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Glossary

Binary Phase Shift Keying Modulation scheme, where ”1”-bits are mapped to a high
level (e.g. +1) and ”0”-bits are mapped to a the opposite level (e.g. −1).

Chirp Spread Spectrum Modulation scheme, where symbols are mapped to a signal
with a particular frequency fingerprint, called a chirp. The key feature of the chirp, is
that its frequency fingerprint can be circularly shifted. Each possible shift correspond
to a specific symbol.

codeword Output of the channel encoder, that contains the transmitted message and
some redundancy. The original message can be retrieved by using the right channel
decoder, which can also correct transmission errors in the process.

Global Navigation Satellite System Regroups all navigation satellite systems. For
instance: GPS is the American system, Galileo is the Europen one, GLONASS is
Russian and BeiDou is Chinese.

ISM radio band Portion of the radio spectrum reserved internationally for industrial,
scientific and medical (ISM) purposes. […] Despite the intent of the original alloca-
tions, in recent years the fastest-growing use of these bands has been for short-range,
low power wireless communications systems [1].

NMEA 0183 NMEA 0183 is a combined electrical and data specification for communi-
cation between marine electronics such as echo sounder, sonars, anemometer, gyro-
compass, autopilot, GPS receivers and many other types of instruments. It has been
defined and is controlled by the National Marine Electronics Association (NMEA).
[2].

Overmodulation Added frame-level information, used in the Quasi-Cyclic Short Packet
chain to improve synchronization.

Quadrature Phase Shift Keying Modulation scheme, where the number k from 0 to
3 (2 bits) is mapped to the complex number ej

(2k+1)π
4 .

11



Glossary

Quasi-Cyclic Short Packet The aim of the Quasi-Cyclic Short Packet (QCSP) project
is to contribute to the evolution of IoT networks by defining, implementing and
testing a new coded modulation scheme dedicated to IoT networks. The “big bet”
of the project is to work on the emergence of non-binary codes combined with a
Cyclic Code Shift Keying (CCSK) modulation [3].
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Chapter 1

Introduction

Foreword

This Ph.D. thesis is a collaborative work between the Université de Bretagne Sud
(UBS, France) and the Bordeaux INP institute (France). It has been supervised by Prof.
Emmanuel Boutillon and Dr. Bertrand Le Gal. The research leading to these results
received funding from the French National Research Agency ANR-19-CE25-0013-01 part
of the project entitled Quasi Cyclic Short Packet (QCSP) (website: https://qcsp.univ-ubs.
fr/).

1.1 Introduction

The demand for interconnected objects, from the simplest intelligent thermostat to
the most sophisticated autonomous vehicle, has grown exponentially throughout the last
decade. The development of this Internet of Things (IoT) has been a strong incentive of
innovation, as it allows dreaming of large unsupervised wireless sensor networks. These
dense networks are supposed to be composed of low-cost devices, able to operate off-grid,
autonomously, and reliably for several years. Thanks to this technology, it may be possible
to improve renewable energy production [4], or elaborate a completely autonomous public
transportation system [5].

However, with the increasing device density, issues arise. More and more objects need
to communicate on the same radio band. The capacity of the channel is limited, thus the
question of communication efficiency become increasingly pressing. A naive solution would
be to supervise networks, with a human operator or an omniscient scheduler. The problem
here is that the first solution would be inefficient in a massively connected network, and
that the second one is simply impossible. In addition, since sensor nodes are expected to
be used in large number, they must be resource-efficient and energy-efficient, to be in-line
with the recent shortages. To tackle this issue, various technologies have emerged, like
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Figure 1.1 – Classical communication chain.

LoRa [6], or ZigBee [7]. However, some paradigms inherited from classical communication
contexts and early technologies remains in use despite the drawbacks they come with.

A classical digital communication chain is represented in Fig. 1.1. A certain amount
of data, called the message, is first source encoded. This process leverages the knowledge
about the source data format to represent it efficiently. It is the case for audio data com-
pression with Free Lossless Audio Compression (FLAC). Another example is the footprint
lowering of often-used symbols, like it was done for the Morse code. In this code, the let-
ter E, which was mostly used, was denoted by ”.” whereas the letter Q, rarely used, was
denoted by ”− − .−”.

Then, this binary representation is channel encoded, which consists of adding a relia-
bility to the transmission, often by adding redundancy. The most simple channel coding
is the repetition code, where the binary input is just repeated. However, it is highly in-
efficient in most cases, since the coding rate (the ratio of clear data on the coded data)
diminish way faster than the error correcting performance grows. Thus, other correcting
codes have been invented, most notably the Low Density Parity Check (LDPC) codes [8],
the turbo codes [9] or the polar codes [10].

The output of the channel encoder, called a codeword, is then modulated. This step
serves to prepare the binary data to be transmitted through the channel, that is not in the
digital world. For radio communications, it is the air. The modulation chosen also has an
impact on the signal detection and synchronization capability, and on the sensibility of the
signal to events that can appear in the channel, from the simplest additive noise, to more
problematic erasures and multi-paths. The next step consists of filtering the digital signal,
to prepare to the analog conversion. This filter, coupled with the corresponding optimum
filter in reception, helps to maximize the Signal-to-Noise Ratio (SNR). However, a wrong
filter choice can increase the sample interference, meaning that consecutive samples could
cancel each others. That last step concludes the digital processing in transmission, the
signal being then fed to a Digital Analog Converter (DAC). The resulting analog signal is
transmitted through a physical channel, which for the IoT, is often the Radio-Frequency
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Figure 1.2 – Physical layer asynchronous communication chain.

(RF) channel. In reception, all those steps are done in reverse, using the corresponding
filter, demodulator, channel decoder and source decoder.

However, there is an issue with the last presented chain. It assumes the synchronicity of
the communication. In reality, the receiver does not know when, nor in which condition the
signal will arrive. With the model depicted in Fig. 1.1, it cannot. This is why more accurate
models exist, also taking two other steps into account. These steps are the detection of
an incoming signal, and the synchronization of a detected signal. An updated model is
depicted in Fig. 1.2.

These steps can be addressed in multiple ways, at different levels of the Open System
Interconnection (OSI) model (see Fig. 1.3). The current thesis is part of the Quasi-Cyclic
Short Packet (QCSP) project. In this project a new innovative waveform is introduced,
and proposes a solution at the physical layer, the lowest level of the model.

Historically, the answer to the synchronization problem was to add a level of informa-
tion shared between the transmitting and the receiving sides. Packets were preceded by a
standardized “preamble”, which eases the implementation of the detection and synchro-
nization systems, like in 3GPP LTE [11] or Wi-Fi [12]. Indeed, knowing what should be
looked up for simplifies the design of the receiving system. In classical contexts, the few

Physical
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Presentation

Application

Layer 1
Layer 2
Layer 3
Layer 4
Layer 5
Layer 6
Layer 7

Figure 1.3 – OSI Model, with the layer of interest framed in red.
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bytes of the preamble are negligible compared to the kilobytes or megabytes composing
the payload. Unfortunately, in the IoT context, the packets sent are often small, from a
few bytes to a few hundreds at most [13, 14]. The preamble footprint is not negligible
anymore. Worse, Polyanskiy proved that the energy used during its transmission is simply
lost from a communication point of view [15]. The bandwidth resource allocated to the
preamble transmission is wasted for all other devices that use the same radio band.

The QCSP waveform has been designed specifically to address this issue. It allows
detecting and synchronizing short packets at low SNR (lower than −20 dB), without using
any preamble [16, 17]. This feature permits saving precious bandwidth resources. The
waveform stems from the association of a Cyclic Code Shift Keying (CCSK) modulation
and a Non Binary Error Correction Codes (NB-ECC), technologies already in use in the
Chinese satellite system [18]. Theoretical results already demonstrated that a probability
of Miss Detection (Pmd) inferior to 10−4 is achievable for a probability of False Alarm
(Pfa) below 10−6. Incidentally, thanks to the lack of preamble, the complexity of the
transmitter is reduced, which is logically accompanied by a drop in costs, and a higher
energy efficiency. The drawback is a substantial increase in complexity at the receiving
side. Although expected, it makes the implementation of a real-time receiver challenging.

The current work aims to study the feasibility of the real-time implementation of the
QCSP communication chain. It thrives to propose evolution of the algorithm to improve
the detection performances, while increasing the energy efficiency. Besides, several archi-
tectural optimizations beneficial to the algorithm-architecture adequacy are presented,
for both software and hardware targets. The ultimate goal of the thesis is the imple-
mentation of an energy efficient cost constrained QCSP transmitter and of an associated
real-time performant receiver. These devices will enable to conduct full-scale experiments
that allows validating the waveform in IoT contexts, like those the Low Power Wide Area
Networks (LPWANs).

It should be noted that this thesis has taken place in parallel of another, conducted by
Dr. K. Saied [17]. His work was focused on the theoretical aspects of the QCSP waveform,
yet we fruitfully collaborate with each other on many occasions. We built on each other
strengths, the advances of one benefitting the other.

1.2 Manuscript outline

The current work is segmented in seven chapters, the first being this introduction.
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The second chapter will precise the context of the thesis. It will consist in the definition
of the main terms, and the detail of the main challenges. It will also propose a review of
the existing optimization and implementation techniques, and how they may be relevant
for the current work.

In the third chapter, the complete QCSP communication chain is detailed. The nec-
essary concepts of CCSK modulation scheme and NB-ECC are explicated in the process,
as well as their use in the overall algorithm. Both depend on the theory of Galois Fields
(GFs), which is thus defined. An overview of the achievable detection performances of the
waveform is also provided.

The fourth chapter is dedicated to the improvement made to the detection algorithm,
for the purpose of efficiency. Indeed, the algorithm has been fortified, and is now immune to
input scaling factors. This feature has been added after evaluating different normalization
method from a complexity point of view, but also considering their impact on detection
performances. Moreover, a new correlation method based on Time Sliding (TS) windows
is presented. The method is demonstrated to be more efficient than the legacy method
to compute the correlations crucial to the QCSP detection task. In addition, software
simulations and benchmarks supporting this assumption are provided.

Throughout the fifth chapter, the QCSP transmission algorithm and the most critical
task of the QCSP receiver, the detection, are analyzed under the prism of efficient im-
plementation. In a first time, the processes involved in the transmission of a frame are
detailed and context-aware optimizations are proposed for both CPU and FPGA circuits,
enhancing throughput and energy efficiency. Benchmarks and achieved implementation
results are presented, validating the relevance of the QCSP chain for use in LPWANs. In
a second time, the most critical task of the receiver is defined, to better focus improve-
ment efforts. After demonstrating the criticality of the correlation task inside the detector,
the inherent parallelism levels of the algorithm are identified, and presented. As for the
transmitting side, an updated complexity review of correlator possible implementations
is provided. Indeed, we present how we took advantage of the properties of the QCSP
algorithm and the features offered by manycore CPUs and FPGA circuits to reduce the
complexity of the correlator. Besides, the superiority of the contributed TS approach is
demonstrated, as well as the relevance of the QCSP waveform for IoT context. This is
supported by the throughput achieved, and resource utilization of both the software and
the hardware real-time implementations. In a third time, a quantized model of the re-
ceiver is introduced. It allows reducing yet again the resource footprint of the receiver,
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while doubling the throughput. The only downside is a small detection performance toll,
that do not prevent the detector to meet the required Pmd < 10−4 for a Pfa < 10−6.

The sixth and penultimate chapter presents the outcome of all the efforts related in
the previous chapters: a complete real-time QCSP communication chain. The system is
a complex heterogeneous system, yet flexible and modular. It has allowed conducting
full scale experiments which permitted to put the waveform to test, and to measure its
performances in real case scenarios. Besides, the results of two different experiments are
provided.

Finally, the seventh and ultimate chapter concludes this thesis. It summarizes the con-
tributions made throughout the current work, and offers perspectives for future research
at short-term and long-term.
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This chapter thrives to introduce the general context in which the current work takes
place. To this end, the Internet of Things (IoT) context is presented, with its interests
and the associated challenges. Notably, the relevance of short packets, as well as the non
effectiveness of preambles for these packets is reviewed.

Then, the advances in Software-defined Radio (SdR) platforms are presented, as well
as what they allow. First, we explain what an SdR platforms is, and give example of
commonly used devices. Then, the advantages of these platforms are highlighted, and we
explain how the current work can benefit from them.

Finally, the challenges related to the implementation of complex digital signal pro-
cessing systems are highlighted.

2.1 Internet of Things and associated challenges

Wireless communication technically already existed in France in the 18th century,
with technologies like the Chappe’s telegraph [19]. Nowadays, the everlasting increase of
popularity of the internet led to the appearance of several digital communication stan-
dards. The second generation mobile phone communications (2G) was initially released
in the nineties, and nowadays, as of 2022, thirty years later, the fifth generation (5G)
is currently in worldwide deployment [20]. The latter represents a considerable leap in
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complexity compared to the previous generation, the 4G, also called Long Term Evolu-
tion (LTE). In efficiency alone, 5G is expected to perform much better than 4G. The key
difference between both generation, is the range of contexts embraced by the generation.

When 4G was mainly focused on human to machine or human to human communi-
cations, the 5G aims to enhance these applications, but also enables machine to machine
communications. It has boosted the development of IoT applications, that began earlier
thanks to technologies such as LoRa and SigFox. It has been a strong incentive for this
research field lately [21]. As said in introduction, it is hoped that the development of IoT
will bring solution to contemporary issues, like energy and resource shortages. It may
help to slow the global warming, which is a threatening reality [22], especially after the
COVID-19 outbreak, and the exceptional climatic events of 2022.

The networks involved in the IoT have considerably evolved throughout the years [23].
Nowadays, we can distinguish at least three main use cases.

Safety context — A set of systems that require safety and security cannot be
unresponsive. The needs of such systems, like autonomous vehicles, or pilot-less
drones, are supposed to be addressed by Ultra Reliable Low Latency Communica-
tions (URLLC) subset of the 5G standard [24].

Massively dense context — At the opposite side, massively dense networks of
high activity sensor devices, that do not require enhanced reliability, are addressed
by massive Machine Type Communications (mMTC) [25], another subset of the 5G
standard.

Middle ground — In the between stands the older notion of LPWANs, networks
aiming for long range communications, with strong constraints on energy efficiency.
For those, latency and throughput are lesser issues, but remains likable features.
This is for this context that standards like LoRa and SigFox were developed.

However, since cost and energy efficient implementations are required, the complexity of
the algorithms involved in both transmitting and receiving sides can be a bottleneck. As
represented in Fig. 2.1, LPWAN tries to achieve transmission ranges superior to cellular
technologies, in conjunction with lower power consumption, thus logically for lower data
rates.

Wireless Sensor Networks (WSNs) are typical examples of LPWANs. A WSN can
represent a large distributed autonomous monitoring system, such as in work reported in
[27] that presents ZigBee based network capabilities. The leafs of the network, that are
low-end energy constrained sensor nodes, are numerous. They communicate information
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Figure 2.1 – Different technologies represented in their respective field, depending on the data rates and
power consumption involved against the achievable ranges [26].

to intermediate relay nodes, that themselves transmit data of several sensor nodes to
base stations that aggregate the data, to perform actions [28]. This results in a complex
meshed network, with several massively interconnected devices. A network like this can
be prohibitively expensive, in every sense. To allow such network topology in acceptable
costs, the sensor nodes have to be low-cost, thus have to use communication protocols with
reduced complexity. That is less true for the relays and the base stations. For them, the
priority is real-time performances. However, lower costs and energy sobriety remain sought
features. The LPWAN standard [29] define some requirements in terms of efficiency, range
and throughput. The battery of LPWAN sensor nodes is assumed to last from a few days
to a few years for one full charge. A transmission must be able to reach its recipient for
ranges of 1 to 5 km in urban areas at data rates around 100 kb/s, and up to 10 km for
lower throughputs. In rural area, this range requirement goes up to 40 km.

Throughout the years, several technologies have been proposed to offer low-complexity
energy efficient solutions. For contextualization purpose, three of these technologies are
summarized in Table 2.1. They offer different trade-offs, but all have in common a low
transmitter complexity.

Another challenge of LPWANs is the coordination of the network [30, 31]. Indeed,
there is a massive number of devices, each one may want to transmit data at any in time,
and the amount of data cannot be known in advance. In this condition, using a supervised
protocol is impossible. Only a random access protocol can sustain the inherent constraints
associated to such non-slotted massive ALOHA system [32].

Methods exist on every layer of the OSI model [33], but the best way to reduce energy
consumption is to address issues at the lowest level, the physical layer. At this level, the
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Table 2.1 – Overview of the features offered by three LPWAN technologies, SigFox, LoRa and NB-IoT.

