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Résumé

En théorie, les circuits électroniques conçus selon la méthode du
pire-cas sont supposés garantir un fonctionnement sans erreur pour
un coût d’implémentation élevé. Dans la pratique les circuits restent
sujets aux erreurs transitoires du fait de leur sensibilité aux aléas
tels que la radiation et la température. En revanche, une conception
prenant en compte la tolérance aux fautes permet de faire face à de
tels aléas comme la variabilité du processus de fabrication. De plus,
les erreurs transitoires et la variabilité de fabrication s’intensifient
avec l’émergence de nouveaux processus de fabrication et des cir-
cuits de dimension de plus en plus réduite. La demande d’une con-
ception intégrant la tolérance aux fautes devient désormais primor-
diale.
La présente thèse a pour objectif de cerner la problématique de la
conception de circuits sur des puces peu fiables et apporte des con-
tributions suivant quatre aspects. Dans un premier temps, nous pro-
posons une méthode de tolérance aux fautes, basée sur la correc-
tion d’erreurs et la redondance à faible coût. Puis, nous présentons
un critère bidimensionnel judicieux permettant d’évaluer la fiabilité et
l’efficacité matérielle de circuits. Nous proposons ensuite un mod-
èle universel qui apporte une tolérance avec fautes à redondance
faible pour les systèmes logiques d’aujourd’hui et les architectures
nanoélectroniques de demain. Enfin, nous découvrons un décodeur
tolérant aux fautes transitoires internes.

Abstract

Although materials could be fabricated as error-free theoretically with
a huge cost for worst-case design methodologies, the circuit is still
susceptible to transient faults by the effects of radiation, temperature
sensitivity, and etc. On the contrary, an error-resilient design enables
the manufacturing process to be relieved from the variability issue
so as to save material cost. Since variability and transient upsets
are worsening as emerging fabrication process and size shrink are
tending intense, the requirement of robust design is imminent.
This thesis addresses the issue of designing on unreliable circuit.
The main contributions are fourfold. Firstly a fast error-correction and
low cost redundancy fault-tolerant method is presented. Moreover,
we introduce judicious two-dimensional criteria to estimate the reli-
ability and the hardware efficiency of a circuit. A general-purpose
model offers low-redundancy error-resilience for contemporary logic
systems as well as future nanoeletronic architectures. At last, a de-
coder against internal transient faults is designed in this work.
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General Introduction

Due to the rapid development of logic circuit manufacturing in the last two decades, the
electronic device has been entitled deep nanoscale. As digital technology approach the
limits of planar integration, device-level reliability has emerged as a critical concern.
Above all, the fluctuation and variability issues induced during the fabrication further
threaten the design reliability via functional failures. Densely integrated CMOS circuits
are increasingly affected by thermal upsets which induce momentary, transient logic
faults in digital architectures. The problem of transient upsets is compounded with the
three-dimensional integrated circuits, and with the emergence of “post-CMOS” nano-
scale devices that perform computations using a very small number of electrons.

Faults experienced by semiconductor devices fall into three main categories: per-
manent, intermittent, and transient. Permanent faults are caused by manufacturing
defects or device wear-out [SH04]. They reflect irreversible physical changes. In-
termittent faults occur because of unstable or marginal hardware. They can be acti-
vated by environmental changes, like higher or lower temperature and voltage varia-
tion [ENW08]. Most of the time, intermittent faults precede the occurrence of perma-
nent faults. The transient defects and faults are becoming major impact on the reliabil-
ity of electronic technologies. Due to the size downscaling processes, digital logic cir-
cuits are increasingly vulnerable to cross-talk, high-energy particle collisions and radia-
tions [Bau01], thermal noise, electromagnetic interference (e.g. from switching events
in neighboring devices on the same chip), timing failures in synchronous pipelines,
power supply noise, and other sources [KP74, ENW08, SH04]. Among these transient
faults, radiation-induced Soft-Error (SE) has led people to high attention on the topic of
cosmic radiation induced transient faults in nanoscale computation. This event is called
Single-Event Transient (SET) or Single-Event Upset (SEU) [Bau01] (See further infor-
mation for the SET issue in Annex. A.1). For all these reasons, it has been proposed to
embed error-correcting logic within integrated digital systems [SAKJ10,LCB+10].

0.1 Related Works

In the literature, a considerable amount of approaches has been proposed to mask or
mitigate SE in different contexts. The well-known Triple Modular Redundancy (TMR)
technique and similar conventional techniques that duplicate module in spacial or tem-
porary style, as well as parity coding, require majority voting afterwards [Lal85]. In
Error Correcting Code (ECC) context. More informations about the ECC technique can
be found in Annex. A.2. It is well known that ECC has been used in non-volatile mem-
ory [RMR08], as well as in SRAM [SYH+06] and DRAM [BAS05]. In a software-only
context, the recovery technique is carried out by instruction-level lockstep or multi-
threading instead of hardware redundancy [CRA06, RM00]. In Redundant Residue
Number System (RRNS) context, a Bi-directional RRNS (BRRNS) that requires redun-
dant moduli satisfy some constraints to achieve fast error-correction with minimum
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6 General Introduction

hardware overhead, as one of our previous work [TBJJ10]. Moreover, two other con-
texts can be held up: the matrix multiplication approach in algorithm level [LCAP08],
the add/remove functionally redundant wire approach [AM08] towards synthesis con-
text.

At architectural level, Shim etal. [SSS04] presented Algorithmic Noise-Tolerance
(ANT) technique to achieve reliable low-power digital signal processing with a reduced
precision replica. An ANT-based system, Algorithmic Soft-Error Tolerance (ASET) [SS06]
is composed of an error-control block that detects and corrects errors in the main func-
tion block has been developed. Since the arithmetic units employed in Digital Signal
Processing (DSP) systems (in [SSS04]) are based on Least Significant Bit (LSB) first
computation, soft errors appear first in the Most Significant Bit (MSB), resulting in
errors in a large magnitude. In this way, the reduced precision block can be achieved
with reduced precision operands. However, ANT method is hardly adapted as a general-
purpose model while the reduced precision block can not be done in an efficient way.
Likewise, ASET is constrained by the construction of an estimator which provides the
redundancy required for error detection and correction. An Error Resilient System Ar-
chitecture (ERSA) [LCB+10] has been designed for low-cost robust system, but with
a higher cost in terms of hardware complexity for general-purpose applications. The
concept of ERSA is assigning some tasks for two types of cores: bunch of undependable
cores as slave functions for fast energy-efficient but error-vulnerable calculations and
other dependable cores as master functions.

Note that in some cases, the unit for detecting or correcting errors is usually re-
garded as error-free. Embedded error correction may be used to mask permanent
circuit defects as well as transient faults. Unfortunately an embedded error correct-
ing decoder has to be designed using the same error-prone devices as the functions to
correct. This introduces the problem of reliable decoder design that is able to detect
and/or correct faults in its own operations. There is a long list of works that addresses
this problem, based on solutions in the form of “self-checking checkers.” Self-checking
logic circuits are traditionally designed using formal logic methods, where it can be
proved that the circuit detects or corrects up to a fixed number of faults.

Traditional masking mechanisms [KH04] can be found in the category of circuit
level solutions. Such like, three masking techniques in circuit-level. Temporal masking
[LDJK94], that is based on a latching window for latch components, in which case the
error will not be latched while the transient propagates towards a sequential element;
Logical masking [CP93], since the input of a logic gate is not sensitized to an error
event, it completely masks the erroneous propagation. For instance, If SET happens on
an input to a NAND (NOR) logic gate, but one of the other inputs is in the controlling
state, thus the SET is masked; Electrical masking [DL95], while the CMOS circuits
limit bandwidth, transients with the bandwidth higher than a threshold frequency can
be weaken. Thus, SET pulse will be vanished through a sequential path.

A sophisticate flip-flop, referred as to Razor flip-flop, detects the signal delay errors
and tunes supply voltage for power aware computing purpose. [EKD+03]. A Built-
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In Soft Error Resilience (BISER) technique was proposed for the corrections of SEs in
latches, flip-flops and combinational logic [ZMM+06b, ZMM+06a, MZS+07]. BISER
is considered as a Dual Modular Redundancy (DMR) application by using Muller C-
elements as the decision maker. Muller C-element was proposed by Muller in 1959
[MB59], that is increasingly used for fault-masking in digital circuits [GR03, JM05b,
JM05a, WGRS05, WH09, Win09, WEH09, WLMT11]. It attracts us more attention for
robust system design as well [TWB+12,WTB+12].

Although materials could be fabricated as error-free theoretically with a huge cost
for worst-case design methodologies [fS], the circuit is still susceptible to transient
faults. Much efforts have been made by designers for recovering performance after
manufacturing. Since any embedded fault-masking solution is implemented using the
same devices as the logic it protects, it is important for a fault-masking mechanism to
be tolerant of internal errors within its own logic.

0.2 Contributions and Outline

Classically, all the processes in electronic digital circuits can be classified into three
main categories: storage units, such as the memories; communication units, such as
the buses; and computing units, such as the logic gates or adder. The scheme of an
operation process without applying ECC strategies can be described as the non-shaded
parts of Fig. 1. The result g is obtained from an operation F (x) by given the data x as
input.

In this thesis work, we put our emphasis on the application of ECC on unreliable
circuit. A formal model for the application of ECC on unreliable circuit is illustrated
as the shaded parts in Fig. 1. The model consists of three blocks: the encoding func-
tion E(x) to produce a codeword c ∈ Ĉ, the computing function Fc(c) to perform the
operation and the decoding function to recover the result g from an error-correction
process applied to the received data y. Please note that all the three blocks are vulnera-
ble to transient faults and permanent defects. As a result, in order for the ECC block to
recover the result from the output of computing function Fc(c), the output of function
Fc(c), y, has to be a linear code. To achieve this end, there are four cases. We introduce
the four cases as the contributions of this thesis work presented as follow.

0.2.1 The Contributions by Order of Outline

• Chapter 1

To obtain a linear code y, the first case is that a group homomorphism is
obtained among E(x) and Fc(c). More precisely, the encoding function E is
considered as a morphism of Ŝ → Ĉ and the computation Fc is the oper-
ation in Ŝ. Fig. 2 shows the diagram of the application of ECC on unreliable
computation for this case.
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Figure 1: A formal model for the application of ECC on unreliable circuit. The non-
shaded parts are the scheme of an operation process without applying the ECC strategy.

Figure 2: A formal model for the application of ECC on unreliable computation when
the encoding function E is considered as a morphism of Ŝ → Ĉ and the computation
Fc is the operation in Ŝ.



Contributions and Outline 9

Figure 3: Diagram of the property of a group homomorphism, where E is considered
as a morphism of Ŝ → Ĉ and the computation Fc is the operation in Ŝ.

Definition 1. Given two groups (Ŝ,?) and (Ĉ,∗) (? and ∗ represent their opera-
tions), we define that a group homomorphism from (Ŝ,?) to (Ĉ,∗) is a morphism
E: Ŝ → Ĉ such that for all x1 and x2 in Ŝ, it holds that

E(x1 ? x2) = E(x1) ∗ E(x2) (1)

Hence, the operation Fc in Ŝ, (x1 ? x2) ∈ Ŝ, is equivalent to the operation in Ĉ,
(E(x1) ∗ E(x2)) ∈ Ĉ, expressed as

(x1 ? x2) ∈ Ŝ = (E(x1) ∗ E(x2)) ∈ Ĉ (2)

Moreover, Fig. 3 shows the diagram of this property of a group homomorphism.

For example, the redundant residue number system satisfies the constraint of a
group homomorphism. Its encoding process is carried out by the modulo opera-
tion and its computing function is done by the operation of residues. In this case,
both functions are linear and thus (1) and (2) are satisfied.

For a (6,3) RRNS code, the computation Fc(c) is an addition of two digits, x1 and
x2, x1 = x2 = 20,∈ Ŝ = [0, 692], and the moduli set is (7,9,11,13,16,17). Firstly
the encoding function E(x) performs the modulo operations for both x1 and x2.
Thus, the codewords c1 and c2 (c1, c2) ∈ Ĉ = [0, 16] are obtained as the residue
vector (6,2,9,7,4,3) for both x1 and x2. The addition for x1 and x2 is performed
by the addition of c1 and c2 to produce the received data y ∈ Ŝ = [0, 692] after the
computation. In this way, y is obtained as a vector of residues (5,4,7,1,8,6). Finally,
the sum of the two digits, x1 and x2, can be restored from y, thanks to an iterative
decoding process.

Let us commute the operation of the composite function. Instead of the modulo
operation (as the encoding) before the addition (as the computation), the addition
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is done at first. Thus, the output of the addition (x1 +x2), 40, is obtained. After the
modulo operation for 40 with the same moduli set (7,9,11,13,16,17), the received
data y is thus calculated as (5,4,7,1,8,6).

Consequently, the redundant residue number system is an example of the case
where both encoding function E(x) and computing function Fc(c) are linear.
Therefore, (1) and (2) are satisfied since a group homomorphism is obtained.
Please note that that the sets of the inputs and the outputs for both function Fc

and function E should be compatible.

To investigate this approach, chapter 1 introduces a fast arithmetical fault-tolerant
method based on residue number system (RNS) [Gar59] for more robust compu-
tations. The RNS provides a very fast arithmetic due to its capability of perform-
ing the carry-free operations, i.e. addition, subtraction and multiplication. By
adding some redundant residues, the RNS has an error detection and correction
property that is called Redundant Residue Number System (RRNS) [ST67]. How-
ever, the data restoration of a conventional RRNS is an iterative decoding process.
In this case, it requires high latency to achieve an error-correction. In this chapter,
we propose a technique, referred as to bidirectional redundant residue number
system (BRRNS) [TBJJ10], that achieves fast arithmetic and enables to mask an
overall SET. In this method, the detection and the error-location are simultane-
ously performed in a plural parallel consistent-checking that has the capability of
locating the corrupt digit. Therefore, a fast error-correction is obtained. An effi-
cient pipeline architecture for the BRRNS based ripple-carry adder is illustrated
as well.

• Chapter 2

Secondly, when the received data y is obtained from the repetitions of com-
putation F (x), it is a linear code as well, as shown in Fig. 4

For the Triple Modular Redundancy (TMR) method [LV62], its encoding function is
obtained by two duplications of the original computing function. In this case, the
received data of the decoding function are the outputs of the original function and
of the two duplications as well. Obviously, the received data is linear. Moreover, the
well-known repetition code [Mac03] is also an example of this technique. Actually,
the encoder of the repetition code repeats, n times, a particular information bit. As
such, if we have a (3,1) repetition code with n = 2, then, it is equivalent to a triple
modular redundancy method.

TMR has been employed as the fault-tolerant technique for a robust system
since fifty years ago. However, is it efficient to apply a triple modular redun-
dancy technique to increase the robustness of an unreliable computation?
Additionally, how can we make a fair comparison between two fault-tolerant
methods?
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Figure 4: A formal model for the application of ECC on unreliable computation when
received data y is obtained from the repetitions of computation F (x).

In chapter 2, we present a novel criterion, called Reliability-Efficiency Criteria
(RE-Criteria). It defines a two dimensional space of solution, that consists in:
error probability at fanout and hardware efficiency estimations. In this work, by
taking into account that the correction unit is also subject to error, we propose
to assess the quality of an architecture by using not only its efficiency (i.e. the
normalized number of operation per area and per time unit), but also its final
output bit error rate. By exploiting this composed dual space criteria, designers
are able to discern the properties, the reliability and the efficiency, of different
fault-tolerant strategies.

• Chapter 3

The third case is that the processes in the circuit are storage or commu-
nication. Thus, the ECC strategy can be directly applied, as shown in Fig.
5.

A Fast Decoding Method for Binary Symmetric Channel

A solution to the subject of embedded binary error-correction is presented in
Chapter 3. A modified version of Gallager’s well-known Bit-Flipping decoding
method has been proposed for decoding LDPC codes over a Binary Symmetric
Channel (BSC) in [CV09]. A presented modification is about the estimate of a
variable node that is taken to be the majority of the incoming messages at the end
of each iteration. In this work, we propose a similar modification, to define the
the majority of the incoming messages only during the final decoding iteration,
instead of at the end of each iteration. Moreover, we prove that the modified
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Figure 5: A formal model for the application of ECC on unreliable computation when
the operations are storage units or communication units.

Figure 6: A formal model for the application of ECC on unreliable computation when
the redundancy is directly generated from a parity-mapped function.

version can increase the decoding process via density evolution analysis. Since
slight extra hardware resource overhead is required, our method is appropriate
for fast low-power error-correction design.

The fourth case is to directly generate the data y for the decoding function,
by a concatenation of two outputs from the original function and a parity-
mapped function. In this case, y is assured as a linear code, as shown as the
diagram in Fig. 6.

This model, called coded Dual-Modular Redundancy (cDMR), is based on the
Dual-Modular Redundancy (DMR). Note that a parity-mapped function replaces
a duplicated original function. The cDMR is a modified version of an error-
correction model, referred as to Low-Density Parity-Check (LDPC)-coded Fault
Compensation Technique (LFCT), that was proposed by Winstead in [WH09].

A General Embedded Error-Correction Model, called cDMR
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The LFCT method is applied to reliably compute some function F (x). Due to the
affections by transient/permanent faults, the output of F (x), s, is not reliable.
Since an LDPC code is defined by a parity-check matrix H, the valid codeword as
a vector [s r] can be generated through another encoding function. The sequence
r is the redundancy bits of s. Subsequently, a stochastic decoder [GR03,WGRS05]
has been proposed to correct some errors that occur at the output of some logic
computations s. Although a considerable gain in terms of decoding performance
at the output is rendered by LFCT, a critical drawback would lead the method to
fail. If the correlated errors occur at the output of computing function F (x) and
as well encoding function, the stochastic decoding can not perform an efficient
error-correction.

In this chapter, to take into account the occurrence of correlated errors, we
present a modified version of LFCT, cDMR. Thanks to the cross-bar technique,
in cDMR the encoding function to generate the redundancy bits r is realized in
a correlated-error-free fashion. Moreover, the cDMR is modularized in a formal
general robust system.

• Chapter 4

This embedded error-correction model, cDMR, can be adapted into any unreliable
design whenever two issues are avoided. The first is that correlated errors in orig-
inal function’s output and also the parity-mapped function’s output. The second
is that the ECC circuit is able to perform efficient error-correction in the presence
of internal transient faults. Thanks to the cross-bar technique, the correlated-
error issue can be avoided in cDMR. In this chapter, we focus on an efficient
error-correction in the presence of internal transient faults within decoder itself.

A Decoder Against Internal Transient Faults

Muller C-element based Decoder (MCD) is a decoding technique that is able to
perform error-correction in the presence of hight rate of internal transient faults.
The MCD is an improved version of GBF, based on the Muller C-elements to carry
out the variable node process. In practice, for the decoding process of MCD,
the messages that are sent from variable nodes to check nodes are more reliable
thanks to the processing of variable node by C-elements. By comparison to the
GBF, when the internal error rate is as high as 0.01, the MCD does not exhibit a Bit
Error Rate (BER) performance degradation thanks to an increase of the number
of decoding iterations. Therefore, the MCD can be considered as a decoder who
inherits the potential of error-resilience to transient upsets of Muller C-elements.

A Space-Time Redundancy Technique to Improve the Decoding Performance

To further increase the BER performance of a decoder in the presence of internal
faults, the Space-Time redundancy technique can be applied. In fact, a major-
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ity voter at the end of decoding step enables to sample each output during the
last partial decoding iterations. Then, it outputs the decision from a majority of
sampled data. Thanks to the Space-Time technique, the transients that induced
flipped over at the decoded output is able to be masked by the correct outputs. In
addition, the proposed technique can be widely adapted for any message-passing
decoder to further improve the BER performance in the presence of internal er-
rors.

Moreover, by examining the error-resilience from state memory of C-element, we
study the capability of fault-tolerance inherited by C-element. In addition, we
further investigate the behaviors of the decoder against internal faults, referred
as to MCD, via density evolution theory [RU01] and trellis structure [Ung82].

Finally, we introduce a good decoder candidate for ECC of cDMR: a MCD of (3,6)
short-length LDPC code. Thus, when the decoding process is error-free, the MCD
achieves also a notable gain in terms of decoding performance by comparison
with the GBF. As such, it introduces an error-correction benefit in a high error-
rate of internal faults.



1
Fast Fault-Tolerant Arithmetic for Embedded

Computation

In this chapter, a fast arithmetical fault-tolerant method is presented for robust compu-
tation (i.e. addition, subtraction, multiplication, and the applications residue number
system based Fast Fourier Transform (FFT) and Filters, and etc.). Based on the residue
number arithmetic, the proposed technique, called bidirectional redundant residue
number system, is able to cope with single SET. It requires that the redundant moduli
satisfies some constraints to achieve fast error correction.

In this system, the detection and the diagnosis are simultaneously performed in plu-
ral parallel consistent-checking that has the capability of locating the corrupt digit. For
this sake, fast error-correction is applied. Moreover, by restoring the data via two inde-
pendent information sources, a single SET can be masked under single error-correction
operation in the presence of internal transient faults. Furthermore, an efficient pipeline
architecture for the self-diagnosis decoder is proposed as well.

1.1 Introduction

Since any embedded fault-masking solution is implemented using the same device as
the logic it protects, it is important for a fault-masking technique to be tolerant of
internal errors within its own logic. Thus, the restoring block is supposed to per-
form error-correction under a noisy process. Researchers previously investigated the
performance of a variety of error-correcting schemes under the influence of intrinsic
faults [SSS04, SS06, LCB+10, WLMT11, WH09, TBJJ10]. The concept of bidirectional
arithmetical fault-tolerant method presented in this chapter is using two independent
information sources and restoring the data via two information sources with a sophis-
ticated mechanism, achieving a fast error-correction.

This concept is similar to Algorithmic Noise-Tolerance (ANT) technique presented
by Shim etal. in [SSS04]. In general, to increase the reliability of a computation func-
tion, an additional reduced precision replica of the original computation function is
employed. This replica is able to give an reduced precision estimation for the output
of computing function. By applying some criteria to make the decision, the final out-

15
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put is chosen between the output of the computation function and the output of the
replica. Since the reduced precision replica consumes much less power than the origi-
nal function, the ANT achieves reliable low-power digital signal processing. However,
the perturbation of the replica can cause the failure of the system.

An ANT-based system, Algorithmic Soft-Error Tolerance (ASET) [SS06] is composed
of an error-control block that detects and corrects errors in the computation function
block has been developed. By comparison to the original ANT technique, two replica
modules of the computing function are duplicated to produce two estimations to the
output of the computing function. Thus the error-control block makes the decision
among the output from original function and the two estimations via a sophisticated
metric. Since the arithmetic units employed in Digital Signal Processing (DSP) systems
(in [SSS04]) are based on Least Significant Bit (LSB) first computation, soft errors ap-
pear first in the Most Significant Bit (MSB), resulting in errors in a large magnitude. In
this way, the reduced precision block can be achieved with reduced precision operands.
However, ANT method is hardly adapted while the reduced precision block is difficult to
obtain. Likewise, ASET is constrained by the construction of estimator which provides
the redundancy required in error detection and correction.

In addition, an Error Resilient System Architecture (ERSA) has been addressed for
low-cost robust system in [LCB+10]. The ERSA assigns tasks for two types of cores:
bunch of undependable cores as slave functions for fast, energy-efficient but error-
vulnerable calculations; and certain dependable cores as master functions. However, it
takes a higher costs for general-purpose applications.

The rest of this chapter is organized as follows: we first review some well-known
FT techniques to this subject (a traditional approach, triple modular redundancy, ANT
based techniques, and ERSA model). Then, the residue number system and redun-
dancy residue number system are detailed, respectively. The proposed fast recovering
method for the reliable arithmetic computation and its pipeline architecture are pre-
sented afterwards.

1.1.1 Triple Modular Redundancy

Triple Modular Redundancy (TMR) [LV62] is a majority-logic technique developed in
the 60’s which has been widely used for electronic systems in the space and nuclear
industries to ensure reliable operations. Although TMR has fallen out of the method to
cope with dependable issue, it is still employed today for applications that require high
reliability. In the standard TMR scheme, a logic operation is duplicated thrice, usually
by three parallel independent modules in the case of spatial redundancy or by reusing
a single modules in the case of temporal redundancy, as shown in Fig.1.1. Then, for
each logic output, there are three values, each of which may be correct or incorrect.
The probability of error on each value P is assumed to be independent from that of
the other values, and is equal to a small constant value. The TMR output is obtained
by taking the majority value. The output is thus correct if any single error occurs
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among those three, but two or more simultaneous errors will cause an error. Hence,
TMR reduces the resulting error probability to 3P 2 − 2P 3. It induces twice hardware
redundancies of a single modular [TBJJ11]. Its reliability and hardware efficiency is
further analyzed in Section.2.

