Architectures for LDPC Decoders

Frédéric Guilloud, ENST Bretagne
Emmanuel Boutillon, University of South Britany
Contents

- Part 1: Main Bottlenecks in LDPC Decoder Design
 - Design flow
 - Implementation costs

- Part 2: Case study
 Ad hoc implementation for shuffle-BP scheduling
 - Decoding Schedules
 - Generic Node Units
 - Architectural study
Part 1 : Main bottlenecks in LDPC decoders designs
Design Flows

Classical
- Design code with good performance
- Implement it in hardware

Reverse
- Design an efficient architecture
- Design code under implementation constraints

Joint Design
Implementation costs

- An efficient LDPC code is a good thing …
- The opportunity to implement it in a small area chip is even better!

Implementation costs

- Processing power
- Exchange power
- Memorization power
Processing power (1/2)

- **Check update:**
 For all edges \((m,n)\) connecting the \(m^{th}\) check to the \(n^{th}\) variable: 2 additions and 2 LUT \(f)\) per edges.

\[
f(x) = -\ln(\tanh(x/2))
\]

\[
E_{m,n} = 2 \tanh^{-1} \prod_{n' \in N(m) \setminus n} \tanh \left(\frac{1}{2} T_{n',m} \right) = f^{-1} \left(\sum_{n' \in N(m) \setminus n} f(T_{n',m}) \right)
\]

- **Variable update:**
 For all edges \((n,m)\) connecting the \(n^{th}\) variable to the \(m^{th}\) check: 2 additions per edges.

\[
T_{n,m} = I_n + \sum_{m' \in M(n) \setminus m} E_{m',n} = T_n - E_{m,n}
\]

- **NB :** We define also \(f^{-1}(R_{m,n}) = E_{m,n}\) and \(Q_{n,m} = f(T_{n,m})\)

- **Complexity proportionnal to the number of edges**
Processing power (2/2)

- **Specifications:**
 - Information size: K bits
 - Information throughput: D_b bit/s
 - The maximum number of iterations: i_{max}
 - The clock frequency: f_{clk}

- **Number of edges to be processed:**

$$R_e = \frac{E i_{\text{max}} D_b}{K f_{\text{clk}}} \text{ edges/clock cycle}$$

E being the number of non zero entries in the matrix
Generic Message Passing Architecture
(Regular (j,k) code)

- $d_v d_c$: number of input/output ports of the node units
- α, β: number of clock cycles required to process all the j/k node output messages.

Number of edges to be processed: $R_e = P \frac{k}{\alpha}$ edges/clock cycle
so $P = Re/k$ check nodes per clock cycle
(if $\alpha = 1$)
Design example

- Assume these specifications:
 - Information size: 100 bits
 - Information throughput: 100Mbit/s
 - The maximum number of iterations: $i_{\text{max}} = 20$
 - The clock frequency: $f_{\text{clk}} = 1\text{GHz}$
 - Regular (3,6) LDPC code with rate $R = 0.5$

- Number of edges to be processed (if $\alpha = 1$):

 $$P = \frac{Re}{k} = \frac{12}{6} = 2$$

 check nodes per clock cycle

\[
R_e = \frac{Ei_{\text{max}} D_b}{K f_{\text{clk}}} = \frac{200 \times 3 \times 20 \times 10^8}{100 \times 10^9}
\]

\[
R_e = 12 \text{ edges/clock cycle}
\]
Memorization power

- The parity check matrix has to be saved inside the chip.
 - Exchange memory against processing (addresses processing)
Exchange power (1/2)

- Memory conflicts

(CNU = Check Node Unit)
Exchange power (2/2)

- Routing conflicts

(VNU = Variable Node Unit)
(CNU = Check Node Unit)

Simple permutation networks:
- Rotations,
- Protographs, …
Interleaver constraint: rotations (1/2)

Prototype Matrix: \(H = \)

\[
\begin{bmatrix}
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 & 0 & 0 \\
\end{bmatrix}
\]

Moreover: Small memory requirements for parity check matrix
Interleaver constraint: rotations (2/2)

Prototype Matrix: $H =$

$$
\begin{bmatrix}
1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 & 1 & 1 \\
\end{bmatrix}
$$

$M = mP$

$N = nP$

Serial Node Units $(\alpha = k, \beta = j)$
Conclusion: LDPC decoder design from the architecture point of view

Code performance
- Code itself 😊
- Decoding algorithm
 - CNU
 - BP, BP-Based, λ-min, A-min*
 - VNU
 - Precision
 - Scheduling
 - Flooding, shuffled

High throughput
- Improve Hardware Utilization efficiency:
 - $Q_{\text{hard}} \times$
 - activity rate / processing \times
 - clock frequency

Low cost
- Node unit complexity
- Structured parity check matrix

Versatility
- Size
- Rate
Part 2 : Case study

Scheduling implementation
Flooding scheduling
(classical one)

LDPC parity check matrix
Horizontal Shuffle Scheduling
(Turbo Decoding ‘s Mansour02)

LDPC parity check matrix
Horizontal Shuffle Scheduling
(Turbo Decoding ‘s Mansour02)