SigFox LoRa NB-IoT

Modulation BPSK CSS QPSK
Central

frequency 868 MHz 868 MHz LTE Bands

Bandwidth 0.1 kHz 125/250 kHz 200 kHz

Max data rate 0.1 kb/s 50 kb/s 200 kb/s
Max payload

length 96 bits 1944 bits 12.8 kilobits

Urban range 10 km 5 km 1 km

Rural range 40 km 20 km 10 km
Interference

resilience very high very high low

Error correcting
code none Hamming

codes
Conventional

codes

solution consists on developing methods to detect and synchronize packets reliably at
low SNR. The low SNR is a consequence of the lesser quality of the equipments, the low
transmission power required by the energy constraints, and of the noise produced by all the
other devices trying to independently communicate. The classical way to allow detection
and synchronization in an unsupervised network is, as mentioned in the introduction, the
use of a pilot, also called a preamble. For instance, in 4G cellular networks, Zadoff-Chu
sequences are used [34], due to their excellent correlation properties, and the particularity
that two different sequences are near orthogonal. For short, it means that when looking
for a specific sequence, one cannot erroneously detect another.

The issue is that in LPWANs, packets sent are, for the most part, short-sized [35],
(a few hundreds to a thousand of bits typically). Thus, as represented in Fig. 2.2, while
resources allocated to the preamble are negligible in conventional networks, it does not
remain true for LPWANs. In current IoT systems, the preamble can represent up to 50% of
the data sent [24], i.e. 50% of the bandwidth consumed. In a context where the amount of
bandwidth resources is limited, since multiple devices try to access it, this is unacceptable.
Moreover, Polyanskiy proved that the energy allocated to detection and synchronization
are wasted from the point of view of the overall communication [15], and that preamble-
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Payload Preamble

Preamble Payload

Long packet

Short packet

Figure 2.2 – Comparisons between a long packet and a short packet, highlighting the major concern the
preamble is for short packets.

less approach are theoretically possible. Indeed, past the detection and synchronization
task, the preamble does not convey any useful information.

Several methods to achieve preamble-less communications are described in the lit-
erature. All reported techniques use already present information, and try to use it for
detection and synchronization purpose. A classical solution is the use of Error Correction
Code (ECC) as a detection marker [36]. However, it has not achieved both low complexity
and good detection performances at low SNR. Another common proposition is to super-
pose an additional frequency information over the payload [37, 38]. This is reminiscent of
how “LoRa-like” physical layer works. Nevertheless, this kind of techniques is very sensible
to frequency errors, that may arise due to local oscillator inaccuracies or Doppler effect.
Some recent work introduced the use of complex modulation schemes [39, 40], but they
have not been implemented yet.

A point all the method related in the literature have in common, is that they must have
been prototyped, to validate their performances. A key enabler of the current advances in
wireless technologies is the democratization of Software-defined Radio (SdR) platforms.
These systems boost research on those topics, by greatly reducing development cycles.

2.2 Software-defined Radio platforms

The concept of Software-defined Radio (SdR) platforms has emerged in the late 20th

[41, 42]. A few years later, the apparition of various SdR devices and their associated
platforms in the first decade of the 21st century has been a great breakthrough. Indeed,
devices like the high-end Universal Software-define Radio Peripheral (USRP) from Et-
tus Research [43], or low-cost HackRF [44], coupled with the GNU Radio software suite
[45][46] have been key enablers for the digital communication progress. Importantly, they
successfully combine high versatility and high performance, satisfying the need of an ef-
ficient prototyping and fast deployment platform [47–49].
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Figure 2.3 – Generic organization of Software-defined Radio (SdR) platforms.

An SdR system is often composed of an Radio-Frequency (RF) frontend associated to
a reconfigurable digital processing system, as represented on Fig. 2.3. The reconfigurable
system controls the RF frontend, and communicates with a “host” computer. The digital
signal processing tasks can then be performed on the host, offering a very high flexibility.
This is why SdR platforms are interesting for both research and industrial applications,
as one unique physical device can be used to implement radically different protocols. For
instance, it has enabled free and open source implementation of the LTE specification,
through OpenLTE, and the very complete Open Air Interface (OAI) [50]. This framework
allows simulating and even implementing state-of-the-art communication scheme on gen-
eral purpose processors, sparing precious design time. In the recent years, even General
Purpose Graphical Processing Unit (GPGPU) accelerated frameworks are created [51],
enabling faster prototyping of complex communication schemes.

Speeding simulations and reducing prototyping times are not the only benefits of SdR
advances. Recent platforms can be used to actually implement energy efficient solutions.
Indeed, high-end FPGA circuits (like Xilinx Kintex and Zynq 7 in USRPs) can be in-
tentionally oversized, to allow partially or even completely deferring digital processing
to the device. Thanks to the seamless integration of GNU Radio with the hardware it
targets, real-time SdR-powered LPWAN systems are born, like LoRa [52] and SigFox [53]
transceivers.

However, while eased by SdR breakthroughs, the development and the efficient imple-
mentation of state-of-the-art digital communication systems remain challenging. That is
especially true for LPWANs, since they have to achieve energy efficiency, reasonable data
rates, and long range all together. Different ways exist to implement such communication
systems, and they all require to work on the algorithm to take advantage of target-specific
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features.

2.3 Implementation of digital communication systems

While the implementation of digital communication systems has been fastened thanks
to SdR platforms like USRPs used conjointly with GNU Radio, special care must be given
to the development of the related algorithms. Indeed, real-time efficient radio systems
can be implemented using SdR platforms [54]. However, the digital processing involved
remains complex. Their implementation thus still requires intensive work in order to
minimize algorithm complexity. Algorithms also have to be parallelized and pipelined. It
enables to benefit from multicore CPU or FPGA circuit features.

In the late decades, the processing performance of multicore and manycore devices
has constantly improved, thanks to clock frequency increases, and to the integration of
more and more Instruction Set Architecture (ISA) extensions. Associated with easy-to-use
programming models [55–57], it enabled the prototyping and implementation of real-time
software communication systems. While an implementation on CPU may not reach the
throughputs and energy efficiency achievable with ASICs or FPGA circuits, it provides
undeniable advantages. The software implementation flexibility and scalability are much
higher, and prototyping time is substantially lower than for its hardware counterparts.
Nevertheless, achieving high performances is challenging and requires algorithm paral-
lelization efforts.

Nowadays, multicore and manycore systems can execute billions of instructions per sec-
ond. They also offer parallelization opportunities that may help to achieve high through-
puts and low latencies. Throughout the years, several programming languages and frame-
works appears, to help in taking advantage of those opportunities. However, to actually
benefit from them, it requires a substantial amount of developing time. Indeed, paralleliza-
tion efforts are required to adapt the algorithm to the CPU or GPGPU architecture, and
this is rarely addressed during the early stages of digital communication system design.
Several types of parallelism exploitable in modern multicore and manycore architectures
can help to increase data rates in baseband processing tasks. Based on Flynn’s taxonomy
[58, 59], we list four of them hereafter, the first three relevant for multicore CPUs and
the fourth one more related to manycore GPGPUs. A graphical summary is depicted in
Fig. 2.4 after the detailed explanations.

1. Single Instruction Multiple Data (SIMD): The first type of parallelism is
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incidentally the one that is involved at the lowest level in processors. Current ARM
and Intel architectures include vector instructions [60, 61], that are able to execute
4 to 16 floating-point operations in one clock cycle. It mechanically allows speedup
by the same factors. The issue however, is that it requires the possibility for the
processing to be described by unique operations on multiple inputs. Besides, to be
effective, operands have to be aligned in memory, and the unique operation cannot
be performed through independent tasks.

2. Single Program Multiple Data (SPMD): The second approach takes advan-
tage of the number of individual physical processor cores. Modern CPUs (Intel Core
I7 or ARM Cortex A72) integrate several processor cores, typically 4 to 8 for ARM
circuits, and from 10 to 40 for Intel ones. Computing speed can be increased by
transforming the execution of an algorithm on a set of data to the execution of n

sub-tasks on n subset of data. This can allow to substantially speed up the inde-
pendent sub-tasks in the algorithm, but not by a factor n. Indeed, since neither the
distribution of the task over several processor cores, nor the synchronization of all
processor cores after the task completion are instantaneous. Thus, the performance
is impacted in accordance to Amdahl’s law [62]. To be beneficial, this parallelization
paradigm requires startup and data gathering time to be negligible compared to the
processing time.

3. Multiple Programs Multiple Data (MPMD): Another way to leverage nu-
merous processor cores is to segment the Digital Communication System (DCS),
composed of several algorithms, into macro-tasks, as independent of each other as
possible. Then, each one of them can be executed on its dedicated core. However,
data still have to go through the complete processing pipeline. Consequently, the
data rate is limited by the slowest task, incidentally called the bottleneck. A major
advantage compared to the second approach though, is that tasks only need to be
started and stopped once, minimizing startup and task synchronization times.

4. Single Instruction Multiple Threads (SIMT): Massively parallel architectures
like those involved in GPGPU excel in performing various calculations simultane-
ously on different data. The operations executed can slightly diverge, but it may hurt
computation speed. Besides, they really shines for large data set, typically of around
64 kB [63], inducing extended latencies. As demonstrated in [64], while achieving
honorable performances, they may not be well suited to implement a DCS.

By making use of these parallelization techniques, it has been possible to implement
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performant 4G and 5G software chains [50]. Note that it requires the conjoint use of all
the paradigms to ensure efficiency [65]. These implementations have even met industry-
compliant constraints. Nevertheless, a glimpse to the efforts needed to develop efficient
software implementations for various ECC decoders [66–68] allows to measure the non-
negligible amount of engineering time and research work needed.

Despite the fact that such software platforms are already been developed and deployed,
they require high-end devices to be up to the task [69]. The issue is that the relevant
systems require CPUs like Intel Xeon processors, that can consume up to 500 Watts, and
cost thousands of euros per unit. Intel themselves recommend the use of (their own) Stratix
FPGA devices in order to improve digital processing capabilities of their platforms [70].
Indeed, the superiority of DCS hardware implementations over software implementations
in terms of raw throughputs and latency but also of energy efficiency has been highlighted
in work presented in [71]. The authors presented hardware ECC decoders achieving energy
efficiency ≈ 30× to ≈ 100× superior to their software counterparts. Undoubtedly, the use
of the FPGA circuits available in the SdR platforms boost DCS performances, as it is
done in the computer vision domain [72]. However, the design of hardware architecture for
reconfigurable targets is a long and difficult process. While implementations for numerous
digital processing elements already exist in the literature [11, 73–75], the amount of work
needed to actually use them can be substantial. Besides, they have often been optimized for
specific use cases, which limits their adaptability. In the worst cases, the lack of flexibility
can be an effective barrier to their deployment and to further evolutions.

To mitigate this issue, hardware design methodology has evolved. During the last two
decades, High-Level Synthesis (HLS) industrial tools have matured, and are now widely
adopted [76–79]. HLS have been developed for several decades now [80, 81], in order to
allow the RTL design of digital processing systems from their behavioral descriptions [82].
The way HLS tools work is similar to how a compiler functions. The main difference is that
the compiler has to translate the algorithmic description into machine understandable
code, suited for a specific architecture. The HLS tool tries to design and generate the
architecture that best suits the algorithmic description on the specified target. This allows
achieving the high performances of RTL designs, without completely sacrificing flexibility
and versatility. However, the procedure realized by the tool is extremely complex. For this
procedure to be successful, the behavioral description have to be synthesizable 1, which
requires that the designer has actual knowledge on digital circuit design. Thus, as for

1. i.e. understandable by the tool and implementable on the targeted circuits
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RTL descriptions, algorithms have to be reformatted to suit hardware implementations.
In addition, the description have to be tailored to the tool used, sometimes even to
specific versions of a tool. For instance, in less than two years, several breaking changes
have been introduced between the version 2019.1 [83] of the Xilinx HLS tool, and the
version 2021.1 [84]. Consequently, the performances of the resulting implementation in
throughput, latency and energy efficiency, depend on the algorithm itself, and the tool
used, but also on the efforts put by the designer [85–89].

Nevertheless, HLS enables the development of hardware implementations in reduced
design time, in comparison to RTL-based workflow. Even if achieved performances do not
always match those of pure RTL descriptions, this time-saving feature, combined with
higher flexibility, scalability and versatility, makes HLS a perfect tool for design explo-
ration and other hardware-related research works. Especially since the democratization
of Network-on-Chip systems [90] and their usage in SdR platforms, with frameworks like
Ettus Research RF Network-on-Chip (RFNoC) [91].

These design procedures are complementary with multicore and manycore implemen-
tations. In an SdR platform, HLS coupled with development interface like RFNoC allow
integrating all or part of the digital processing tasks as close to the RF frontend as possible
[92].

2.4 Conclusion

As stressed out in the current chapter, the design and implementation of Digital Com-
munication System for the IoT are anything but simple processes. The low complexity
requirements, and the energy constraints, make achieving standard-compliant through-
puts and latencies challenging. To make things worse, by the very nature of LPWANs,
the available bandwidth is critically limited. It makes relying on preamble based approach
unsustainable. Preamble-less strategies exist but can not trivially achieve acceptable de-
tection and synchronization performances at the low SNR usual for the LPWAN context.

Nevertheless, the impressing development of SdR platforms is a game changer. Coupled
with the increasing performances of multicore and manycore systems on one hand, and
the maturity of HLS tools on another hand, it has enabled the real-time implementation
of solutions to these problems. While design time required by algorithm parallelization
and adaptation are still substantial, they are no longer prohibitive.

In the next chapter, the recently introduced Quasi-Cyclic Short Packet (QCSP) wave-
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form [16, 17, 93] is presented. This new approach proposes a preamble-less detection and
synchronization method, that has been demonstrated to work at low SNR. In the follow-
ing chapter, the algorithm involved are analyzed and fortified. Moreover, the algorithm
is optimized to increase its adequacy to intended targets. In a subsequent chapter, lever-
aging the parallelism types previously presented, the data rates are improved again. In
addition, taking advantage of HLS, hardware specific optimizations and real-time im-
plementations are also presented. A quantization work realized to maximize algorithm
hardware adequacy is also related. Finally, a complete real-time QCSP communication
system is disclosed, relying heavily on the previous efforts and on the features offered by
SdR platforms.
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Chapter 3 – Quasi-Cyclic Short Packets Communication Chain

This chapter aims to present the Quasi-Cyclic Short Packet (QCSP) communication
chain in details, as depicted in Fig. 3.1. Indeed, understanding the algorithm and its
whereabouts is needed in order to measure the requirements of its implementation. The
core feature of the QCSP communication chain resides in the association of Non Binary
Error Correction Codes (NB-ECC) and Cyclic Code Shift Keying (CCSK). Thus, this
chapter begins by giving an overview of both concepts. For NB-ECC, it first summarizes
the notion of Galois Fields (GFs), followed by Non-Binary Low Density Parity Check
(NB-LDPC) codes, the family of NB-ECC used throughout the thesis. Then it introduces
briefly how NB-LDPC codes works, followed by some available decoding methods. For
CCSK, it explains how a Pseudo-Noise (PN) is generated and what is its properties, then
summarizes the modulation and demodulation processes. It finishes by the presentation of
the complete QCSP communication chain, from the transmitter side to the retrieve of the
received message. Transmission and detection stages are detailed, and the synchronization
and decoding stages are quickly summarized for completeness, since they have not been
explored in this work.

3.1 Non Binary Error Correction Codes

On any medium, through any channel, exists the risk of an erroneous communication.
Whether errors come from a faulty device or a hostile environment does not matter. They
must be mitigated. That is the purpose of channel coding, which aims to add redundancy
to a payload (i.e. the message to transmit) to make it resilient to a certain amount of
errors.

There is a large variety of error correction codes. In this work, the focus has been
given to NB-ECC, that exists over GF(q) for q > 2, such that NB-LDPC codes [94],
non-binary turbo codes [95], or non-binary polar codes [96]. Non-binary codes have better
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+ BPSK Channel Detection Synchronization NB-LDPC
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Figure 3.1 – Complete QCSP system model.
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Table 3.1 – Different representations of GF(8) elements for P3 = α3 + α + 1.

Power of α Index Polynomial Binary Natural

0 0 0 000 0
α0 1 1 001 1
α1 2 α 010 2
α2 3 α2 100 4
α3 4 α + 1 011 3
α4 5 α2 + α 110 6
α5 6 α2 + α + 1 111 7
α6 7 α2 + 1 101 5

error correction capabilities that their binary counterparts. These codes have been widely
studied in the literature, due to their good performances for short payloads [97]. Moreover,
they are highly compatible with high order modulations, since if the modulation order
is equal to the one of the code, each symbol can be directly mapped to its modulated
version, avoiding binary marginalization [98].