(a)

(b)

Figure 1.1: Two solutions for TMR: (a) Temporal TMR, (b) Spatial TMR.

1.1.2 Algorithmic Noise-Tolerance

Shim et al. [SSS04] presented Algorithmic Noise-Tolerance (ANT) technique to achieve
reliable low-power digital signal processing with a Reduced Precision Redundancy
(RPR). Fig. 1.2-(a) demonstrates an ANT-based system scheme, where a RPR based
replica is employed to generate redundancy to be fed into error-correction block, as the
shaded area in Fig. 1.2-(a). More precisely, in Fig. 1.2-(a), the main block represents
any function under Voltage Overscaling (VOS) technique which provides an energy sav-
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(a)

(b)

Figure 1.2: Two reduced precision redundancy based fault-tolerant technique schemes:
(a), single estimator (b), double estimator.

ing strategy. Due to the application of VOS and the occurrence of transients, the main
block output ym may be erroneous. Such that, a low-complexity that approximately
computes an output yr that is expected as the output of error-free main block. The
shaded area, error-correction block, calculates the difference de between ym and yr,
thanks to an Euclidean metric de = |ym − yr|. To restore the data in the multiplexer,
the metric of decision yo is described as follows:

yo =

{
ym, if de ≤ Th
yr, otherwise

(1.1)

where the Th is a pre-specified threshold. However, the occurrence of transients in
the estimator leads the scheme in Fig. 1.2-(a) undependable.

To stem the disturbance by noisy estimator, an ANT based approach, called Algo-
rithmic Soft-Error Tolerance (ASET) has been proposed in [SS06]. In fact, instead
of using a single RPR estimator, ASET employs two RPR estimators to produce more
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Figure 1.3: An example of the Error-Resilient System Architecture (ERSA). The system
is realized by two types of components, reliable blocks and unreliable blocks. The
reliable ones dominate the main threads that require high precision. The unreliable
ones occupy the worker threads that require low precision.

reliable redundancy. It enables to take a more reliable decision after. Fig. 1.2-(b)
shows a main block that is paralleled with two RPR estimators. To take into account
the transients that occur in estimators, two differences are calculated: de(ym, yr−1)

and dh(yr−1, yr−2). de(ym, yr−1) is the Euclidean metric between ym and yr−1 and
dh(yr−1, yr−2) is the Hamming distance between yr−1 and yr−2. The error control met-
ric is thus summarized as follows:

yo =


ym, if de(ym, yr−1) ≤ Th
ym, if de(ym, yr−1) > Th and dh(yr−1, yr−2) = 1

yr−2, if de(ym, yr−1) > Th and dh(yr−1, yr−2) = 0

(1.2)

However, two drawbacks limit the based ANT method to be widely applied. It is
hardly adapted while the reduced precision based estimator can not be realized in a
feasible way. Moreover, it requires that the decision block is reliable so as to perform a
correct error-control.
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1.1.3 Error-Resilient System Architecture

An Error Resilient System Architecture (ERSA) [LCB+10] has been addressed for low-
cost robust system. As shown in Fig.1.3, two kind units comprise the system, reliable
block and unreliable blocks as main thread and worker threads, respectively. In this
case, while the main block is the only reliable unit, different robustness levels are
configured among the workers’ architectures. As a result, the ERSA solution is able to
maintain high error resilience to high-order bit errors and control errors to low-order
bit errors.

In short, the ERSA provides an asymmetric reliability based solution in many-core
architectures system so that the system achieves high error resilience to high-order bit
errors and control errors to low-order bit errors. Since high computing precision is not
strictly requested, a low-cost robust system architecture is feasible. However, due to
low reliability set up in some cores, the ERSA is not suitable to high accuracy system.
In addition, a higher costs may be involved for general-purpose applications.

1.2 Redundancy Residue Number System

1.2.1 Introduction

The RNS, firstly introduced by Garner [Gar59], provides a very fast arithmetic due to
its capability of performing the carry-free operations, i.e. addition, subtraction and
multiplication. By adding some redundant residues, the RNS has an error detection
and correction property that is called Redundant Residue Number System (RRNS). A
method based on RRNS that is able to correct single bit error by encoding the residues
was proposed by Cheney [Che62]. Szabo and Tanaka [ST67] dedicated their inves-
tigations to the properties of the RNS and presented a method for correcting single
residue-error correction. The idea of consistency checking was first introduced by Wat-
son and Hastings [WH66]. They also defined a method based on a table for single
residue error correction.

1.2.2 Residue arithmetic fundamentals

Definition 2. A standard RNS [Gar59] is characterized by a set of k pairwise relative
prime positive integers, i.e. greatest common divisor (mi, mj) = 1 with i 6= j, m1, m2,
mk−1, mk, called moduli. The order of moduli is in increasing, i.e., m1 < m2 < · · · <
mk−1 < mk. Their product represents the interval [0,M) called the legitimate range that
defines the useful computational range of the number system, that is,

M =
k∏

i=1

mi (1.3)
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If positive and negative numbers are considered, the dynamic range is defined as
[−(M − 1)/2, (M − 1)/2] if M is odd, and [−M/2, (M/2) − 1] if M is even. Every
natural integer X in the legitimate range can be represented by a set of residues, r1,
r2 · · · , rk−1, rk, where

ri ≡ |X|mi
or ri ≡ X(mod mi) (1.4)

with i ∈ [1, k], and |X|mi
denotes X modulo mi. Due to the carry-free property,

the three operations, namely, addition, subtraction and multiplication, can be operated
with respect to moduli independently, i.e.

x1x2 · · ·xk ∗ y1y2 · · · yk = z1z2 · · · zk, zi ≡ |xi ∗ yi|mi
(1.5)

with ∗ denotes the three operations. Consequently, RNS approach is able to provide
a fast arithmetic.

Definition 3. An RRNS [Man72,BM73] is defined as an RNS with n−k additional moduli.
The moduli, m1, m2, mk−1, mk, are called the information moduli. The additional n− k
moduli, mk+1, mk+2 · · · , mn−1, mn, are called the redundant moduli. Moreover, the
product of all the moduli, MT , is denoted as the total range:

MT =
n∏

i=1

mi = MMR,MR =
n∏

i=n−k
mi (1.6)

where MR represents the illegitimate range. Similarly, the residue vector is com-
posed of the information residues r1, r2 · · · , rk−1, rk, and the redundant residues rk+1,
rk+2 · · · , rn−1, rn. Any number belonging to the illegitimate range indicates the over-
flow or error occurrence as explained in the next subsection.

When the operations were performed in residue vector, a converter of residue to
integer or binary (henceforth, termed simply residue/binary, vice versa, binary-residue)
is necessary in order to build the number. It is well known that Chinese Remainder
Theorem (CRT) and Mixed Radix Conversion (MRC) [ST67, Tay84, OP07] approaches
are often applied for the conversion. Assume that an integer X formed in a residue
vector ri and wi = MT /mi. According to the CRT, X then can be computed by

X =
n∑

i=1

wi |ciri|mi
(mod MT ) (1.7)

The coefficient ci is determined by the congruence,

ciwi ≡ 1(mod mi) (1.8)

It is often necessary to find the extra residue digits rn+1 · · · , rn+p, of an integer X
for a spare set of relatively prime moduli mn+1 · · · , mn+p, given the residue vector r1,
r2 · · · , rn−1, rn, relative to a set of relatively prime moduli m1, m2 · · · , mn−1, mn. This
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is known as the Base Extension (BEX) [SK89] that is based on the CRT. Actually, X is
firstly obtained by (1.8), and then the extra residue digits can be compute with (1.4).

Compared with the CRT, the MRC is carried out by a weighted approach. If the same
previous example is considered, then the MRC is expressed by the following equations,

X =
n∑

i=1

ai

i=1∏
j=1

mj (1.9)

where 0 ≤ ai < mi, and
∏0

j=1mi = 1.
The digits ai are called the mixed radix digit. They can be obtained from a compu-

tational iteration, that is,

ai ≡
i−1∏
j=1

[m−1
j,i (ri − aj)](mod mi), (1.10)

where m−1
j,i is defined as m−1

j,imj ≡ |1|mi
, with a1 = r1.

Thus, the MRC approach is less complex than the CRT approach thanks to a serial
process. This process can be achieved in pipeline procedure for hardware design, which
will be demonstrated in Section. 1.4.

1.2.3 The error detection and correction

1.2.3.1 RRNS Based Fault-Tolerant Model

Error-Correcting Codes (ECC) consist of an information part and a redundant part
[McE02]. Having inherited the property of RNS, RRNS codes have the capability of
allowing fast arithmetic. They have also the error detection and correction due to the
extra redundant residue. Some works about the combination of RRNS and ECC has
been done [YH01]. Assuming the SET occurs during the computation or in the mem-
ories (DRAM, SRAM, etc.), the fault-tolerant models applied the RRNS technique as
shown in Fig.1.4. By applying the noisy channel coding theorem developed by Shan-
non [Sha48], the RRNS codes are composed by the binary/residue conversion as the
encoder and the conversion as the decoder. Moreover, the computing function or the
memory correspond to the noisy channel if they are affected by a SET [vN55, Var11].
For the sake of facility, we note that the residue/binary conversion is assumed as an
error-free process hereinafter.

1.2.3.2 The error detection

The conventional approach for the error detection and the error correction is performed
by the consistent checking or the BEX. The consistent checking was firstly proposed by
Watson and Hastings in [WH66]. It can be defined as: all the residues in the residue
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Figure 1.4: RRNS based fault-tolerant models: (a) for a computing function. (b) for a
memory.

vector are correct if the condition

0 ≤ X < M (1.11)

is satisfied. The process that enables to determine whether or not it holds is called
consistent checking.

Theorem 1. The RRNS codes with n − k = 1 redundant modulus detect all single errors
if the condition m1 < m2 < · · · < mk < mk+1 is satisfied.

Proof 1. Suppose a single SET distorts the ith residue digit in the residue vector of an
integer X, it is represented as an addition of the number ei to the residue while 0 < ei <

mi, namely,

X ′ −→ [r1, r2 · · · , (ri + ei) · · · , rn−1, rn] (1.12)

if X ′ is the altered number. According to 1.5, the X ′ can be defined as the sum of the
X and an integer E formed by the residue vector ei,

X ′ = X + [0, 0 · · · , ei · · · , 0, 0], [0, 0 · · · , ei · · · , 0, 0] ≡ E(mod mi) (1.13)

With (1.7) and (1.9), E can be expressed by

E = c

n∏
j=1,j 6=i

mj (1.14)

where c is a non-zero multiplicative coefficient.
Since the redundant modulus mk+1 is larger than all the information moduli, E is

larger than the legitimate range M in (1.3), namely,
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∏n
j=1,j 6=imj ≥M =

∏n−1
j=1 mj , n ≥ i

And thus,

X ′ ≥ X + cM (1.15)

With the expression of the X ′ 1.15, the number E leads the decoded integer to appear
in the illegitimate range. Hence, the single error is detected.

Theorem 2. For MRC case, the RRNS codes with n− k = 1 redundant modulus detect all
single errors if the condition aj 6= 0, j ∈ [k + 1, n], is satisfied.

Proof 2. Suppose a single SET distorts the ith residue digit in the residue vector of an
integer X. It is represented as an addition of the number ei to the residue while 0 < ei <

mi, namely,

X ′ −→ [r1, r2 · · · , (ri + ei) · · · , rn−1, rn]

where X ′ is the altered number.
Therefore,

E =
∑n

j=1,j 6=i aj
∏j−1

l=1 ml

such that

X ′ = X +
∑n

j=1,j 6=i aj
∏j−1

l=1 ml

Since the redundant modulus mk+1 is larger than all the information moduli, E is
larger than the legitimate rangeM in 1.3. The only case where the decoded integer appears
in the legitimate range is aj = 0, where j ∈ [k + 1, n]. Consequently, aj 6= 0 indicates the
residue digit affection, otherwise, no single error occurs.

1.2.3.3 The single error correction

Theorem 3. The RRNS codes with (n − k) redundant moduli can detect (n − k) errors
and correct (n− k)/2 errors.

This theorem has been demonstrated in different manners [YL73, BM73, BM74,
KLS92, SK92]. The conventional RRNS codes that perform the error correction can
be described in three steps:

1. Consistent checking:

Detect all single errors with theorem 1. If no error is detected, then stop here,
otherwise, go to the next step.
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2. Erroneous digit locating:

Find the location of the erroneous digit or digits. It is generally carried out by
two approaches, mi-projections and based on BEX.

3. Recovery:

Remove the corrupt digit or digits, and then restore the integer X from the rest
error-free residues.

Example 1: An 8-bit RRNS codeword is generated from the modulo set (m1, m2,
m3, m4, m5)=(4, 5, 7, 9, 11), where m4 and m5 are redundant moduli. The legitimate
range is [0, 4 × 5 × 7)= [0, 140). The RRNS codeword for input data X = 125 is
the residue vector (1, 0, 6, 8, 4). Assuming that the third residue of the codeword is
corrupted from 6 to 1 during the storing or the computation, these results in X =

(1, 0, 1, 8, 4). The following process based on the MRC, is applied,

1. consistent checking, discarding r5, the recovered data is 1205 decoded by (r1, r2,
r3, r4) and an error is detected.

2. erroneous digit is located, and iterations are executed,

3. mi-projections are applied. Only one decoded integer is smaller than 140, as
shown in the table below. So the correct integer X = 125 is restored.

Iteration 1 2 3
Discarded residue r1 r2 r3

Recovered data 3095 1709 125

Clearly, if the erroneous digit is r4 or r5, then the integer X can not be recovered
until the discarding of the residue r4 or r5. Therefore, the mi-projections need n cycles
to obtain the error-free integer at the worst case.

1.3 Bi-Directional Redundancy Residue Number System

In the literature, Yau and Liu [YL73] introduced a method that uses appropriate com-
putations to remove the error-correcting table. Mandelbaum [Man72] derived that
two redundant moduli are necessary for single error correction. Then, Barsi and
Maestrini [BM73] introduce a necessary and sufficient condition for the correction
of a given error affecting that affects single residue digit of any legitimate number.
They also proposed an RNS product code and further determined that if the error
affects an arbitrary legitimate number or a number in overflow [BM74]. Jenkins et
al. [EJ80, Jen83, BJ84, JA88] proposed residue number error checkers based on MRC
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[Tay84] and implemented this method into digital filters thanks to efficient pipeline
architectures. Their method disjoints one residue in each projection to process current
error detection and diagnosis. A corrupt number is not actually corrected, but left out
a series of mi weighted projections. Ramachandran [Ram83] showed a particular pro-
cedure of modulo projections that discards more than one residue at each time. Su
and Lo [SL90] used the redundant digits of MRC as the entries to build a lookup ta-
ble. Krishna et al. [KLS92, SK92] bounded the RRNS with coding theory and derived
the conditions for the single, double and multiple error corrections. Katti [Kat96] pre-
sented a method using a modulo set with common factors that leads to simplified error
detection and correction.

The former methods detect or correct error using the computational iterations or
an error-correcting table for the error detection and the error correction. However,
this technique induces considerable hardware or delay overhead. In this work, we
present a RRNS based fault-tolerant technique that demands no table to perform error-
correction and also achieves fast error-free computation in the presence of a single SET.
The proposed technique, Bi-directional Redundant Residue Number System (BRRNS)
requires redundant moduli that satisfy some constraints to achieve fast error correction
with minimum hardware overhead. The BRRNS is characterized by n pairwise rela-
tive prime positive moduli, m1, m2 · · · , mn−1, mn, that are formed in increasing, i.e.,
m1<m2<·<mn−1<mn. The first k moduli form a set of information, and the remaining
n − k moduli are redundancies. BRRNS code has the same structure as a RRNS code,
but a BRRNS code requires that the redundant moduli satisfy the following conditions,

M =
k∏

i=1

mi ≈MR =

p∏
j=k+1

mj , p ≤ n, (1.16)

Mn < m1 ·m2 (1.17)

where the legitimate range of BRRNS is Min(M,MR) and any redundant modulus
is smaller than the product of the two minimum redundant values as [Ram83]. As
the product of certain redundant moduli is approximately equivalent to the product of
the information moduli, any integer X belonging to the legitimate range can be also
restored through the redundant residue vector, namely,

X −→ [rk+1 + rk+2 · · ·+ rp−1 + rp] , p ≤ n (1.18)

Here, we define this property as alternative recovery.

Theorem 4. The BRRNS codes with n − k = 2 redundant moduli is able to correct all
single errors if the condition m1<m2<· · ·<mk<mk+1<mk+2 is satisfied.

By applying the theorem 3, this theorem has no need to be proved. However, the
plural consistent-checking and the alternative recovery make the error-correction in the
BRRNS codes faster than in the conventional RRNS codes.
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With one redundant modulus is able to detect whether or not the single error occurs.
Moreover, double consistent-checking can be done with two redundant moduli. The set
of results obtained from double consistent-checking includes: one non-consistency and
one consistency, two non-consistency and two consistency. The occurrence of single
error is expected in two cases: the distortion of an information residue and the dis-
tortion of a redundant residue. In other words, the corrupt digit is either an informa-
tion residue or a redundant residue and the spare digits are error-free. Consequently,
with the property of alternative recovery, any integer X belonging to the legitimate
range can be either restored from the information residue vector or from the redun-
dant residue vector.

The BRRNS codes perform the error correction in two phases:

• Phase 1: Plural Consistent-Checking

All single errors can be detected and located simultaneously.

• Phase 2: Rehabilitation

The integer X belonging to the legitimate range is restored through the redun-
dant residue vector or through the information residue vector according to the
result of Phase 1.

Example 2: An 8-bit RRNS codeword is generated from the modulo set (m1, m2, m3,
m4, m5)=(4, 5, 7, 11, 13). The legitimate range is [0, 4 × 5 × 7)= [0, 140), according
to Min(M,MR). If an integer decimal message of X = 125 is considered, then the
corresponding residue values are X=(1, 0, 6, 4, 8). Assuming an error occurs in r3,
then the received BRRNS codeword becomes (1, 0, 1, 4, 8),

1. Plural consistent-checking

r1, r2, r3 and r4 involved in the first consistent checking, then, a4=5 6=0, erro-
neous. r1, r2, r3 and r5 involved in the first second checking, then, a5=76=0,
erroneous. Consistent-checking are faulty, hence, the corrupt digits are in the
information residue vector.

Serial Process 1 2 3 4 5
Radix a1 a2 a3 a4 a5

Value 1 1 4 5 7

2. Rehabilitation

The integer X is restored by r4 and r5, the redundant residue set.
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a′4 = r4, a′5 = (r5 − a′4)×m−1
4,5(mod m5),

a′4 a′5 X
Value 4 11 125

1.4 Architecture for BRRNS Decoder

In this section, we present architectures to implement pipeline BRRNS decoder. At
first, the architecture of a RRNS based carry-save adder that requires five clock cycles
at worst to correct single error is recalled. The self-diagnosis BRRNS decoder based
carry-save adder that is able to instantly correct single error is illustrated after.

1.4.1 Conventional RRNS error checker

In the literature [EJ80,Jen83,BJ84,JA88], Jenkins and his colleagues proposed residue
number error checkers based on the RRNS. They also implemented this method into
digital filters based on an efficient pipeline architecture. For instance, if the conven-
tional RRNS code with k = 3 and n = 5 is considered, then the mixed radix digits ai
for each of n projections required for error decoding are computed by the expressions
of MRC given in (1.10), namely,

a1 = r1,

a2 = (r2 − a1) ·m−1
1,2(mod m2),

a3 = ((r3 − a1) ·m−1
1,3 − a2) ·m−1

2,3(mod m3),

a4 = (((r4 − a1) ·m−1
1,4 − a2) ·m−1

2,4 − a3) ·m−1
3,4(mod m4),

a5 = ((((r5 − a1) ·m−1
1,5 − a2) ·m−1

2,5 − a3) ·m−1
3,5 − a4) ·m−1

4,5(mod m5) (1.19)

These computations are performed in a serial way, thus, a pipelined architecture for
the implementation of the mixed radix converter is mostly employed in digital filters,
as shown in Fig. 1.5. For the sake of clarity, the Look-up tables formed as ROM take
place of the computations for the radixes conversions. Thus, the residues or the former
radixes are read as the address to fetch the radix. In the case of five-moduli, the pipeline
takes five execution cycles until a5 fan-outed, which is one cycle of mi-projections. In
practice, one of the five residues is dumped during each iteration. Thus, the capability
of performing the consistent-checking (see also Section. 1.2).
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Figure 1.5: Error checker based on the MRC for a systematic RRNS code with k = 3
and n = 5.

However, the consistent-checking performed during the iterations enables some de-
tections but no correction. Actually, once single soft-error occurred, the mi-projections
requires n iterations at the worst case to obtain an error-free number. For this reason, it
mostly impacts the real-time decoding process achieved with a low latency. The digram
of a carry-save adder based on RRNS that is able to correct single error occurred during
the addition process or the correction process is shown in Fig. 1.6.

For instance, the occurrence of a single SET is considered. Due to the affection of
the SET, it turns out that one of the five residues r1, r2, r3, r4, and r5, is erroneous.
Suppose that r1 is false. In this case, in order to recover an error-free digit X, the
RRRNS based carry-save adder performs an iterative error-correction process as shown
as the diagram presented in Fig. 1.6. At first, four residues, r1, r2, r3, and r4, are chosen
to perform an error-detection, by checking the value of generated a4 through (1.19).
Since the false residue is r1, thus, a4 is not equal 0. Then a second error-detection with
r1, r2, r3, and r5, is started. By checking the value of generated a5 through (1.19), due
to the corrupted r1 a5 is not equal to 0 neither. Similarly, a third error-detections via
r1, r2, r4, and r5 and a fourth error-detections via r1, r3, r4, and r5 are started. Both
checkings end up by a5 6= 0 due to the affection of r1. At the firth error-detection, r2,
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r3, r4, and r5 are picked up to check the value of a5. Since all the four residues are
correct, it passes through the error-checking and also forward the Shift and Addition
block three radix digits a2, a3, and a4 to recover the digit X.

Actually, it requires five execution cycles at worst to correct a single error. In the
following subsection, the self-diagnosis decoder based on the BRRNS for single-error is
presented.

Figure 1.6: RRNS based carry-save adder diagram can correct single error occurred
during the addition or the correction. However, it needs five execution cycles at worst.

1.4.2 BRRNS self-diagnosis decoder

If the same context is considered, a BRRNS code with k = 3 and n = 5 has a different
structure for the computations of the mixed radix digits ai.

a1 = r1,

a2 = (r2 − a1) ·m−1
1,2(mod m2),
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a3 = ((r3 − a1) ·m−1
1,3 − a2) ·m−1

2,3(mod m3),

a4 = (((r4 − a1) ·m−1
1,4 − a2) ·m−1

2,4 − a3) ·m−1
3,4(mod m4),

a′5 = (((r5 − a1) ·m−1
1,5 − a2) ·m−1

2,5 − a3) ·m−1
3,5(mod m5) (1.20)

As explained in section 1.3, the proposed method performs the plural consistent-
checking in parallel. By observing a4 and the one by observing a′5, the consistent-
checking are processed during the same cycle. Therefore, here, a pipeline architecture
based on this principle for single-error correction can be achieved as shown in Fig.1.7.

Figure 1.7: Self-Diagnosis decoder for single-error correction based on the MRC for a
systematic BRRNS code with k = 3 and n = 5.

During the first three execution cycles, a1, a2, and a3 values are computed, respec-
tively. Afterward a4 and a′5 values are obtained after the fourth cycle with equation
1.20. To determine the set for the data recovery, an AND logic gate is employed to
observe the value of a4 and a′5. Moreover, “signal ′d′=0” indicates that the information
residues, a1, a2, and a3, are error-free. Otherwise, a4 and a′5 are error-free while “d=1”.
Subsequently, after the self-diagnosis decoder, the addition based on either a1, a2 and
a3, or a4 and a′5 values is required for completing the rehabilitation of the integer X.

