) < 0. The most stable approach is to flip a single bit in each iteration,
corresponding to the most negative value of ∆i(x). In order to increase the speed of convergence,
Wadayama described a multi-bit variant in which bits are flipped in parallel via a threshold operation.
In the multi-bit GDBF algorithm, the sign of any bit xi is flipped if ∆i(x) < θ, where θ < 0 is
a threshold parameter introduced to improve stability. The authors have shown elsewhere [4] that
performance is improved by using an adaptive threshold procedure in which θ is adjusted gradually
toward zero.

The GDBF algorithm may be implemented as a message-passing algorithm consisting of n symbol
node messages and m parity-check messages. In each iteration, these messages are exchanged between
corresponding processors that perform the arithmetic update operations.

3 Noise Enhancement in the GDBF Algorithm

Since the GDBF algorithm is a form of gradient descent, it is natural to ask whether the heuristic of
stochastic gradient ascent (SGA) can be applied. The SGA procedure introduces random perturbations
in each step of the iterative search process. This heuristic is based on the intuition that naive gradient
ascent may converge to an erroneous local maximum; the random perturbation is introduced with the
intent to avoid or escape from such local maxima. In practice, SGA (or related methods) are known to
be effective in various applications [1].

In the context of computing with noisy hardware, we may suppose that the random perturbations
appear in the form of noise-induced upsets in the xi and sj messages. As a simple experiment, we
allow each such message to be inverted with probability ε during every iteration. In this experiment we
assume that there are no other faults. The results are shown in Fig. 3, which reveals that the algorithm
benefits from a non-zero rate of message upsets when operating at high signal-to-noise ratio (SNR).
The system’s BER is improved when the internal upset rate is increased up to about 10−3. The benefit
is lost when the upset rate increases above this level.

4 Discussion

It is not necessarily surprising that the gradient descent decoding method benefits from stochastic
perturbations, but this benefit is not guaranteed a priori. We may speculate about the particular
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Figure 1: Simulation of the multi-bit GDBF algorithm with random message upsets. These results
were obtained for a regular rate-1/2 (3,6) LDPC code of length n = 1008. In this simulation, threshold
adaptation is assumed. The curves correspond to different values of the channel’s signal-to-noise ratio,
shown in decibels (dB).

features that allow GDBF to be enhanced by noise. The gradient descent formulation is made possible
by adding the syndrome penalty term in (2). This penalty term, and its associated approximation,
allow for bits to flipped independently based on the value of a local gradient. By virtue of this fact,
the algorithm is able to tolerate independent sign-flips in arbitrary positions, such as may occur due
to internal upsets. If a spurious upset occurs, then the algorithm can simply follow the gradient to
restore the correct decision. Based on this reasoning, we propose that similar benefits can be realized
for other problems if they can be formulated as gradient descent procedures that operate through the
independent flipping of single bits.
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