This section first introduces the notion of Galois field. It then briefly presents NB-
LDPC codes with some decoding techniques.

3.1.1 Galois Field of order q — GF(q)

A Galois Field denoted GF, also called finite field, is a field which contains a finite
number of elements. The number of element is called the order of the field. The Galois
Field of order q is denoted GF(q).

Because it is a field, multiplication and addition are defined in GF(q) for any order
q = κp, ∀p ∈ N and with κ a prime number. Both operations follow mainly the same rules
they follow in traditional fields (like in R, or in C). Non-zero elements of GF(q) can be
represented as power of a primitive element denoted α, such that the q elements GF(q) can
be denoted {0, 1 = α0, α1, . . . , αq−2}. In addition, when κ = 2, such that q = 2p, elements
of GF(q) have a binary representation. These results from the polynomial definitions of
GF(q). An example of such representation is given in Table 3.1 for q = 8 and a primitive
polynomial P3 = α3 + α + 1. All necessary mathematic definitions and more in depth
explanations can be found in appendix A.
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3.1.2 Non-Binary Low Density Parity Check

NB-LDPC codes are the generalization of LDPC codes for high order GF. They have
one interesting feature: for small codewords, they outperform traditional binary LDPC
codes [99]. The gap in error-correction performances widens when the GF order grows.
However, this is also accompanied by a substantial increase in complexity of the decoder.
This has historically slowed down the adoption of non-binary codes. Nevertheless, in-
creases in computing power in the recent years and research advances tend to reverse the
trend [68]. For example, they are currently in use in the Chinese GPS system BeiDou [18],
and in the CCSDS communication standard [100].

NB-LDPC are linear block codes [101], with the particularity that their Parity Check
Matrix (PCM) is sparse, i.e. it contains more zeros than non-null coefficients. This matrix
is used to produce a generator matrix G that allows to encode a message M of K symbols
into a codeword C of N symbols, such that

C = MG (3.1)

PCM is often denoted H, and its coefficients in GF(q). The number of rows M corre-
sponds to the number of parity constraints in the code, while its number of columns N is
the number of symbols of the code, defining also the codeword size. Indeed, a codeword
is composed of N symbols, K of which are in fact the initial information symbols, the
M = N − K remaining being redundancy symbols. The parity constraints of H must be
verified by C for it to be a codeword, i.e. CHT = 0N , where HT is H transposed and 0N

the null vector of size N . This also allows to define the syndrome D of a word,

D = CHT , (3.2)

with C a potentially faulty codeword. When all elements of D are null, it means that C

is a correct codeword. The number of non-bull elements in D can serve as an indication
on how far from being corrected a codeword is.

A codeword having N symbols for a message of K symbols, it leads to the definition
of a code rate Rc = K

N
= N−M

N
≤ 1.

To correct errors, the idea is to estimate the probability for the received word to be
one codeword or another, thus calculating its likelihood ratio. This is done in the variable
nodes (VNs). Then, VN transmit this information to check nodes (CNs). Those calculate
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Table 3.2 – Possible mapping of GF(8) on a generic P0, using the natural representation of GF symbols
defined in Table 3.1.

GF symbol Shifted Pk sequence

0 0 P0 — { p0 p1 p2 p3 p4 p5 p6 p7 }
α0 1 P1 — { p1 p2 p3 p4 p5 p6 p7 p0 }
α1 2 P2 — { p2 p3 p4 p5 p6 p7 p0 p1 }
α2 4 P4 — { p4 p5 p6 p7 p0 p1 p2 p3 }
α3 3 P3 — { p3 p4 p5 p6 p7 p0 p1 p2 }
α4 6 P6 — { p6 p7 p0 p1 p2 p3 p4 p5 }
α5 7 P7 — { p7 p0 p1 p2 p3 p4 p5 p6 }
α6 5 P5 — { p5 p6 p7 p0 p1 p2 p3 p4 }

the parity check result probability, and propagate it to the VNs, for them to update their
decision. Thus, after a sufficient number of iteration, every symbol should converge to
their actual values. Multiple methods exist to implement this [68, 102], but they are not
the topic of this thesis.

3.2 Cyclic Code Shift Keying

Modulating a signal allows to efficiently send it through the channel. It participates
in the resilience of the communication to perturbations (noise, fading, and so on …). This
section aims to introduce to the Cyclic Code Shift Keying (CCSK) modulation technique,
since it is a core concept of the overall QCSP system.

CCSK is a modulation scheme where bits are gathered in groups of p bits and mapped
to unique circular rotations of a Pseudo-Noise (PN) sequence composed of q = 2p chips
[103], denoted P0 = {p(k)}k∈J0,q−1K. A chip is the smallest element of P0. While a bit takes
value in the binary set (0 or 1), a chip can be a bit, a binary real value (e.g. −1 and 1),
or can even be a complex value, as it is the case for Zadoff-Chu sequences [34]. CCSK
can thus be seen as a direct mapping from GF(q) (c.f. Table 3.1) to the set of all possible
circular rotation of P0. The kth circular rotation 1, denoted Pk, is defined as

∀k ∈ J0, q − 1K, Pk = {p(k), p(k + 1), . . . , p(q − 1), p(0), p(1), . . . , p(k − 1)}. (3.3)

An example of mapping using natural representation of GF symbols is given in Table 3.2

1. Left-shift is assumed in this thesis. Right-shift can be used as well, without any impact on perfor-
mances.
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Figure 3.2 – Circular correlation results for a given P0 of q = 64 chips with four different rotations of
itself.

for q = 8. The index representation could be used as well, but the natural representation
is needed for the sake of synchronization performances (c.f. section 3.3.4). The modulation
process is thus very intuitive, particularly in conjunction of a NB-ECC, since each symbol
c of the codeword C can be directly mapped to the corresponding CCSK symbol Pc.

The demodulation process is less straightforward. It consists on doing the circular
correlation of the CCSK symbol with P0. The index of maximum of correlation is then
the value of the initial symbol. The q-element circular correlation L = {L(k)}k∈J0,q−1K of
P0 with a vector y = {y(k)}k∈J0,q−1K is obtained using

∀k ∈ J0, q − 1K, L(k) =
q−1∑
i=0

y(i) × p(k + i mod q). (3.4)

A representation of this relation is given in Fig. 3.2. Despite the PN sequence used,
which has been generated only for the figure and not optimized at all, the maximum of
correlation is clearly visible for each represented shift, at the index of the corresponding
symbol.

Finally, the key feature of CCSK is also related to the demodulation process. In
Fig. 3.2, the SNR is infinite, i.e. there is no noise at all. In a noisy environment, some
CCSK symbols may be damaged, degrading the correlations presented in Fig. 3.2, which
can lead to erroneous demodulation. However, the circular correlation L can be easily
converted to a vector of Log-Likelihood Ratios (LLRs), which can be directly provided to
an NB-LDPC decoder [99]. The latter then handle the transformation into a codeword,
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then into the decoded message.

3.3 QCSP System Model

The Quasi-Cyclic Short Packet (QCSP) project aims, as stated on the dedicated web
page [3], to contribute to the evolution of IoT networks by defining, implementing and
testing a new coded modulation scheme dedicated to IoT networks. The “big bet” of the
project is to work on the emergence of NB codes combined with a Cyclic Code Shift Key-
ing (CCSK) modulation. Thus, unsurprisingly, the whole communication system model,
therefore referred to as the QCSP chain, heavily relies on CCSK and NB-LDPC.

This section has for objective to present the QCSP chain, from the transmitter to
the decoded message. In particular, the channel model used is depicted, as well as how
detection works. The steps involved in the synchronization algorithm are also detailed. It
should be noted that this section mostly summarizes the extensive work done in [17] by
K. Saied, a former Ph.D. student also involved in the QCSP project, but on theoretical
aspects only. During the first two years of my Ph.D., K. Saied and I had a lot of fruitful
exchanges.

3.3.1 Transmitter

The message M to be transmitted is composed of Kb information bits, with Kb = K×p

and (K, p) ∈ N2. It is thus composed of K symbols in GF(q), with q = 2p. This message
is encoded using an NB-LDPC code of rate Rc = K

N
, thus resulting in a codeword of

N symbols in GF(q), or N × p information and redundancy bits. Each symbol of the
codeword is CCSK modulated as described in Table 3.2 into the corresponding shift of
P0, thus resulting in a CCSK frame FCCSK of N CCSK symbols, or N × q chips.

This modulation has a rate Rm = p
q
. The combination of the two rates Rm and Rc

results in the QCSP effective rate Reff = K×p
N×q

.
Then, Overmodulation (OM) is added, using a binary sequence B = {B(i)}i∈J0,N−1K

of size N . It consists on adding a phase of 0 or π to each symbol depending on the value
B(i), i ∈ J0, N −1K. Since the result would be modulated using Binary Phase Shift Keying
(BPSK), which is a direct mapping {0, 1} ⇒ {−1, 1}, by representing chips and elements
of B as 1 or −1, the QCSP frame F can be directly obtained using

∀k ∈ J0, q − 1K, ∀i ∈ J0, N − 1K, F (i × q + k) = FCCSK(i × q + k) × B(i). (3.5)
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Finally, the QCSP frame is shaped by a root-raised cosine filter, decreasing inter-
symbol interferences. The root-raised cosine filter has a roll-off factor β such that 0 <

β < 1. In this study, β has been set to 0.35. The filtered frame is passed to a dedicated
RF device which handle the analog tasks and the transmission to the channel.

3.3.2 Channel model

The targeted context of LPWAN imposes to consider low-end devices which try to
transmit messages of few hundreds of bits sporadically and asynchronously. It means
that the potential receiver cannot have any prior knowledge about time of arrival, carrier
frequency offset, transmission phase nor any other possible channel parameters. The only
parameters accessible are those specific to a QCSP communication (e.g. the PN and OM
sequences, as well as the NB-ECC). Let Tc and T = q × Tc (in seconds) be the duration
of a chip and a CCSK symbol respectively. The optimal half raised cosine filter is applied
in reception. The frequency offset is assumed low enough to neglect chip interferences.
Besides, the signal is over-sampled such that one chip corresponds to O samples, defining
an oversampling factor O which is typically between 4 and 8. It results in a sampling
frequency Fs = O/Tc, used as the driving frequency of the Analog Digital Converter
(ADC). The time of arrival ta can thus be seen as a real value xa = ta/Tc, which can then
be expressed as

xa = na + ra

O
+ εa, (3.6)

where na = bxac, the integer part of xa being the time in number of chips, ra the closest
clock cycle index within a chip (ra ∈ J0, O − 1K), and εa the residual error (εa ∈ J−1

2O , 1
2OK).

However, the latter is neglected in the sequel, O being considered high enough. It is
worth noting that by testing in parallel all the values ra can take, it is possible to find
the one maximizing the reception performances, allowing to set ra to 0. However, this
results in an increased computational complexity. The earlier the decimation is done the
more this burden is reduced, since fewer processes must be parallelized. In the current
implementation, decimation is done after the detection stage.

Local oscillator mismatch and/or Doppler effects are also considered, leading to a
random frequency offset F0 added to the received frame. In Tc seconds, it results in
a rotation TcF0

2π
radians between two consecutive chips, leading to the definition of the

normalized frequency offset f0 = TcF0. It generates a rotation θ = 2πf0q radians between
two chips separated by a symbol duration. Finally, the phase offset φ is unknown too
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Figure 3.3 – Legacy Elementary Score Processing Unit.

(φ ∈ [0, 2π]). In summary, for a single frame received at index na with ra = 0,

∀n ∈ N, y(n) =

 z(n) if n /∈ Jna, na + Nq − 1K,
F (n − na)ej(nθ/q+φ) + z(n) otherwise,

(3.7)

with z(n) being realizations of a random variable following N (0, σ), defining a Complex
Additive White Gaussian Noise (CAWGN) with zero mean and standard deviation σ =√

10−SNR
10 . Considering the absence of any prior knowledge, θ and φ are supposed to be

uniformly distributed in their respective domain.

3.3.3 Detection

This section sums up the detection method presented in [17]. It first describes the
score function used to probe the channel, followed by the presentation of the concept
of time-frequency search grid. Then, the decision-making process is explained. Finally, it
presents briefly the impact of q and N on detection performances.

In this section, the sampling frequency fc is equal to the inverse of the chip period
Tc, i.e. the optimal sampling time is assumed known. This is achieved in practice by
testing in parallel all phase hypotheses resulting from oversampling and by keeping the
one associated with the highest score (see section below).

3.3.3.1 Score function

CCSK based detection consists mainly in comparing the output of a score func-
tion to a threshold value U0. The score is computed using the last N × q received
chips (impersonating a potential received frame) at time n divided in N sub-vectors
{y(n + (ℵ − N) × q + 1 + i)}i∈J0,q−1K of q chips (length of a CCSK symbol), for ℵ in
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J0, N − 1K. Thus, let us define yn such that

∀n ∈ N, ∀i ∈ J0, q − 1K, yn(i) = y(n − q + i + 1). (3.8)

In other words, yn represents the q chips of the (N − 1)th symbol of a frame that begins
at time n − N × q + 1 and is completely arrived at time n. Consequently, the score is
calculated from the N vectors yn−(N−ℵ)∗q+1 for ℵ in J0, N − 1K. Its value exceeding the
threshold U0 assesses the arrival of a new frame.
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Figure 3.4 – Example of score values Sω
n as a function of the chip offset error ∆ and of the residual

frequency offset error θ − ω at an SNR of -7 dB.

The score function Sω
n corresponds to a filter output that is maximized for a frame

arrived at time n with a frequency offset fω = ω
2πq

. The filter is locally coherent at the
symbol level and non-coherent at the frame level due to potential residual frequency
offset. At the symbol level, the first step is to mitigate the frequency offset by multiplying
term by term (operator �) yn with the vector Γω

n, which is a pure complex sinusoidal of
frequency −fω = −ω

2π
, to obtain yω

n i.e.

Γω
n = {e−j kω

q }k∈Jn−q+1, nK, (3.9)

yω
n = yn � Γω

n (3.10)

The residual frequency offset of yω
n is supposed low enough to allow a coherent demodu-

lation of the symbol, thus, denoting ? the operation done in (3.4), the correlation vector
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Lω
n is computed as

Lω
n = (yn � Γω

n) ? P0. (3.11)

The infinite norm L∞ of Lω
n is taken in order to perform the non-coherent integration over

the whole frame. By denoting Mω
n = L(Lω

n)∞ = max{|Lω
n(i)|, i ∈ J0, q − 1K} this norm, it

gives

Sω
n =

N−1∑
i=0

Mω
n−iq. (3.12)

The overall architecture that allows to compute simply the score Sω
n every q chips is

given in Fig. 3.3, and is called a Score Processing Unit (SPU). The value p∆ should be
considered set to 1 for now. This notation is explained in the next section.

The resulting score for a frame of length N = 10, with a CCSK modulation of length
q = 64, over a CAWGN channel with an SNR of -7 dB is shown in Fig. 3.4. Let’s define
∆ as the shift in chips between the exact chip of arrival and the score time of calculation.
The value of ∆ is equal to 0 at the exact time of arrival of the frame. In this figure, several
frequency error situations are depicted, with θ −ω taking the values 0, π

2 , π, and 2π (a full
rotation of each CCSK symbol). In this example, the threshold value is set to U0 = 25.
One can note that when the residual frequency offset is high (greater than a rotation of π

for each CCSK symbol, typically), the score magnitude is significantly reduced. Likewise,
when the time offset error verifies ∆ mod q = q

2 , the detection of the frame is harder. The
solution is to explore in parallel several hypotheses of time delay and frequency offset.

3.3.3.2 Search grid

Let us assume, without loss of generality, that the rotation θ (resulting from the
frequency offset) is in the interval [−π, π], i.e, giving at maximum a half clockwise or half
counterclockwise rotation per CCSK symbol. Then it is possible to make pω hypotheses
of rotation, effectively dividing the previous interval into pω sub-intervals. Each interval
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Figure 3.5 – Rotation interval division for pω = 2 and pω = 4, ϑ represented as corresponding arcs.
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Figure 3.6 – Toy example of a search grid (in red) represented on the received score associated to one
frame in a noiseless asynchronous channel. The bluer the color is (resp. the yellower), the lower is the

corresponding score (resp. the higher).

is associated to a score filter Sω(r)
n with

∀pω ∈ N∗, ∀r ∈ J0, pω − 1K, ω(r) = π(−1 + 2r + 1
pω

). (3.13)

So, the maximum distance between θ and the closest ω(r) value is bounded by ϑ = π
pω

.
For example, when pω = 4, ϑ = π

4 , which corresponds to 1/8th of residual rotation per
CCSK symbol. A graphical representation is given in Fig. 3.5.