A BRRNS based carry-save adder diagram is shown in Fig.1.8. This architecture can
correct single error during the addition process or the correction process during a single
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execution cycle. More precisely, any single error event occurs among the residues, r1,
r2, r3, r4, and r5, or during the consistent-checking, or during the recovering data
process, can be masked. For instance, if an error event affects the self-diagnosis process,
it can be detected via the consistent-checking. Through the detecting, a4 = 0 and
a5 = 0, a decision is made to recover the integer X by either r5 and r4, or by a1, a2,
and a3, as shown at the bottom of Fig. 1.8.

Figure 1.8: BRRNS based carry-save adder diagram, instantly correcting single error
during the addition or the correction.

1.5 Conclusion

In this chapter, we presented a new single-error correction method based on residue
number arithmetic, as a contribution to the embedded arithmetic error-correction to
the unreliable circuit.

At first, same related works are reviewed: traditional fault-tolerant method, Triple
Modular Redundancy (TMR) and Algorithmic Noise-Tolerance (ANT) based methods.
The TMR is a well-known fault-tolerant method, which is able to correct single SET
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by charging double modular overhead to the design. However, the clumsy redundancy
and malfunction when internal transient faults occur confine TMR to be wide adapted
as a good fault-tolerant method. Algorithmic Noise-Tolerance (ANT) can be regarded
as one of the dual modular redundancy family, which duplicates modular function
once and makes a decision from the original function and the replica to prevent SET
occurrence. Since the replica in ANT technique may be attacked by SEU, Algorithmic
Soft-Error Tolerance (ASET), based on ANT, employs a second replica to enforce the
error-resilience. Nevertheless, two drawbacks limit the based ANT method to be widely
applied indeed, it is hardly adapted while the reduced precision based estimator can not
be realized in a feasible way. Moreover, it requires that the decision block is reliable so
as to perform a correct error-control. For another robust model, Error Resilient System
Architecture (ERSA) has been addressed for low-cost robust system. In order to achieve
low cost, this robust model uses the asymmetric reliability architectures: highly reliable
and expensive cost for the main thread, and inexpensive nor unreliable worker threads.
However, it takes a higher costs for general-purpose applications to adapt this model.

Secondly, we recalled the fundamentals of a Residue Number System (RNS) and
of a Redundancy Residue Number System (RRNS). After, a novel method based on
RNS called Bidirectional Redundant Number System (BRRNS) [TBJJ10] is proposed
and its proofs relevant to single-error detection and correction were detailed. Finally,
a pipeline hardware architecture for the BRRNS was described for the single-error cor-
rection. Moreover, the architecture for BRRNS based carry-save adder to waive single
error from the addition process or the recovering process is also proposed.

Two properties are benefited by using the BRRNS. Thanks to the plural parallel
consistent-checking that performs the error detection and the error diagnosis, fast error
correction can be achieved. As an arithmetic fault-tolerant technique, any SET occurs
anywhere within the BRRNS can be precluded.

For a future directions, we will turn our attention to extend a BRRNS into a double-
error correction issue. In addition, it would be interesting to see the applications of a
BRRNS code as well as their performances. To build an inherent error-resilient BRRNS
may be grate useful for the future robust computation design.





2
Criteria for a Good Embedded Decoder

To evaluate the reliability and the hardware efficiency of a robust design on unreliable
circuit, we present a new dual-space criteria in this chapter. The novel criteria, namely
Reliability-Efficiency Criteria (RE-Criteria), defines a two dimensional solution space,
which consists of: error probability at fanout and hardware efficiency estimations. In
addition, an example of Pareto distribution is given. This distribution is based on a
classical FIR filter performed with automatic repeat request, TMR error-correction and
BRRNS error-correction mechanisms based architectures is given.

In these criteria, taking into account that the correction unit is also subject to error,
we propose to assess the quality of an architecture using not only its efficiency (i.e. the
normalized number of operation per area and per unit of time), but also its final output
error rate. By using the proposed dual space criteria, a two dimensional space results,
namely a Pareto distribution can be observed. Via the Pareto curves, designers are able
to discern the properties, the reliability and the efficiency, of fault-tolerant strategies.

Since researchers have been laying stress on robust system design, the requirement
of a good criteria to evaluate a good fault-tolerant technique is forthcoming. In fact, an
accurate error model for unreliable circuit is complicated. Two main issues, high hard-
ware complexity and large size fan-in and fan-out, hamper the modeling. In this work,
we propose a very simple error model as a worst-case metric. This error model only
requires the hardware area and time execution of a design. Moreover, the proposed
hardware efficiency metric, only operates on the hardware area and time execution
as well. Therefore, our reliability-efficiency criteria would be widely adapted for the
purpose of evaluation on any robust design.

2.1 Introduction

Currently a number of approaches have been proposed to cope with the reliability
analysis issue. To evaluate the SER, the obvious method is to inject some errors into the
architecture and then simulate the design thanks to input vectors. A very first method
is Built-In Self-Test (BIST) [AKS93], that consists of pattern generator and response
analyzer. The response analyzer compares fanout from the testing design with the
result according to the input from the pattern generator. However, the timing issue

35
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restricts BIST to a good feasible test method. Moreover, the real-life test [ARB+07]
that exposes a circuit under the radiation beam to obtain the Soft-Error Rate (SER)
also requires large number of chip samples and is costly in terms of time. Under this
circumstance, the transient fault based model to evaluate the SER resulting from a
transient fault propagation through a design provides a feasible way for a reliability
analysis.

In the literature, several models have been presented to achieve efficient estima-
tions of transient faults with a small estimation error threshold. However, due to the
circuit tending towards rather high complexity and large size fan-in, the present formal
reliability analysis methods, namely analytical and symbolic methods [MZM10], are
hardly tackled with circuit evaluation. Consequently, an alternative approach, based
on a simple and pessimistic error-model with adequate reliability estimation ability, is
more appropriate. On the side of SE mitigation, a considerable amount of approaches
has been proposed to mask or mitigate SE in different contexts. While those approaches
laid emphasis on hardware complexity, power consumption, and delay overhead. Note
that in most cases, the functionality for detecting or correcting error is usually regarded
as error-free. But this assumption does not conform to the trend. The need of formu-
lating some metrics for the fault-tolerant and efficient featured design in undependable
devices is forthcoming.

In this chapter, taking into account that the correction mechanisms are also subject
to error, we present a new metric, termed as Reliability-Efficiency Criteria (RE-Criteria).
This metric helps the design in unreliable computation. According to the requirement of
the application, the Pareto distribution enables to select the best compromise between
hardware efficiency and resource reliability. This approach characterizes an architec-
ture in unreliable hardware by a two dimensional criteria: the Reliability (probability of
non error in the output of the architecture) and the Efficiency of an architecture. From
those two criteria, it is possible to plot a Pareto distribution for several architectures
with different error detection and correction mechanisms.

In the proposed error probability metric, the model of transient error is simple. If a
circuit of normalized area S has a probability p of generating a correct result during one
clock cycle, a computation requiring a normalized area of n.S during m clock cycles
has a probability pn.m to product a good result. Note that the metric implies that all
SETs impact the output. But, it is not necessarily the case. Thus, the proposed metric
is a worst-case metric. Indeed, this metric guarantees a level of output confidence. In
this chapter, after reviewing well-known correcting techniques with the RE-Criteria, we
detail an example of Pareto distribution based on a classical FIR filter performed with
the error-correcting architectures.
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2.2 The Reliable Efficiency Criteria

2.2.1 The unreliable computing model

A generic computing system with its capacity of correction is described in Fig.2.1. It is
composed of an encoder, a computing function, and a decoder. The input of the encoder
is assumed error-free. The encoder has to perform any coding before the computation.
For example, triplication by wires or more complex coding involving computation is
also subject to SET. The computing function performs the required computation in
the adequate information representation. The decoder generates the output in the
correct format after eventually the detection and/or the correction of errors due to
SET. Although related work that considers the decoder as error-free, in our study, the
decoder can also be affected by a SET (see Fig.2.1-(a), classical model and Fig.2.1-(b),
the proposition).

Figure 2.1: a. Block diagram of a conventional computing system, b. Block diagram
of an unreliable computing function system, c. A decoder diagram from unreliable
computing system.

2.2.2 The model of reliability

We consider that the “unitary” probability of SET occurrence in the decoder is a con-
stant for a given CMOS processes, supply voltages and external environment of the
device, such as ionization level, temperature, etc [NBS+07, GSN+07, Bau01]. This
“unitary” SET probability pe denotes the probability of error in a unity area during one
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clock cycle. On the contrary, p̄e, denotes the probability of error-free computation in a
unity area during one clock cycle:

p̄e = (1− pe) (2.1)

The error probability of the output is expressed as P , as shown in Fig.2.1-(c), and
the resulting no-error probability P̄ . In order to upper bound the value of P , three
hypotheses are assumed:

1. Isotropy: the unitary probability of SET is constant for all the designs and inde-
pendent of the underneath logic.

2. Contamination: If an error occurs in a design, or in one of its inputs, its output
will be corrupted.

3. Irreversibility: Two successive errors cannot lead to a correct result, the final result
will stay erroneous.

Those three hypotheses will be applied only on computational logic. For decoding
task with error correction mechanism, we will derive more precise model.

One should note that the hypotheses are all pessimistic and correspond to a worst-
case configuration. In fact, the error probability of a “unitary” area should depend on
its logic. Thus, Isotropy is an approximation. Moreover, it is easy to find an example
where Contamination is false. Thus, if a NAND logic gate has one input that is equal to
zero, an error in the other input is not propagated. If two errors occur consecutively on
a binary signal the result will be corrected, which again, is in contradiction with the Ir-
reversibility. Finally, when dedicated error correcting hardware is used, Contamination
and Irreversibility have not to be taken into account.

Nevertheless, those three hypotheses allow us to build a worst-case result, i.e., to
guarantee a given probability of error for the output of the function. Although the defi-
nition of a more precise model is out of the scope of this study, the explicit computation
of error probability in output will be derived in the following.

Let us study how the error probability scales on a more complex design under the
three hypotheses. Fig.2.2 shows two configurations that both require two area units.
In the first case, the parallel one (Fig.2.2-(a)), the resulting output is correct if the
outputs of the two components are correct, i.e. the probability for error-free output is
then P̄ = p̄2

e. In the second case, the serial one (Fig.2.2-(b)), since an error in f1 affects
the output by Contamination and an error in f2 also affects the output by Irreversibility,
then both computations should be correct, which leads again to, P̄ = p̄2

e. This formula
can be generalized to a design of any size n in terms of unit area. Moreover, if the
same architecture is used during several clock cycles m to process an output, all cycles
should be error-free. The probability of correct computation is then given by

P̄ = (1− pe)n·m (2.2)
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Figure 2.2: a. Parallel functions, b. Serial functions.

2.2.3 The RE-Criteria

A complexity-throughput metric observing the efficiency of an architecture has been
proposed for Forward Error Correction (FEC) decoding in [Mul07]. It defines the hard-
ware efficiency of an architecture as the normalized number of operation per area unit
and time unit. Note that the nature of the operation is not specified, it can be an FFT
transformation, a decoding iteration in an iterative decoder, a multiplier or anything
else. Assuming that an architecture executes a function with a component of n area
units and during m clock cycles, its efficiency is defined as,

γ =
1

n ·m
, operation/(area unit× time unit) (2.3)

Further, from 2.2, the error probability P in output can be expressed as,

P = 1− P̄ = 1− (1− pe)n·m (2.4)

Consequently, the proposed RE-Criteria consist of a couple (P ,γ) of metrics that
are the metric for the error probability and the metric for the hardware efficiency as,
expressed in 2.4 and 2.3, respectively. From those two estimations, we are able to
plot a Pareto distribution, that characterizes the tradeoffs between the efficiency and
the reliability among the architectures. The formal derivations of the RE-Criteria for
different state of the art correcting strategies are presented in the next section.

2.3 Formal Derivations of the RE-Criteria

This section presents different conventional strategies to detect and/or correct errors.
Considering single-error correction, error probabilities based on the metric are detailed
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for each case.

2.3.1 Spatial-TMR

A conventional solution duplicates the functional unit. Basically, to apply TMR [LV62],
three identical units are designed to execute the function from the same input data.
The three output results are sent into a majority voter that allows us to correct at most
one error (Fig.2.3-(a)). In summary, the output of the Spatial-TMR (S-TMR) is wrong
when SETs induce at least two faulty modules (event of probability P>1) or when there
is one faulty module and the voter is faulty (event of probability Q). The resulting error
probability of S-TMR decoder PS−TMR can be expressed under the three hypotheses of
Isotropy, Contamination, and Irreversibility, as follows:

PS−TMR = P>1 +Q · P̄>1 (2.5)

Let PR be the error probability in a single module of size n that performs a compu-
tation in m cycles, as introduced in the previous section, then,

PR = 1− (1− pe)n·m

P>1 is expressed as:

P>1 =
(

2
3

)
· P 2

R · P̄R + P 3
R

Moreover, let nQ be the area cost of the voter that is used during one single clock
cycle after the computation, thus,

Q = 1− (1− pe)nQ

Thanks to the triplication associated with voter, the efficiency of S-TMR can be
reduced to:

γS−TMR =
1

3 · n+ nQ
·m (2.6)

Therefore, by using RE-Criteria, the S-TMR solution corresponds to a single point
(PS−TMR, γS−TMR) in the Reliability-Efficiency two dimensional space, termed as RE-
Space.

2.3.2 Temporal-TMR

If the same instance is considered, an alternative solution is to reuse the computing
function, as shown in Fig.2.3-(b). Compared with S-TMR, temporal-TMR (T-TMR)
[SS06] is regarded as a tradeoff between area and time. The resulting error proba-
bility for the T-TMR holds the same form as the S-TMR, PT−TMR

PT−TMR = P>1 +Q · P̄>1 (2.7)
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Figure 2.3: a. S-TMR structure; b. T-TMR structure; c. ARQ structure; d. Error Control
code structure.

However, the expression of P>1 should be adapted because SEs can occur in the
registers that contain the results of first computations during 2.m clock cycles or the
results of the second computations during m clock cycles. Let R̄1, R̄2 and R̄3 denote
the probability of correct input into the voter in the first, the second, and the third
cycle, respectively. More precisely, suppose nR the area cost of each register, then
R̄1 = P̄R · (1− pe)2m·nR , R̄2 = P̄R · 1− pem·nR and R̄3 = P̄R. P>1 is thus expressed as:

P>1 =
∑i1 6=i2 6=i3

i1,i2,i3∈(1,2,3)Ri1 ·Ri2 · R̄i3 +
∏3

i=1R
3
i

For the efficiency of the T-TMR, the clock cycle is tripled by reusing the function
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temporally,

γT−TMR =
1

3m · n+ nQ + nR
(2.8)

As a register area cost is low, its error probability is much smaller than PR. Hence,
PT−TMR is approximate to PS−TMR, as well as its hardware efficiency.

2.3.3 ARQ

The Automatic Repeat reQuest (ARQ) [LCM84] technique performs the error-detection
by adding some redundancy. When an error occurs, the detector asks to restart the
computation. The data is sent once it is checked as error-free, as shown in Fig.2.3-(c).

Generally, the output of the redundant computation includes three cases: error-free,
error-detectable, and error-undetectable. Error-detectable output (probability PR−1) is
an erroneous output and is not a codeword. In this case, the incorrect output can be
found by the detector. Otherwise, the output that turns into one of the codewords is
termed as error-undetectable output (probability PR−2). Consider an error-detecting
code (cn, ck, cn−k). When a single error occurs, PR−1 can be expressed as, PR−1 =
2cn−2ck
2cn−1 · PR. Thus, PR−2 is derived, PR−2 = PR − PR−1.

Let us consider the cases for resulting data from the ARQ engine. At first, if the
computational process is error-free, namely the output from the computation is correct,
the computation is restarted when the detector is faulty. Otherwise, the data is correct.
Secondly, in case of error-detectable output, the data is incorrect when the detector
is faulty. If not, the computation is restarted when the detector operates correctly. At
last, in the case of error-undetectable, the detector gives erroneous output when it
runs correctly. If not, when it is faulty, the detector asks to restart the computation.
Assuming that all the inputs that are required in the replay are correct. Consequently,
the state of data is summarized into three events: correct output (probability PARQ−C),
incorrect output (probability PARQ−E), and restart computation (probability PReplay).
From the case analysis, probabilities of the three events can be derived

PARQ−C = P̄R · T̄ (2.9)

PARQ−E = (PR−1 · T ) + (PR−2 · T̄ ) (2.10)

and

PReplay = P̄R · T + PR−1 · T̄ + PR−2 · T (2.11)

where T is the error probability of the detector. Moreover, Fig. 2.4 illustrates the
detecting diagram for a k-time ARQ.

Finally error probability of a k-time ARQ PARQ can be obtained by an accumula-
tion of the PARQ−E from the first-time ARQ till the k-time ARQ. In this case, PARQ is
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expressed as

PARQ =
k=0∑
∞

(PR−1 · T + PR−2) · P k
Replay (2.12)

If the detector takes nT unit area and needs mT clock cycles for each detection
process, then T = 1− (1− pe)nT ·mT , and

Moreover, the average number of cycle Ns for the k-time ARQ is

Ns =
∑∞

k=0(k + 1) · (n+ nT ) · P k
Replay · P̄Replay,

It can be simplified as:

Ns = (n+nT )
P̄Replay

.

Hence, the efficiency for the k-time ARQ is expressed as:

γARQ =
P̄Replay

(n+ nT ) · (m+mT )
(2.13)

We recall that for a sake of the redundancy engaging, n and m that are used to com-
pute the error probability PR are different from the original function. More precisely,
the error probability rapidly decreases with an increase of k. Meanwhile, it degrades
the latency and data rate. Consequently, the compromise lies within RE-Space (PARQ,
γARQ).

Figure 2.4: The detection diagram for K-time ARQ.

2.3.4 Error Control Code

Instead of restarting the computation, a decoder can perform both the detection and
the correction, known as the error control code, as described in Fig.2.3. This technique
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is an extension of the S-TMR technique that uses a repetition error control code (3, 1,
2) to find a single error. The output of the computation includes three cases, error-
correctable, error-uncorrectable, and error-free. Thus, the data is erroneous when the
output of the computing function is error-correctable and the decoder is also faulty.
Moreover, the data is also erroneous when the output of the computing function is
error-uncorrectable. Hence, the error probability of the error control code decoding
based computation PECC is

PECC = PRc ·D + PRu (2.14)

where D denotes the error probability of the decoder and PRc and PRu represent
the probability of error-correctable and error-uncorrectable, respectively. Let nD unit
area and mD clock cycles for the decoder, then D = 1− (1− pe)nD·mD . Obviously, PRc

and PRu depend on the decoding algorithms.
Let us consider a case of BRRNS based error correction as described in Section.

1.3. In general, the restoration process is the self-diagnosis decoder as shown in Fig.
1.4.2. The self-diagnosis decoder takes the residues that are produced from the digit-
to-residue blocks. If the number of modulo for BRRNS code is 5, the error probability
of each digit-to-residue block to generate a corresponding residue is Presi, Then the
erroneous data from the decoder corresponds to two cases. At first, more than two
incorrect residues are obtained from the digit-to-residue blocks (probability PRu), as
the error-uncorrectable case. Second, the case of correctable error. No more than two
digit-to-residue block is faulty (probability PRc) while the decoder is faulty.

Thus, PRc and PRu from (2.14) are summarized as

PRc = 1− PRu = (1− Presi)
5 +

(
2

3

)
· (1− Presi)

4 · Presi (2.15)

where Presi = 1 − (1 − pe)nre·mre, and nre and mre represent the number of area
unit and the number of time unit for each digit-to-residue block, respectively.

Moreover, the efficiency of the error control code is:

γECC =
1

(n+ nD) · (m+mD)
(2.16)

Naturally, a more complex coding scheme can be applied to increase the efficiency/error-
probability capability of the code, i.e. iterative decoding. To sum up, (P ,γ) RE-Space
that is obtained by using the RE-Criteria, is able to illustrate the tuning among those
parameters (reliability, efficiency, latency, data rate, etc. . . ) for the requirements.

2.4 Pareto Distribution

In this section, the RE-Spaces (P , γ) draw out the Pareto distribution for different
strategies that were previously detailed. These distributions illustrate the trade-offs
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between the hardware efficiency and the transient error probability.

2.4.1 The experimental results

The objective of the experimental investigations is to demonstrate the interests of
Pareto distribution based on the RE-Criteria. Therefore, a well-known pipeline FIR
filter is considered as a typical case study. Let x(n) be the input integer of the FIR filter
and y(n) be the output integer,

y(n) =
N∑
i=0

x(n− i) (2.17)

In order to perform the error-correction in the filter architecture, the TMR technique
that is carried out by duplicating the modules in spatial or in temporal has been first
applied as shown in Fig.2.5-(a). Moreover, the ARQ technique applied to FIR filter is
able to restart the computation by using a detector, see Fig.2.5-(b). We also turn our
attention to FIR filters using RNS [Gar59] arithmetic so as to implement error control
code based correction. The RNS implementation of a FIR filter is decomposed into
k parallel filters [Con08]. By adding some redundant residues, the RNS that has the
error detection and correction properties is called Redundant RNS (RRNS). Moreover,
the technique, called Bidirectional RRNS (BRRNS) [TBJJ10], that requires redundant
moduli for satisfying some constraints to achieve fast error correction, can be regarded
as an error control code. A FIR filter that is implemented in RNS arithmetic, with
applying BRRNS self-diagnosis decoder, is shown in Fig.2.5-(c).

Table. 2.1 details the logic synthesis results of size various FIR filters in terms of
number of slice (the elementary programmable logic block in FPGAs) and clock fre-
quency. In this work, four FIR filters have been investigated for different order N
and different input data bit length l. Each filter has been designed for each of the
four strategies. Note that the simplex denotes the filters where no correcting mech-
anism is applied. The error correcting techniques implemented are: the FEC kind,
the S-TMR and the BRRNS based, the ARQ kind, modulo-4 check, modulo-8 check,
modulo-16 check and the spatial Double Module Redundancy (DMR). The proposed
criteria are under Isotropy hypothesis. It means that SET probability pe is constant (see
Section.2.2.2). For a sake of facility, pe is settled to 10−13 (equivalent to the value of
one FIT). By using 2.5-2.16, the error probability and the efficiency of the filters are
estimated. Moreover, both the values of error probability and hardware efficiency for
different filters are normalized by the ones of the simplex considered as the reference.
Since the error probability of T-TMR is estimated approximately as the S-TMR, its re-
sults are skipped.
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Figure 2.5: a. S-TMR based FIR filter structure; b. ARQ based self-detecting FIR filter
structure; c. FIR filter implemented in RNS arithmetic, with also a BRRNS self-diagnosis
decoder.

FIR Filter Sizes FIR-I FIR-II FIR-III FIR-IV
(N , l) (16, 5) (32, 6) (64, 7) (128, 8)

Strategies Slice/Fre. Slice/Fre. Slice/Fre. Slice/Fre.
The Simplex [94, 424] [128, 417] [171, 410] [232, 403]

S-TMR [249, 405] [383, 398] [508, 300] [681, 309]
BRRNS Based [477, 353] [843, 263] [1133,232] [1686,227]

ARQ-Modulo-4 [148, 349] [205, 312] [241, 300] [383, 298]
ARQ-Modulo-8 [168, 349] [237, 312] [276, 300] [408, 298]
ARQ-Modulo-16 [191, 349] [277, 312] [322, 300] [426, 298]

ARQ-DMR [207, 349] [302, 312] [409, 300] [517, 298]

Table 2.1: Logic synthesis results from XILINX Virtex 5 in terms of Slice/Clock
Freq.(MHz). (N ,l) as (order of filter, bit length of input)
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2.4.2 Pareto distributions for a FIR filter

The Pareto distributions are built from the RE-Spaces that are obtained from the RE-
Criteria. Not only the performances in terms of the fault-tolerant and the hardware
efficient for different error correction strategies are able to be obtained, but also other
features can be predicted. The features for the FIR filters obtained from the different
techniques are pointed out in Fig.2.6. More details are shown in Annex. A.4.

Classically, the use of correction techniques results in the degradation of the hard-
ware efficiency, but yields an increase of the reliability. Moreover, different detection
methods tune the features, such like, since the spatial DMR based is less efficient than
the other Modulo Check methods, but is more reliable. In addition, the more sophisti-
cated error correcting technique is used, the error-resistant performance is better. For
instance, the S-TMR based filters that are carried out by the naive method. ARQ via
DMR holds high hardware efficiency with high reliability compared to the S-TMR.

