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Introduction: Error Correcting Codes

Error Correcting Codes (ECC) improve the reliability of many electronic systems.

They are essential for communication and storage applications:

Wireless network connections.

High-speed wired and optical links.

Satellite communications.

Disk drives, memories and optical storage.

High-performance ECC schemes are complex; expensive to implement.

This presentation is about tradeoffs between complexity and performance.
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1 Introduction to ECC
1 Basic theory — practical issues and ultimate limits.
2 LDPC Codes — structure and ultimate performance.

2 Bit-flipping algorithms
1 Sub-optimal LDPC decoding methods.
2 Details of a new method: Noisy Gradient Descent [1].
3 Performance results and complexity analysis.
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Introduction: Error Correcting Codes

Data Source Encoder Transmitter

ReceiverDecoderData Sink

u c ĉ

yỹd

k bits n bits

noisy channel

The data u is a vector containing k bits.

The codeword c is a vector containing n bits, n > k.
The extra bits are called parity bits.
The encoder is described by a matrix operation: c = u × G .

ĉ is a vector of transmitted symbols.
Idealization: ĉi = 1− 2ci

i.e. ĉ ∈ {−1, +1}n.
Example:

0 0 1 0 0 1 1 +1 +1 −1 −1

Parity bit: p =
∑

i ci mod 2

The channel adds noise.
Idealization: Additive White Gaussian Noise (AWGN),
every yi = xi + ni , where ni is a Gaussian random sample.

−0.56 −1.15 0.53 0.15

0.44 −0.15 −0.47 −0.85

The receiver performs quantization.
Hard Information: ỹ = +1 −1 −1 −1
Soft Information: ỹ = 0.4 −0.2 −0.5 −0.9

The decoder tries to estimate c from ỹ .
Decoding is successful when d = c.

0 1 1 1 +1 −1 −1 −1

hard-information result
error is not correctable

0 0 1 1 0.4 −0.2 −0.5 −0.9

soft-information result
error is corrected by flipping the “weakest” bit

(or by other methods)
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yỹd
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i.e. ĉ ∈ {−1, +1}n.

Example:

0 0 1 0 0 1 1 +1 +1 −1 −1

Parity bit: p =
∑

i ci mod 2

The channel adds noise.
Idealization: Additive White Gaussian Noise (AWGN),
every yi = xi + ni , where ni is a Gaussian random sample.

−0.56 −1.15 0.53 0.15

0.44 −0.15 −0.47 −0.85

The receiver performs quantization.
Hard Information: ỹ = +1 −1 −1 −1
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i.e. ĉ ∈ {−1, +1}n.

Example:

0 0 1 0 0 1 1 +1 +1 −1 −1

Parity bit: p =
∑

i ci mod 2

The channel adds noise.
Idealization: Additive White Gaussian Noise (AWGN),
every yi = xi + ni , where ni is a Gaussian random sample.

−0.56 −1.15 0.53 0.15

0.44 −0.15 −0.47 −0.85

The receiver performs quantization.
Hard Information: ỹ = +1 −1 −1 −1
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Soft Information: ỹ = 0.4 −0.2 −0.5 −0.9

The decoder tries to estimate c from ỹ .
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Evaluating and Comparing Decoders

Decoder performance is measured by the Bit Error Rate (BER).

BER is a function of Signal-to-Noise Ratio (SNR) at the receiver:

SNR ,
Eb— Signal power, energy per bit

N0— Noise power spectral density

Usually SNR is expressed in dB:

SNR (dB) = 10 log10

(
Eb

N0

)
Lastly the effective SNR depends on the code’s Rate R , k/n. In our idealization, Eb = 1/R,
so

SNR = 10 log10

(
1

RN0

)
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Evaluating and Comparing Decoders
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For a specific rate, say R = 0.5,
Shannon theory tells us the
absolute minimum SNR.

Turbo Codes [4, 5, 6] and LDPC
Codes [7, 8, 9] are practical
solutions that can come close to the
Shannon limit.
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For a particular family of LDPC
codes and decoding algorithms, we
can also obtain a code-specific
threshold indicating the limit for
this code [10, 11, 12].
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High-performance algorithms, like
Belief Propagation (BP), come
closest to the threshold.