The score Sω
n must be computed for each new received symbol (or every q samples).

This ensures that |∆| is bounded to J0, q
2K. Computing the score less often results in

skipping some chips or worse, some symbols. That would lead to the disappearance of
some maxima in Fig 3.4, resulting in loss in performances that are unaffordable at lower
SNR. Moreover, if the goal is to reduce complexity, it is better to reduce N or q directly
[17]. In contrast, computing the score more often — up to q times more, i.e. for each new
sample — increases detection performances. It leads to the introduction of the parameter
p∆, power of two 2 indicating the number of score values computed every q samples for
one rotation ω (i.e. p∆ ∈ {1, 2, 4, . . . , 2p = q}). This may also have an impact on
the amount of memory required, since only N × p∆ values of Mω

n would be needed. This
results in a grid of scores, that divides the time-frequency space in bins. A toy example
of such grid is given in Fig. 3.6, for bins of size π

2 along the frequency direction, and 3q

(unusable in real case scenario) along the time direction.
The previously defined grid produces p∆ × pω score values every q chips. Depending

on the SNR, scores can exceed the threshold U0 multiple times during frame arrival, for
different frequencies. Thus, a potential new maximum is searched for the duration of a

2. A generalization to use any value is possible, but would complicate implementations. It has thus,
without loss of generality, been left aside.
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frame. The index of this maximum of all maxima is then considered as the end of the
frame, and used to produce a buffer FD of 2N × q chips. This buffer corresponds to the
chips associated to the potential frame plus half of a frame before and after, to allow the
synchronization stage to mitigate the inherent time inaccuracy of the detection stage. The
theoretical system is depicted in Fig. 3.7. It represents p∆ time hypothesis (i.e. the score
is computed every q

p∆
chips) where pω frequency hypothesis are computed in parallel, ω(r)

defined as in (3.13). The p∆ × pω score values are fed to a decision block, which, based on
U0 and its own internal state, control a circular memory. The decision block provides a
read signal and (if needed) and address to the memory, in order to produce FD. It would
require p∆ × pω SPU, and a memory of at least 3N × q chips (size of FD plus one frame,
in case the detection occurred for the first received chip).

3.3.3.3 Performances

In order to measure detection performances two notions must be defined:

— The probability to consider a frame detected when there is none, called the proba-
bility of False Alarm (Pfa),

— the probability to miss an actual frame, called the probability of Miss Detection
(Pmd).

A method to estimate these probabilities is to do Monte-Carlo (MC) simulations, by
probing the score output of a detector in the absence of signal or in presence of a frame
to estimate respectively Pfa and Pmd. An example of result for q = 64, N = 60, and
for an SNR of −10 dB over a synchronous channel is depicted in Fig. 3.8a for the raw
normalized counting and in Fig. 3.8b for the calculated probabilities. It is worth noting
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that a theoretical mathematical model has been verified in [93], and can be used to bypass
MC simulation and obtain accurate results faster.

Unsurprisingly, increasing q and N led to an increase in detection performances. It
would result in a greater gap between Pfa and Pmd on Fig. 3.8b (due to the constant
SNR of −10 dB). Most importantly, it translates to a lower achievable SNR when the
probabilities are constrained. Arbitrary targets of Pfa < 10−6 and Pmd < 10−4 have
been decided for the QCSP project. An overview of the results has been extracted from
[17] and is given in Fig. 3.9. They clearly prove the last assumption (increasing q = 2p

improves detection performances). Moreover, as seen in Fig. 3.9a, the SNR that allow to
reach the arbitrary target linearly decrease with the linear increase of p. Besides, they
also demonstrate that the effect on performances of N , frame size in symbols, have the
same behavior for all values of p. All curves have the same shape on Fig. 3.9b, but are
shifted by 2.3 to 3 dB each. Thus, it is possible to study detection performances for low
value of p, q, and N for an SNR, and then to estimate the results for higher values of p,
q, and N for lower SNRs, simplifying the exploration.
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Figure 3.8 – Results of 107 MC simulations for q = 64, N = 60, an SNR of −10 dB, and over a
synchronous channel (i.e. ∆ = 0 and θ = 0).
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(a) Pmd functions of the SNR for p from 6 to 12, Pfa = 10−6 and N = 60 or 120.

(b) Minimum frame symbol length N required to ensure Pfa ≤ 10−6 functions of the SNR, for p from 6 to 12.

(c) Minimum frame chip length N × q required to ensure Pfa ≤ 10−6 functions of the SNR, for p from 6 to 12.

Figure 3.9 – Overview of the results presented in [17], showing the impact of q and N on the achievable
SNR.
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3.3.4 Synchronization

The detected frame buffer FD produced by the detection stage cannot be used as-
is, since an inaccuracy in the time-frequency-phase estimation drastically reduces CCSK
demodulation and NB-LDPC decoding performances [93]. The objectives of the synchro-
nization process are

1. to find the exact chip where the actual frame begin in FD,

2. to mitigate any remaining frequency offset,

3. to estimate as accurately as possible its initial phase φ.

The current section aims to present the synchronization process and to enumerate its
steps. It does not dive into the details as it has not been subject to advanced research,
partially due to the lack of time, but mainly because the constraint on synchronization
is softer than the one on detection. Indeed, detection must be performed continuously.
The synchronization process is invoked only when a frame is detected. Thus, in a context
where latency is not a crucial point (like LPWANs [29]), it can be deferred to dedicated
subtasks, with lower priority, using other computational resources (e.g. on another chip,
or on dedicated low-priority process when working with a scheduler).

The first two steps are the same as running the detection process for p∆ = q and
pω ≥ 16. They allow to reduce the time inaccuracy to a handful of chips (±8 at most)
modulo the size of a symbol, and to limit the normalized frequency offset to ±10−3 (less
than an eighth of rotation per symbol). These conditions are required for the other steps
to succeed.

The third step uses the Overmodulation (OM) introduced by (3.5) to find the symbol-
level beginning of the frame. The N maximums of correlation with P0 for each possible
symbol beginning are multiplied term-to-term with the OM sequence B0, and the max-
imum of the FFT of the product is computed. The highest value corresponds to the
symbol-level beginning of the frame. Thanks to the previous steps, the true beginning of
the frame is only a few chips away, at most [93].

In fourth, the FFT associated to the highest value from the last step is used to further
correct a potential frequency offset. Indeed, since it estimates a frame-level rotation, the
approximation is way more accurate than in previous steps, which was limited to the
symbol level.

The two last steps are more complex. The second last leverage features of NB-LDPC. In
a first version, it uses the syndrome as defined in (3.2), inspired by [36, 104]. The symbol
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hypothesis which results in the syndrome with the highest number of null-elements is
assumed to be perfect. This has been further improved by using a soft syndrome, i.e.
by considering the updated information in variable nodes instead of the hard decision
check nodes (c.f. section 3.1). This step is the one that requires the use of natural CCSK
mapping (c.f. 3.2). Indeed, the use of the index mapping would prevent an efficient use
of such techniques, since a slightly shifted index mapped CCSK symbol is still mainly a
codeword.

The last step but not the least aims to correct the phase offset. Two methods are in
use. The first one simply consists in calculating the argument of the sum of the complex
maximum of the time-frequency synchronized frame and to apply its opposite. It has thus
been called the direct method (DM). While working, it is degraded at low SNRs and
may not correctly estimate the phase in some cases. In opposite, the parametric method
(PM) nearly reaches the best estimation possible, but at high cost. It first computes the
full CCSK correlation of all symbols. Then, for each symbol, the first three maxima are
weighted according to the number of parity check they allow fulfilling, the most highly
weighted being kept. This results in N values. Then, an affine function with φ as origin
and the residual frequency offset as steering factor is estimated. This function should
maximize the probability of the observation. The values of φ and the residual frequency
offset are then extracted and corrected.

The choice between both methods is another way to achieve different trade-offs.
In any case, after all six steps, a synchronized frame FS of N × q chips is produce, and

its frequency and phase offsets are assumed null.

The ultimate steps of the QCSP chain have been explained previously. The CCSK
demodulation process (c.f. section 3.2) is applied to the synchronized frame FS, and the
resulting LLR vector is fed to the NB-LDPC decoder (c.f. section 3.1).

3.4 Conclusion

The QCSP communication chain succeed to transmit, detect, synchronize, and retrieve
short packets at low SNRs, approaching the Polyanskiy bound [15] (the Shannon limit for
short packet) as close as 1.2 dB of distance. According to [93], it also saves up to 23% of
bandwidth resources compared to classical preamble based approaches.

However, if it has been successfully tested on real data and in real life scenarios, the
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implementation is not efficient. It relied heavily on high level interpreted languages, and
the legacy architecture is not adapted to real time processing of data. It cannot achieve
the throughput required by standards and compares poorly to other solution on this point.

In the next chapters, several techniques are used, from algorithmic reorganizations, to
target and language specific optimizations, in order to implement an efficient real-time
capable QCSP system.
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The chapter is dedicated to the enhancement made on the detection algorithm. Indeed,
while the detection method presented in chapter 3 has been verified on real data, they
were not processed in real time. They were first gathered using RF devices over the radio
channel, then fed to the chain offline.

In order to implement a real time receiver, the detection stage, called the detector,
must solve two main issues:

1. the possible variations of the receiver gain,

2. the inherent complexity of the correlation process.
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The current chapter is dedicated to the contributions made to address these points.
It is worth noting these contributions have also been the object of a dedicated paper [16].
The first section introduces the normalization process, its impact on the detector’s perfor-
mances, and how it has been parallelized and then implemented. The second section deals
with an innovative method to implement the correlations. The new method consistently
reaches the best detection performances theoretically achievable for each value of q, with a
lower complexity than the legacy method. However, the new method requires the process
of every new chip (equivalent to p∆ = q in Fig. 3.7, see 3.3.3.2), while the legacy method
allowed a wider range of trade-offs.

4.1 Mitigating possible gain instability

In the context of LPWAN, a receiver may very well run continuously for several days.
If variations of the RF receiver internal gain are not unexpected, they must not disrupt
the detector.

First, it should be noted that (3.12), which is used to calculate Sω
n , is equivalent to an

averaging moving filter of length N . Thus, (3.12) can be simplified as

Sω
n = Sω

n−p∆
+ Mω

n − Mω
n−N×p∆

, (4.1)

with Mω
n still being the maximum of correlation of the last q received chips at time n.

As defined in section 3.3.3.2, p∆ represents the number of score values computed every q

chips.
Let’s denote A ∈ R+ the receiver constant gain effect on the maximum Mω

n . Thus,
(4.1) becomes

Sω
n = Sω

n−p∆
+ AMω

n − AMω
n−N×p∆

,

= ASω
n ,

(4.2)

with A the gain resulting from an unknown function of A and the maximums. Since the
threshold U0 was estimated against plain Sω

n , detection now depends more on A, that
cannot be exactly known nor predicted, than on the actual score value. Worse, A can
vary over time, thus being a function of n, making the comparison to a threshold all the
more difficult.

A solution was needed to have a reliable threshold without requiring an over-expensive
gain control and stabilization system.
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Figure 4.1 – Score Processing Unit (SPU) robust to an input scaling factor.

4.1.1 Normalization methods

Normalizing the input with a factor proportional to A suppresses the impact of any
scaling factor in input. The normalization can be done directly per chip, per symbol or
on any other scale. However, normalizing each chip independently is a nonsense, since it
would literally flatten the input. On the opposite, the larger the scale is, the more sensitive
to channel variations the system is, especially at low SNR. A large normalization window
typically increases the impact of sporadic interferences. Since the CCSK correlation in-
volved in the calculus of Mω

n takes a symbol in input, it has been intuited that a norm
extracted from the last q (symbol size) received chips would achieve correct results. This
assumption has not been thoroughly tested in the current work, but some experiments
conducted by L. Enrique Camacho Flores and L. Montaya Obesso confirms it. Thus, the
mitigation consists in dividing Mω

n by the norm of yn, the vector of the last q received
samples at time n. This results in the SPU depicted in Fig. 4.1, that is nearly the same
the prior version presented in Fig 3.3, but with a divider and a norm block added.

However, several norms exist, and one may be better than the other. Three classical
norms have been investigated: the infinite norm L∞, the 1-norm L1 and the 2-norm L2.
Another norm, derived from L1 and denoted Ld is also investigated. They are defined as

L∞ : yn � max(|yn(i)|, ∀i ∈ J0, q − 1K), (4.3)

L1 : yn �
q−1∑
i=0

|yn(i)|, (4.4)

Ld : yn �
q−1∑
i=0

|R(yn(i))| + |I(yn(i))|, (4.5)

L2 : yn �

√√√√q−1∑
i=0

|yn(i)|2, (4.6)
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Table 4.1 – Computational complexity of each norm in terms of square-roots, multiplications, additions,
and comparisons

(a) Complexity of a complete computation (consuming q
chips)

√ × + >

L∞ q 2q q q(q − 1)
(L∞)2 0 2q q q(q − 1)
L1 q 2q 2q 0
Ld 0 0 2q 0
L2 1 2q 2q 0
(L2)2 0 2q 2q 0

(b) Complexity of an iterative computation
(consuming 1 chip).

√ × + >

L∞ 1 2 1 q(q − 1)
(L∞)2 0 2 1 q(q − 1)
L1 1 2 3 0
Ld 0 0 4 0
L2 1 2 3 0
(L2)2 0 2 3 0

with R (resp. I) denoting the real part (resp. the imaginary part).
Applying the normalization to (4.1) gives

S̄ω
n,γ = S̄ω

n−q,γ + M̄ω
n,γ − M̄ω

n−N×q,γ, (4.7)

M̄ω
n,γ = Mω

n

Lγ(yn) , γ ∈ {∞, 1, d, 2}, (4.8)

with S̄ω
n the normalized score and M̄ω

n,γ the normalized max.

4.1.2 Complexity estimations

First, let’s remind that yn is a complex vector, thus |yn(i)| is not an absolute value
but a modulus, and

|yn(i)| =
√

R(yn(i))2 + I(yn(i))2, (4.9)

with R (resp. I) denoting the real part (resp. the imaginary part). Recomputing the
norm completely for each new score is thus not a trivial operation. The computational
complexity of each norm in terms of square-roots, multiplications, additions, and com-
parisons (from the more complex to the most trivial operation) is reported in Table 4.1a.
This table can be used to estimate the less complex norm, and it is, without a doubt, Ld,
followed by L2, since they require less square-roots.

Interestingly, all norms can be computed iteratively, by reusing a part of the last result
and values associated to the last q inputs. The corresponding complexities are reported
in Table 4.1b. Since L1 and Ld are moving filters, the transformation is trivial. For L2,
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the trick is to iterate on (and thus to save) the magnitude |y(n)|2 instead of the modulus.
Then the transformation is as trivial as for L1. Then, (4.4), (4.5), and (4.6) become

L1(yn) =L1(yn−1) + |y(n)| − |y(n − q)|, (4.10)

Ld(yn) =Ld(yn−1) + |R(y(n))| + |I(y(n))| − |R(y(n − q))| − |I(y(n − q))|, (4.11)

L2(yn) =
√

L2(yn−1)2 + |y(n)|2 − |y(n − q)|2. (4.12)

For L∞, there is a complication. If L∞(yn−1) is |y(n − q)|, then a complete reprocessing
of the norm is required. By the structure of the moving average filter, it happens at least
every q chips, thus optimizing would not bring enough benefit. A simple optimization
consists in saving the |y(n)| values, reducing the need for square-roots, but to recompute
all comparisons each time. Thus, (4.3) stay the same, but the complexity decreases.

Finally, it is worth noting that the square value of L2 and L∞ can be used as-is, by
using Mω

n
2

Lγ(yn)2 in (4.7), with γ ∈ {∞, 2}. This allows to spare two square-roots per score
calculated.

At this point, the best candidate norm is Ld, which has the lowest complexity and
the simplest implementation, followed by L2 and L∞. A study of the impact on detection
performances has been carried out to settle on a decision.

4.1.3 Impact on detection performances

Normalization is expected to reduce detection performances, since it is mostly influ-
enced by the noise power at low SNR, and thus, reduce the signal dynamic (the difference
between noise power and signal power). Besides, each normalization results in a different
final score. Comparisons cannot be done directly.