However, it turns out that the BRRNS solution can not even bring any interest of
error-correction compared to the unitary error-probability pe. In practical, the BRRNS
requires the processes of digit to residue and residue to digit to carry out the RRNS
arithmetic. According to (2.15), the restoration of BRRNS, namely the self-diagnosis
decoder, requires a huge stack of hardware complexity. Thus, the error probability
of decoder block is prone to surpass the unitary error probability pe. In this case, a
fault-tolerant FIR filter is designed by RRNS arithmetic may not as efficient as a simple
FIR.

Actually, two methods achieve high reliable feature design: the add-redundancy
based method, such as the error control code and the reuse-function based method,
such as the ARQ. The ARQ that is not able to correct some errors during the compu-
tation can not ensure the data rate. Nevertheless, it is the most efficient and robust
one among the three strategies. With the increase of replay time k, its error-resistance
sharply increases.

As a consequence, by the construction of Pareto distributions, the designer is able
to explore different strategies that depend on the system constraints, such as, hardware
resources, power consumption, latency, data rate, etc.

2.5 Conclusion

In this chapter, a Reliability-Efficiency criteria, called RE-Criteria that is a combination
of error probability criteria and hardware efficiency criteria has been proposed. Sub-
sequently, conventional mechanisms have also been revisited for the two dimensional
analysis based on our criteria. Finally, some Pareto distributions have been built for the
error-correcting techniques based FIR filters. This work enable to illustrate the inter-
est of RE-Criteria. As a result, the ARQ mechanism is able to obtain the most reliable
circuit by using less hardware overhead among the other strategies, the TMR and the
ECC. With the increase of replay time k, its error-resistant capacity sharply increases.
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Figure 2.6: Pareto Distributions: the values of error probability and efficiency for dif-
ferent filters are normalized by the ones of the simplex considered as the reference.

Above all, the ARQ requires the system restart the function so as to provide a replayed
result to feed into the detector.

Moreover, the BRRNS based fault-tolerant FIR filter can not bring any improvement
of robustness, but charge a huge overhead to the design and degrades the reliability as
well. It is found that the decoder based on BRRNS requires a huge hardware complexity
to carry out the operation in a FIR. In this case, the decoder is more prone to be faulty,
and thus, the BRRNS based FIR filter may fail as a candidate for fault-tolerant FIR filter.
As such, we lay our emphasis on low-cost and reliability fault-tolerant for embedded
system, which are presented in the next chapter.

Since the post/nano CMOS and emerge technology featured electronic devices are
concerned as probabilistic circuit, as explained as in previous sections, the design on
this kind of circuit can not be considered as reliable any more. For this reason, with us-
ing EDA tools to perform a soft-hard co-design (See more details in Annex. A.3), efforts
are necessary to pursue a hardware efficient and robust featured design. In general,
the conventional circuits are often baffled by unadvisable energy-efficiency/Robustness
term. More precisely, it is often difficult to find a efficient way to increase system’s relia-
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bility. Such like, adding too much extra hardware overhead to the design may make the
system clumsy. In fact, an ideal method that achieves the most reliability by the intro-
duction of less hardware overhead as possible, namely energy efficiency. Two curves to
depict such tradeoff between energy efficiency to robustness for conventional method
and ideal method, respectively, are shown in Fig.2.7.

Figure 2.7: Tradeoff between energy efficiency to robustness for conventional method
and ideal method.

In order to get low-level analysis results, such like, power, delay, hardware com-
plexity, and etc., the designers have to go through the circuit design process. Thus,
the designers have to carry out each circuit design flows independently for different
architectures. In this case, enormous time and research resources are wasted. By using
this new metric, the designer is able to easily and quickly analyze different strategies
and methods, at architectural level, thanks to estimation results in terms of hardware
efficiency and robustness.





3
An Embedded Robust Model for Unreliable

Binary Circuit

In this chapter, we first introduce some decoding methods for Binary Symmetric Chan-
nel (BSC). In the literature, a modified version of the Gallager’s well-known Bit-Flipping
decoding method has been mentioned for decoding LDPC codes over a BSC in [CV09].
The modification corresponds to the estimation of a variable node to be considered as
a majority of the incoming messages after each iteration. In this work, we propose a
similar modification, that is to output the majority of the incoming messages only at
the final decoding iteration, instead of after each iteration. Using density evolution
analysis, the majority-vote modification has a fast convergence. In addition, it achieves
significant gain in terms of decoding performance if the variable node degree is equal
to three. Since slight extra hardware resource overhead is required, the present method
is efficient for a fast low-power error-correction design.

In a second step we review an error-correction model, referred as to Low-Density
Parity-Check (LDPC)-coded Fault Compensation Technique (LFCT), proposed by Win-
stead in [WH09]. The proposed method is designed to reliably compute some operation
F (x). Due to the affections by transient/permanent faults, the output of F (x), s, is not
reliable. Since an LDPC code is defined by a parity-check matrix H, the valid codeword
as a vector [s r] can be generated through another encoding function. The sequence r
is the redundancy bits of s by the definition of matrix H. Subsequently, a stochastic de-
coder [GR03,WGRS05] is made to correct errors that occur at the output of some logic
computation s. Although a considerable gain in terms of decoding performance at the
output is rendered by LFCT, a critical drawback would lead the method to fail. If the
correlated errors occur at the output of computing function F (x) and as well encoding
function, the stochastic decoding can not perform an efficient error-correction.

To take into account the occurrence of correlated errors, we propose a modified
LFCT version, called coded Dual Modular Redundancy (cDMR). Thanks to the cross-
bar technique, in cDMR the encoding function to generate the redundancy bits r is
realized in a correlated-error-free fashion. Moreover, the cDMR is modularized in a
formal general robust system.

51
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3.1 Introduction

As digital technologies approach the limits of planar integration, device-level reliability
has emerged as a critical concern. Densely integrated CMOS circuits are increasingly
affected by thermal upsets which induce momentary transient signal faults in digital
architectures. The problem of transient upsets is compounded with the increased use
of three-dimensional integrated circuits and the emergence of “post-CMOS” nano-scale
devices. To answer to this challenge, it has been proposed to embed error-correcting
logic within integrated digital architectures.

At the first place, the error-correction methods for binary system can be considered.
In the literature, the well-known Gallager’s Bit-Flipping decoding method (GBF) has
been introduced by Gallager in 1963 [Gal63] as a decoding method for LDPC codes
over a BSC. A modified version of the GBF has been mentioned for decoding LDPC
codes in [CV09]. The modification corresponds to the estimation of a variable node
to be considered as a majority of the incoming messages after each iteration. In this
work, we propose a similar modification, that is to output the majority of the incoming
messages only at the final decoding iteration.

Moreover, for the general-purpose robust technique, Winstead proposed the LFCT
model in [WH09]. In the presence of transient and permanent defects, the LFCT
method is based on Gaudet and Rapley’s theory of stochastic decoding [GR03,WGRS05]
to correct errors that occur at the output of some logic computation. In [TWB+12,
TSW+12], based on the LFCT, we characterize the fault compensation by embed-
ding LDPC codes as a coded dual-modular redundancy (cDMR) technique. The cDMR
method is permissible if certain constraints are imposed during the logic synthesis. The
required constraints result sometimes in more complex logic syntheses. That can limit
the generality of cDMR solutions. TMR provides a more general solution for the protec-
tion of black-box logic modules without any constraints on the logic synthesis process.
TMR-style solutions have a fixed redundancy of two, whereas the cost of cDMR varies
for each synthesized architecture. As such, the characteristics of TMR-style, the over-
head of delay and hardware complexity, are predicable. Hence it may be preferable to
apply TMR, because the TMR-style provides more determinate characteristics during
architecture planning.

The rest of this chapter is organized as follows: we first review some related binary
error-correction methods; then a modified Gallager bit flipping method that achieves
fast error-correction over binary symmetric channel is introduced; we also review the
robust system LFCT. At last, the dual modular redundancy based general-purpose tech-
nique cDMR, based on the LFCT, is presented.
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Figure 3.1: Block diagram of a communication system

3.2 Decoding Methods Dedicated to Binary Symmetric Chan-
nel

Before the presentation of all the contributions proposed for the embedded binary
error-correction, a literature review about the conventional decoding methods is given.

3.2.1 Digital Communication System

The need of efficient and reliable digital data communication systems has been rising
during the last decade. The definition of data systems through conventional modula-
tion and voice transmission techniques have generally resulted in systems with rela-
tively low rates and high error probabilities.

According to the Noisy Channel Coding theorem proposed by C. E. Shannon in
1948 [Sha48], a digital communication system can be simplified as Fig. 3.1. Shannon
introduced the channel capacity C as a measure of the maximum information that can
be transmitted over a noisy channel. More precisely, the main theorem is described
as follow: the information is encoded with code rate R. if R is less than the channel
capacity C, then it is possible in theoretical to achieve error-free transmission over a
noisy channel by an appropriate encoding [Sha48]. By using the set of random codes,
it is proved that the existence of a code enabling information to be transmitted with
a given error probability. However, it did not give an approach to find such code to
achieve the channel capacity.

The information block produces information by the mean of sequences which are
row vectors of length K. Then the information data is encoded through an encoder
providing a codeword of length N . The code rate R is defined by the ration R =

K/N . The codeword is after processed by a modulation block to be transmitted over
a specified channel with additive noise. After the transmission over a noisy channel,
the demodulation process is needed to get received noisy codeword. The distorted
codeword is then fed into the decoder. The decoder uses the properties of the code to
try to restore the information from the noisy transmission by finding the most probable
transmitted codeword, or equivalently the most probable information data.
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Figure 3.2: Block diagram of a noisy channel BSC.

The source produces binary digits, or bits, of a length K at some fixed time rate.
The encoder perform the data processing, modulation, and anything else that might
be necessary to prepare the data for transmission over the channel, channel encoding,
which is different to the data encoding. The source sequence is separated into blocks
of N bits, only one block at once. The data is said to be encoded with rate R = K/N .
The channel received the data transmitted after modulation, and then disturbs it by
random noise. The decoder processes the output of demodulation and produces a
delayed estimation of the source bits.

3.2.2 Binary Symmetric Channel

The Binary Symmetric Channel (BSC) (Fig. 3.2) is a memoryless channel model with
a binary symbol alphabet λ = {±1}. Let x̂ ∈ λN and x ∈ λN be the modulated channel
input and the detected channel output sequences, respectively. The BSC channel is
characterized by a cross-over probability, ε = Pr (x 6= x̂). If x 6= x̂, an error is occurred,
hence ε is the channel’s uncoded Bit Error Rate (BER). To reduce the BER, a data
sequence u of length K is encoded before the transmission to yield the codeword c

of length N . Thus, this codeword is modulated to produce x̂. At the receiver side, a
decoder processes the transmitted data x and produces corrected bit z.

3.2.3 Low Density Parity Check codes

Low-density parity-check (LDPC) codes are a class of linear block codes, first introduced
by Robert G. Gallager in 1960 [Gal63]. Their main advantage is that they provide a
performance which is very close to the channel capacity. Classically, we can define it
via their parity-check matrices and generator matrices or Tanner graph representation.

As other linear block codes, LDPC codes are defined by a Parity-Matrix H(n, j, k)

and a Generator Matrix G [Gal63]. The parity-matrix H represents a code of block
length N with a matrix M × N likes the one of Fig.3.3, where each column contains
a small fixed number j of 1’s and each row contains a small fixed number k of 1’s.
Two conditions j � M and k � N that have to be satisfied. In order to achieve this
property, the parity check matrix should usually be very large. So the example of Fig.
3.3 and Fig. 3.4 can not be really called low-density.

Not only described by the parity check matrix, Tanner Graphs [KFL01], bipartite
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Figure 3.3: (10,2,4) LDPC code parity-check matrix.

Figure 3.4: (10,2,4) LDPC code bipartite graph.

graphs, introduced an effective graphical representation of LDPC codes. It means that
the nodes of the graph are separated into two distinctive sets. Edges connect nodes
of two different types. The two types of nodes in a Tanner Graph are called Variable
Nodes (White Circle) and Check Nodes (Black Square). Fig.3.4 is an example of a Tan-
ner Graph that corresponds to the code given in Fig. 3.3. It consists of M check nodes
(the number of parity bits) and N variable nodes (the number of bits in a codeword).

A Check node is connected to a variable node if the corresponding element of the
Parity-Matrix is a 1. If we put the sparse matrix in the form [P T I] via Gaussian Elimina-
tion the generator matrix G can be calculated as G = [IP ], where I is identity matrix.
Actually, the example given in Fig. 3.3 and Fig. 3.4 is a regular LDPC Codes. Indeed,
if j is constant for every column and k = jM/N is also constant for every row. Other-
wise, if Parity-Matrix is low density but the numbers of 1’s in each row or column are
not equivalent, the code is called irregular LDPC Code.

3.2.4 Message-Passing Decoding

Message-Passing Decoding (MPD) method has been characterized in the work of Richard-
son and Urbanke [RU01]. It is traditionally illustrated as Message-Passing on a code’s
Tanner graph.

Definition 4. MPD’s behavior can be regarded as: Messages care exchanged between nodes
in the graph along the edges in the graph in discrete time steps.

A Tanner graph contains two sets of nodes – variable nodes vi, i = 1, . . . , N , and
check nodes pj , j = 1, . . . , M, where M = RN . Edges connect the variable nodes to
the check nodes, and as well the check nodes to the variable nodes. The pattern of edge
connections is specified by the code’s parity-check matrix H. There is an edge between
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Figure 3.5: Structure of the variable and parity-check nodes that are contained in an
message-passing decoder. The extrinsic information principle is applied, so that an
output for a given edge j is computed from all inputs except j.

vi and pj if and only if hi,j = 1. The degree of a node is the number of edges connected
to it in the corresponding Tanner graph.

Let dv be the degree of a variable node vi. Let Vi be the set of edges that are con-
nected to vi. Similarly, let dc be the degree of check node pj . Let Pj be the set of edges
that are connected to pj . During the decoding process, binary messages are exchanged
between the two sets of nodes. The message exchanged from node vi to pj is written
yij ∈ λ, and the corresponding message from pj to vi is written fji ∈ λ, as shown in Fig.
3.5. All nodes are processing functions that follow the standard extrinsic information
principle. The outgoing message for an edge k is computed using information from
all edges except k. This principle ensures that information is not merely echoed back
incoming the decoding algorithm, unlikely information is not propagated in the Tanner
graph.

3.2.5 Gallager Bit-Flipping Decoding

Bit-flip methods were among the first LDPC decoding algorithms introduced by Gallager
in [Gal63].

Definition 5. The Gallager Bit-Flipping Decoding methods (GBF) are defined for frames
that were transmitted over a BSC, as a binary hard decision message-passing decoding
method [RU01].
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The GBF algorithm can be described as follows. The variable nodes initially transmit
messages yij = xi for all i, j values. Then, for each check node, the outgoing message
for edge kedge is equal to the modulo-2 sum of all local incoming messages (excluding
edge kedge). A sum is computed separately for all edges associated with all check
nodes. Then, for each variable node, the outgoing message along edge kedge is equal
to xi unless at least bl incoming check messages (excluding edge kedge) disagree with
the xi. There are two well-known cases of the GBF algorithm. If bl = (dv − 1), i.e. if all
local incoming messages are unanimous, then the GBF corresponds to the traditional
Gallager-A algorithm. If bl is a fixed constant (lower than dv − 1), it corresponds to the
Gallager-B algorithm [Gal63].

The error correction algorithm can be described as follow:

1. Initialize yij = xi (the channel-side message), for all i.

2. Compute fji = ⊕m∈Pj\iymj for all j.

3. For a given variable node vi, let f0, · · · , fdv be the locally received messages for
this node, where f0 = xi (the channel-side message). f1, · · · , fdv are the message
from check nodes. The output is −fi if |{g ∈ Vi \ j : fgi 6= xi}| ≥ bl, f0, otherwise.

4. Iterate steps 2 and 3 during a fixed number of iterations.

5. For the sake of facility, the corrected output zi is taken as the output from one of
dv variable nodes.

Remark 1. This algorithm is the original GBF method. Actually, the estimate of a
variable node is taken as shown in step. 3. In practical, some sophisticate mecha-
nisms can be applied for the decoding decision so as to improve the BER performance.
Thus, a fast decoding method for LDPC codes over the BSC, which is presented in next
section.

In order to further investigate the decoding performance for a Gallager-style de-
coding, a (2048,384) LDPC code is simulated in an Bi-Additive White Gaussian Noise
(BiAWGN) [BTMB10] for a binary case. More precisely, the received AWGN channel
messages are sampled into a binary set {0, 1}. Simulated BER performance results are
given in Fig. 3.6. Note that the Gallager-A decoder produces no benefits at low SNR.
But, it still provides a high decoder performance gain for high SNR.

3.3 Fast Decoding Method over BSC

As introduced in Section 2, the designers try to propose architecture with a good trade-
off between the energy efficiency and the robustness. In practice, there are other con-
straints, such like, high throughput, low latency, and etc. For an embedded error-
correction decoder, one of the most important criterion is high speed execution. When
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Figure 3.6: Performance of Gallager-A decoder for a (2048,384) LDPC code on Bi-
AWGN channel, for 30 decoding iterations.

the performance of error-correction is satisfied, the throughput degradation introduced
by the redundancy becomes critical for an embedded system.

In this section, we present a Modified GBF algorithm (MGBF) suitable for all LDPC
code structures.

Remark 2. In [CV09], a modified version of GBF method has been mentioned for decoding
LDPC codes over BSC. The modification is that the estimation of a variable node is taken
to be the majority of the incoming messages at the end of each iteration. In this work, we
propose a similar modification: the majority of the incoming messages is taken at the last
decoding iteration as the output.

We analyze the codes’ convergence by the density-evolution metric [BRU04]. In
addition, we present results for MGBF decoders which consistently achieve better per-
formance than the traditional GBF, especially when the variable node degree is equal
to three. To the best of our knowledge, the proposed technique is the most efficient
modification for current soft message-passing decoding over BSC. Although the modi-
fication is small, it delivers a significant improvement in terms of BER performance. As
such, the MGBF is designed for hardware efficient and robust system.
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3.3.1 The MGBF Method

LDPC decoding methods are traditionally illustrated as message-passing on a code’s
Tanner graph [KFL01]. Let us take the same message-passing notations as presented
in Section.3.2.4. The modification introduced in this section that we refer as MGBF, is
based on a majority voter to process the decoded data z during the final decision step.
During the iterations, the MGBF applies the same update rule as the GBF. Majority logic
is applied at the final step, when the decoding decisions are rendered. The MGBF error
correction algorithm is detailed as follows:

1. Initialize yij = xi (the channel-side message), for all i.

2. Compute fji = ⊕m∈{Pj\i}ymj for each parity-check node pj and for each i ∈ Pj .
The notation {Pj \ i} refers to the set of edges connected to pj , excluding edge i.

3. For each variable node vi and for each m ∈ Vi \ j, the outgoing message is

yij =

{
−xi if |{g ∈ Vi \ j : fgi 6= xi}| ≥ b
xi otherwise.

(3.1)

4. Iterate steps 2 and 3 during a fixed number of iterations.

5. The decoded output is zi = Maj {fij : j ∈ Vi}, i.e. the decision is a simple majority
of incoming messages. This is similar to step 3 with bi = bdv/2c. Note that for
this step, bi is not constant if the code has an irregular dv distribution.

3.3.2 Threshold Determination

In this section, we apply density evolution analysis to determine the threshold of MGBF
decoders, defined as the maximum εmax for which error-free communication can be
achieved by the MGBF algorithm applied to a specified degree distribution [RU01].

In this analysis, it is usual to assume that the correct channel inputs are x̂i = 1

for each i = 1, . . . , N . Then during the decoding process, any message equals to −1

is considered as incorrect. Let Pb(0)
−1 and Pb(0)

1 be the probabilities for a variable node
during the first iteration that yij is equal to −1 and +1, respectively. By assumption,
Pb

(0)
1 = 1− ε and Pb(0)

−1 = ε. Similarly, let Pb(l)1 and Pb(l)−1 denote the probabilities for a
variable node, at the lth iteration, that yij is equal to +1 and −1, respectively. Likewise,
let q(l)

1 and q(l)
−1 represent the probability for a check node, during the lth iteration, that

fji is equal to +1 and −1, respectively.
P

(l)
G represents Pb(l)−1 in the case of GBF algorithm, that is derived as following:

q
(l)
1 = 1− q(l)

−1 =
1 +

(
1− 2P

(l−1)
G

)(dc−1)

2
(3.2)



60 An Embedded Robust Model for Unreliable Binary Circuit

P
(l)
M = ε·
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dv∑

i=bg

(
dv
i

)
·
(
q

(l−1)
1

)i
·
(
q

(l−1)
−1

)dv−i+(1−ε)·
dv∑

i=bg

(
dv
i

)
·
(
q

(l−1)
−1

)i
·
(
q

(l−1)
1

)dv−i
(3.3)

From 3.3, if ε is less than a threshold value, the resulting error probability can be ap-
proximated to 0, when the number of iteration goes towards infinity, i.e., liml→∞ P

(l)
G =

0. The parameters as the threshold values were given in [Gal63] and [RU01].
Note that for the MGBF approach, the majority set applied at the end of the decod-

ing process can be considered as an additional redundancy for the decoding decision.
Therefore, let P (l)

M denotes Pb(l)−1 in the case of MGBF algorithm. This probability only

differs during the last iteration. More precisely, q(l)
1 and q

(l)
−1 keep the same equations

as (3.2), but

P
(l)
M = ε·

1−
dv∑

i=bg

(
dv
i

)
·
(
q

(l−1)
1

)i
·
(
q

(l−1)
−1

)dv−i+(1−ε)·
dv∑

i=bg

(
dv
i

)
·
(
q

(l−1)
−1

)i
·
(
q

(l−1)
1

)dv−i
(3.4)

3.3.3 Convergence Analysis

To take into account of the potential performance gain and as well the fast decoding
achieved by MGBF, we propose a convergence analysis by considering the evolution
of error probability that depends on the number of decoding iteration. In (3.3) and
(3.4), if the channel parameter is fixed the output error probability can be determined
in function of the number of iteration. As the plane of the error-probability to the
number of iteration as shown in Fig. 3.7, for code rates (5,10), (3,6), (4,8), (3,5),
(4,6), and (3,4), the channel parameters ε are set up as 0.024, 0.024, 0.030, 0.036,
0.036, and 0.060, respectively. They are close to half of their limits by GBF decoding.
From Fig. 3.7, it is shown that by comparison with GBF, the proposed method achieves
fast decoding since the curves converge faster at low error probability (approximating
to 0) for a same number iterations. In addition, a significant gain is achieved in the
case of dv = 3.

3.3.4 Simulation Results

Since convergence analysis shows code’s performance in infinite size, simulation re-
sults for finite size codes are experimented to demonstrate the decoding performance
gain obtained by MGBF. LDPC codes of dv = 3 are considered during three decoding
iterations over a BSC with various parameter ε as shown in Fig. 3.8. Obviously, the
improvement yield by MGBF decreases while the number of decoding iteration is few.
While fast decoding process is applied, the gain with few decoding iterations makes this
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variant Gallager Bit-Flipping method suitable for implementation with little hardware
extra overhead.

Figure 3.7: Convergence analysis by the evolution of error probability as a function of
the number of decoding iteration, under an error-free decoding process.

3.3.5 Conclusion

By using an additional majority voter at the end of the decoder’s output, the Modi-
fied Gallager’s Bit-Flipping method (MGBF) is proposed in this subsection. The gain
in terms of BER performance achieved with the MGBF by comparison with original
Gallager’s Bit-Flipping method are presented as twofold. Over BSC, MGBF largely in-
creases the convergence time, namely the fast decoding. In addition, a significant gain
is achieved in the case of dv = 3. MGBF yields decoding performance gain as multiple
factor if the number of decoding iterations is few. Since this significant improvement
is achieved thanks to a fast decoding process, this method is attractive for embedded
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Figure 3.8: BER performance for (3,6) LDPC codes, of which codeword length N are
512, 1024 and 2048. Various parameter ε during three iterations are considered under
an error-free decoding process.

error-correction design.

3.4 A Embedded Error-Correction Model

3.4.1 LDPC-coded Fault Compensation Technique

Winstead proposed a LDPC-coded Fault Compensation Technique (LFCT) in [WH09],
as illustrated in Fig. 3.9. This technique is relevant to higher LDPC codes resulting in
a more powerful error-correcting capacity. In the presence of transient and permanent
defects, the LFCT method is based on Gaudet and Rapley’s theory of stochastic decoding
[GR03,WGRS05] to correct errors that occur at the output of some logic computation.