Approximate algorithms, like
Min-Sum (MS), are fairly close to
BP [13, 14].
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Decoding algorithms are iterative,
meaning they require a large
number of repeated calculations. In
practice, we can trade between
performance and complexity by
operating with fewer iterations.
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Alternative: so-called Weighted
Bit-Flipping (WBF) algorithms
have extremely low complexity, but
with a large penalty in performance
[15, 16].
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Numerous bit-flipping algorithms
have been devised to improve
performance. Gradient Descent
Bit-Flipping (GDBF) algorithms
provide a good balance between
performance and complexity [17].
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Numerous bit-flipping algorithms
have been devised to improve
performance. Gradient Descent
Bit-Flipping (GDBF) algorithms
provide a good balance between
performance and complexity [17].

Some bit-flipping algorithms
perform close to MS, but require a
big increase in complexity [18, 19,
20, 17].

This presentation is about a new
GDBF method [1] that offers good
performance, without a big increase
in complexity.
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Low-Density Parity-Check Codes

LDPC codes are commonly represented by a Tanner Graph:

n symbols

m parity checks
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LDPC codes are commonly represented by a Tanner Graph:

n symbols

m parity checks

The symbol nodes represent the bits in a codeword.

The parity check nodes represent the constraints among the bits.
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Low-Density Parity-Check Codes

LDPC codes are commonly represented by a Tanner Graph:

n symbols

m parity checks

The edges indicate constraint relationships, i.e.:
If xi ∈ {−1, +1} are the symbols connected to parity-check node Pj , then they are
constrained so that

sj =
∏

i∈N(j)

xi = +1, where N (j) is the neighborhood of Pj .

If sj = +1, then parity is satisfied. If sj = −1, then at least one bit has an error.
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Bit-Flipping Algorithms

Bit-flipping decoders associate a reliability score to each symbol.

For a given symbol xi , the reliability score, Ei , represents the sum of all locally available
information, including the channel sample magnitude and adjacent parity-check results. If the
adjacent parity checks are all good, and the channel confidence is strong, then we shouldn’t
flip xi .

For example, suppose:

ỹi is the value received from the channel.

xi is the “hypothesis” decision, either +1 or −1.

sj are the adjacent parity-check results (+1 is good, −1 is bad).

Then a possible reliability score is:

Ei = xi ỹi +
∑

j∈M(i)

sj

where M(i) is the graph neighborhood of xi . (This is the score used in GDBF [17])
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Single Bit Flipping

For decoding, we can search for the lowest Ei and flip the corresponding xi .

This is continued until all parity checks are satisfied.

Example: The circle represents xi

ỹi = −0.2

−1

-1 -1 +1

−1 −1 +1

Then Ei = (−1)(−0.2) + 1− 1− 1 = −0.8.

If we flip the bit, then xi := +1.
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Now we re-evaluate the parity-checks, and they
come back as −1, +1, and + 1.
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Single Bit Flipping

For decoding, we can search for the lowest Ei and flip the corresponding xi .

This is continued until all parity checks are satisfied.

Example: The circle represents xi

ỹi = −0.2

+1

+1 +1 -1

+1 +1 −1

Now Ei = (+1)(−0.2)− 1 + 1 + 1 = 0.8

In the next iteration, some other bit will be
flipped.
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Parallel Bit Flipping

Faster decoding is possible by flipping multiple bits each iteration:

Set a threshold θ < 0.

In each iteration, flip all bits for which Ei < θ.

This saves us having to search for the minimum Ei , and allows for fully parallel
implementation.

The best θ is found empirically.
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Gradient Descent (or Gradient Ascent)

Wadayama showed that bit flipping is related to Gradient Descent Optimization [17].

x

f (x)

The received samples ỹ provide an initial guess x . This
guess is associated with a global reliability metric, called the
objective function:

f (x , ỹ) =
n∑

i=1

xi ỹi +
m∑

j=1

sj

The first part,
∑n

i=1 xi ỹi , represents the standard Maximum
Likelihood problem — we want to find the codeword that
has highest correlation with the received samples. The
second part,

∑m
j=1 sj , is the sum over all parity checks. If

the sequence is valid, then all parity checks equal +1.
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Gradient Descent (or Gradient Ascent)

Wadayama showed that bit flipping is related to Gradient Descent Optimization [17].

x

f (x)

According to the Gradient Descent procedure, we shift the
guess toward the objective function gradient:

∆xi ∝ xi
df

dxi
= xi

ỹi +
∑

j∈M(i)

∏
k∈N(j)\i

xj


= xi ỹi +

∑
j∈M(i)

sj

= Ei
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x

f (x)

Bit-flipping incrementally increases the objective function,
following the positive slope.
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Gradient Descent (or Gradient Ascent)

Wadayama showed that bit flipping is related to Gradient Descent Optimization [17].

local max

global max

x

f (x)

Several algorithms have been devised to help find the global
maximum, but most options add significant complexity.
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Stochastic Gradient Descent (or Ascent)

Stochastic Gradient Descent is another well-known optimization heuristic [21, 22, 23, 24].

local max

global max

x

f (x)

The guess x gets a random perturbation at each step.