LDPC parity check matrix

$E_{1,n}$
Horizontal Shuffle Scheduling
(Turbo Decoding ‘s Mansour02)

LDPC parity check matrix

$T_{n,2}$
Horizontal Shuffle Scheduling
(Turbo Decoding ‘s Mansour02)

→ Fewer iterations required to converge
Vertical Shuffle Scheduling
(Shuffle BP’s Zhang-Fossorier02)

LDPC parity check matrix

$E_{m,1}$
Vertical Shuffle Scheduling
(Shuffle BP‘s Zhang-Fossorier02)

LDPC parity check matrix

$T_{1,m}$
Vertical Shuffle Scheduling
(Shuffle BP‘s Zhang-Fossorier02)

LDPC parity check matrix

\[E_{m,2} \]
Vertical Shuffle Scheduling
(Shuffle BP‘s Zhang-Fossorier02)

LDPC parity check matrix

→ and so on and so forth : faster convergence also
Implementation Issue for schedulings

- Classical Node Unit processing:

- Flooding / Horizontal Schedules: CNUs control and VNUs save information
- Vertical Schedule: Reverse!
- Solution: use the symmetry
Generic Node Units (exclude the f function)

- d inputs e_m and d outputs s_n ($d=j$ or k)
- Input / output law:
 \[s_n = \sum_{m \neq n} e_m \]
- NB: replace Σ by \times for sign processing

- How to manage inputs & outputs for node units?
Generic Node Unit implementations:
a) Compact mode («no memories »)

- compact mode and parallel implementation

 \((\alpha \text{ or } \beta = 1 \rightarrow d_c = k \text{ or } d_v = j)\)

- compact mode and serial implementation

 \((\alpha = k \text{ or } \beta = j \rightarrow d_v = d_c = 1)\)
Generic Node Unit implementations:
b) Distributed Mode with slow update (Serial)

\[t^{(i)} = e^{(i)}_1 + e^{(i)}_2 + \ldots + e^{(i)}_d \]

\[t^{(i+1)} = e^{(i+1)}_1 + \ldots + e^{(i+1)}_n \]
Generic operator implementation:
c) Distributed Mode with fast update

Permutation network

\[t_{(i+1)}^{(i+1)} = e_1^{(i+1)} + e_{n-1}^{(i+1)} + e_n^{(i+1)} + \ldots + e_d^{(i)} \]

\[t_n^{(i+1)} = e_1^{(i+1)} + e_{n-1}^{(i+1)} + e_n^{(i+1)} + \ldots + e_d^{(i)} \]

\[t^{(i+1)} \text{ is changing all along the iteration} \]
Control mode combinations: span over the schedulings:

<table>
<thead>
<tr>
<th></th>
<th>VNU</th>
<th>Distributed</th>
<th>Compact</th>
<th>Distributed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C N U</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compact</td>
<td></td>
<td>Parallel Flooding</td>
<td>Flooding along CNU</td>
<td>Horizontal Shuffle</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Slow Update</td>
<td>Fast Update</td>
<td></td>
</tr>
<tr>
<td>Distributed</td>
<td></td>
<td>Flooding along VNU</td>
<td></td>
<td>Edge by edge control</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Parallel Flooding
- Flooding along CNU
- Horizontal Shuffle
- Flooding along VNU
- Vertical Shuffle
- Edge by edge control
Example: Vertical Shuffle ad-hoc architecture (1)

- Originally proposed as Shuffle-BP (Zhang & Fossorier, 2002)

- Combination of:
 - Compact Mode for VNU
 - Distributed Mode with fast update for CNU
Example: Vertical Shuffle ad-hoc architecture (2)

- Compact VNU (serial)
Example: Vertical Shuffle ad-hoc architecture (3)

- Go through the f functions and the interleaver

\[
\sum_{m' \in M(n) \setminus m} E_{m,n}^{(i-1)} + T_{n,m}^{(i)} \rightarrow f \rightarrow Q_{n,m}^{(i)}
\]
Example: Vertical Shuffle ad-hoc architecture (4)

- Save new message $Q_{n,m}$ and update the accumulation R_{m} (fast update)

$$Q_{n,m} = T_{n,m} + f(I_n + \sum_{m' \in M(n) \setminus m} E_{m,n}^{(i-1)})$$

$$Q_{n,m}^{(i)} = Q_{n,m} - Q_{n,m}^{(i-1)}$$

$$E_{m,n}^{(i-1)}$$

Serial GNU Compact Mode

$R_{m}^{(i)}$
Example: Vertical Shuffle ad-hoc architecture (5)

- How did we get the Extrinsic information?
Example: Vertical Shuffle ad-hoc architecture (6)

- NB: $Q_{n,m}$ messages can be moved to VNU:

$Q^{(i)}_{n,m} - Q^{(i-1)}_{n,m}$
Conclusion

- Investigations on high level design allowed us to propose a new and memory efficient architecture for the shuffled-BP schedule

- Channel information still available (turbo equalization for example)

- Characterization of LDPC decoders by some generic parameters (interconnection network position, node unit architecture, node unit control mode, parallelism parameters)
Thank you for your attention!