In the proposed LFCT system, a logic function F (x) is sensitive to transient internal
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upsets and as well permanent defects, that produces one or more errors. To correct
these errors, a second function E · F2(x) is introduced which maps the input data s
(the output of F (x)) to a vector of parity-check bits r, so that the output [s r] forms
a codeword according to a traditional block error correction design. More precisely,
since an LDPC code is defined by a parity-check matrix H, the valid codeword as a
vector [s r] can be generated through another encoding function. The sequence r is the
redundancy bits of s by the definition of matrix H. F2(x) is the copy of functions F (x).
Moreover, the permutation Π is defined by parity-check matrix H, which specifies the
set of variables involved in each parity-check equation. Hence, the encoding operation
to be the explicit instances F , Π, and XOR logic operations as shown as +© in Fig. 3.9,
is considered.

Subsequently, a stochastic decoder [GR03, WGRS05] is made to correct errors that
occur at the output of some logic computation s. The stochastic decoding method is
achieved by equalization modules, as represented by = in Fig. 3.9. The operation for
equalization module process is detailed in [GR03, WGRS05]. Thanks to an interleaver
Π−1, the stochastic decoder’s interconnect corresponds to the code’s Tanner Graph,
which is synthesized using well-known rules [KFL01].

In this system, we assume that the input vector s is error-free. If the number of
errors in [s r] is sufficiently small, then they are corrected by the decoding process. It
results in a correct output vector [ŝ r̂]. Finally the corrected data z can be propagated
to other logic modules for additional computations. Although a considerable gain in
terms of decoding performance at the output is rendered by LFCT, a critical drawback
would lead the method to fail. If the correlated errors occur at the output of computing
function F (x) and as well encoding function E ·F2(x), the stochastic decoding can not
perform an efficient error-correction.

3.4.2 Coded Dual-Modular Redundancy

By exploiting the principle of LFCT, a coded Dual-Modular Redundancy (cDMR) tech-
nique [TWB+12, WTB+12, TBW+13] can be defined as shown in Fig. 3.10. The MPD
as introduced in Section. 3.2.4 is taking placed to correct the errors from the output of
F (u).

A logic function F (x) is implemented using a digital technology that is subject
to errors at its output. The original function F (x) is augmented by the addition of
a redundant parity-generator module, E · F (x). E represents the encoding function
that generates parity bits codeword space at the output of F (x) as in [WH09]. The
systematic output word s with a length K from F (x) is then concatenated with the
parity outputs r from E ·F (x), yielding a complete codeword [s r] of length N . If there
are no errors, then the resulting codeword should satisfy the standard parity-check
constraint, [s r]H = 0, where H is the parity-check matrix.

According to the code’s H matrix, the MPD is synthesized by parity-check-node
modules and variable-node modules, that are indicated in Fig. 3.10 by + and =©, re-



64 An Embedded Robust Model for Unreliable Binary Circuit

Figure 3.9: Architecture of the LFCT method. The original logic function F (u) is as-
sociated with a block ecoding function. Outputs are then corrected by the stochastic
decoder.

spectively. Based on the code’s Tanner Graph, the interconnects correspond to an inter-
leaver, that is synthesized from well-known rules [KFL01]. The system’s final decisions
z are taken from the MPD.

In order for the MPD method to function properly, the function F (x) and the en-
coding function logic E · F (x) must be presented into the duplicate functions. Thus,
correlated errors among the information bits and the parity bits are avoided. If the ar-
chitecture were implemented, then a SET in F (x) or in E ·F (x) would generate several
errors in the informations bit or/and the parity bits, namely correlated errors in output.
The function F (x) and the composite function E ·F (x) have to be synthesized as a flat
Boolean function to avoid correlated error patterns. The most reliable approach is to
use a flat truth-table synthesis, as is done with cross-bar logic arrays [ROK09]. This
approach guarantees that error events occur independently on all the codeword bits,
so that correlated error bursts are precluded.
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Figure 3.10: The architecture of cDMR.

3.4.3 The Implementation for cDMR

To evaluate the redundancy cost of the proposed architecture, we suppose that F (x) is
a large block of crossbar logic (i.e. gate array logic). It represents a minimized sum-of-
products expression. The crossbar fabric may consist, for example, of a layer of AND
operations followed by a layer of OR operations. It may be used for flat truth-table
synthesis. This style of logic is generally not optimal in terms of logic gate number.
But, it is useful in our analysis for three reasons.

First, crossbar logic is quite popular in research on next-generation, post-CMOS
logic implementation, and reliability is a key concern for crossbar implementations
[ROK09]. In the crossbar implementation, as shown in Fig. 3.11 [TBW+13], logic
gate is implemented by associations of AND-logic gates and OR-logic gates. Fig. 3.11-a
represents a traditional ripple-carry adder where the stars indicate the occurrence of an
error that is propagated to multiple signals. For some emerging electronic device, the
ripple-carry adder can be designed as shown in Fig. 3.11-b. The “dots” in Fig. 3.11-b
indicate the placement of junctions which physically implement the logic operations.
In this type of implementation, each operation is associated with a single output. If a
momentary fault occurs at some junction, it will propagate only to a single output. This
type of logic guarantees that single-error events are correctable.

The major disadvantage of crossbar logic is that the operation counts are not op-
timal. The crossbar adder in Fig. 3.11-b, for instance, has 57 separate operations.
Crossbar logic does not generally obtain minimized gate complexity, but it enables an
improvement of reliability by eliminating error propagations. The gate complexity of
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the adder could be considered as a form of redundancy. Furthermore, if crossbar-style
logic is used for the cDMR method, then the logic function can be duplicated only once
to provide error correction.

(a)

(b)

Figure 3.11: Implementations of a two-bit binary adder function based on a traditional
ripple-carry design (a), and a crossbar design suitable for some nanoelectronic device
families (b). The ‘?’ symbol indicates the occurrence of an error that is propagates to
multiple signals.

The second reason is that a single gate-level fault will typically propagate to a single
output of F (x). In alternative combinational styles, a single gate fault may be propa-
gated catastrophically to many outputs. The MPD architecture is likely to fail in such
cases of sudden error bursts. Therefore, we have to constrain its application to logic
styles such as crossbar fabrics where such bursts are precluded.

The third motivation for considering crossbar logic is that it provides a precise strat-
egy for the synthesis of the auxiliary function E · F (x). For arbitrary functions F (x),
the average complexity in terms of logic gates to synthesize E ·F (x) is close to the aver-
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age number of logic gates necessary to synthesize F (x). Hence the method requires an
average extra complexity of approximately two, plus an additional cost to implement
the decoder.

3.5 Conclusion

In this chapter, the binary error-correction issue is addressed. We first review some
related binary error-correction methods. The message-passing decoding method is
known as the decoding method over a BSC. One of the message-passing decoding
family, Gallager Bit-Flipping method (GBF) proposed by Gallager for LDPC decoding
purpose [Gal63], is also recalled.

After that, we present two solutions for embedded binary error-correction on unre-
liable circuit:

• A Fast Decoding Method for Binary Symmetric Channel. A mechanism to re-
fine decision for decoding LDPC codes over a BSC has been studied. The proposed
algorithm is a modified version of GBF method. The modification corresponds to
the estimation of a variable node to be considered as a majority of the incoming
messages at the final decoding iteration. Our modification is similar to the one
made in [CV09], a majority of the incoming messages after each iteration. Using
density evolution analysis, the majority-vote modification by us has a fast conver-
gence. In addition, it achieves significant gain in terms of decoding performance
if the variable node degree is equal to three. Since slight extra hardware resource
overhead is required, the presented method is efficient for a fast low-power error-
correction design.

• A General Embedded Error-Correction Model. The coded dual-modular re-
dundancy is based on the DMR. but a parity-mapped function is used instead of
a duplicated original function. This robust model is a modified version of the
technique proposed by Winstead in [WH09], LDPC-coded Fault Compensation
Technique (LFCT). Suppose that computing functions are vulnerable to transient
faults and permanent defects. In the LFCT system, it is desired to reliably com-
pute some operation F (x) with the output s. To achieve this end, according to
the parity-check matrix H an extra encoding function E · F2(x) is designed to
produce the redundancy bits r for the information bits s. F2(x) is the copy of
function F (x). Such that, a stochastic decoder is then employed to correct er-
rors from the codeword, a concatenation of [s r]. However, a critical drawback
would lead the LFCT method to fail. If the correlated errors occur at the output of
computing function F (x) and as well encoding function E · F2(x), the stochastic
decoding can not perform an efficient error-correction.

In the modified version of LFCT, cDMR, both computing function F (x) and parity-
mapped function E · F (x) are realized in the fashion where the correlated errors
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are precluded. Moreover, the cDMR is modularized in a formal general robust
system.

However, for the ECC block of cDMR, the occurrence of internal transients within
decoder itself have not been considered yet. Obviously, the resulting error probability
is influenced by a noisy decoding process. Neither the GBF method nor the stochastic
method can perform an efficient error-correction under a faulty decoding process. To
take into account the reliability issue of a decoder, the decoder against internal tran-
sient faults is presented in next section.



4
A Decoder Reliable Against Internal Transient

Faults

This embedded error-correction model, cDMR, can be adapted into any unreliable de-
sign whenever two issues are avoided: correlated errors in original function’s output
and also the parity-mapped function’s output, and the ECC circuit is able to perform
efficient error-correction in the presence of internal transient faults. Thanks to the
cross-bar technique, the correlated-error issue can be avoided in cDMR.

In this chapter, we focus on the efficient error-correction in the presence of inter-
nal transient faults within decoder itself. We first review two Muller C-element based
fault-tolerant methods for robust latch and general-purpose robust model, respectively.
Then, two major contributions to the subject of embedded reliable decoding technique
in a faulty process are presented as follow.

• A Decoder Reliable Against Internal Transient Faults, referred as to MCD
A decoding algorithm and logic implementation are proposed for low-complexity
error correction in environments with a high rate of transient faults as well as
hard errors. The decoder architecture is able to correct a single error in one clock
cycle. This feature makes it suitable for mitigating faults in pipelined digital logic
architecture. The proposed method is also resilient against internal transient gate
errors that may occur within the decoder itself. In fact, thanks to the C-elements,
this decoder is robust against internal transient faults.

• A Space-Time Redundancy Technique to Improve the Decoding Performance
A temporal majority logic is applied at the decoder’s output, thanks to additional
dimension of redundancy. In fact, when applying this space-time redundancy
technique, the decoder is able to ground its output error-probability below its
internal transient error rate. Moreover, the majority unit is required to be reliable.
Finally, we propose a structure to design a low cost reliable majority voter. As
a result, by applying space-time technique, it significantly increases embedded
decoder’s BER performance even under a faulty process.

69
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4.1 Introduction

Embedded error correction may be used to mask permanent circuit defects as well
as transient faults. Unfortunately an embedded error correcting decoder has to be
designed using the same error-prone device as the functions to correct. This introduces
the problem of decoder architectures that are able to detect and/or correct faults in
their own execution. There is a list of publications about this topic, with solutions
in the form of “self-checking checkers.” Self-checking logic circuits are traditionally
designed using formal logic methods, where it can be proved that the circuit detects or
corrects up to a fixed number of faults.

In the literature, some researchers also studied the resilience of iterative decoding
algorithms implemented with faulty internal logic [VC07,LPG12]. In this work, we pro-
pose an alternative analysis approach based on Probability Signal Flow (PSF). The PSF
analysis was previously proposed as a method to embed LDPC codes [Gal63] for fault
compensation in nano-scale digital logic [WH09]. The PSF approach was also applied
at the circuit level, resulting in a robust error correction method known as Restorative
Feedback (RFB) [WLMT11]. The RFB method is logically identical to the traditional
method of TMR, as explained in Section. 1.1.1. However it was shown via a PSF anal-
ysis that the RFB method achieves a much lower error rate than TMR in the presence
of internal transient upsets. On the contrary, an LDPC stochastic decoding technique
has been introduced to cope with internal high-rate fault by requiring redundancy of
one under certain constraints [TWB+12]. This technique has been considered as the
decoder against internal faults.

The rest of this chapter is organized as follows: we first review some related fault-
tolerant methods; to the best of our knowledge, the first decoder against internal tran-
sient faults thanks to the Muller C-elements, called MCD, is detailed. then C-element’s
inherited fault-tolerance is investigated; In order to further reveal the interests of MCD,
we study on its threshold determinations under an approximation in the cases of error-
free decoding and noisy decoding process; Moreover, a space-time redundancy tech-
nique is exhibited for further increasing decoder’s performance under noisy decoding
process; At last, we present a good decoder candidate for the ECC of cDMR. In addi-
tion, the property of dynamic power saving carried by MCD and the analysis via trellis
structure is also studied.

4.1.1 Muller C-element and Modified Muller C-element

Muller C-elements [MB59] was introduced for the design of asynchronous circuit.
Thus, they were also used for fault-masking in digital circuits [WGRS05,Win09,WEH09,
ZMM+06a,TWB+12]. A standard binary C-element circuit is shown in Fig. 4.1. In this
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Figure 4.1: A standard Muller C-element circuit, composed of C-not gate and S gate.
The C-not gate detects if the inputs are equal. The S gate, the weak-keeper, acts as an
inverting state memory.

scheme, the “C-not” gate detects if the inputs are equal, with an output given by

Q =

{
x, if x == y

Z, otherwise,
(4.1)

where Z denotes a high-impedance output state. If Q 6= Z, the C-not gate actively
drives the S latch by overpowering its state. When Q = Z, the state of S is maintained
via weak feedback. The further investigation to C-element and its applications are
expanded in later parts.

To implement C-element based decoding algorithms or fault-tolerant techniques, it
is necessary to use the modified C-element scheme given in Fig. 4.2. This scheme was
introduced in [WLMT11] to support error-correcting operations in the RFB method.
The modified C-element works in two phases, called “initialization” and “restoration.”
During the initialization phase, the C-not gate is disconnected so that the S latch can be
set to a known initial value. The mechanism to initialize a known initial value via the
signal ′z′i is shown in Fig. 4.2. During the subsequent restoration phase, the C-element
is activated. The two-phase behavior can be applied to implement Gallager-style error-
correction, as shown in the following sections.

Due to its inherent error-resilience ability, C-element is able to prevent the internal
faults or the SET. Let us assume that any internal fault induce a glitch to the C-element,
such like, when a transient fault occurs one of the inputs, the output of C-element stays
stable since the inputs are not unanimous. A simple application for C-element, latch
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Figure 4.2: A modified Muller C-element based on a two-phase operation. Phase φ = 0
enables initialization of the S latch. Phase φ = 1 corresponds to a normal operation of
the C-not gate.

error correction [MZS+07], is given in Fig.4.3. Let two latches store the output from
any combinational logic, the C-element that is added after the latches is able to mask
any SET from the two latches. The fault-tolerance inherited by C-element is studied
in Section. 4.3.3. Sophisticate applications of C-element and its reliability analysis are
further studied.

4.1.2 The Restorative FeedBack Method

As presented in Section.1.1.1, TMR methods require a duplication of a logic function
twice. Moreover, no constraint for the logic synthesis process has to be given (i.e. TMR
methods can correct cases of error-propagation). Since Muller C-element holds an
inherent ability of fault-tolerant as shown in Section.4.1.1, a combination of TMR with
C-element is proposed in a variant of TMR, referred as Restorative FeedBack (RFB)
[WLMT11].

The RFB method is based on Muller C-element gates. The RFB scheme is derived
from the principle of stochastic iterative decoding. It enables to achieve better perfor-
mance than traditional majority-based TMR for correcting temporary upsets. The RFB
method is also applicable to M -ary logic architectures as well as conventional binary
logic.

An implementation of the RFB method is detailed in Fig.4.4. In this architecture,
a multiplexer is inserted between the C-not and S gates. During the setup phase, the
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Figure 4.3: Diagram of a latch error correction by using C-element

multiplexer selects the adjacent input signal, so that the state of S is directly forced
into an initial value. During the restoration phase, the multiplexer selects the output
from the C-not gate, to select the feedback.

A two-phase error correction based on the RFB technique is illustrated in Fig. 4.5.
At first, the three repetitive signals, x1, x2, and x3, are fed into three C-elements so
as to correct the affected signal x2. During the initialization phase, the outputs are
initialized with barrel-shifted copies of the input signal values. Since x2 is erroneous,
the initialized value of the last C-element is incorrect as well. During the restoration
phase, the feedback is activated. After the restoration phase, the output y3 and the
state memory value are both correct.

4.2 Error Model Applied during experimentations

In this section, we illustrate the error model applied in our decoding simulations for
the case of noisy decoding process. At first, we recall the error model. An improved
error-model is then introduced. At last, we compare the BER performances of GBF
decoding method under two different error-injections.

4.2.1 Error Model Used in this work

An error model for the iterative decoding process that has been described in [Var11] is
supposed to be the felicitous model to be adapted in a noisy iterative decoding process.
In this work, the error model for faulty decoder is considered as error-free message-
passing decoder concatenated with an independent and identical BSC. It enables to
have a suitable examination of the central phenomenon.

Instead of having a BSC of same parameter ε for each message passing within vari-
able node and check node as assumed in [Var11], two independent BSCs are used
in this study. As such, messages produced by the variable node and the check node
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Figure 4.4: Implementation of the restorative feedback method using binary CMOS
gates.

Figure 4.5: Two-phase error correction in the restorative feedback method. The dotted
circles indicate C-elements that are inactive. It means that they are not actively driving
their outputs. Moreover, the star indicates an error location.
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Figure 4.6: An error model for the iterative decoding process.

are exchanged over two BSCs with crossover probability α and β, respectively (Fig.
4.6). Actually, the idea of the error model is basically plotting two independent BSCs
between variable node and check node.

4.2.2 Error Injections for Gallager-A Decoding Method

In fact, the noisy decoding model is supposed to be as accurate as possible. Such
that, an ideal error model may be detailed down to transistor level. Corresponding
to circuit’s technology, each transistor is simulated with transient events, intermittent
events, and permanent events.

In this work, instead of making a fine model, we simplify the upsets/events and
inject transients into key path of the architectures. Since the architectures are close
to the implementation circuit, the hypotheses on key path may able to generate most
significant error events that would trigger a resulting error. An architecture with error-
injections is depicted for Gallager-A decoder, in Fig. 4.7. More precisely, for the archi-
tecture of a variable node, two error-injections are involved in the error model. The
locations of two error-injections are: received value from channel or the decision of
multiplexer to output either the incoming message from check node or received value.
For the check node, one error-injection is made at the output of each XOR logic opera-
tion.

4.2.3 Comparisons between two different error injection approaches

Note that the error-injection model for Gallager-A in Fig. 4.7 does not exactly match
the error model presented in Fig. 4.6. In this subsection, we compare two error-
injection models for Gallager-A decoding method. The first one is the error-injection
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Figure 4.7: Noisy Gallager-A decoder architecture.

model of Fig. 4.7 that are used for all the simulations in this work. The second one is
an error-injection model based on the error model of Fig. 4.6.

At first, an error-injection model based on the error model of Fig. 4.6 is shown in
Fig. 4.8. As explained in Section. 4.2.1, the error model is inserted in two independent
BSCs between variable node and check node. Hence, for the error model in Fig. 4.8,
it injects a single error at the output of each variable node operation and check node
operation as well.

Figure 4.8: Alternative error-injection model for Gallager-A algorithm.

Fig. 4.9 shows the difference between the two error-injection models. From Fig.
4.9, it is found that when the number of decoding iteration is 2, the BER performance
difference between two error-injection models are pretty trivial. With an increase of
decoding iteration, the difference still stays low. For instance, the maximum gap is
observed when ε = 10−4. The two curves still end at the same order of magnitude.

As a result, all the noisy Gallager-A decoding method is simulated with the error-
injection model of Fig. 4.7. By comparison to the error-model shown in Fig. 4.6, the
error-injection model in Fig. 4.7 does not show a huge gap in terms of BER perfor-
mance.
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Figure 4.9: Difference of BER performances between two different error-injection mod-
els for Gallager-A decoding method of (3,6) LDPC codes of length 64. Model 1 is the
error-injection model of Fig. 4.7. Model 2 is the error-injection model of Fig. 4.8.

4.3 MCD: A Decoder Against Internal Transient Faults

In this section, a decoder against internal transient faults is detailed. More precisely,
the decoder is able to perform the error-correction under a faulty decoding process,
especially in the case of a high error-rate.

4.3.1 Code Structure and Decoding Algorithm

Muller C-element based decoding method, referred as to MCD, has been designed
for embedded error-correction in the presence of internal faults [TWB+12, TSW+12,
WTB+12]. The proposed decoding method is based on the Tanner graph [KFL01]
of a parity-check code, which also can be considered as one of the MPD family. As
such, we take the same notation for the Tanner graph as in Section. 3.2.4. In the
proposed MCD algorithm, C-element (see presented in Section. 4.1.1) gates are used
to implement the variable nodes, as is done with conventional stochastic LDPC de-
coders [GR03,WGRS05].

Unlike stochastic decoders, our MCD method introduces a new two-phase operation
type for the variable node. Fig. 4.10 shows the structure of a variable node, such as, a
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cascaded C-element set. In fact, the MCD architecture can be regarded as circuit-level
designs for variable nodes in an LDPC decoder, where cascaded C-element sets are
used. Please note that the MCD method performs the decoding process in two phases:
initialization phase during the first iteration and restoration phase during the rest of
the iterative process.

For each variable node vi, we associate a set of C-element gates Ck, 0 ≤ k <

(dv − 1), where dv is the variable degree. Each C-element gate Ck contains a single-bit
storage element ck. The error correction algorithm is described as follows:

1. Initialize yk = xi, for all k ∈ V.

2. Compute fji = ⊕m∈Pj\iymj for all j ∈ P.

3. Initialize each C-element memory as ck = fm, where m = (k + dv − 1) mod dv.

4. The C-element’s port connections are as follows. For C0, the inputs are f0 (f0 =

xi) and f1, and the output is c0. For Ck, the inputs are ck−1 and fk+1, and the
output is ck.

5. Iterate steps 2 and 4 during a fixed number of iterations, as the restoration phase.

6. For the sake of facility, the corrected output is taken as zi = c(dv−1), the output
from one of dv cascaded C-elements sets.

Each variable node is able to correct each single error during the iteration process.
The error location can be in one of its input messages or in one of its internal states. A
careful examination of the variable node behavior shows also that it is able to correct
several multiple-error patterns. Additional iterations may be used in function of the
considered application. The further analysis of error-correction by a single cascaded
set is next given.

4.3.2 Error-correction Analysis

An error may originate from an internal error within the decoder. The C-element cas-
cade helps to stop the propagation of such errors. For example, if a transient upset
occurs in one of the C-element’s state memories, this error is masked by the subsequent
C-element in the cascade architecture. In the rest of this subsection we show that sin-
gle error events are corrected by the MCD algorithm, regardless of where those errors
originate.

Two important error cases are examined. The case of single-error event and the case
of double-error event. The locations of the errors are examined at the input of variable
node or/and the memories of C-elements. In each case, the algorithm is shown to
correct the error in a single iteration.
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Figure 4.10: Local implementation of a variable node. The architecture is a cascade
of C-element gates, modified for the initialization of the state memory. In this figure,
dv = 4. Each C-element has three inputs; the left-side inputs are the usual inputs, and
the top-side input is the initial state for the C-element’s memory. Moreover, a table that
illustrates the behaviors of ck is given.

4.3.2.1 Single-Error Events

A Single Error Appears at xi If a single error occurs at some input xi, then the error is

initially propagated along several messages yij . The error is further propagated to the
messages fjm for all nodes m ∈ Pj . If the code has no four-cycles (i.e. cycles of length
four), no variable node receives more than one erroneous fjm message. Suppose that
erroneous messages are sent from variable node i to distinct check nodes j1 and j2.
j1 and j2 both send erroneous messages to the same variable node m. Then, a cycle
has to link nodes i → j1 → m → j2 → i, which has length four. If four-cycles are
excluded, then this cannot occur. Furthermore, no erroneous message is propagated
back to variable node i because all other nodes carry correct values. Therefore, each
variable node receives at most a single erroneous message among the locally-received
messages fk. As shown in the next subsection, all such single errors are corrected.

Moreover, Fig. 4.11-(a) demonstrates a single cascaded C-element set that corrects
the single-error event at xi. During the initialization phase, the state of C-element C1

is incorrect due to the initialized value xi. After one iteration, the error at xi, as one of
the inputs of C0 is masked by C0. Additionally, the state of C1, c1, is corrected by the
two correct inputs.