The algorithm can randomly escape the local maximum,
and is more likely to arrive in the neighborhood of the
global maximum.

In the GDBF algorithm we apply a Gaussian noise
perturbation qi to the reliability metric of every symbol:

Ei = xi ỹi +
∑

j

sj + qi

We call this Noisy Gradient Descent Bit-Flipping
(NGDBF).
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How Much Noise?

Wadayama and others previously tried using a random perturbation to improve bit-flipping
performance. They found a very minor improvement [17].

In our method, the perturbations qi have the same variance as the channel noise. This is
much larger than used previously.

Why? We have only intuition to support this approach, but it works...
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Improvements: Adaptive Thresholds

In the parallel bit-flip method, flipping is determined by a threshold θ.
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At SNR=3.0 dB

At SNR=3.75 dB

At SNR=4.25 dB

The BER is extremely sensitive to θ.

To reduce sensitivity, we use an
adaptive threshold:

Each symbol xi has a local threshold θi .

In each iteration, if xi is flipped, then

θi := λθi

If xi is not flipped, then

θi := λ−1θi

Typically λ is between 0.90 and 0.99.
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Threshold adaptation reduces
parametric sensitivity.

This idea was first proposed by Ismail et
al., but did not improve performance
(they used it to devise a stopping
condition) [25].

Performance is improved by the
combination of threshold adaptation
with noisy perturbations.
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NGDBF Performance with Adaptation
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Output Smoothing

global max

x

f (x)

Sometimes the noise interferes with convergence.

The state may orbit the solution without reaching it.

Performance is improved by smoothing:

If the guess x hasn’t congerged in T iterations,

Take the decision

di = sign

(
T +64∑
t=T

xi (t)

)

The implementation is a simple up-down counter.

17/35



Output Smoothing

global max

x

f (x)

Sometimes the noise interferes with convergence.

The state may orbit the solution without reaching it.

Performance is improved by smoothing:

If the guess x hasn’t congerged in T iterations,

Take the decision

di = sign

(
T +64∑
t=T

xi (t)

)

The implementation is a simple up-down counter.

17/35



Output Smoothing

global max

x

f (x)

Sometimes the noise interferes with convergence.

The state may orbit the solution without reaching it.

Performance is improved by smoothing:

If the guess x hasn’t congerged in T iterations,

Take the decision

di = sign

(
T +64∑
t=T

xi (t)

)

The implementation is a simple up-down counter.

17/35



NGDBF Performance with Adaptation and Smoothing
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Efficient Implementation

0 20 40

10−1
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tk

|θ
|

Floating point

Quantized

When using quantized samples, the
values of θ are also quantized. In
this case, only a few distinct θ
values can occur.

In this example, with 5-bit
quantization only eight θ̃ values are
possible.
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Efficient Implementation

0 20 40

10−1

100

tk

|θ
|

Floating point

Quantized

We don’t need to explicitly multiply
by λ or λ−1 in each iteration.
Instead, we use a counter, tk , which
is incremented whenever xi is
flipped and decremented otherwise.
We then select the quantized value
of

θ = θ0λ
tk ,

which is determined by threshold
events in tk . It is sufficient to
simply switch between the
quantized θ̃ values during decoding.
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Efficient Implementations

When using quantized arithmetic, the NGDBF modifications have very low complexity:

Smoothing: requires a few toggle flip-flops to implement an up-down counter.

Threshold adaptation: due to quantization, only a few distinct threshold values are
possible.

Noise samples can be reused without affecting performance.

The end result is only slightly more complex than GDBF.
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Decoder Architecture
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Symbol Node Architecture
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Tradeoffs: Energy, Reliability and Performance

In a communication link, ECC allows reduced transmitter power.

Cost: complex decoding algorithms = increased power in the receiver.

Suboptimal bit-flipping algorithms reduce receiver energy cost.