The solution resides in the properties of the Gaussian noise. Considering (3.7) and the
fact that the noise z(n) follow N (0, σ), but also according to [17], the score in absence of
signal (affecting Pfa) also follows a normal law. Let’s denote N (η0, σ0) the law followed
by the score without normalization. Since the normalization can be reduced to a division
by a positive value, it is a continuous linear application, and so, does not modify the
previously mentioned property. Consequently, let’s denote N (η∞, σ∞) (resp. N (η1, σ1),
N (ηd, σd) and N (η2, σ2)) the law followed by the score resulting of the normalization by
the norm L∞ (resp. L1, Ld and L2). It is thus possible to center and reduce the scores
by subtracting the corresponding mean ηγ and dividing by the standard deviation σγ, for
γ ∈ {0, 1, d, 2, ∞}. The score in presence of signal is also centered by ηγ and reduced by
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Figure 4.2 – Effect of the norms L∞, L1, Ld and L2 on detection performances with N = 60, q = 64
and an SNR of −10 dB.

σγ, giving a centered reduced score Ŝω
n,γ

Ŝω
n,γ =

S̄ω
n,γ − ηγ

σγ

. (4.13)

This method has been applied on scores gathered after 107 MC simulations, for each
norm (namely L2, L1, Ld, L∞, and ref., which is without normalization), for N = 60,
q = 64, at a perceived SNR in reception of −10 dB. Resulting scores Ŝω

n,γ are presented
in Fig. 4.2a for each norm. Only one curve (the red unmarked one) is drawn to represent
the result without a frame to lighten the figure, since it is nearly independent of the
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normalization method. The black crossed curve represents the reference score (without
normalization). Being at −10 dB ensures that Pfa � 10−6, thus explaining why the curve
doesn’t even touch the red one. In contrast, the orange curve, which corresponds to L∞,
cross the noise curve embarrassingly early. The norms L1, Ld and L2 (represented resp.
in green, in indigo and in blue) are closer to the reference, but also close to each other.
The blue one seems a bit closer to the reference though.

In order to better analyze the results, they have been visualized using well-known
Receiver Operating Characteristic (ROC) curves in Fig. 4.2b. They represent the Pmd

as a function of the Pfa, so the more the curve is in the bottom-left corner, the better.
The reference does not fit on the figure as it is too good, but is represented as a gold
pentagon on the targeted corner. Another advantage of this representation is that it does
not require the centering nor the reduction of the score, and consequently, are less prone
to statistical analysis errors. To better demonstrate the behavior of each norm, results
for simulations over a synchronous channel are plotted using solid curves, and results for
simulations with a remaining symbol rotation ϕ < π

2 are plotted using dashed curves.

With this representation, the negative impact of L∞ become obvious. It does not
even meet the required Pmd < 10−4 for Pfa = 10−6. Retrospectively, it should have been
anticipated. Indeed, since the infinite norm results in a normalization factor resulting
directly from one chip, it tends to smooth out the score.

More importantly, at Pfa = 10−6, the green curve (L1) and the indigo curve (Ld) are
notably higher than the blue one (L2), at respectively Pmd ' 6.3 × 10−4, Pmd ' 7 × 10−4,
and Pmd ' 4.7 × 10−4. A zoom on the relevant (Pfa, Pmd) intervals have been represented
in Fig. 4.2c.

In summary, L∞ has not the lowest complexity, due to the repetitive need of q(q − 1)
comparisons, and has by far the worst impact on performances. L1 has both a reasonable
complexity and introduces an acceptable degradation of performances, while Ld has the
lowest complexity for a greater penalty on performances. Nevertheless, L2 has the second-
lowest complexity and the lowest impact on performances. It is undoubtedly the best
option of the three at low SNR.

From now on, the score is assumed to be normalized by the L2 norm, as depicted in
Fig. 4.1, and the score Sω

n is redefined as

Sω
n = Sω

n−q + Mω
n

L2(yn) −
Mω

n−N∗q

L2(yn−N∗q)
(4.14)
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4.2 Time sliding windows

The most complex computation involved in the score function described in chapter 3
(and amended in the last section by normalization) is the circular correlation, as defined
in (3.4), and represented by the block ?P0 in Fig. 4.1. Indeed, the naive implementation
of this algorithm have a computational complexity in O(q2).

In [93, 99], this step leverages the circular property of the Fast Fourier Transform
(FFT), which allows to compute the correlation vector Lω

n in the frequency domain in
O(q log2(q)) operations, using

Lω
n = F−1(F(yn � Γω

n) � F(P0)∗), (4.15)

where operator � denotes the element-wise product of two vectors, F(X) is the FFT
of X, F−1(X) is the IFFT of X, X∗ represents the conjugate vector of X, i.e., ∀x̄ ∈
X∗, x̄ = R(x) − jI(x), and Γω

n is the pure sinusoidal rotation vector introduced in (3.9).

While this method benefits from the extensive study of the FFT algorithm and its
possible implementations in the literature, it is not well suited to a system that requires
the computation of a data flow. Indeed, each new correlation vector Lω

n requires a fully
buffered input vector yn � Γω

n, and a complete re-computation of the first FFT and the
IFFT (the result of F(P0)∗ can be stored in memory), resulting in an SPU possible
architecture depicted in Fig. 4.3.

y(n) Buffer

Output yn

every q
p∆

chips

size q

�

Γω
n

F �

F(P0)
∗

F−1 Lω
n

Figure 4.3 – FFT based correlation possible architecture for a given frequency offset value ω.

In this section, the frequency domain computation of the correlation vector Lω
n is

replaced by a “Time Sliding” (TS) computation. The name “Time Sliding” comes from
the computation scheduling that uses the circular property of the CCSK modulation to
reduce dramatically the computation burden.
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4.2.1 Principle

First, it should be noted that to lighten notations, yn(i) as defined in (3.8) is used.
Moreover, we have the following useful properties for all (n, i) ∈ N2:

yn(−1) = y(n − q), (4.16)

yn(q − 1) = y(n), (4.17)

yn−1(i) = yn(i − 1). (4.18)

Let us express the kth component Lω
n(k) of Lω

n given in (4.15) in the time domain:

Lω
n(k) =

q−1∑
i=0

yn(i)pk(i)e−j iω
q (4.19)

Since Mω
n is equal to L∞(Lω

n), its value is not affected if Lω
n in (4.19) is replaced by L̄ω

n

such that:

L̄ω
n(k) =

q−1∑
i=0

yn(i)pk(i)e−j(n−q+i) ω
q , (4.20)

L̄ω
n(k) can be expressed as a function of L̄ω

n−1(k − 1) and the values y(n − q) and y(n).
According to (4.20), L̄ω

n−1(k − 1) becomes

L̄ω
n−1(k − 1) =

q−1∑
i=0

yn−1(i)pk−1(i)e−j(n−1−q+i) ω
q (4.21)

By the definition of the CCSK modulation in (3.3), for all k and i values,

pk−1(i) = p0(k − 1 + i) = pk(i − 1) (4.22)

where additions are performed modulo q, thus (4.21) can be rewritten as

L̄ω
n−1(k − 1) =

q−1∑
i=0

yn(i − 1)pk(i − 1)e−j(n−q+i−1) ω
q (4.23)

By changing the summation i by i′ = i − 1, (4.23) can be rewritten as

L̄ω
n−1(k − 1) =

q−2∑
i′=−1

yn(i′)pk(i′)e−j(n−(q−1)+i′) ω
q (4.24)
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Thus, subtracting yn(−1)pk(−1)e−j(n−q) ω
q , adding yn(q − 1)pk(q − 1)e−jn ω

q to L̄ω
n−1(k − 1),

and injecting (4.16) and (4.17) gives L̄ω
n(k). In summary, (4.19) becomes:

L̄ω
n(k) = L̄ω

n−1(k − 1) + pk(q − 1)dω
n, (4.25)

where dω
n is defined as the iterative factor at time n for the rotation ω, and is given by

distributed: dω
n = y(n)e−jn ω

q − y(n − q)e−j ω
q

(n−q), (4.26)

factorized: dω
n = (y(n) − y(n − q)ejω)e−jn ω

q . (4.27)

It modifies how SPUs (as depicted in Fig. 4.1) produce correlation values. This is
depicted in Fig. 4.4, which compares the scheduling of the correlation for p∆ = 2 SPUs
(FFT based on Fig. 4.4a, and TS based on Fig. 4.4b), with q = 8. In both cases, q values
Lω

n(k) are computed but with a fundamental difference:

FFT — A full vector Lω
n of length q is computed by each unique SPU. Every vertical bar of

the same color in Fig. 4.4a thus represents the output of a unique SPU.

TS — Each SPU generates a diagonal of elements Lω
n+k(k mod n) every q chips. Every

diagonal of the same color in Fig. 4.4b thus represents the output of a unique SPU.
However, each SPU generates a unique value for each chip, resulting in p∆ available
values in total instead of a complete Lω

n.
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Figure 4.4 – Comparison between frequency based and time based computation of correlations for q = 8
and p∆ = 2. Red and orange points correspond respectively to the output of two distinct SPUs.

Consequently, setting p∆ to a value lower than q with TS based SPUs is similar to
ignore some possible circular rotations Pk in (4.25) for all n. Unsurprisingly, this has a
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heavy negative impact on detection performances. If it could be interesting to explore dif-
ferent trade-offs, the loss is not affordable when targeting very low SNR as those depicted
in Fig. 3.9.

Thus, in the current work, a complete Lω
n vector has been required to be available at

time n, leading to the enforcement of p∆ = q when the TS method is used.

Iterative factor precision issue

The factorized version of the recursive equation (4.27) can require fewer multiplications
depending on ejω. Indeed, when ω is a multiple of π or of π

2 , ejω is resp. in {−1, 1} or in
{−1, −j, 1, j}. Besides, thanks to a trick inspired from [105], it is also the case when ω

is a multiple of π
4 . Indeed, one can write locally work with 2ω multiple of π

2 , and multiply
y(n) by e−jω in input.

All those versions can be exactly implemented as long as the multiplications by ejω

and e−jn ω
q do not introduce rounding errors that would be accumulated in the integrator.

This is not the case for the values pω ∈ {1, 2, 4} of interest (corresponding to ω = π, π
2 , π

4

resp.), at least when a 32-bits single-precision floating-point representation (as defined
by the IEEE 754 standard [106]) of the numbers is used. For higher values of pω, double-
precision has been required. Indeed, it has been observed during extensive simulations,
that the correlation values drifted otherwise.

This can be explained mathematically. Let’s suppose that ejω can be represented
without error, but that e−jn ω

q introduces an error εn, such that (4.27) becomes

d̄ω
n = (y(n) − y(n − q)ejω)(e−jn ω

q + εn). (4.28)

Thus, expressing (4.28) q chips later gives

d̄ω
n+q = (y(n + q) − y(n)ejω)(e−j(n+q) ω

q + εn+q),

= (y(n + q) − y(n)ejω)(e−jn ω
q e−jω + εn+q).

(4.29)

Finally, subtracting (4.28) to (4.29) does not completely remove y(n) if εn+q 6= εn, which
can alone explain the drift observed when |εn+q − εn| 6= 0. Worse, it can also be true if
y(n) − y(n)ejωe−jω 6= 0, which can happen with floating-point arithmetic, or with fixed-
point arithmetic if the quantization is unbalanced (e.g. a binary fixed-point representation
with two complement and without saturation).

Considering this difficulty, it has been decided to handle rotation in input, using the
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distributed version of the iterative factor (4.26). It has the drawback to require pω complex
multipliers, and pω FIFOs of q elements, to store the values y(i)e−j iω

q for all i in J0, q −1K.

Architectural variations

Even with these considerations (the requirement of p∆ = q, and the need to use a
distributed iterative factor computation), a degree of liberty remains. Indeed, to imple-
ment (4.25), it is possible to cycle the Lω

n(k) values for all k in J0, q − 1K (resulting in
the architecture proposed in Fig. 4.5a), or to accumulate those values in place, circularly
shifting the indexes instead (resulting in the architecture proposed in Fig. 4.5b).

Both approaches produce the exact same result, with the Lω
n(k) values being not

ordered when using the index shifting method. However, since the step directly following
the correlation is the extraction of L∞(Lω

n), the absolute maximum of Lω
n (see Fig. 4.1),

the reordering of data is not needed. Indeed, the index of the maximum is not used in the
current detection algorithm.

For a software implementation, the two approaches should be equivalent. Both are
embarrassingly parallel and can be vectorized using Single Instruction Multiple Data
(SIMD) instructions [60], like the AVX and AVX-2 instruction set extensions of Intel
[61] for their x86 64 bits CPUs. For hardware implementations targeting FPGA or ASIC
circuits however, there are two main differences.

On one hand, the data shifting architecture allows more refinement, especially when
P0 is a fixed parameter. In that case, the multipliers (represented by the ×pi(q − 1)
nodes on Fig. 4.5a) can be replaced by a single register, or a sign inverter followed by a
register, depending on the value of pi(q − 1). If the index shifting method also allows a
similar optimization, it still requires more logic, as it should use either multiplexers or
conditional sign inverters, since pk+i(q − 1) values varies over time.

On the other hand, and especially when q value grows on FPGA circuits, the data
shifting approach would be harder and harder to route, as all Lω

n(i) values depend on each
other, and must be linked. The index shifting architecture accumulating values ”in-place”,
it is less affected by this issue.

Architectures impact on performances, the different levels of parallelism they offer, and
how they can be alleviated are the topic of the next chapter. For now, the focus is put on
the algorithm, whether it uses FFT or TS based correlations. The main algorithm settings
impacting frame detection are the number of score values computed every q chips (p∆)
and the number of frequency hypotheses tested over the interval [−π, π] (pω). Besides, the
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Figure 4.5 – Time Sliding (TS) correlation possible architectures for a given frequency offset value ω.

settings of the communication N , the number of symbols in a frame, and q, the number
of chip per symbol are known for their direct effect on performances. These parameters
directly impact performances and complexity. The following section is dedicated to the
performance and complexity comparison.
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Figure 4.6 – Resulting ROC curves for frame of N = 60 symbols, symbols of q = 64 chips, at SNR of -10
dB for several setup of the couple of parameters (pω, p∆).

4.2.2 Detection performance and complexity comparisons

4.2.2.1 Impact of (pω, p∆) on detection performances

In this section, we compare the performance in terms of Receiver Operating Charac-
teristic (ROC) as in section 4.1. As previously mentioned, ROC curve gives the evolution
of the probability of Miss Detection (Pmd) function of the probability of False Alarm
(Pfa). To compare with work reported in [17], the frame size is first set to N = 60 with
a CCSK length of q = 64.

The impact of values of the couple (pω, p∆) on detection performances are presented in
Fig. 4.6. Different configurations were evaluated with p∆ ∈ {8, 16, 64}, which correspond
to a score value produced every 8, 4 and 1 chips respectively, and pω ∈ {2, 4, 8} which
correspond to a maximum remaining rotation error ϑ = π

2 , π
4 and π

8 respectively.
The first observation, is that a linear increase of the total computational complexity

(represented by the product p∆pω) does not result in a linear performance improvement.
If doubling pω from 2 to 4 significantly improves performances for every possible p∆, it is
not the case for doubling pω from 4 to 8. This can be easily observed on Fig. 4.7, which
represents Pmd function of (pω, p∆) for Pfa = 10−6, associating a color colder when Pmd

increases, warmer otherwise. Going from (pω, p∆) = (2, 8) in the bottom left corner to
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Figure 4.7 – Impact of the couple (pω, p∆) on Pmd for a Pfa = 10−6, represented on a color map. The
colder the color is, the higher Pmd is (thus, the lower the performances are).

(pω, p∆) = (4, 8) at the right lowers Pmd of more than a decade, while repeating the
same operation to go to (pω, p∆) = (8, 8) in the bottom right corner does not change Pmd

significantly.
Moreover, a given p∆pω product lead to different performances for each different (pω,

p∆) couple. In other words, a constant total parallelism level (thus, a constant com-
putational complexity) does not ensure the same performances. For example, achieving
p∆pω = 128 with (pω = 2, p∆ = 64) results in a decade and a half of performances loss
compared to (pω = 8, p∆ = 16) on Fig. 4.6. This is also observable on Fig. 4.7. The op-
timal path to go from the bottom left-hand corner (highest Pmd) to the top right-hand
corner (lowest Pmd) consists on increasing pω once (2 → 4), then increasing p∆ twice
(8 → 16 → 64) and finally increasing pω (4 → 8).

Thus, trade-offs are achievable between targeted performances and complexity. For
instance, a Pmd < 10−4 with Pfa < 10−6 can be reach for (p∆ = 16, pω = 4) resulting in a
computational complexity p∆pω = 64, which is also the lowest complexity that allows to
meet this requirement.