A Single Error Appears at fk If variable node vi receives one erroneous message

fk, then cm is initialized to an erroneous value, but all other ck (k 6= m) are initialized
to correct values. Then, for each C-element, there are three possible cases:

1. The C-element has two correct inputs and an initially erroneous memory state.
In this case, the memory state is corrected because the inputs agree.



80 A Decoder Reliable Against Internal Transient Faults

2. The C-element has a correct memory state but one incorrect input. In this case
the correct memory state is retained because the inputs do not agree. Hence, the
fault is masked by the C-element’s memory.

3. The C-element has two correct inputs and an initially correct memory state. In
this case there is no error.

Fig. 4.11-(b) shows the error-correction diagram for single-error event at fk. As a
result, the erroneous f1, as one of the inputs of C0 is masked by C0. Furthermore, the
state of C2, c2, is corrected by the two correct inputs.

Figure 4.11: Two error-correction diagrams by using a single cascaded C-element set.
(a) single-error event at xi, (b) single-error event at fk.

4.3.2.2 Double-Error Events

Double errors appear at fk and fl If a variable node vi receives two erroneous mes-

sages at fk and fl, such that |k − l| ≥ 1, there are three possible cases:

• If f0 and f1 are erroneous, the output of C0 is thus erroneous. Since the rest of
fk and storages are correct, the error from C0 is masked.

• f0 and fk (k > 1) are incorrect. In this case, the output of C0 is correct, and any
erroneous fk can’t induce an error event.

• fk and fl, (k 6= l 6= 0), are erroneous. In this case, any single error event is
masked.



MCD: A Decoder Against Internal Transient Faults 81

An example case is given in Fig. 4.12-(a). Both erroneous inputs, f1 and f3, are
masked by C0 and C2, respectively.

Double errors appear at ck and cl If a variable node vi generated two upsets at

ck and cl, such that |k − l| ≥ 1, these events can be sorted as a single error event
occurrence. Consequently, these cases are masked by the inherent fault-tolerance by
C-element.

For instance, an error-correction diagram is shown in Fig. 4.12-(b). Both false
states, c0 and c2, can be corrected by two correct inputs of C0 and C2.

Figure 4.12: Two error-correction diagrams by using a single cascaded C-element set.
(a) double-error event at fk and fl, (b) double-error event at ck and cl.

Double errors appear at fk and cl If two upsets occur at fk and cl of a variable

node vi, where |k − l| ≥ 0, there are three possible cases:

• if k = (dv − 1) and l 6= (dv − 2), the value of C-element Cl, cl, is correct. Since
only single-error event is occurred among the C-elements except Cl, due to C-
element’s behavior another input of Cl is assured error-free. In this case, only fk
is erroneous that can not induce an error at the output.

• When k 6= (dv−1) and l 6= (dv−2), fk and cl are correct. Hence, the output from
vi is correct as well.

• At last, if k = (dv − 1) and l = (dv − 2), fk and cl are thus incorrect. In this case,
the output is erroneous.
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Fig. 4.13-(a) shows the error correction of double-error event at f1 and c1. The
erroneous f1, as one of the inputs of C0 is masked by C0. Furthermore, the state of C1,
c1, is corrected by the two correct inputs.

However, the double-error pattern, the local incoming message to the last C-element
and its storage, can not be corrected, as shown in Fig. 4.13-(b).

To sum up, a cascaded C-element set is able to correct any single error event regard-
less of where those errors originate. Any double-error events can be corrected, except a
single pattern, namely the local incoming message to the last C-element and its storage
are simultaneously flipped over.

Figure 4.13: (a) Double-error event at fk and cl is corrected by using a single cascaded
C-element set, (b) double-error event at f3 and c2 is the single double-error pattern
that can not be corrected by a cascaded C-element set.

4.3.3 Fault-Tolerance Inherited by C-element

To further reveal the error-resilience inherited from C-element, we study the reliabil-
ity of a state memory of C-element by comparison to a static logic gate, namely an
inverter [TBW+13]. Without loss of generality, the state memory was designed for a
600nm CMOS logic process. For comparison, an inverter was also designed. Both cir-
cuits were simulated in Virtuoso Spectre from Cadence [Spe], where signal errors are
set up in a large scale by the “noisescale” parameter. Fig. 4.14 shows an overlay of
Monte Carlo transient simulation runs form both the state memory and the static gate
simulations. An error occurs whenever the difference crosses 0.05V threshold when 5V

as the correct output. More precisely, if the difference of output value to the correct
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Figure 4.14: Simulated error rate results obtained using the 600nm CMOS model in
Virtuoso Spectre. The “noisescale” parameter is set as large scale in order to induce
enough upset cases to measure and compare the error rate for those two components.

one (5V ) is bigger than 0.05V , then an error is considered. The difference lower than
0.05V is bypassed.

For the static gate, errors appear quite frequently as indicated by numerous threshold-
crossings. By contrast, in the state memory case, the amplitude of output noise fluctu-
ations is significantly cutoff. Thanks to the feedback mechanism in the state memory,
up to a magnitude of two orders as the robustness gain as shown in Fig. 4.14. Con-
sequently, by comparison to a static logic gate, C-element is able to tolerates the upset
events with error-resilience gain between multiple times up to magnitude of two orders.

4.3.4 Application of MCD for a cDMR Model

In this subsection, we apply the MCD architecture to achieve fault-resilience in a digital
logic architecture. The MCD algorithm is applied to a digital computation as shown
in Fig. 4.15. A logic function F (x) is implemented using a digital technology that is
subject to errors at its output.

To evaluate the proposed architecture, a system composed of five systematic regular
(4, 8) LDPC codes was simulated. All codes are a code rate 1/2. It means that there
is one redundant parity bit for each systematic bit, i.e. N = 2 · K. Moreover, the
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Figure 4.15: The proposed fault-tolerant architecture. The shaded area represents a
MCD decoder implementation.

codeword sizes N are set as 64, 128, 256, 512, and 1024. Larger codes are expected
to provide better error protection but are also more complex to integrate.

In our simulations, the output bits s and r from F (x) and E · F (x), respectively,
are assumed to have an uniform independent error probability of α. The XORs and
C-elements operations that comprise the MCD architecture are assumed to be faulty
boolean operations. Each gate in the MCD architecture has an uniform error probability
of ε. To take into account of the impact of hard defects,“stuck-at” faults were also
inserted in some uniformly random positions of [s r] with an error rate of δ, δ = 0.001

in practice.
The BER results for the LDPC codes associated MCD algorithm are shown in Fig.

4.16. As long as α < 0.05, the output s from F (x) can be recovered with a significantly
low error probability. As α is reduced below δ, the performance becomes dominated
by the gate-level fault probability ε. The simulation results show that, in the case of
ε = 10−5, the MCD architecture introduces gains about two orders of magnitude by
comparison with uncoded data (output s from F (x)).

Consequently, the proposed decoding method is able to suppress the resulting
error probability to a level equal to the decoder’s internal fault rate.

For a given LDPC code with length N , the number of C-elements assigned for the
design of the decoder is approximately N · dv, where dv is the average variable node
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Figure 4.16: Simulation results for rate-1/2 LDPC codes based on MCD architecture
with five iterations. The hard-fault rate δ is 0.001.

degree. The number of XOR gates is approximately N · R · dc, where R is the code’s
rate (R = 1/2 in the experimentations), and dc is the parity-check node degree. One
of the considered codes is N = 1024, R = 1/2, dv = 4 and dc = 8. In this case the
approximate total hardware complexity is equal to 8k logic gates.

One interesting result of our experimentations is that the MCD method provides
similar performance across a wide range of code lengths. Error-correcting benefits may
therefore be obtained for short codes, such as the N = 64 example. It is a length
compatible with data words in current 64-bit processors. As suggested in [WH09],
the MCD method can also achieve a reduced net redundancy if several parallel oper-
ations are packaged together, yielding a larger code size. In this “bundled-function”
case, the relative hardware complexity of the decoder is reduced by comparison to the
complexity of the functions themselves.

We also define the system’s effective redundancy rate of hardware complexity RE

as follows. Let KF be the number of logic gates for the implementation of F (x). EF is
the number of gates necessary for the encoding function E ·F (x). NMCD is the number
of gates of in the MCD module. Then, RE = (KF +EF +NMCD)/KF . According to the
redundancy cost analysis in [WH09], the redundancy imposed by the LFCT is closed
to KF when F (x) is an array of 5 × 5 combinational multipliers. In this work, NMCD

is considered as NMCD ≈ KF since the MCD is composed of XORs and C-elements as
well as in the LFCT. Consequently, RE is highly dependent on the gate complexity of
E · F (x). Therefore, EF is discussed as follow;
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• In CMOS technology: It may be possible to perform logic minimization on E ·
F (x). If the number of parity bits is smaller than K, it is especially efficient.
Moreover, if F (x) is a boolean function, such like, a Finite State Machine (FSM)
[Gil61]. Then, E ·F (x) can be fabricated by a FSM as well. In this case, EF ≈ KF .

• In hybrid CMOS/nanoelectronic technology [DL05]: A device with nanometer
scale footprint that also is used in combination with a CMOS subsystem. Such
hybrid circuits offer the potential for high defect tolerance. In this case, it is
possible to tune redundancy cost to reliability for encoding function E · F (x) or
F (x).

• In nanoelectronic technology: Snider et al. described that nanowires based cross-
bars architecture that has capacity of fault-tolerance in [SKHW05]. An example
of check symbol generator for self-checking has also been given, as well as the
C-element implementation. Therefore, the proposed architecture would yield po-
tential benefits in nanoelectornic devices.

To sum up, the redundancy rate of hardware complexity RE depends on the fabrica-
tion technology and also the architecture. Typically, the cDMR model provides a robust
architecture solution with redundancy of one in some cases, such like a FSM design in
CMOS. Otherwise, due to the overhead redundancy imposed by the correlated-error-
free function for F (x) and E · F (x), RE may be larger than one.

Further information for the generation of LDPC codes used in this work can be
found in Annex. A.5. Moreover, the error-injection model for MCD method under
a faulty decoding process is illustrated in Fig. 4.17. More details can be found in
Section. 4.2.1.

Figure 4.17: Noisy MCD architecture.

4.3.5 Modified MCD that Contains Feedback Mechanism

In order to further improve the capacity against internal transient faults, the MCD algo-
rithm may be modified by adding a feedback connection. The feedback connection has
been previously shown to suppress internal transient faults in [WLMT11]. Actually, the
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output from a cascaded C-element set is fed into the input of this set. This modification
is applied to Step 4 of the MCD algorithm shown in Section. 4.3.1:

1. Initialize yk = xi, for all k ∈ V.

2. Compute fji = ⊕m∈Pj\iymj for all j ∈ P.

3. Initialize each C-element memory as ck = fm, where m = (k + dv − 1) mod dv.

4. The C-element’s port connections are as follows. For C0, the inputs are yk and f1,
and the output is c0. For the remaining Ck, the inputs are ck−1 and fk+1, and the
output is ck.

5. Iterate steps 2 and 4 during a fixed number of iterations, as the restoration phase.

6. The corrected output is zi = c(dv−1).

This modification enables to improve the decoder’s resilience to internal faults when
time-redundancy is applied to the output bits, zi. By comparison with the MCD, under
a faulty process the gain in terms of decoding performance achieved by the feedback
mechanism is shown in Fig. 4.31.

The MCD and MCDfb methods can be regarded as circuit-level designs for variable
nodes in a LDPC decoder. Cascaded C-element sets are employed in both methods. In
Fig. 4.18 and Fig. 4.19, the architectures of the variable nodes for MCD and MCDfb
are detailed, respectively. During the decoding process, the modified C-element with
phase operation is used to implement the algorithm’s initialization phase. The feedback
modification for the MCDfb method is also given in Fig. 4.19.

4.3.6 Decoding Method based on Three Input C-element

In this subsection, a decoding method based on a modified C-element with three inputs,
referred as to MCD-3in, is presented. The decoding method keeps the same decoding
process as well as the message exchanging rule to the MCD. But, the C-element unit
contains a modified C-element with three inputs. This kind of decoding method is
similar to the original Gallager-A decoding method. We first introduce the modified
C-element with three inputs. Then, the decoding performance of MCD-3in is demon-
strated.

4.3.6.1 Modified C-element with three input

The modified binary C-element with three inputs is shown in Fig. 4.20. In this achitec-
ture, the “C-not” gate detects whether the three inputs are equal, with an output given
by

Q =

{
A, if A == B == C

Z, otherwise,
(4.2)
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Figure 4.18: MCD architecture, dv = 4.

Figure 4.19: MCDfb architecture, dv = 4.
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Figure 4.20: Modified C-element with three inputs. Pull-up and pull-down networks
are built with three PMOS transistor and NMOS transistor, respectively.

where Z denotes a high-impedance output state. If Q 6= Z, then the C-not gate
actively drives the S latch, overpowering its state. If Q = Z, then the state of S is
maintained via weak feedback.

4.3.6.2 Decoding Method based on Three-Input C-element

By adapting the message passing rule of Gallager-A method, a MCD-3in approach can
be regarded as an implementation of Gallager-A method by using modified C-element
with three inputs. More precisely, in the case of dv = 4 the MCD-3in algorithm can be
described as follow:

1. Initialize yij = xi (the channel-side message), for all i.

2. Compute fji = ⊕m∈Pj\iymj for all j.

3. For a given variable node vi, dv modified C-elements with three inputs are com-
bined. Initialize each modified C-element’s memory as xi.

4. Let f1, · · · , fdv the message from check nodes be the received messages in local
for this node. The input of the first modified C-element are f2, · · · , fdv , and the
second C-element has as inputs f1, f3, · · · , fdv , and etc. The output of variable
node is the output of each modified C-element.
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Figure 4.21: Simulation of (4,8) LDPC codes of length 64 for Gallager-A and MCD-3in
decoding methods, under an error-free decoding process.

5. Iterate steps 2 and 4 during a fixed number of iterations.

6. The corrected output zi is the output of a variable node.

In fact, the MCD-3in is similar to the Gallager-A method in the case of dv = 4.
To take into account of different degree of a variable node, the decoding method can
be modified in steps 3 and 4. The number of input of corresponding modified C-
element should be concerned to the number of incoming message from check node.
For instance, when dv = 5, the corresponding C-element should be built from four
inputs. The architecture of a four-input C-element is similar to the modified C-element
with three inputs as shown in Fig. 4.20. The only difference is the number of input
to the C-element that is equal to the number of transistors assigned to pull-up and
pull-down networks.

In addition, another alternative architecture of variable node dv = 5 is demon-
strated in Fig. 4.22. In this architecture, two C-not components and a C-element are
selected to carry out the operation of a variable node. More precisely, four incoming
messages from check nodes are first fed into two parallel C-nots. After a C-element
takes the outputs of two C-nots as its inputs. The output of the variable node is the
state of C-element. According to [Bak10], the more transistors are used in serial way,
such like the pull-up/pull-down network in Fig. 4.20, the larger latency would be in-
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Figure 4.22: Alternative architecture of a variable node dv = 5.

Figure 4.23: Architecture of a variable node of flip-flop based C-element decoding
method.

duced due to the propagation timing through transistors. In this case, the architecture
in Fig. 4.22 requires a bit more hardware complexity. But it reduces the processing
delay.

LDPC codes of length 64 have been simulated with a Gallager-A and MCD-3in under
an error-free decoding process, as shown in Fig. 4.21. As a result, the curves of BER
performance by those two decoding methods are almost matched. As the study of error-
resilience study shown in Section. 4.3.3, thanks to the feedback mechanism provided
by the state memory, more benefits can be achieved against transient faults. In this
case, the MCD-3in would be more efficient for the error-correction in the presence of
internal transient faults.

4.3.7 Flip-Flop Based C-element Decoding Method

The modified C-element based decoding method presented in Section. 4.3.6 achieves
similar error-correction performance as to the GBF. But it costs less hardware com-
plexity by comparison to the GBF. In this subsection, we introduce a flip-flop based
C-element decoding method. This flip-flop based C-element decoding method is origi-
nated from the Gallager-A decoding method, as a variant of Gallager-A algorithm.

By keeping the same process for the check nodes as the Gallager-A, the flip-flop
based C-element adds an additional flip-flop and also a C-element to the structure of a
Gallager-A variable node. Fig. 4.23 shows the architecture of a variable node of flip-
flop based C-element decoding method. More precisely, the incoming messages from
check nodes f1 and f2 are processed by a Gallager-A method’s structure as introduced
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in Section. 3.2.5. The output from multiplexer is then sent to a C-element and also
restored in a flip-flop. Another input of the C-element is taken from the output of the
flip-flop. In addition, the state of the C-element is initialized as the received value f0.
Such that, Table. 4.1 illustrates the message-processing diagram for the variable node
by order of decoding iterations.

Iteration f0 f1 f2 Flip-Flop Output
0 0 1 0 ′X ′ 0
1 0 1 0 0 0
2 0 1 1 1 0
3 0 1 1 1 1
4 0 0 1 0 1
5 0 1 1 1 1
6 0 0 1 0 1
7 0 0 1 0 0
8 0 0 0 0 0

Table 4.1: The message-processing diagram for the variable node of flip-flop based C-
element decoding method, by order of decoding iterations. Moreover, ′X ′ represents
the unknown value.

Fig. 4.24 reveals the gain in terms of BER performance achieved by the flip-flop
based C-element method by comparison to the Gallager-A method. The noisy model of
the flip-flop based C-element method is demonstrated in Fig. 4.25 and the noisy model
for Gallager-A is the one of Fig. 4.8. Actually, better BER performance is obtained when
more decoding iterations are allowed for the flip-flop based C-element. Furthermore,
it yields a gain in terms of decoding performance close to two orders of magnitude.
However, from Fig. 4.24, the BER performance is worsened by an increase of number
of iteration. For instance, the BER result of 20 iterations is worse then the one of 5
iterations.

In this case, we further analyze its property with increasing the number of decoding
iterations. In Fig. 4.26, it is shown that the BER performance of flip-flop based C-
element method goes up and down by decoding iterations. When the error rate of
internal faults is 10−4, it floats from 2 × 10−4 to 0.5 × 10−4. More precisely, in some
iterations the decoding method is able to render an interest of error-correction from
the internal upsets. For the rest, the decoding method is not helpful. Consequently,
the flip-flop based C-element decoding method can not be stabilized by an increase of
number of decoding iterations.

Remark 3. Significantly, under a faulty decoding process, the MCD provides the stability
when the number of decoding iterations increases. Moreover, the MCD achieves a property
of fast-convergences. We further study the properties of MCD in Section. 4.5.
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Figure 4.24: (3,6) LDPC codes of length 64 are simulated for Gallager-A decoding
method and the flip-flop based C-element decoding method as well. For the error-
injection of internal faults, the error rate α is 10−4.

Figure 4.25: Noisy model for flip-flop based C-element decoding method
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Figure 4.26: (3,6) LDPC codes of length 64 are simulated for flip-flop based C-element
method with internal error-injection of error rate α = 10−4. Moreover, the BSC param-
eter ε is 10−3.

4.4 The Space-Time Redundancy Technique

All the presented BER performance under a faulty decoding process by using GBF and
MCD (see Fig. 4.16), can not beat the level of internal error-rate. In this section, in
order to further improve the decoder’s resilience to internal faults, we propose a low-
redundancy fault-tolerant technique that is able to considerably increases decoder’s
decoding performance in the case of transient faults within decoder itself. Significantly,
it even can improve the error-correction capacity of decoder when the internal fault
rate is as high as 0.01.

4.4.1 The Majority Mechanism

In fact, the Space-Time Redundancy technique is done by a temporal majority mech-
anism that is applied at the decoder’s output. The temporal-redundancy strategy is
expected to improve fault correction because the MCD and MCDfb methods are de-
rived from stochastic decoders, in which messages are considered as stochastic streams
[GR03, WGRS05]. In a stochastic decoder, the output decisions are rendered by per-
forming a time-majority on the output streams. Since the MCD and MCDfb decoders
are already performing iterations, the time-voting can occur during the last few itera-
tions.
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Figure 4.27: Structure for a temporal three-of-five majority voter.

To validate the effect of temporal redundancy, the decoder’s output from c(dv−1)

are processed into a majority operation, Maj(c(dv−1), l) where l denotes the number of
samples. We consider a three-of-five voter (e.g. l = 5) as shown in Fig. 4.27.

4.4.2 On the Decoding Performances Impact of a Space-Time Technique

In this subsection, three decoding methods, Gallager-A, MCD, and MCDfb, are applied
to the cDMR model as the ECC engine (see Fig. 4.15 in Section 4.3.4).

The Gallager-A, MCD and MCDfb methods were simulated using a systematic regu-
lar (3, 6) LDPC code. To be compliant with typical word sizes used in electronic devices,
the codeword size is N = 64, corresponding to 32-bit data words. In our simulations,
the output bits s and r from F (x) and E · F (x), respectively, are assumed to have an
uniform independent error probability of ε. The logic gates that are contained in the
decoding circuit are assumed to be faulty boolean operations, which have a uniform er-
ror probability of α. In our simulations, the temporal-majority component is assumed
to be a reliable output interface circuit.

The BER performance results with no time-redundancy are shown in Fig. 4.28 and
Fig. 4.29. In this context, all methods achieve poor performance. In the high-α case
shown in Fig 4.29, the Gallager-A method degrades completely with an increase of
number of iterations. The results using time-redundancy are shown in Fig. 4.30 and
Fig. 4.31. Unlike the degradation with increased iterations in Gallager-A, the MCD
methods introduce a significant improvement in terms of BER performance for the
high-α case.

Time-redundancy is not effective when it is applied to the traditional Gallager-A
decoder. Indeed, its degradations are too severe. In addition, the feedback approach is
shown to be beneficial in the high-α case as well.

As a conclusion, the achievements obtained by MCD methods and Space-time tech-
nique are summarized as follow:

1. When the intrinsic gate-error α is high, the Gallager-A performance worsens with
increased iterations, but the MCD methods do not exhibit this degradation.

2. The feedback approach is shown to be beneficial in the high-alpha case as well.
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Figure 4.28: BER results versus iteration number without applying time-redundancy.

3. Once the time-redundancy is applied at the decoder’s output, one or more orders
of magnitude gain is achieved.

4. Consequently, MCD and MCDfb with apply time-redundancy yield improved fault-
tolerant potential against internal upsets, even with a high gate-error rate.

4.4.3 A feasible time-redundancy implementation

In order to demonstrate the benefits of time-redundancy in the MCD kind decoders,
it is necessary to assume that the time-voting module can be implemented with error-
free components. This assumption has to be analyszed. In the study of “post-CMOS”
nano-scale electronics, it is common to imagine a hybrid system in which logic opera-
tions are built from faulty nano-scale gates, while output interfaces are implemented
using larger more reliable CMOS devices. For any fault-masking method, it is criti-
cal to assume that the final read-out circuits are more reliable than the other internal
components, or else the system’s overall reliability will be limited by the interfaces
themselves. It is furthermore possible to imagine alternative architectural solutions for
implementing time-redundancy. For example, if the design technology operates at a
much higher speed than the output interface devices, then the time-redundancy may
be implemented via passive RC filtering in the output interface. An example is shown
in Fig. 4.32, where low-pass filtering is performed by parasitic elements within two in-
verter buffers. This arrangement achieves an average-and-threshold operation, which
is functionally equivalent to a time-voting mechanism used in our simulations.
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Figure 4.29: BER results versus iteration number without applying time-redundancy.
When the intrinsic gate-error rate (α) is high, the Gallager-A performance worsens with
increased iterations. The MCD methods do not exhibit this degradation.

Figure 4.30: BER performance results with time-redundancy applied at the decoder’s
output.
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Figure 4.31: BER performance results with time-redundancy applied at the decoder’s
output. The MCD methods achieve improved performance when α is high. The feed-
back approach is also shown to be beneficial in the high-α case.

zic(dv-1)

M icro-Scale C ircuit

Parasitic Passive
Low -Pass F ilter

Parasitic Passive
Low -Pass F ilter

Figure 4.32: Passive time-redundancy obtained by a low-pass filter. This approach may
be implemented, for instance, with a native R-C parasitics in a large-size output buffer.
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4.5 Further Analyses on MCD

In this section, we first investigate the threshold determinations for MCD and GBF with
the Density Evolution approach. By means originated from Trellis Structure [Ung82],
a further detailed analysis for MCD is also illustrated. In addition, a rough estimation
of dynamic power for MCD is given. Finally, a good candidate for the ECC of cDMR is
proposed.