Big questions:

1 What is the ultimate limit (e.g. threshold) on bit-flipping performance?

2 What is the minimum energy required for decoding?

3 Is there a theoretical relationship between ultimate performance and minimum energy?
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Conventional LDPC Decoders: Minimum Energy

For traditional LDPC algorithms (Belief Propagation and Min-Sum), it is possible to relate
performance thresholds with minimum energy-per-bit [2].

We assume a digital architecture, and
use Landauer’s limit [26] for the
minimum energy per switching event:

Emin = kT ln 2

Where k is Boltzmann’s constant and
T is the temperature in K. At room
temperature, this evaluates to
Emin = 2.85 zJ (2.85× 10−21 J)

Landauer considered a single particle
confined to a two-well system. Emin is
the minimum work required to move
the particle from one well to the other.
It is also the minimum barrier height
needed to confine the particle.

E

barrier
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Conventional LDPC Decoders: Minimum Energy

For traditional LDPC algorithms (Belief Propagation and Min-Sum), it is possible to relate
performance thresholds with minimum energy-per-bit [2].

When energy approaches the Landauer
limit, digital states become unreliable,
subject to upsets due to electronic
noise, quantum tunneling or other
random perturbations [27, 28].

In fact, when the barrier height equals
Emin, the tunneling probability is 0.5
and there can be no binary state [28].
The practical limit is therefore
somewhere higher than kT ln 2.

E

barrier
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Conventional LDPC Decoders: Minimum Energy

For traditional LDPC algorithms (Belief Propagation and Min-Sum), it is possible to relate
performance thresholds with minimum energy-per-bit [2].

To address the practical limit for LDPC
decoders, we account for random upsets
by using a modified “density evolution”
procedure, which estimates the average
switching activity per message while
computing the algorithm’s performance
threshold.

(β1, ∆β1) (β2, ∆β2) (β3, ∆β3)

M M M

M−1 M−1 M−1

(µ, ∆µ)

} noisy wire
vector channels

y
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Conventional LDPC Decoders: Minimum Energy

For traditional LDPC algorithms (Belief Propagation and Min-Sum), it is possible to relate
performance thresholds with minimum energy-per-bit [2].

This method assumes a particular
digital architecture. Messages are
mapped to a physical signal
representation via a mapping M, and
upsets are randomly inserted into the
signals. The upset statistics represent
the presence of kT noise, following an
approach used by Meindl and Davis[27].

We compute the message statistics at
each iteration of the algorithm, jointly
tracking the conditional distribution of
changes. From these distributions we
obtain the switching activity and
therefore the limiting energy per bit.

(β1, ∆β1) (β2, ∆β2) (β3, ∆β3)

M M M

M−1 M−1 M−1

(µ, ∆µ)

} noisy wire
vector channels

y

(doesn’t work for bit-flipping)
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Joint Limit on Performance and Power
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By combining switching activity with
Landauer’s Emin limit, we arrive at a
three-way asymptotic relationship:

Energy-per-Message, Em

(i.e. power)

Channel noise parameter σ
(related to SNR)

Decoding threshold
(best possible performance)

For min-sum decoders, we estimate a
limiting efficiency of ≈ 10 aJ per bit
(10−17 J/bit), which is about four
orders of magnitude greater than the
Landauer limit for individual switching
events.

These results do not directly apply to
bit-flipping algorithms!
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Frontier: Noise-Assisted Algorithms

We showed that bit-flipping performance is improved by noise.

Can bit-flipping performance also be improved by random internal upsets?

Yes!
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GDBF with Internal Upsets
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We evaluated GDBF performance
without the noise terms.

Message upsets were inserted with
probability ε (an upset means
xi := −xi ).

Up to a point, upsets tend to
improve the decoder’s performance.

This is certainly favorable for
operating near the Landauer limit.
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Problems for Future Research

Bit-flipping methods rely on heuristic approaches. We need a more complete theory on
bit-flipping performance:

Can we obtain performance thresholds for bit-flipping algorithms?

Can we develop a better theory of optimality for bit-flipping procedures?

(Wadayama showed that several BF algorithms can be derived from the gradient descent
framework, but gradient descent itself is a family of heuristics.)

Can we obtain ultimate energy/performance relationships for bit-flipping algorithms?
How do they compare to BP and MS?

Noise-assisted algorithms can get us closer to the Landauer minimum. How much closer?
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Thank you for listening!

Questions?
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