4.2.2.2 Computational complexity comparisons

This section aims to estimate and compare the computational complexity of the legacy
correlation method, referred to as the ”FFT method”, and the computational complexity
of the new proposed TS method. Estimation results are provided in Table 4.2, reported in
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terms of single-precision (32-bit) floating-point additions and multiplications. The mem-
ory footprint has also been estimated. In any case, it is supposed that complexities are
proportional to pω, which is therefore set to one in the table, to lighten the results. It
should be noted that algorithms themselves are compared, not their implementations
and the context-aware optimizations that may be relevant. These topics are addressed in
chapter 5.

It seems obvious that for p∆ = q, the time sliding method should be preferred. More-
over, one can broadly estimate the values of p∆ for which the complexity of the FFT
method remains inferior to the TS method one. Lets denote CFFT,p∆ the complexity in
terms of elementary operations of the FFT method depending on p∆, and CTS the one
of the TS method. Elementary operations are the ones used to implement additions and
multiplications, e.g. logical NANDs on the silicon substrate. It is assumed that additions
are less complex than multiplications. So, we can write the following:

p∆q(log2(q) + 2) < CFFT,p∆ , (4.30)

q2 < CTS. (4.31)

Lets denotes these lower-bounds C−
FFT,p∆

and C−
TS. Thus, it is possible to deduce a value

p−
∆ for p∆ such that C−

FFT,p∆
< C−

TS. It gives

p−
∆q(log2(q) + 2) < q2 ⇔ p−

∆ <
q

log2(q) + 2 , (4.32)

which for q = 64, gives p−
∆ < 8. Specifying an upper-bound is not properly possible, since

it would require to estimate the complexity of control and memory handling operations,
a task too time-consuming compared to its benefits. To better compare each variation,
each method have been implemented in software.

Table 4.2 – Computational complexity comparison depending on p∆ value (pω = 1) for each correlation
method.

p∆ Add Multiply Memory

FFT J1, q − 1K 2p∆q log2(q) p∆q(log2(q) + 2) (p∆−1
p∆

+ p∆)q
q 2q2 log2(q) q2(log2(q) + 2) q2 + q + 1

TS q q2 + q q2 2q
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Table 4.3 – Benchmarking platforms technical characteristics

Server Workstation SBC
ISA x86_64 x86_64 ARMv8

CPU family Intel Xeon Intel Core ARM Cortex
CPU model Gold 6148 i7-7700 A72

CPU sockets 2 1 1
CPU cores 20 × 2 4 4

Threads/core 2 2 1
BogoMIPS 4800 7200 108

L2 cache/core 1 MiB 250 kiB 250 kib
L3 cache/socket 27.5 MiB 8 MiB ∅

Base clock 2.4 GHz 3.6 GHz 1.5 GHz
Max clock 3.7 GHz 4.2 GHz 1.5 GHz

Average clock 3.0 GHz 4.0 GHz 1.5 GHz
RAM 256 GiB 16 GiB 4 GiB

4.2.3 Software implementation, benchmark, and analysis

This first software implementation follows the ”What you see is what you get (WYSI-
WYG)” principle, meaning that the code is written to reflect as much as possible what is
depicted in Fig. 4.3 and Fig. 4.5. It is written in C/C++14. While TS SPU code is writ-
ten from scratch, FFT have been implemented using the well-known library FFTW [107].
This may impact the results, as FFTW offers already-optimized FFT implementation.
However, it allows focusing on the algorithm itself, rather than on optimizing FFTs.

Three benchmark platforms have been used:

1. a high-end server,

2. a mid-range workstation,

3. a Raspberry Pi 4, a low-cost Single-Board Computer (SBC).

Characteristics of each platform are reported in Table 4.3. All platforms run a GNU/Linux
distribution (Namely Ubuntu 22.04 for the server, Debian 11 for the other two) with the
same Linux kernel version (v5.15). The server uses GCC v11.2 as compiler, while the
other two use GCC v10.2. Since all optimizations are disabled through the use of the
-O0 compiler flag, this should not affect the results. To measure the throughput of each
variation, the C++11 ”Chrono” API has been used, working on enough samples to ensure
a stable CPU clock (typically, more than few millions, to keep the process running for few
seconds at least).
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The settings used in the detection performance comparisons are used again (q = 64,
N = 60). The data are generated using an NB-LDPC of code rate 1

3 , resulting in an
effective code rate Reff = 1/32 (see chapter 3). Thus, payload throughput in kilo bits
per second (kb/s) are computed from the measured throughput in kilo chips per second
(kC/s) by applying Reff . The worst latency corresponds to a detection assessed after two
frames (2 × N × q chip), while the best latency correspond to a detection that is assessed
after only one frame (N × q chips). Benchmarking results are reported in Table 4.3, for
the p∆ ∈ {8, 16, 64} and pω ∈ {4, 8}. It should be noted that memory usage has not been
successfully measured, since the correlation itself has a far lower footprint that the overall
benchmark program.

First, it should be noted that results are heavily impacted by the platform, as one
could expect. Since all optimizations are disabled, performance variations can be reduced
to CPU clock frequency differences and cache sizes. For instance, the SBC’s clock is 2.7
times slower than the workstation’s average clock, and the latter benefits from an L3
cache. Unsurprisingly, results are roughly 3.5 times better on the workstation.

Second, independently of the platform or the method, doubling p∆ halves the through-
put (thus doubles latencies). The same goes for pω. These observations confirm the as-
sumptions made during complexity estimations in the previous section.

Finally, throughput and latencies of the TS method (which requires p∆ = q = 64) are
close to the ones of the FFT method with p∆ set to 8. When using FFT with p∆ set to
q = 64, the throughput is divided by 6 compared to the TS method, dropping from 20.3
kC/s to 3.3 kC/s.

In other words, the TS method allows to achieve the best performances (detection and
throughput) for the lowest complexity.

4.3 Conclusion

In this chapter, a solution has been provided to the legacy detection algorithm sen-
sibility to scaling factors in input. This solution takes the form of a normalization at
symbol level. Multiple candidate norms have been compared in terms of computational
complexity and impact on detection performances. It led to the choice of the L2, defined
in (4.6).

Moreover, a new method to compute the correlations, key piece of the detection al-
gorithm, has been produced. This Time Sliding method can reach the highest detection
performances possible for a lower complexity than the legacy FFT method. This has been
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Table 4.4 – Algorithm benchmarking results depending on the platform used, the values of (p∆, pω) and
the correlation method implemented, for N = 60 and q = 64.

(a) Server benchmarking results

p∆ pω Throughput Throughput Worst latency Best latency
kC/s kb/s ms ms

FFT 8 4 135 4.2 60.7 28.4
8 77 2.4 106.4 49.9

16 4 68 2.1 120.5 56.5
8 39 1.2 210.1 98.5

64 4 17 0.5 481.9 225.9
8 10 0.3 819.2 384.0

TS 64 4 122 3.8 67.1 31.5
8 69 2.1 118.7 55.7

(b) Workstation benchmarking results

p∆ pω Throughput Throughput Worst latency Best latency
kC/s kb/s ms ms

FFT 8 4 160 5.0 48.0 24.0
8 91 2.8 84.4 42.2

16 4 81 2.5 94.8 47.4
8 46 1.4 167.0 83.5

64 4 20 0.6 384.0 192.0
8 11 0.3 698.2 349.1

TS 64 4 130 4.0 59.1 29.5
8 76 2.4 101.1 50.5

(c) SBC benchmarking results

p∆ pω Throughput Throughput Worst latency Best latency
kC/s kb/s ms ms

FFT 8 4 45.9 1.43 167 84
8 26.2 0.82 293 147

16 4 23.1 0.72 332 166
8 13.0 0.41 591 295

64 4 5.8 0.18 1324 662
8 3.3 0.10 2327 1164

TS 64 4 35.4 1.11 217 108
8 20.3 0.63 378 189
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verified by benchmarking software implementations of each method for various parame-
ters. By the very structure of each algorithm, the complexity relations remain the same
for any value of N or q. Thus, to limit the amount of tables represented, they are not
reported here.

It is worth noting that the work related in this chapter have resulted in a peer-reviewed
contribution [16].

Nevertheless, the achieved throughput do not meet the requirements of LPWANs
[29], which demand at least 6.25 kb/s of payload throughput. However, each algorithm
offers different parallelism levels, and may also benefit from platform and target specific
optimizations.

In order to meet the requirements of the LPWAN standard, the next chapter is dedi-
cated to the implementation of the QCSP chain, from transmission to reception, studying
target-specific and context-aware optimizations.
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Real-Time Implementation
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An algorithm achieving the best theoretical performances possible is interesting to
study to get the performance bound of the communication system. However, it has no
practical interest if it is too complex to be implemented in a way that satisfies the con-
straints of the targeted application context.

As written in the previous chapters, the QCSP communication chain allows reducing
the resources used for transmitting data in the context of IoT, and more precisely, of
LPWANs. These networks are mid-range, e.g. the standard requires from 10 to 15 km
of range in the rural space. The transmitting devices are expected to be low-cost and
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battery powered, thus, the transmission has to be as energy efficient as possible. At the
receiving side, the constraints are less severe. However, the complexity of the receivers
have to remain restrained, to ensure scalability and flexibility.

Previous work has proved the relevance of the QCSP chain for this context in terms
of communication quality and robustness against channel conditions [17]. In the previous
chapter, the detection algorithm has been enhanced, making it resilient to input scaling
factors and improving its algorithm-architecture adequacy. Particularly, the computa-
tional complexity has been reduced, which should ease software and hardware implemen-
tations.

This chapter aims to demonstrate the rational of a QCSP chain real-time usage in the
context of LPWANs. To this end, the transmission process is addressed, covering both
software and hardware implementations. Then, the detection stage is studied. First, its
inherent parallelism levels are detailed, followed by the presentation of possible paral-
lelization strategies for software and hardware implementations. Finally, the quantization
study performed on the algorithm is described. Note that the half raise cosine filter is
not considered in the chapter, since implementing a finite-impulse response filter is not a
challenge.

5.1 Transmission

5.1.1 Principles

The transmission side of the QCSP system is not complex compared to the receiver
side. However, as transmitting devices are likely to be low-end sensor nodes, that often are
battery powered, a special care must be given to implementation properties. As recalled
in Fig. 5.1, a QCSP transmitter requires an NB-LDPC encoder, a CCSK mapper and a
way to apply the Overmodulation (OM) before BPSK modulation. These functions map
the K × p bits of the payload message M to the N × q chips of the QCSP frame F .

Message M

(K × p bits)
NB-LDPC
Encoder

CCSK
Modulation

Overmodulation
+ BPSK To the channel

Codeword C

(N × p bits)
CCSK Frame FCCSK

(N × q bits)
QCSP Frame F

(N × q chips)

Figure 5.1 – Transmitter side of the QCSP chain.
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Let us evacuate the uncertainties on the two uncommon functions, namely the CCSK
mapping and OM.

First, let us address CCSK mapping. We consider that the PN sequence P0 is repre-
sented as bits in the transmitter, i.e. for all i ∈ J0, q−1K, P0(i) is in {0, 1}. CCSK mapping
then consists on associating a GF(q) of natural value k to the kth circular rotation Pk of
the PN sequence, as defined in (3.3). Thus, it can be reduced to a memory mapping. In
software (thus, on CPU), this operation can be accelerated using the specialized SIMD
instructions if such instructions are supported, or any other feature available. When tar-
geting hardware, other kinds of optimizations can be applied, whether they are FPGAs
circuits or ASICs. Their specificity is that the mapping can use LookUp Tables (LUTs)
to directly associate the GF(q) symbol binary value to the right CCSK symbol. For in-
stance, for q = 64 (i.e. p = log2(q) = 6), on a Xilinx Artix 7 FPGA which has 6-bits input
LUTs, 64 LUTs are enough to implement the mapping. A schematic view of the CCSK
mapping is given in Fig. 5.2a for q = 4, with red square representing ones and blue square
representing zeros.

The OM is not more complex. In (3.5), B was assumed to be composed of +1 and
−1, to aggregate the BPSK mapping to it. However, as for P0, the OM sequence B

can be represented as bits, such that for all i ∈ J0, N − 1K, B(i) is in {0, 1}. Thus, the
multiplication by B(i) become a ”not exclusive or” (denoted XOR) logical operation,
since BPSK can be applied after. Thus, (3.5) become

∀k ∈ J0, q − 1K, ∀i ∈ J0, N − 1K, F (i × q + k) = FCCSK(i × q + k) XOR B(i). (5.1)

A graphic representation of the process is given in Fig. 5.2b, using the same convention
and parameters than for CCSK. It should be noted that the optimizations considered for
CCSK mapping can be used for OM too. Indeed, XOR SIMD instructions are common
on CPUs, and logical evaluation of such XOR is straightforward with LUTs on FPGA
circuits.

Thus, the most complex part to implement in the transmitter is the NB-LDPC en-
coder. For flexibility reasons, the NB-LDPC encoder used in the QCSP chain has not
been parallelized. Indeed, without prior information on the NB-LDPC code structure, the
encoding algorithm does not have inherent parallelism levels. The encoding must be per-
formed as described by (3.1), by multiplying the message vector M of K symbol by the
generating matrix G of K lines and M = N − K columns. Nevertheless, since N is small
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(b) OM as a simple logical operation.

Figure 5.2 – QCSP uncommon functions represented for q = 4.

(from a few tens to a few hundreds symbols), this operation can be serialized efficiently
with a short latency. For instance, for N = 60 and a code rate of 1

3 (thus K = N
3 = 20), it

results in 800 (K ×M) multiply accumulate operations over GF(q). It can be implemented
using pre-computed LUTs on both CPUs and FPGA circuits.

To illustrate the previous assumptions, and demonstrate the low computational com-
plexity of the QCSP transmitter, it has been implemented on various CPUs and FPGAs
circuits. The resulting implementations and their performances are presented in the next
sections.

5.1.2 Transmitter software implementation

First, the transmitter has been implemented on software, to benefit from shorter de-
velopment time. They allow to try different algorithm settings. Such software implementa-
tions are already used in other prototyping systems [108]. Moreover, thanks to recent ad-
vances in CPU efficiency, a real-time software system is feasible [72]. We decided to target
both the low-cost Raspberry Pi 4 ARM SBC and the mid-range Intel x86_64 workstation,
previously introduced in Table 4.3 in chapter 4. This choice allows demonstrating the low
computational complexity of the transmitter, and its real-time capabilities. Besides, the
software flexibility eases the use of Software-defined Radio (SdR) modules.

The transmitter stack has been split in functions, which have in turn been imple-
mented in C/C++14. To improve the performances of the software implementation, the
source codes are finely tuned to benefit from GCC compiler optimization routines. The
options passed to the compiler during the compilation (e.g. -O3 -mcpu=native) enable all
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Table 5.1 – Performance of QCSP transmitter software implementation for a payload of 120 bits,
q = 64, and N = 60.

Target Clock Throughput Latency Power Energy
System CPU GHz Mc/s Mb/s µs mW nJ/b

SBC Cortex A72 1.5 70 2.19 53.0 95 42
Workstation Core i7 4.0 700 21.9 5.3 102 × 103 4500

optimizations available for the CPU targeted (e.g. specific SIMD instructions). Moreover,
the source codes have been written to be portable, i.e. target independent (ARM or Intel)
and operating-system independent (Linux, MAC OS, Windows). For instance, the CCSK
mapping is implemented using the rotate_copy function defined in the C++14 standard,
which result in the following code:

1 f o r ( i n t i = 0 ; i < N; i++) {
2 i n t * symbol _ i = f rame_ccsk + i * q ;
3 const i n t * Pk = P0 + codeword [ i ] ;
4 const i n t * Pe = P0 + q ;
5

6 // do : [ P0 , · · · , Pk , · · · , Pe - 1 ] → [ Pk , · · · , Pe - 1 , P0 , · · · , Pk - 1 ]
7 std : : r o ta t e _ copy (P0 , Pk , Pe , symbol ) ;
8 }

In this code, P0 is a pointer to an address in memory which stores P0, and frame_ccsk is a
pointer to the beginning of FCCSK . N and q are constexpr constant, known at compile time,
allowing the compiler to optimize loops and dependent function calls more aggressively.
codeword is an array of integers that represents C. While being a direct description of
CCSK mapping, the constexpr feature coupled with the fact that rotate_copy is provided by
the already optimized standard C++ library, result in an efficient and portable software
implementation.

This implementation has been benchmarked on each platform, by simulating the
transmission of 104 frames, as fast as possible. The resulting throughputs, latencies, and
amounts of energy consumed per payload bit are given in Table 5.1 when q = 64, N = 60
and with a code rate Rc = 1

3 (thus a payload of log2(q) × K = 120 bits). Energies are
measured with a Hall-effect measurement device put on the power cord for the SBC, and
using the Running Average Power Limit (RAPL) API of Intel for the workstation.