4.5.1 An Approximation of Threshold Determinations

In this paragraph, the performances of GBF and MCD are estimated under an iterative
faulty decoding process by applying an error model. Due to the effects of state memory
from C-elements in MCD case, its capacity can not be resolved by thoroughly adapting
the Density Evolution derivations. Therefore, we give out an approximation for the
threshold determination of MCD. Hence, the estimation of decoding performance under
a faulty process for MCD is also an approximation. More precisely, we assume the
probability of variable nodes do not depend on the messages from check nodes any
more after the first iteration of restoration phase.

4.5.1.1 GBF Decoder’s Performance under Faulty Decoding

Firstly, we start with the estimation of GBF decoder’s capacity under Faulty Decoding.
The performances of LDPC codes for noisy decoders, such like the Gallager-A decoder,
have been discussed in [Var11]. In this work, we further study the capacity of GBF
decoding method by adapting the same error model than in [Var11], as shown in Fig.
4.6.

For the check node operation, the outgoing message is incorrect in two cases. An
odd number of the messages from variable nodes are erroneous and XOR itself operates
rightly. No odd number of the messages are in error and XOR is faulty. Let Px(l)

1

and Px
(l)
−1 be the probabilities that the XOR gives a correct result and incorrect one,

respectively. They can be expressed as:

Px
(l)
1 = 1− Px(l)

−1 =
1 +

(
1− 2Pb

(l−1)
−1

)(dc−1)

2
(4.3)

Thus, q(l)
−1 can be obtained as

q
(l)
−1 = Px

(l)
−1(1− β) + βPx

(l)
1 (4.4)

and q(l)
1 = 1− q(l)

−1.
For variable node’s error probability, three events can lead variable node’s value

in error. The first is that the received value xi is incorrect when less than b correct
incoming messages fji are taken. The second is that at least b erroneous messages fji
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disagrees with xi. The last is that an internal fault occurs. More precisely, the event ω−,
at least b erroneous messages disagree with xi and the event ω+, more than b correct
incoming messages disagree with xi are expressed as:

ω− =

dv−1∑
i=b

(
dv − 1

i

)
(q

(l−1)
−1 )i(q

(l−1)
1 )dv−1−i (4.5)

ω+ =

dv−1∑
i=b

(
dv − 1

i

)
(q

(l−1)
1 )i(q

(l−1)
−1 )dv−1−i (4.6)

Due to the affection by BSC with parameter α, let P (l)
G represents Pb(l)−1 for GBF

algorithm. This expression can be derived as following:

P
(l)
G = α+ (ε(1− ω+) + ω−(1− ε))(1− 2α) (4.7)

4.5.1.2 MCD Performance under Faulty Decoding

The MCD performs two phase decoding process in the variable nodes. The MCD perfor-
mance is thus analyzed in two phases. First consider the initialization phase in which
the cascaded C-elements’ state memories are set to fk′ , as detailed at step 3) in 4.3.1.
To obtain the error probability of a variable node after the first iteration P (1)

E , the error
probability of each C-element memory ck need to be considered at first. For instance, if
dv = 4, let τk represents the error probability of each C-element memory ck. As depict
in Fig. 4.10, τ0 is incorrect in two cases: not both of f0 and f1 are correct when f3 is in
error; or f0 and f1 are both erroneous while f3 is correct, thus,

τ0 = ε(1− (q
(1)
1 )2) + (q

(1)
−1)2(1− ε),

Likewise, τ1 and τ2 are

τ1 = ε(1− (q
(1)
1 )3) + (q

(1)
−1)3(1− ε),

τ2 = ε(1− (q
(1)
1 )2 − (q

(1)
1 )3) + (1− ε)((q(1)

−1)2 + (q
(1)
−1)3).

Moreover, the last C-element’s state memory is the value of variable node and the
outgoing message as well, P (1)

E = τ2. To take into account the presence of internal up-
sets with error probability α, the probability of a variable node during the initialization
step is thus modified as

P
(1)
E = α(1− τ2) + τ2(1− α) (4.8)

As the check node, q(l)
−1 and q(l)

1 keep the same expression as (4.4), when l = 1.
During the second phase of the decoding process, please note that the variable node

relies on its proper belief since C-elements carry the memories along iterations. Thus,
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the incoming messages fji are not propagated further among nodes. In this case, the
error probability Px(l)

−1 for the MCD architecture qx(l)
−1 is constant

qx
(l)
1 = 1− qx(l)

−1 =
1 +

(
1− 2P

(1)
E

)(dc−1)

2
(4.9)

Hence, q(l)
−1 for the MCD qe

(l)
−1 is

qe
(l)
−1 = qx

(l)
−1(1− β) + βqx

(l)
1 (4.10)

For the variable node, the error probability of state memory at lth iteration τ̌
(l)
k is

obtained by a recursive process

τ̌
(l)
k = τ̌

(l)
k−1qe

(l)
−1 + τk(τ̌

(l)
k−1qe

(l)
1 + qe

(l)
−1(1− τ̌ (l)

k−1)),

where τ̌ (l)
0 = εqe

(l)
−1+τ0(εqe

(l)
1 +qe

(l)
−1(1−ε)). Sequentially, the density evolution equation

for MCD decoder is deducted by a recursive expression:

P
(l)
E = α+ τ̌

(l)
dv−2(1− 2α). (4.11)

4.5.1.3 Decoding Performance Estimations

By applying the derivations obtained in previous paragraphs, we illustrate the decod-
ing performance estimations in the case of error-free decoding and faulty decoding
processes for MCD and GBF decoders. Please note that the estimations for MCD are
approximations.

For a threshold analysis, with (4.7) and (4.11), the maximal channel parameters
ε∗ for GBF and MCD are shown in Fig. 4.34 in the case of cycle-free and error-free,
namely α = β = 0. Although the difference of threshold decreases when the degree
of the check node increases, the GBF has a larger decoding capacity overall in the case
of error-free architecture. On the contrary, when the architecture is unreliable, the
proposed MCD against internal faults significantly increases the maximal value ε∗ and
the internal error rate as well. As detailed in Table. 4.2, LDPC codes are simulated
under a stop condition, benefit from decoder [Var11], namely Pb(l)−1 < ε. For (3, 6)
LDPC codes, MCD is able to process internal error rate as high as 0.0303, but only 0.0082

for the GBF approach. For (3, 12) LDPC codes, the thresholds of channel parameter
and internal error rate for the MCD are 0.0096 and 0.0199. Those maximum values of
parameters are even higher for the ones of the GBF approach in the case of (3, 6) LDPC
codes.

4.5.2 Trellis Structure Like Analysis for MCD

Based on Trellis Structure [Ung82], a further detailed analysis for MCD is illustrated
in this subsection. The Trellis Structure that was first introduced by Ungerboeck in
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Figure 4.33: The threshold determinations over BSC for GBF and MCD decoders in the
cases of cycle-free and error-free decoding process, in function of parity-check node’s
degree.

GBF MCD
(dv,dc) (dv,dc) (dv,dc) (dv,dc) (dv,dc)
(3,6) (3,6) (3,12) (3,24) (3,48)

α∗ 0.0082 0.0303 0.0096 0.0032 0.0011
ε∗ 0.0126 0.0690 0.0199 0.0059 0.0011

Table 4.2: Maximal values of parameter α∗ and ε∗ that are determined under the stop
condition, Pb(l)−1 < ε (β = α).
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Figure 4.34: Implementation of a variable node, dv = 3.

1982 [Ung82], is able to assign the state transitions of some channel codes, such like
convolutional codes. Furthermore, by depicting codes’ state transitions in a trellis struc-
ture, it is easily to improve its error-correction performance, e.g., Viterbi Maximum
Likelihood (ML) decoding.

The rest of this subsection is organized as following. The trellis structure of dv = 3

MCD is first presented. Then two succinct state transition diagrams for C-element’s
state memories are revealed in two cases: when the received channel message is cor-
rect and when the received message is incorrect. Afterwards results of two Monte Carlo
simulations are shown to observe the states of C-element memory in function of chan-
nel parameter ε, in the cases of error-free decoding process and noisy decoding process.
At last, some MCD’s decoding properties are pointed out.

4.5.2.1 Trellis Structure for a MCD code

The error-correcting capacity of MCD was analyzed in previous subsection, but by ap-
proximating approaches. Due to the effects of C-element’s state memory in a MCD
variable node, the Density Evolution that is supposed to be the good metric to solve
decoder’s threshold by given some conditions or constraints can not be adapted in our
context.

For a sake of facility, we study the case of dv = 3. A single dv = 3 MCD vari-
able architecture, that contains a cascaded C-elements, is given in Fig. 4.34. When
dv = 3, the connection among cascaded C-elements is particular, not like specified in
Algorithm. 4.3.1. More precisely, in order to reproduce more information from the
incoming message of check nodes, a dummy signal, such as the f2 reduplicated once in
Fig. 4.34.

To take into account of the trellis structure for the MCD, we study the state tran-
sitions of a single architecture of a variable node, as shown in Fig. 4.34. In practice,
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we first illustrate all the combinations of the state memories as the start state. By sum-
marizing the end state after the execution of cascaded C-elements, the trellis structure
is obtained. The trellis structure that assigns the state transitions for a dv = 3 MCD is
shown in Fig. 4.35. The structure is presented in two cases: when the channel message
is correct and incorrect. Since the output of a variable node depends on C-element’s
state memory, we depict all the patterns of a memory state. When the number of state
memory is three, eight combinations are obtained as shown in Fig. 4.35.

Moreover, three binaries that are filled in a shaped square stands for three state
memories’ values independently, e.g., ’101’ represents: the state of the first memory c0

is ’1’, the state of the second memory c1 is ’0’, and the state of the last one c2 is ’1’.
Please note that when the channel message f0 is correct, f0 =’0’. Otherwise, f0 =’1’.
In Fig. 4.35, the state transition for variable node’s output is evolved by incoming
messages from check nodes, i.e., f1 and f2. As such, four patterns, “00”,“01”,“10”, and
“11”, are the combinations of incoming messages.

4.5.2.2 State Transition Diagrams

In order to simplify the state transitions of the MCD algorithm, two simplified diagrams
are presented in Fig. 4.36 and 4.37. Likewise, the two figures represents for the
transitions when the channel message is correct and incorrect, respectively.

At first, when the channel message is correct, the state transition diagram is shown
in Fig. 4.36. By varying the incoming messages f1 and f2, the state memory can be
summarized into four cases. The first case is “001”. The second case is “000”. The third
case is that the other three states of variable node output is 0 as a correct one (namely
“010”, “100”, and “110”). The last case is that the other three states of variable node
output is 1 as erroneous (namely “101”, “011”, and “111”). As a result, when the
channel message is correct the state of memory easily ends up with “000” as a
correct output. Furthermore, when it arrives at “000”, it can not be shifted.

Subsequently, when the channel message is incorrect, the state transition diagram is
introduced in Fig. 4.37. Similarly, the state memory can be summarized into four cases.
The first case is “110”. The second case is “111”. The third case is that the other three
states of variable node output is 0 as a correct one (namely “000”, “010”, and “100”).
The last case is that the other three states of variable node output is 1 as erroneous
(namely “110”, “011”, and “001”). By contrast, if f0 is incorrect, it turns out that
the state of memory is contrarily stabilized at “111” as an incorrect output.

4.5.2.3 Monte Carlo Simulations of Memory State

To take into account the state transitions of C-element memory in function of the chan-
nel parameter, (3,6) LDPC codes of length 64 are simulated in two cases: error-free
decoding process and noisy decoding process. The results are given in Fig. 4.38 and
Fig. 4.39, respectively.
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Figure 4.35: Trellis structure for a dv = 3 MCD code.
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Figure 4.36: Memory state transition diagram when channel message is correct.

Figure 4.37: Memory state transition diagram when channel message is incorrect.
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Figure 4.38: Monte Carlo Simulations on a (3,6) LDPC code of length 64 for memory
state transitions, in the case of error-free decoding process.

(3,6) LDPC codes of length 64 are simulated for MCD while error-free decoding
process is first considered. By varying BSC parameter ε, the state of C-element memory
is transited with an increase of number iterations. The curves that indicate the pro-
portion of memory state are plotted in Fig. 4.38. With the drawn results, when the
channel parameter goes lower, namely the channel is less noisy, the decoded data is
much more prone to be corrected then failed. For instance, when ε = 0.001, the MCD
yields a gain of two orders of magnitudes in terms of error-correction. In addition, it is
seen that the state of memory is barely transited by decoding iterations.

In the case of noisy decoding process, the MCD is simulated under an injection of
internal fault of error-rate 0.0001. In Fig. 4.39, only the states of memory that generate
an incorrect decoded data, i.e., “001”, “101”, “011”, and “111”, are considered. When
BSC parameter flops to 0.001, the percentage of states of memory that induce an error
in output is still lower than 0.0001. Therefore, even the transient fault rate within the
decoder is as high as 0.0001, MCD still produces benefit in error-correction.

4.5.2.4 Roundup: Decoding Properties for MCD

Some decoding properties for MCD are round up by using trellis structure to analyze
its decoding performance.
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Figure 4.39: Monte Carlo simulations on a (3,6) LDPC code of length 64 for memory
state transitions in the case of noisy decoding process. The internal error rate is 0.0001.

1. Stability: When the channel message is correct, the MCD easily ends up with a

correct output. By contrast, if f0 is incorrect, it turns out that the decoded data is
contrarily stabilized to an incorrect output.

2. Fast-convergence: Since the state of memory is barely transited by decoding

iterations, the MCD is able to perform error-correction even during a few number
of iterations. For the noisy decoding case, more decoding iterations tends to
enable better decoding performance.

3. Resilience: Even the internal fault rate is presented within the decoder, the MCD

achieves efficient error-correction, namely an error-resilience decoder.

Thanks to the Resilience, a good decoder candidate for the ECC of cDMR is then
introduced. Moreover, since the MCD hardly relies on decoding iterations from the
Fast-convergence, a general power saving may be achieved by comparison with GBF
in the case of noisy decoding.
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4.5.3 Dynamic Power Saving With MCD

Considering the MCD implementation is on CMOS technology, the main power con-
sumption can be decomposed of two contributions: static power and dynamic power
[Sah91]. At first, static power is defined as the power used when the transistor is sta-
ble, namely when idle. However, some leakage dissipations diverts the sum of static
power [Bak10] as follows: subthreshold current when idle, tunneling current through
gate oxide, leakage current through reverse biased diodes, and contention current in ra-
tioed circuit. However, these dissipations can be avoided. For instance, a special type of
the CMOS transistor with near zero threshold voltage is the native transistor [BSU+99].

For the dynamic power, the total consumption includes the following aspects: charg-
ing and discharging of load capacitances [MKW08], short circuit power dissipation
when the current can not flow through a direct path from VDD to ground, and power
glitches. The power glitches represents an unexpected value that is operated by the
occurrence of unsteady-state inputs. In addition, the major dynamic consumption is
still governed by capacitive charging/discharging.

CMOS power consumption PowCMOS can be expressed by the sum of static power
PowStatic and dynamic power PowDynamic,

PowCMOS = PowStatic + PowDynamic (4.12)

Furthermore,

PowStatic = IstaticVDD (4.13)

where Istatic is the total current flowing on a device and VDD is the supply voltage.

PowDynamic = CloadV
2
DDfclk (4.14)

where Cload is the capacitance and fclk is the clock frequency. Since not each gate
operates or switches at each clock cycle, (4.14) is often combined with factor αf , so
called the activity factor. Thus, the dynamic power dissipation may be expressed as

PowDynamic = αfCloadV
2
DDfclk (4.15)

With (4.15), it is found that operation/switch transition dissipates some energy
as heat. The less operation/switch occurs, the less power consumes. To take into
account the power consumptions of GBF and MCD algorithms, Fig. 4.40 shows two
implementations for Gallager-A and MCD, respectively. By comparison to Gallager-A,
MCD is able to reduce the dynamic power in the case of noisy decoding process thanks
to its Fast-convergence and Resilience explained in Section. 4.5.2.4:

1. From Fast-convergence, MCD relies less on the decoding iteration number, thus,
less transitions would be induced by increasing the number of iteration.
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2. From Resilience, single transient upset occurs at one of the inputs of C-element
can not result a temporary state to C-not block, the same for C-element’s state
memory. As pointed out in Fig. 4.40, unlikely Gallager-A architecture, C-not
block usually retains in high impedance. In this case, glitches power dissipation
is precluded.

Figure 4.40: (a) Switching activity on a Gallager-A decoder architecture, (b) Switching
activity on a MCD architecture.

4.5.4 Good Decoder Candidate for the ECC of cDMR

In this subsection, we demonstrate a good candidate for the ECC of cDMR. More details
for cDMR can be found in Section. 4.3.4. By comparison to the GBF approach, the
performance improvement achieved with MCD was analyzed thanks to two metrics: the
BER performances over BSC under a error-free decoding process and faulty decoding
process. For a sake of facility, only LDPC code with dv = 3 is studied.

A (3,6) LDPC code of length 64 was simulated over BSC in the cases of error-free
and noisy decoding process, respectively, as shown in Fig. 4.41 [TBW+13]. First,
in the case of noisy decoding (dashed curves), the GBF performance worsens with
increased iterations, but MCD does not suffer from this degradation. Significantly,
when the length of a LDPC code is short, the MCD performs a gain in terms of decoding
performance, as shown by the solid curves in Fig. 4.41. This short MCD decoder is a
good candidate to the ECC block. Consequently, the cDMR technique based on the
MCD architecture provides a general-purpose robust system to system design.

4.6 Conclusion

In this chapter, we first review some related fault-tolerant methods. A Muller C-element
based fault-tolerant method for robust latch is first reviewed. An improved version of
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Figure 4.41: Simulation results of (3,6) LDPC code of length 64 under faulty and error-
free decoding.

TMR based on Muller C-elements, as known as Restorative Feedback (RFB) [WLMT11],
is able to increase the resilience against transient faults by two or three orders of mag-
nitude compared to TMR.

After that, we present two solutions on the efficient error-correction in the presence
of internal transient faults within decoder itself.

• A Reliable Decoder Against Internal Transient Faults. A decoding algorithm
and its logic implementation is proposed for fast, low-complexity error correction
in environments with a high rate of transient faults as well as hard errors. Thanks
to the C-elements, the proposed method is also resilient against internal transient
gate errors that may occur within the decoder itself.

• A Space-Time Redundancy Technique. A temporal majority logic element is ap-
plied at the decoder’s output. It provides an additional dimension of redundancy.
In fact, by applying this space-time redundancy technique, the decoder is able to
ground its output error-probability below the internal transient error rate. Thus,
the majority unit is supposed to be reliable.

Moreover, by examining the error-resilience from state memory of C-element, we
study the capability of fault-tolerance inherited by C-element. Consequently, by com-
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parison to a static logic gate, C-element is able to tolerates the upset events with error-
resilience gain.

In addition, we investigate the properties of the reliable decoder against internal
transient faults, referred as to MCD, thanks to density evolution theory [RU01] and
trellis Structure [Ung82]. The properties of MCD can be summarized as follow:

1. Stability: When the channel message is correct the MCD easily ends up with a

correct output. By contrast, if f0 is incorrect, it turns out that the decoded data is
contrarily stabilized at an incorrect output.

2. Fast-convergence: If the state of memory is barely transited by decoding itera-

tions, the MCD is able to perform error-correction even during few a number of
iteration. For the noisy decoding case, more decoding iterations tends to achieve
better decoding performance.

3. Resilience: Even the internal fault rate is presented within the decoder, the MCD

achieves efficient error-correction, namely the decoder against internal faults.

Furthermore, by comparison to Gallager-A technique, MCD algorithm may be able
to reduce the dynamic power in the case of noisy decoding process.

Finally, we present a good decoder candidate for ECC of cDMR: a MCD of (3,6)
short-length LDPC code. When the decoding process is error-free the MCD achieves
also a gain in terms of decoding performance by comparison to the GBF, and produce
error-correction benefit in a high error-rate of internal faults.



5
General Conclusion and Future Works

Electronic circuits have been entitled unreliable due to the affections of different faults.
Faults experienced by semiconductor devices fall into three main categories: perma-
nent, intermittent, and transient. Permanent faults are caused by manufacturing de-
fects as variability from fabrications, or device wear-out [SH04]. They reflect irre-
versible physical degradations. Intermittent faults occur because of unstable or marginal
hardware. They can be activated by environmental changes, for instance, higher or
lower temperature and voltage [ENW08]. Many times, intermittent faults precede the
occurrence of permanent faults. The transient defects and faults are becoming ma-
jor impact to the reliability of electronic technologies. Due to the size downscaling
processes, digital logic circuits are increasingly vulnerable to cross-talk, high-energy
particle collisions and radiations [Bau01], thermal noise, electromagnetic interfer-
ence, timing failures in synchronous pipelines, power supply noise, and other sources
[KP74,ENW08,SH04]. Among these transient faults, Radiation-induced Soft-Error (SE)
has led designers to too much attention on the topic of cosmic radiation induced tran-
sient faults in nanoscale computation. This event is called Single-Event Transient (SET)
or Single-Event Upset (SEU) [Bau01].

Although materials could be fabricated as error-free theoretically with a huge cost
for worst-case design methodologies [fS], the circuit is still susceptible to transient
faults. On the contrary, much more costs can be reduced when the reliability issue
is relaxed during the manufacturing process. In this case, an error-resilient design is
imminently required for current logic systems or future nanoelectronics.

5.1 General Conclusion

Classically, all the processes in electronic digital circuits can be classified into three
main categories: storage units, such as the memories; communication units, such as
the buses; and computing units, such as the logic gates or adder. The scheme of an
operation process without applying ECC strategies can be described as the non-shaded
parts of Fig. 5.1. The result g is obtained from an operation F (x) by given the data x
as input.

In this thesis work, we put our emphasis on the application of ECC on unreliable
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Figure 5.1: A formal model for the application of ECC on unreliable circuit. The non-
shaded parts are the scheme of an operation process without applying the ECC strategy.

circuit. A formal model for the application of ECC on unreliable circuit is illustrated
as the shaded parts in Fig. 1. The model consists of three blocks: the encoding func-
tion E(x) to produce a codeword c ∈ Ĉ, the computing function Fc(c) to perform the
operation and the decoding function to recover the result g from an error-correction
process applied to the received data y. Please note that all the three blocks are vulnera-
ble to transient faults and permanent defects. As a result, in order for the ECC block to
recover the result from the output of computing function Fc(c), the output of function
Fc(c), y, has to be a linear code. To achieve this end, there are four cases. We introduce
the four cases as the contributions of this thesis work presented as follow.

5.1.1 The Main Results

In this part, we summarize the main results of this thesis work. In short, we first
expounded the current major concern: electronic circuit is trending unreliable. The
related fault-tolerant methods to deal with the addressed problem were reviewed. The
contributions of this work were presented as the order of the outlines as follows:

To obtain a linear code y, the first case is that a group homomorphism is obtained
among E(x) and Fc(c). An error-correction example of this solution is presented in
Chapter 1. More precisely, we introduce a fast arithmetical fault-tolerant method based
on residue number system (RNS) [Gar59] for more robust computations. The RNS pro-
vides a very fast arithmetic due to its capability of performing the carry-free operations,
i.e. addition, subtraction and multiplication. By adding some redundant residues, the
RNS has an error detection and correction property that is called Redundant Residue
Number System (RRNS) [ST67]. However, the data restoration of a conventional RRNS
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is an iterative decoding process. In this case, it requires high latency to achieve an
error-correction. In this chapter, we propose a technique, referred as to bidirectional
redundant residue number system (BRRNS) [TBJJ10], that achieves fast arithmetic and
enables to mask an overall SET. In this method, the detection and the error-location
are simultaneously performed in a plural parallel consistent-checking that has the ca-
pability of locating the corrupt digit. Therefore, a fast error-correction is obtained. An
efficient pipeline architecture for the BRRNS based ripple-carry adder is illustrated as
well.

Secondly, when the received data y is obtained from the repetitions of computation
F (x), it is a linear code as well. Such like, the Triple Modular Redundancy (TMR)
method [LV62], its encoding function is obtained by two duplications of the original
computing function. TMR has been employed as the fault-tolerant technique for a ro-
bust system almost since fifty years ago. However, is it efficient to apply triple modular
redundancy technique to increase the robustness of an unreliable computation? Addi-
tionally, how can we make a fair comparison between two fault-tolerant methods?