On one hand, the results of the workstation, which is a prototyping platform, are really
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high for the context targeted. It achieves a chip rate of 700 Mc/s, which translates to 21.9
Mb/s, comparable to the throughput required by the Wi-Fi. Its energy consumption of
4.5 µJ/b is not compliant with IoT constraints. On another hand, on the ARM SBC
closer to actual devices, achieved throughputs are 10 times lower. Nonetheless, the full
software stack bit rate of 2.19 Mb/s on the SBC is 20 times greater than the one required
by LPWANs (which is a little lower than 100 kb/s). It is also 40 times higher than the
fastest standard LoRa (using SF7). The energy consumed per payload bit transmitted
on the SBC has been measured at 42 nJ/bit. In comparison, the workstation consumes a
hundred time more.

The difference between the results of the SBC and the workstation can be explained
by their architectural differences:

1. the workstation’s clock frequency is 2.7 times higher,

2. the SIMD widths is 2 times higher on the Intel CPU compared to the ARM ones.

Assuming results can be transposed linearly depending on N 1, and that q does not
impact throughput 2, the current ARM platform should be able to meet LPWAN require-
ments for any value of q, and any value of N up to a thousand of symbols. In other words,
it demonstrates the viability of the QCSP waveform for IoT devices.

The transmitter has also been implemented on hardware targets. Indeed, current
Software-defined Radio (SdR) modules, such as the Ettus Research Universal Software-
define Radio Peripheral (USRP) B205 mini or the HackRF, include FPGA circuits. So, it
is possible to integrate the transmitter stack in hardware to reduce the stress put on the
CPU.

5.1.3 Transmitter hardware implementation

Implementing the transmitting stack on FPGA can help to reduce the power con-
sumption, thus improving efficiency, thanks to dedicated hardware architecture. It is well
known that RTL description of digital architectures is time-consuming and provides low
design exploration capabilities. Consequently, we decided to take advantage of High-Level
Synthesis (HLS) design flows. HLS flow allows the designer to describe the behavior of the
system in C/C++. However, all the features of the C/C++ language are not available,

1. It can be safely assumed, since no optimization has been performed at the frame level. It will just
fulfill pipelines more efficiently.

2. Since values are represented by 32-bit integers, the performances should not be impacted while q
remains inferior to 232.
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and mastering the workflow requires an increase in competencies. It still reduces sub-
stantially the required design times. Thanks to fast design exploration features provided
by the Xilinx Vivado HLS tool, different hardware architectures have been designed for
several low-end Xilinx 7 Series FPGAs, as presented in Table 5.2.

Different kinds of architectures have been developed, and two of them are presented.
The first architecture has been designed with timings as a priority, maximizing the
throughput and minimizing the latency, no matter the cost in resources or energy. The
second architecture targeted a different trade-off, aiming to reduce resource utilization
without sacrificing timing performances.

They were obtained using the same C/C++ behavioral description, by inserting dif-
ferent #pragma directives supported by Vivado HLS. Both architectures are composed
of a task pipeline to improve the processing throughput. It is achieved using a dataflow
directive on the complete transmitter. In the first architecture, pipeline directives are ap-
plied to the tasks internally, to improve their own throughput. In the second one, only
the loops inside the functions are pipelined. Function level pipelining is disabled, to save
resources. The pipeline directive instructs the HLS tool to divide the loop or the function
into steps separated by registers, effectively breaking the critical path, and thus, improv-
ing throughput. The dataflow directive takes advantage of task-level parallelism to start
the execution of a task from the already produced data of a previous dependent task.

Implementation results are reported in Table 5.3 for the transmitter settings q = 64,
N = 60, and K = 20. Targets are clocked at 100 MHz. The table includes the transmitter
chip rate in Mc/s, the corresponding payload bit rate in Mb/s, and the latency in µs.
It is accompanied by the resource utilization, the package (static and dynamic) power
consumption in mW, the energy consumed per payload bit in nJ/b.

Results have been gathered after place and route stage on the circuit. The reported
power usage was gathered from Xilinx Vivado, assuming a room temperature of 25°C.

The slowest implementation (Arch. 2 on the Nexys A7) consumes 401 LUTs, 374 FFs

Table 5.2 – Targeted FPGA characteristics and price tag

Board FPGA Price (€ )
Name Family Serial Board Chip

Nexys A7 Artix 7 XC7A100T-1 375 160
CMOD A7 Artix 7 XC7A35T-1 110 50

Arty S7 Spartan 7 XC7S50-1 165 65
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Table 5.3 – Performance of QCSP hardware stack on Xilinx FPGA clocked at 100 MHz.

Target Arch. Throughput Latency Usage Power Energy
Name id Mc/s Mb/s µs FF LUT BRAM mW nJ/b

Nexys A7 1 310 9.7 12 870 958 11 255 25.5
2 86 2.7 88 374 401 12 129 94.6

Arty S7 1 310 9.7 12 870 958 11 112 11.2
2 96 3.0 80 373 409 12 89 59.3

CMOD A7 1 310 9.7 12 870 958 11 112 11.2
2 86 2.7 88 370 390 12 90 66.0

and 12 BRAMs. It achieves a bit rate of 2.7 Mb/s, for a latency of 88 µs. Surprisingly, it
is on par with the ARM-based software implementation. Worse, it consumes more energy
per payload bit, due to the higher latency on one hand, and due to the Artix 7 100T non-
negligible static power consumption on another hand. These results are in fact expected,
since the current designs consumes less than 12% of the available BRAM, and less than
2% of the available LUTs and FFs. Since the static consumption depends on the circuit
size, it appears that the chosen targets are over-sized. It is worth noting that those targets
have been selected also for prototyping purposes, since we had development boards which
embedded such chips available. Other FPGA product lines exist, like the Low-Power Artix
7, or the ICE family from Lattice Semiconductor. Those have lower static consumption,
which would change the results.

Nevertheless, all high throughput architectures are around 4.4 times faster than the
ARM-based implementation due to the lower latency. They even challenge the worksta-
tion. Indeed, the latter is 2.3 times faster (21.9 Mb/s) than the fastest FPGA imple-
mentations. However, these implementations consumes from 400 to up to 900 times less
power. They are 200 times more power efficient. This demonstrates that the transmitting
hardware stack complies with IoT requirements. Considering the low resource utilization,
it leaves a lot of possibilities to improve the design. For instance, one could target smaller
circuits, more in line with the needs.

The performances of the hardware transmitter confirm the relevance of the QCSP
chain in the context of IoT. We succeeded to implement both software and hardware real-
time transmitters, that achieves high throughput (from 20 to 100 times faster than LoRa),
with low resource utilization and low energy consumption. The first step to implement
the complete real-time QCSP communication chain is thus completed. Let us now focus
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on the main topic of this chapter, the detector.

5.2 Detection

The most demanding task of the receiver is the detector. It must process all received
samples, as fast as possible. For instance, to achieve LPWAN compatible throughput
(from 6 kb/s to 100 kb/s [29]), with q = 64, it must process the input with a throughput
from 192 kc/s, up to 3.2 Mc/s. Moreover, the computations are non-trivial, as described
in chapter 3. The detector implementation has to take advantage of multicore CPU or
FPGA circuit features. This section presents all the work performed on the QCSP detector
implementation, to unlock its full potential. Indeed, this required the fine-tuning of the
algorithmic descriptions, to adapt it to each selected target.

The increasing processing performance of multicore and manycore devices, associated
with easy-to-use programming models [56, 57], made the implementation of prototypes or
real communication systems possible. A software-based implementation may not achieve
the throughput and energy efficiency of an ASIC or FPGA implementation. However, it
offers a higher flexibility, a higher scalability, and a lower prototyping time than its hard-
ware counterparts. Nevertheless, achieving high performances is challenging and requires
algorithm parallelization efforts.

In chapter 4, a new method to implement the correlations required in the QCSP
detection algorithm has been presented. This new Time Sliding (TS) method has the ad-
vantage in terms of efficiency, and can reach the highest detection performances accessible
to a QCSP detector for a lower computational complexity than the legacy FFT method.
Two TS correlator architectures have been presented, depicted in Fig. 4.5. In the current
chapter, only the “index shifting” architecture will be considered. Several parallelism lev-
els have been identified and reported. However, the parallelization levels and associated
strategies are influenced by the correlation method used. They are also affected by the
waveform settings. Those settings are the frame size N , the size of P0 (q), the number of
score computed every q chips p∆, and the number of frequency hypotheses pω. They are
also influenced by the chosen implementation target.

The current section first focuses on identifying the most critical task of the detec-
tion system. Then, the inherent parallelism levels of this task are detailed. Subsequently,
strategies used to exploit the parallelism in software implementations are presented and
benchmarked. The same is performed for hardware implementations. Finally, the first
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— When a detection occurs

LegendDetector

Figure 5.3 – Detection tasks data flow graph, with associated path stress.

drafted quantized model of the QCSP detector is presented and put to test.

5.2.1 Critical task identification

First, let us remember all the tasks involved in the detection process of a QCSP frame,
as shown in Fig 5.3:

— The norm calculation (TL), which consumes yn to produce a normalization factor
(c.f. section 4.1),

— the score processing (TS), consuming the same yn but also the normalization factor
to produce a score Sω

n , associated to a rotation hypothesis ω,

— the state evaluation and updating (TU), that compares the resulting score Sω
n to the

threshold U0, but also keeps tracks of the score evolution, in order to select the best
score hypothesis,

— the buffering and output on-demand of data (TB), controlled by the previous tasks,
that memorizes the last yn to output the detected frame buffer FD when a frame
arrival is assumed.

The last three tasks are detailed in section 3.3. All tasks depend on each other, at least
indirectly. TS requires the normalization factor of TL before accumulating the score. TU

needs the score output of TS. TB must buffer the new data before it can output FD,
as commended by TU . The different colors on Fig. 5.3 represent the usage rate of the
data path. The blue paths are continuously supplied with data. The tasks they link must
consume each new chip (or at least buffer it) to be real time. The green paths are activated
only when a detection occurs, so they are less critical. In between, the turquoise paths
have a usage rate constrained by p∆, i.e. they are activated every q

p∆
chips (so at least

every q chips, but up to each new chip).
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In order to optimize the whole detector, one must focus on the TS, which is the most
critical task. Indeed, TU consists only on a comparison with the threshold, and a simple
state comparison. As for TL , a quick look on the complexities previously reported in
Table 4.1.2 compared to those in Table 4.2 for just the correlation task of TS is enough
to measure how much more complex TS is.

The most complex subtask of TS is the correlation, since the score accumulation can
be reduced to a few additions while the maximum and the division are basic operations.
It has thus been decided to restrain the optimization study to the correlation subtask of
TS.

5.2.2 Correlator inherent parallelism

In accordance with the last statement, the optimization and parallelization efforts
have been focused on the correlation subtask. Two different methods to compute the
correlations exist. In chapter 4, the TS method has been proven to be more suited to the
task than the legacy FFT method without optimization. However, taking the context into
consideration, and making use of target specific optimization may alter the results.

Let us introduce two naming conventions. First, the block or function that compute
a correlation vector Lω

n using the TS method is called a TS Correlation Unit (TCU),
while the one using the FFT method is called an FFT Correlation Unit (FCU). Second,
the system that allows to compute the p∆ × pω correlation vectors Lωi

n−m q
p∆

for each
i ∈ J0, pω − 1K, and m ∈ J0, p∆ − 1K, is called the correlator.

The two possible correlator implementations are depicted in Fig. 5.4. The first one in
(a) uses FCUs, whereas the second one in (b) use TCUs.
These figures bring to light two coarse grain parallelism levels:

1. The ∆-parallelism (//∆), related to p∆,

2. the ω-parallelism (//ω), related to pω.

The parameter p∆ takes value in J1, qK, and the parameter pω is limited to J1, 8K. The
value of 8 ensures compliant detection performances while restraining the computational
complexity. The pair (pω, p∆) impacts on detection performances and on system complex-
ity as reported in chapter 4. Computations performed in any of the p∆ × pω CU are data
independent, allowing fully concurrent evaluation. In addition, correlations along //ω are
time-independent. However, for //∆, if for FCUs, each correlation is time-independent
of the others, as discussed previously it is not the case for TCUs. The two coarse grain
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Figure 5.4 – The two different correlators represented with their associated ∆-parallelism and
ω-parallelism.
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Figure 5.5 – FCUs shared memory total usage.

parallelism levels enable a wide range of setups. Indeed, the overall correlation task can
be seen as a single serialized task or can be split in up to p∆ × pω parallel sub-tasks.

5.2.3 Correlator in-depth complexity study

In this section, optimized versions of each correlator are presented. Indeed, the com-
putational complexity previously reported in Table 4.2 were estimated without specific
optimizations. The complexities reported in Table 5.4 correspond to architectures that
take advantage of CPU and FPGA circuits features.

As depicted on Fig. 5.4a, each of the p∆ FCUs requires a vector yn−i q
p∆

of q chips.
However, the use of p∆ buffers of q chips is memory inefficient because most values are
reused by all CUs. In fact, since the first FCU already stores the q last samples, the second
just need q

2 samples more, the third and the fourth need q
4 in addition, and so on and

so forth, as shown on Fig. 5.5. The two memory setups are depicted in Fig. 5.6. Besides,
in opposition to what was stated in the previous chapter, the memory does not need to
be duplicated for each pω hypotheses. This effectively reduces the memory complexity by
a factor pω. Sharing memory over pω and p∆ allows sparing resources, which translates
to a more efficient cache utilization on CPU, and a reduction of hardware complexity on
FPGA circuits.

However, to work with shared memory, there is two possibilities. The ith FCU can
either receive the values associated to yn delayed by q

p∆
, e.g. by using delay buffers on

hardware circuits as represented on Fig. 5.6. It can also be assigned the range [n − i q
p∆

−
q + 1, n − i q

p∆
] in a shared circular memory, and read it every q chips 3. This memory

3. Reading it more often is equivalent to serializing ; It would result in recomputing a score already
computed (see Fig. 4.4a)
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range corresponds to yn−i q
p∆

. This results in an updated memory complexity, reported
in Table 5.4, below the shared memory version complexities. From a computational com-
plexity point of view, the FFT algorithm is already optimized. It is assumed that an
optimal operator is available, with a complexity of q log2(q)

2 additions, and of q log2(q)+2
2

multiplications.

In a TCU correlator, the last multiplication can be replaced by a conditional nega-
tion thanks to the binary nature of P0. Since ∀(k, i) ∈ J0, q − 1K2, Pk(i) ∈ {1, −1}, the
multiplication is for all n

dω
n × Pk(i) =

 dω
n if Pk(i) = 1,

−dω
n if Pk(i) = −1.

(5.2)

It reduces by a factor q the number of complex multiplications. This method is reported
as the optimized TS in Table 5.4. This is useful for hardware implementations, where
complex multiplications consume more resources than conditional negation. The latter
can be reduced to the use of multiplexers. This is less relevant on software, since CPUs
often integrate specialized floating-point multiplication in their Arithmetic Logic Unit
(ALU) and where conditionals result in general in branching and thus loss in throughput,
due to pipeline interruptions.

It is worth noting that for integers (thus, in case of fixed-point arithmetic), the oper-
ation can be branch-less, by the use of a binary operation. Indeed, for any integer x and
denoting b = Pk(i) < 0,

x × Pk(i) = x ⊕ bb . . . b + b,

with bb . . . b being b broadcasted to the length of x in bits. This may not benefit to
FPGA design, as good synthesis tools may replace the multiplication by LUTs anyway,
however it can greatly improve performances on small microcontrolers devoid of dedicated
multipliers 4.

To put these algorithm improvements to test, each correlator variation has been imple-
mented on both software and hardware targets, trying to achieve real-time performances.

4. For instance, a 16-bit microcontroller would struggle to implement a multiplication with 32-bit
integers, and would perform better with two consecutive binary XOR and one bit addition.
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Table 5.4 – Complexity comparison depending on p∆ and for pω ∈ J1, 8K.

Method p∆ Add Multiply Memory

FFT (distributed) J1, q − 1K 2pωp∆q log2(q) pωp∆q(log2(q) + 2) (p∆−1
p∆

+ p∆)q
q 2pωq2 log2(q) pωq2(log2(q) + 2) q2 + q + 1

FFT (shared) J1, q − 1K unchanged unchanged ∑log2(p∆)
i=0 2−iq

q unchanged unchanged 2q − 1

TS (original) q pωq(1 + q) pωq2 pω2q

TS (optimized) unchanged unchanged pωq unchanged

5.2.4 Correlator software implementation

The complexity of the receiver is much higher than the transmitter one. Thus, its
parallelization and implementation have received a particular care, and required even
more efforts than for the transmitter.