Chapter 2 presents a novel criteria, called Reliability-Efficiency Criteria (RE-Criteria)
[TBJJ11], defined by two dimensional space of architectural solution: error probabil-
ity at fanout and hardware efficiency estimations. In this system, taking into account
that the correction unit is also subject to error, we propose to assess the quality of an
architecture by using not only its efficiency (i.e. the normalized number of operation
per area and per unit of time), but also its output error rate. Thanks to this dual space
criteria, designers are able to discern the properties, the reliability and the efficiency,
for different fault-tolerant strategies.

The third case is that the processes in the circuit are storage or communication.
Thus, the ECC strategy can be directly applied. A solution to the subject of embedded
binary error-correction is first presented in Chapter 3.

A Fast Decoding Method for Binary Symmetric Channel: A modified version of
Gallager Bit-Flipping decoding method (GBF) has been proposed for decoding Low-
Density Parity-Check (LDPC) codes over a Binary Symmetric Channel (BSC) in [CV09].
The modification is about the estimate of a variable node that is taken to be the ma-
jority of the incoming messages at the end of each iteration. In this work, we propose
another similar modification. Via density evolution analysis, the majority-vote modifi-
cation enables to increase the decoding process. Since slight extra hardware resource
overhead is required, our method is appropriate for fast low-power error-correction
design.

The fourth case is to directly generate the data y for the decoding function, by a
concatenation of two outputs from the original function and a parity-mapped function.
This model, called coded Dual-Modular Redundancy (cDMR), is based on the Dual-
Modular Redundancy (DMR). Note that a parity-mapped function replaces a dupli-
cated original function. The cDMR is a modified version of an error-correction model,
referred as to Low-Density Parity-Check (LDPC)-coded Fault Compensation Technique
(LFCT), that was proposed by Winstead in [WH09].
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An Embedded Error-Correction Model: The proposed robust model, cDMR, is
shown in Fig. 5.2. The concept of cDMR is using an ECC block to confront with
the transient faults that occur in the main function block and within ECC block as
well. Thus, it requires an ECC block that is able to resist its own internal transient
errors. Otherwise, the whole cDMR system can not perform an efficient error-correction
under a faulty decoding process. Moreover, the extra overhead function, parity-mapped
function H · F (u) generates the redundancy bits according to the output of the main
function F (u). Please note that, in practice, it needs that F (u) andH ·F (u) are built in a
special fashion to precluded the correlated at their outputs. The most reliable approach
is to use a flat truth-table synthesis, as is done with cross-bar logic arrays [ROK09]. This
approach guarantees that error events occur independently on all the codeword bits,
so that correlated error bursts are precluded.

This embedded error-correction model, cDMR, can be adapted into any unreliable
design whenever two issues are avoided: correlated errors in original function’s output
and also the parity-mapped function’s output, and the ECC circuit is able to perform
efficient error-correction in the presence of internal transient faults. Thanks to the
cross-bar technique, the correlated-error issue can be avoided in cDMR. In Chapter 4,
we focus on an efficient error-correction in the presence of internal transient faults
within decoder itself.

A Decoder Against Internal Transient Faults: Muller C-element based Decoder
(MCD) is a decoding technique that is able to perform error-correction in the presence
of hight rate of internal transient faults. The MCD is an improved version of GBF, based
on the Muller C-elements to carry out the variable node process. In practice, for the
decoding process of MCD, the messages pass through variable nodes to check nodes
are more reliable. By comparison to the GBF, when the internal error rate is as high
as 0.01, the MCD does not exhibit a Bit Error Rate (BER) performance degradation
thanks to an increase of the number of decoding iterations. Therefore, the MCD can
be considered as a decoder who inherits the potential of error-resilience to transient
upsets of Muller C-elements.

A Space-Time Redundancy Technique to Improve the Decoding Performance:
To further increase the BER performance of a decoder in the presence of internal faults,
the Space-Time redundancy technique can be applied. In fact, a majority voter at the
end of decoding step enables to sample each output during the last partial decoding
iterations. Then it outputs the decision from a majority of sampled data. Thanks
to the Space-Time technique, the transients that induced flipped over at the decoded
output is able to be masked by the correct outputs. In addition, the proposed technique
can be widely adapted for any message-passing decoder to further improve the BER
performance in the presence of internal errors.

Moreover, by examining the error-resilience from state memory of C-element, we
study the capability of fault-tolerance inherited by C-element. Finally, we present a
good decoder candidate for ECC of cDMR: a MCD of (3,6) short-length LDPC code.
When the decoding process is error-free the MCD achieves also a notable gain in terms
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Figure 5.2: The cDMR architecture based on the MCD. The space-time redundancy is
applied to the MCD (as an ECC block).

of decoding performance by comparison with the GBF. Moreover, it introduces error-
correction benefit in a high error-rate of internal faults.

5.2 Future Works

In this section, some guidelines for fault-tolerant design are first proposed. Then, we
discuss some perspectives and future works for this study.

5.2.1 Guideline for fault-tolerant design

Researchers have been putting emphasis on hardware complexity, power consumption,
delay overhead, and etc., for a good robust design on unreliable circuit. However, it is
quite complicated to design an efficient circuit, which achieve high performance and
high reliability with a low power consumption. In this case, a curve drawn in Fig.
2.5 that points out two criteria (robustness and energy efficiency) allows designers to
realize a good fault-tolerant design.

In order to approximate the curve, low power and high reliability, we advocate two
guidelines in this work:

1. Inherence: the function or restoring block inherits the potential of error-resilience.

2. Tradeoff: by decreasing some robustness, an energy efficiency hardened design
is achievable, vice-versa.

For the first point, a good example is the MCD method. The MCD method em-
ploys Muller C-elements and XORs to realize a error-resilient message-passing decoder.
The C-element can be considered as a component that inherits the potential of error-
resilience. Such that, the MCD is beneficial as resilient to errors from the hardware
architecture itself.
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For the Tradeoff, a good example is the general-purpose robust model, cDMR. Even
though the cDMR may burden the overhead of design to preclude the correlated errors
from main function F (u) and parity-mapped function H ·F (u), it significantly improves
system’s robustness. More precisely, if we use cross-bar approach to design the F (u)

and H · F (u), the cross-bar itself already is a fault-tolerant circuit to manufacturing
defects/variability or transient/intermittent faults. Consequently, cDMR model may
induce more hardware complexity compared to the original design, but huge gain in
terms of reliability can be obtained.

5.2.2 Perspectives and Directions for future work

At first, according to the BER results obtained in Fig. 4.41, the MCD of a short length
of LDPC code is compatible with data words in current 32-bit processors. Further-
more, some modified MCD techniques would be also helpful to achieve some featured
decoder, such like, low hardware complexity or low delay. In addition, according to
the presented BER results, the GBF method adapted space-time redundancy allows an
efficient error-correction under a noisy decoding process. As a result, the decoding
methods proposed in this work can be widely applied into contemporary logic systems
and as well as future nanoelectronic architectures for the purpose of robust design.

Moreover, some featured tolerant techniques can also be adapted in different de-
signs. Such like, the BRRNS, see Section. 1.3, a fast arithmetical fault-tolerant method
based on residue number system facilitates the computation via carry-free operations.
In the presence of internal transient upsets, the BRRNS is able to correct a single SET
without adding any delay to the design. Likewise, thanks to a majority voter at the end
of decoding process, the space-time technique can significantly improves the decoder’s
BER performance while internal transient gate errors that occur within the decoder it-
self. The space-time technique is suitable for a low redundancy robust decoding design.

To take into account the low-level analysis results, such like, power, delay, hardware
complexity, and etc., the designers have to go through the circuit design process. Thus,
the designers have to carry out each circuit design flows independently for different
architectures. In this case, enormous time and research resources are wasted. By using
the RE-criteria, the designer is able to easily and quickly analyze different strategies
and methods, at architectural level, thanks to estimation results in terms of hardware
efficiency and robustness.

In order for further revealing the benefit of the cDMR architecture implemented the
MCD applied space-time redundancy (Fig. 5.2), a typical case is necessary. Please note
that a further discussion is needed before the implementation of the cDMR architecture.
Some issues have to be studied. Such like, the latency made by the ECC block and the
extra hardware complexity to carry out a cross-bar style computation function and a
cross-bar style parity-mapped function as well. Consequently, the cDMR architecture
may reveal a whole new view for designing robust architectures. Researchers may also
be inspired from the proposed technique. But, a corresponding analysis in future is
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necessary for the amelioration.
At last, as a direction for future work, we focus on the multi-layer fault-tolerant

design. For instance, the adder is to be used in a pipeline of arithmetic operations. The
initial inputs to the adder are reliable. It means that all errors originate from within
the circuit. The adder is to be cascaded with other adders in the pipeline mode, so that
we need to mask errors before delivering data to the next stage. If the cDMR model
is applied into the pipelined adder design, it will be multi-layered cDMR model. The
only left task is to figure out the ECC block of cDMR to cope with the transient faults
in pipeline.
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A.1 Towards to the SET

In 1975, Binder et al. [BSH75] firstly addressed a confirmed report of cosmic-ray-
induced upsets in space, where four upsets in 17 years of satellite operation were
observed in bipolar J-K flip-flop operating. 26 years later, Baumann [Bau01] distin-
guished the “soft” error from the “hard” error. He defined a “soft” error as a type
of event which occurs in semiconductor devices by two dominant radiations: alpha
particles and cosmic radiation. This event is called Single-Event Transient (SET) or
Single-Event Upset (SEU). Accordingly, Soft Error (SE) is a transient fault induced by
radiation strike, where the circuit itself is undamaged. In contrast, the un-restorable
fault is called Hard Error (HE). Although SET depends on the mass, energy, charge of
the particle, device, etc. [Mes82], Benedetto et al. [BEM+06] measured the SET pulse
width by giving Linear Energy Transfer (LET), which is the factor observing the impact
of highly energetic particles. Since the SET width density per circuit node follows a
normal distribution, the SE simulator relying on the computer programs [Sri96] has
been developed for facilitating the observation and the mitigation of SE.

A.2 A Quick View into Error-Correction

The very first Error Correction Code (ECC) has been invented by R. Hamming in 1950
[HAM50], when he intended to prevent the soft system hitch from PC. Since then, the
ECC has been rapidly and drastically developed. For instance, two famous error control
codes, LDPC code and Turbo Code [Gal63, Moo05], are currently utilized in modern
telecommunication applications. Likewise, the message-passing decoding method is as
well one of ECC family.

Here comes a story which reveals the essence of Error-Correction, from which you
may have first view of Error-Correction:

One day, (story goes always like this), A would like to know whether the sky is blue,
from his own point view, it is. In order to confirm this fact, he needed to ask others’
observations to the question. Then, B said, the sky is not blue. As such, A was looking
for the observation from the 3rd, C thus stood up to give his thought, which is, the sky
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is not blue. At last, A figured out the sky is not blue...

Error Detection

In this case, if A and B disagrees at a point, then a disagreement is presented, that’s
so called the occurrence of an error. As a technical term, it’s the error detection or error
checking, of which B is a redundancy to A (the source). As explained in Hamming’s
theory [HAM50], to detect an error (in the presence of single error), an additional
word/bit (for our story is B). Otherwise, A’s observation is correct when A and B agree.

Like wise, extending this principle into multiple-ary case, A1, A2, A3,... Ak are
looking for confirmations, then B1, B2, B3... Bm are needed to check As’ values.

Error Correction

In general, the decoding process comprises error-detection and error-correction. To
the story, the observations from B and C are supposed to be the decoding process, where
B’s observation is the error-detection. In theoretical, at least two obverses (B and C)
are required to perform the correct a single error (if A is erroneous, B and C revise
A’s thought.) Similarly, in the case of A is multi-ary, A1, A2, A3,... Ak, B1, B2, B3...
Bm are involved. To be precise, in the modern error-correction decoder, the number of
redundancy (number of Bs) are flexible due to the requirement of the system and the
overcharge by decoder per-se.

Belief Propagation (well known decoding algorithm used in modern telecommu-
nication system, such like the modified version for LDPC codes [KFL01])

To continue the previous story, ′ →′ represents the message circulating,
A → B → C → A → B → C → A .... if more observes are involved, then, A →
B → C → D → E → ..... → A → B → C In a short, the message circulating, or
message-passing based decoding processing is the essential of Belief Propagation by
Pearl. More precisely, each node in the observation circle (variable nodes and parity
check nodes are assembled a codeword), send over a observations to his neighbors
(the connections are given from encoding matrix, which generates the redundancy
from source bits). Once the iterative message-passing process is done (stopped neither
by giving iteration numbers or a syndrome procedure, which means a procedure check
all the observes match certain criterion.) A noble work developed by Kschischang,
Sum-Product Algorithm [KFL01], considers all the algorithms as two sets of functions
connected by bipartite graph (factor graph) to perform internal computations/message
updating. The belief propagation can be derived from sum-product algorithm as well.



A Basic Co-Design 123

A.3 A Basic Co-Design

In this section, some experiences to the topic “Co-Design: Soft and Hard” are con-
tributed to the hardware architecture design for electronic device in different domains,
such like, FFT in Digital Signal Processing (DSP), Modern Communication Coding IP,
RNS, and etc.

For last two decades, the circuit design procedure has been changed a lot due to
the rapid development of chip manufacturing. It is in view that this kind impact would
be more intense. Moreover, many EDA tools are emerging to facilitate the design to
the question, e.g., Cadence features the block ’Mixed Signal Analysis’ to cop with the
hybrid of Analog & Digital. Even though, a basic idea to proceed the circuit design
would be useful and practical, which is explained as following:

• User Customized

The very begin of a design always goes with the specification. To this aspect, a
specification is supposed to be detailed as much as it’d be needed. Such as, the
general description, the behavior in function, the requirements, and etc.

• Pre-Verification by ’Soft’

Right after, a verification for the system’s behavior is necessary, whereas the al-
gorithms, methods, and the system level control are verified. In addition, a test-
bench needs to be drawn to the system. In general, this top-down kind approach,
it’s so called, Pyramid hierarchical approach.

To be precise, according to the specification, the systematic description is held
at the top, then several main functions are spotted afterwards, for which a con-
troller that wraps them up is required. Subsequently, concerned son-functions or
methods and algorithms are applied in a topology way.

As such, C/C++, ’software’ description languages, would be fit to accomplish this
task. BTW, for the current tools, basic compilers or MatLab, and etc.

• Pre-Fabrication by ’Hard’

In this task, an inverse Pyramid hierarchical approach performs the same kind
construction to the ’soft’ verification, instead of using ’soft’ description language,
but Hardware Description Language (HDL). At first, the son-functions or algo-
rithms and methods are written in HDL, then, step by step, till the bottom of the
Pyramid. Once the whole system is established, a test-bench is needed to simulate
design’s behaviors.

For example, the well-known Monte Carlo Simulations, input are fed into the
design then compare the output to the corresponding ones. In this case, the tool,
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ModelSim, would be competent for it. Moreover, some HDLs are most used, such
as VHDL, Verilog HDL, System C, System VHDL, System Verilog HDL, Verilog-AMS
(featured for analog design or mixed design).

Towards the System C’s usage, it can be used as a HDL or as a Software Mod-
eling Language (SML). It is a hybrid platform that spans the gap between these
design domains. For abstract modeling of signal-processing architectures, System
C is, much more flexible and offers more descriptive power than System Verilog.
It lacks some of the low-level modeling abilities of Verilog-AMS (e.g. it cannot
handle continuous-time nonlinear device models), but it can model discrete-time
analog operations via real-value modeling (RVM). System C RVM is more flexible
than System Verilog or Verilog-AMS RVM.

• Co-Simulation

Since the Pre-Fabrication has been done, the design is ’ready’ to be implemented
when the test-bench shows that your design matches the specified behaviors, as
the ’soft’ verification as well. For sure, some tools support the Co-Simulation
property, for example, a synthesis tool called GAUT is able to transfer SML to
HDL, vice-versa. For that sake, researchers can largely reduce the developing
period.

Once again, the key point to this step is that make sure your SML simulations and
HDL simulations are total matched.

• Circuit-Level verification

Two approaches may lead the directions: FPGA and ASIC/ASIP. The former is
suitable for short term development since FPGA is proposed for feasible circuit
design, where the design can be synthesized as equivalent unit respecting to
transistors in ASIC. Xilinx and Altera are both most used FPGA families, those
kit accompanied with customer develop tools are compatible for many kinds cir-
cuit design. Moreover, for the DSP, T&X Instrument may the best choice.

If the design is made to be implemented into circuit, in this case, the wafer pro-
duction requires ASIC sort verification. Cadence & Synopsis, those two powerful
tools provides from high-level to low-level synthesis and verification as well. For
example, to the digital kind, generating Netlist by HDL then forward it to the
design test, the post-implementation test.

• Confirmation before fabrication

After all these, your design may ready to be implemented. However, it’s been
always complicated to prepare a design to be fabricated due to the hardware
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resource is often over charged, such like the power consumption, the overall
cadence, and the circuit’s reliability, and etc. Sometimes, the circuit design back-
wards to the previous step to ameliorate its performances and assure the design
is implementable.

A.4 Programming on Matlab for Pareto Curves

In this section, we explain how the Pareto curves shown in Fig. 2.6 (see Section. 2.4.2)
are drawn. Here, we illustrate the programming on Matlab for generating the curves
of the S-TMR.

Before we expatiate the programming, some points should be remarked, such as
followings:

• Four FIR filters that are varied by order of filter and also bit length of input
are referred in Fig. 2.6. In addition, each FIR filters are designed in following
strategies: the simplex (as the reference), S-TMR, BRRNS based (as the ECC
solution), ARQ via Modulo 4, ARQ via Modulo 8, ARQ via Modulo 16, and ARQ
via spatial DMR.

• From the equations (2.3), (2.4), and (2.5), in order to calculate the (P ,γ) the
number of area unit and the number of time unit are needed. In this work, we
use the results obtained at FPGA as the analysis data, as shown in Table. 2.1.
More precisely, the number of Slices occupied is considered as the number of
area unit. Moreover, the number of time unit is equal to one due to the pipeline
design.

• Without loss of generality, the number of area unit is normalized in our program-
ming (the number of time unit still stays the same as one). In fact, the number
of area unit for each solutions are normalized by the corresponding number of
area unit of the simplex. For instance, from Table. 2.1, for FIR-I (16,5) as (or-
der of filter, bit length of input), the number of area unit of the simplex is 94,
and the number of area unit of ARQ-DMR is 207. To calculate PARQ−DMR and
γARQ−DMR, the number of area unit n for ARQ-DMR is equal to 207/94.

• At last, the error probability in decibel shown in axes-Y in Fig. 2.6 is obtained by
evaluating ten times the base-10 logarithm of the error probability to pe.

The programming to produce Pareto curves for S-TMR is shown below:

—
1: The Simplex, the original function which has no redundant involved.
—
– error probability of unitary area,
– it’s set to 10−13
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Pe = 10−13;
– number of area unit
– as the oder of (FIR-I FIR-II FIR-III FIR-IV)
nsimplex = [94 128 171 232];
– number of time unit
– Pipeline Designing
msimplex = [1 1 1 1];
—
2: The Spatial-TMR (S-TMR) based
—
– The Voter in the S-TMR
– number of area unit
– as the oder of (FIR-I FIR-II FIR-III FIR-IV)
nQ = [19 19 28 36];
– number of area unit
– as the oder of (FIR-I FIR-II FIR-III FIR-IV)
nstmr = nsimplex · 3 + nQ
– number of time unit
– Pipeline Designing
mstmr = [1 1 1 1];
– Normalizations
for i = 1:4
nstmr(i) = nstmr(i)/nsimplex(i);
nQ(i) = nQ(i)/nsimplex(i);
end;
– the S-TMR, PS−TMR and γS−TMR

for i= 1:4
– error probability from the computing function
PR(i) = (1− (1− Pe)

nsimplex(i));
– error probability from the voter
Q(i) = (1− (1− Pe)

nQ(i));
PS−TMR(i) = 3 · (PR(i))2 · (1−PR(i)) +PR(i)3 +Q(i) · (1− (3 · (PR(i))2 · (1−PR(i)) +PR(i)3));
PS−TMR(i) = 10 · log10(PS−TMR(i)/pe);
γS−TMR(i) = nstmr(i);
end;

A.5 Software for Low Density Parity Check (LDPC) codes

All the simulated LDPC codes are generated by using the alist from Software for LDPC
codes (Release. LDPC-2006-02-08) in [Nea]. An alist contains the following informa-
tions: size of the matrix, list of integer coordinates where the non-zero entries are, weight
of each row, and weight of each column. For example, the alist of N = 64,M = 32

32 64 – M , N

6 3 – dc, dv
6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 – weight of each column
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3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
3 3 3 3 3 3 3 3 3 3 3 3 3 3 – weight of each row

– the following is the list of integer coordinates where the non-zero entries are

4 5 17 35 52 55

3 14 34 35 39 63

12 17 22 24 38 39

18 20 26 39 52 61

19 31 38 43 46 56

12 20 25 30 47 54

6 7 12 47 49 51

13 25 32 48 49 55

10 23 24 28 40 43

2 9 22 51 54 61

13 32 41 42 57 64

2 11 16 28 53 64

14 15 35 54 59 60

7 20 27 34 58 63

8 23 27 31 45 48

11 14 21 29 40 51

1 4 8 42 46 62

4 8 15 30 45 58

10 13 19 36 44 64

27 31 33 44 52 59

1 10 16 18 19 59

3 5 9 11 44 55

25 26 29 40 50 57

17 32 50 56 62 63

1 24 29 33 36 53

6 15 21 37 41 45

6 22 28 36 37 49

18 23 30 33 42 62

2 5 9 58 60 61

37 38 41 46 48 53

7 16 26 43 56 57

3 21 34 47 50 60

17 21 25

10 12 29

2 22 32
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1 17 18

1 22 29

7 26 27

7 14 31

15 17 18

10 22 29

9 19 21

12 16 22

3 6 7

8 11 19

2 13 16

13 18 26

12 21 31

1 3 24

4 21 28

5 19 21

4 6 14

16 26 32

3 10 27

9 15 28

3 9 25

6 8 23

4 23 31

14 15 20

9 12 27

16 23 25

6 18 28

5 15 20

8 11 24

20 25 28

2 14 32

1 2 13

19 25 27

26 27 30

3 5 30

2 3 4

9 16 23

11 26 30
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11 17 28

5 9 31

19 20 22

15 18 26

5 17 30

6 7 32

8 15 30

7 8 27

23 24 32

7 10 16

1 4 20

12 25 30

6 10 13

1 8 22

5 24 31

11 23 31

14 18 29

13 20 21

13 29 32

4 10 29

17 24 28

2 14 24

11 12 19
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A.6 Acronyms

ANT Algorithmic Noise-Tolerance
ARQ Automatic Repeat reQuest
ASET Algorithmic Soft-Error Tolerance
BER Bit Error Rate
BEX Base Extension
BiAWGN Bi-Additive White Gaussian Noise
BISER Built-In Soft Error Resilience
BRRNS Bi-directional Redundant Residue Number System
BSC Binary Symmetric Channel
cDMR coded Dual Modular Redundancy
CRT Chinese Remainder Theorem
DMR Double Module Redundancy
DSP Digital Signal Processing
ECC Error Correcting Code
ERSA Error Resilient System Architecture
FEC Forward Error Correction
FFT Fast Fourier Transform
FSM Finite State Machine
GBF Gallager’s Bit-Flipping (decoder)
LDPC Low-Density Parity-Check code
LFCT LDPC-coded Fault Compensation Technique
LSB Least Significant Bit
MCD Muller C-element based decoding
MCDfb Muller C-element based decoding with feedback mechanism
MGBF Modified Gallager’s Bit-Flipping (decoder)
ML Maximum Likelihood
MPD Message-Passing Decoding
MRC Mixed Radix Conversion
MSB Most Significant Bit
PSF Probability Signal Flow
RE-Criteria Reliability-Efficiency Criteria
RFB Restorative Feedback
RNS Residue Number System
RPR Reduced Precision Redundancy
RRNS Redundant Residue Number System
S-TMR Spatial-TMR
SE Soft-Error
SET Single-Event Transient
SER Soft-Error Rate
SEU Single-Event Upset
SOI Silicon-On-Insulator(technology)
T-TMR temporal-TMR
TMR Triple Modular Redundancy
VOS Voltage Overscaling
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element based Decoder (MCD): A Decoder Against Transient Faults,” in
Circuits and Systems (ISCAS), 2013 IEEE International Symposium on, may
2013.
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Codes and Related Topics, 2012 7th International Symposium on, august 2012.
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