The benchmarking platforms are the exact same ones used detailed in Table 4.3. As a
reminder, these platforms are a Raspberry Pi 4 ARM low-cost SBC, an Intel workstation
and a high-end Intel multicore server.

The correlation algorithms presented before have been described in C++14 language.
As for the transmitter, the source code is precisely written, to leverage every available
CPU features while remaining portable. It allows to use the same software description on
every platform while still taking advantage of the specific features of each CPU, like the
dedicated SIMD instructions AVX on Intel platforms, and NEON on ARM. Moreover,
the well-known OpenMP API have been used to unlock Multithreading (MT) capabili-
ties, enabling to take advantage of task parallelism. For benchmarking purpose, the code
has been compiled with the GNU compiler v10, enabling optimization and unsafe arith-
metic. This is done by specifying the following compiler flags: -Ofast on all platforms,
-mcpu=native for the ARM CPU, -march=native -mtune=native on Intel CPUs.

The software detector has been implemented for the two detailed CUs variations, for
several values of p∆ and pω. FCU software correlator has only been implemented with
shared memory, as it allows a better usage of parallelism on CPU. Since several cores can
read the memory in parallel, and since the cache is actually a shared memory, the adequacy
is maximized. For comparisons, a mono-thread FCU correlator has been implemented, as
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well as a MT one. Concerning TCUs, as discussed in the previous section, they don’t
benefit from replacing the multiplication by a conditional negation. Indeed, all platforms
have dedicated efficient floating-point multipliers. Even the trick of using the XOR has
been benchmarked, and it was always slower. In these implementations, the data are
manipulated using single-precision arithmetic to avoid precision issues involved by fixed-
point arithmetic.

The parallelization strategy described in section 5.2.2 has been applied to the C++
source codes. For FCUs, the optimized library FFTW3 [107] is still used, its performances
being excellent. For the MT version, //∆ has been leveraged, using the OpenMP API.
We tried to use OpenMP along //ω as well, unfortunately, despite our best efforts, it
always resulted in a slower implementation. It appears that computations involved in one
FCU are too light in regard to the thread synchronization overhead. Parallelization would
demand to increase latency, thus filling pipelines, and use the distributed memory version.
However, it would require a lot of CPU cores. For instance, for q = 64, N = 60, p∆ = 8
and pω = 8 (which does not even meet detection performance requirement, c.f. Fig. 4.7),
it would require 64 cores to have one thread per core and fill CPU pipelines.

At the opposite, the TCU correlator has been implemented only thanks to handmade
C/C++ codes. The sources are written using floating point values as well, but first, as close
to the algorithm a possible. For instance, it uses std :: complex<float> standard type and
associated functions. In a second time, for performance purpose, the code has also been
written in a way that takes advantage of the compiler auto-vectorization feature [109].
It has been achieved by decomposing complex arithmetic into operations on real values,
is reported as TS SIMD in Table 5.5. An MT version has not been tried, first because
one TCU is less complex than one FCU, thus the observation on thread synchronization
overhead is still relevant. Second, as explained in section 5.2.2, //∆ is not time-independent
in TCUs, making using MT a recipe to disaster ; threads would constantly synchronize
with each other, wasting time.

Measured input throughput (in Mc/s) and corresponding payload throughput (in kb/s)
for different setups are reported in Table 5.5. Throughputs were measured using the
C++14 Chrono API. Latency is left aside this time, as it remains proportional to the
throughput. It would not bring information and would clutter the results. In Table 5.5,
the MT FCU correlator uses p∆ threads whereas all the other implementations are single
threaded. As it can be seen, the throughput performance depends on the correlation
method applied and the selected parameters. Note that for the SBC, input throughputs
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are reported in kC/s, values being consistently lower than 1 Mc/s.

5.2.4.1 Analysis of the results

Results gathered in Table 5.5 lead to several observations. First and foremost, it is
important to note that the TS SIMD correlator, while not exceeding the throughput of
MT FFT for p∆ ≤ 8 on ARM, nor for p∆ ≤ 16 on Intel’s platforms, is substantially
faster when p∆ = 64. It is twice faster on the server, 3 times faster on the workstation,
and more than 5 times faster on the SBC. Considering the single threaded nature of the
implementation, it leaves a lot of room to use other correlator in parallel. For instance,
this could be leveraged to address oversampling, actually running independent detector
in parallel for each sampling hypothesis. Even the not optimized TS beats the MT FFT
when p∆ = 64. The single threaded FFT is completely outperformed for any values, on
any platforms. It clearly demonstrates the superiority of the TS approach when targeting
the best performances.

Some other results are intriguing. MT FFT throughputs on the multicore server are
not always higher than those on the workstation. It can be explained easily though. When
all cores are under load, the CPU frequency of the workstation remains set at 4.0 GHz
for all cores, while the one of the server drops to 2.7 GHz instead of the peak 3.0 GHz
frequency reached when only one core is used. Besides, the use on multiple cores does not
result in a linear increase in performances, due partly to thread synchronization. Thus, for
lower value of pω × p∆, the server cannot keep up with the workstation. For instance, for
pω = 4 and p∆ < 64, the workstation is faster than the server, but for pω = 8 and p∆ > 8,
it is the opposite. However, the server uses p∆ cores, while the workstation only uses 4, to
prevent the use of simultaneous MT (SMT). SMT is called hyperthreading on Intel, and
may hurt efficiency. It enables 2 threads to run on the same core, but when all threads
are fully used, the operating system is more likely to interrupt them. Moreover, while
always allowing better raw performances, the gain is lesser than the drawback in terms
of consumption [63]. In the same manner, MT FFT is never p∆ times faster than plain
FFT. In fact, it is at most 5.7 times faster, when p∆ = 16 and pω = 8 on the server, and
at least 1.9 times, also on the server but for p∆ = 8 and pω = 4. On average, it is 3 times
faster than plain FFT on the workstation and on the SBC. So while being performant,
the MT FFT approach is not efficient.

Similarly, the TS throughput are practically the same on the server and on the work-
station, due to the frequency issue being counterbalanced by the server having access
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Table 5.5 – Software optimized implementation throughput depending on the platform used, the values
of (p∆, pω) and the correlation method used, for N = 60 and q = 64.

(a) Server benchmarking results

p∆ pω FFT MT FFT TS TS SIMD
Mc/s kb/s Mc/s kb/s Mc/s kb/s Mc/s kb/s

8 4 2.22 69.4 4.30 134.4 N/A N/A N/A N/A
8 1.33 41.6 4.15 129.7 N/A N/A N/A N/A

16 4 1.81 56.6 3.67 114.7 N/A N/A N/A N/A
8 0.69 21.6 3.21 100.3 N/A N/A N/A N/A

64 4 0.30 9.4 1.60 50.0 2.21 69.1 3.26 101.9
8 0.18 5.6 1.03 32.2 1.37 42.8 1.93 60.3

(b) Workstation benchmarking results

p∆ pω FFT MT FFT TS TS SIMD
Mc/s kb/s Mc/s kb/s Mc/s kb/s Mc/s kb/s

8 4 2.48 77.5 6.49 202.8 N/A N/A N/A N/A
8 1.45 45.3 4.22 131.9 N/A N/A N/A N/A

16 4 1.28 40.0 4.09 127.8 N/A N/A N/A N/A
8 0.74 23.1 2.50 78.1 N/A N/A N/A N/A

64 4 0.32 10.0 1.18 36.9 2.23 69.7 3.79 118.4
8 0.19 5.9 0.70 21.9 1.33 41.6 2.18 68.1

(c) SBC benchmarking results

p∆ pω FFT MT FFT TS TS SIMD
kC/s kb/s kC/s kb/s kC/s kb/s kC/s kb/s

8 4 328 10.25 702 21.9 N/A N/A N/A N/A
8 190 5.94 489 15.3 N/A N/A N/A N/A

16 4 169 5.28 460 14.4 N/A N/A N/A N/A
8 95 2.97 264 8.3 N/A N/A N/A N/A

64 4 43 1.34 127 4.0 364 11.4 669 20.9
8 24 0.75 74 2.3 192 6.0 410 12.8
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to AVX-512 SIMD instructions, which sizes are twice as large than AVX-2 ones on the
workstation. Nonetheless, the beneficial effect of the code adaptation to vectorization is
obvious, since TS SIMD is 1.7 times faster on the workstation, 1.4 times faster on the
server, and around 2 times faster on the SBC.

Based on these conclusions, the most well suited method to implement an efficient
QCSP correlator have to be using TCUs. Besides, TS SIMD implementations on all plat-
forms reach the throughput required by the LPWAN standard, even on the Raspberry Pi
4, a low-cost small form factor Single-Board Computer. It demonstrates the viability of
the approach for low-power software receiver designs.

However, as stated before, a software implementation does not provide the best so-
lution in terms of throughput and energy consumption. To unlock the full potential of
the proposed detector that is massively parallel, FPGA circuits have thus been targeted.
They can exploit the inherent parallelism of the detection algorithm, and may result in
the best possible implementation.

5.2.5 Correlator hardware implementation

In contrary to the last sections, where software implementations were studied to lever-
age their flexibility, the current section is focused on hardware implementation that should
provide better efficiency.

Like in the transmitter case, HLS workflow has been used to reduce the hardware
development time, and keep relative flexibility, compared to traditional RTL design ap-
proach. Thus, the C++ detector source codes were rewritten in C language using the HLS
compliant C language subset [79] supported by the Xilinx Vivado HLS 2019 [83] tool. To
test various architectural variations, for different values of the settings q, N , pω, or even
p∆, descriptions for both detection approaches, have been described to be both efficient
and configurable. It has been achieved by using #define and #pragma keywords, as used
for the transmitter, to control the HLS design tool. These C models are synthesized for
the Xilinx Kintex 7 FPGA XC7K410TFFG900, an FPGA found in the Ettus Research
USRP X310. Our goal is to embed our design directly onto the SdR device. The feature
that decided this choice is RF Network-on-Chip (RFNoC)[91]. This framework should
allow embedding custom IPs into the USRP easily. Achieved chip rate and corresponding
payload bit rate are reported in Table 5.6. This values are available after the synthesis of
the hardware description, even when the circuit cannot be actually implemented on the
target, e.g. when too many resources are required. To ease the readability of the results,
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Table 5.6 – Hardware performance of the detector on a Xilinx Kintex 7 XC7410T clocked at 100 MHz,
using floating-point arithmetic if not specified, for q = 64, N = 60 and several values of p∆ and pω.

Method p∆ pω Chip Rate Bit Rate Usage
Mc/s kb/s FF LUT BRAM DSP

FFT 8 4 2.1 65 insufficient resources

8 4 2.6 81 25726 43206 950 380
FFT 8 2.6 81 51452 94468 1900 760

(16bits fixed) 16 4 2.6 81 51452 94468 1900 760
8 2.6 81 102904 188936 3800 1520

TS 64 4 9.1 284 144064 80836 79 383
8 9.1 284 insufficient resources

resource utilization is reported in Table 5.6 only for the methods that successfully pass
the place and route stage.

To consolidate the observations made for software implementations, both TS and FFT
correlators were implemented. Two variants of FFT have been implemented. They were
designed with the idea of high throughput at all costs, instantiating p∆ × pω processing
sub-chains in parallel. They both have task pipelining and parallel processing enabled. The
difference is that the first variant use floating-point arithmetic, which should be the worst
case scenario in terms of resource utilization. To improve hardware efficiency and to have
a a better estimation a resource utilization, the second variant has been designed with
fixed-point arithmetic, with conservative quantization. It should be more efficient than
the floating-point version, while not being subject to any performance loss. The FFT
models used are derived from work presented in [87]. To estimate the overall detector
footprint, results for one FFT have been duplicated. While not giving the exact results,
this hypothesis also neglects signal propagations and supposes free synchronization in
terms of logic glue, which is in fact clearly in the advantage of the design.

The TS correlator has also been described using pipeline and parallel task execu-
tion approaches, as the FFTs. In contrary to the latter, a complete correlator have been
implemented this time. Besides, using the simplification mentioned in section 5.2.3, the
computational complexity at //∆ is significantly lower compared to the FFT ones. This
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TS correlator has been implemented using floating-point arithmetic, to ensure undamaged
detection performances.

The floating-point FFT detector reaches 2.1 Mc/s before place and route stage for a
circuit clocked at 100 MHz. It is on par in terms of throughput than its software single-core
counterpart on Intel’s platforms clocked at 4 GHz. The failure to meet the resource con-
straints was expected, since floating-point arithmetic is known to cause issues on hardware
implementations. The fixed-point variant performed slightly better, reaching a through-
put of 2.9 Mc/s, this time without exceeding available FPGA resources. Concerning the
TS correlator, it achieved a throughput 3 times faster than the best hardware FFT imple-
mentation, despite the use of floating-point arithmetic. More importantly, its throughput
is 1.8 times higher than the best software correlator, the MT FFT, which was set up with
p∆ = 8, while the hardware time-sliding detector has a native p∆ = 64. It thus results in
much higher detection performances, even higher energy efficiency.

These results demonstrate the efficiency of the contributed TS method, at least for
q = 64. For other q values, based on complexities reported in Table 5.4, it is safe to assume
that the TS correlator is advantageous when aiming for the best energy-performances
trade-offs.

Since the TS correlator with pω = 8 failed to meet the resource constraints, we decided
to further improve it. It is due the inadequacy of floating-point arithmetic to hardware
implementations. To address the problem, a fixed-point description of the system is need.
That is why a quantized model was investigated. Theoretically, this approach should
increase both the throughput and the energy efficiency, while reducing resource utilization.

5.2.6 Quantized model of the score processor

This section is dedicated to the presentation of the quantized model of the score
processor. Based on previous section results, the FFT method has been discarded, to
focus our efforts on the TS one. Moreover, we don’t limit the study to the correlator but
extend it to the complete score processor. It associates a coarse rotation hypothesis ω̂ and
the corresponding score Sω̂

n to each input y(n). The p∆ value is set to q = 2p, since TCUs
cannot use another value, as discussed in section 4.2. Complex number quantization is
denoted as 2 � Q, with Q the quantization of both the real and the imaginary part, while
the quantization of real number is simply denoted Q. For instance, the quantization of a
complex number c on 8 bits would be denoted Qc = 2 � 8, while the quantization of a, the
real part of c, would simply be denoted Qa = 8.
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5.2.6.1 Presentation of the quantized model

Quantizing a model enable the use of fixed-point arithmetic. This arithmetic trans-
formation will improve hardware efficiency. The complete fixed-point model estimated
for the score processor presented in this section defines a well-sized quantization scheme.
This approximated quantization scheme will provide a trade-off between implementation
complexity, detection performances, and throughput. It is an already competitive imple-
mentation, that may also benefit from future optimizations. The resulting bit-accurate
model is presented in Fig. 5.8.

Let us define η the quantization of y(n), i.e. Qy = 2�η bits. The whole model has been
extrapolated from this symbolic value, to ensure a flexible and scalable model. Classical
fixed-point arithmetic rules have been applied. As a reminder, let us take u and v two
real number quantized on Qu and Qv bits respectively. Thus,

1. the result of their addition is quantized on Qu+v = max(Qu, Qv) + 1 bits,

2. the result of their multiplication is quantized on Qu×v = Qu + Qv bits.

Consequently, since complex number multiplications essentially are addition of multiplied
real numbers, if u and v are complex numbers, 2�Qu×v = 2�(Qu+Qv+1). Finally, to reduce
the footprint of the model, truncation and saturation have been applied. A truncation
consists on removing of superfluous Least Significant Bits (LSBs), while saturation allows
removing unnecessary Most Significant Bits (MSBs). Let us walk through the model, block
per block.

The first block allows computing dω
n as defined in (4.28), and is depicted in Fig. 5.8a.

0.0 cos( 3π8 ) cos(π4 ) cos( 5π16 ) 1
0.5

sin( 5π16 )

sin(π4 )

sin( 3π8 )

1

Reference
ηω = 4
ηω = 6

Figure 5.7 – Γω = {ej kω
q }k∈J0,2qpωK−1 for q = 64 and pω = 4, quantized on ηω = 4 and 6 bits,

represented on the north-east quadrant.
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Figure 5.8 – Fixed-point model of the QCSP detector, broken down in smaller processing blocks,
depending on η, the input quantization, p = log2(q) and N .
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The point of interest here is the multiplication by the rotation correcting factors ej ωn
q , as

defined in (3.9). These values are periodic ; a period of the rotation is enough to represent
the signal over time. They are represented quantized by ηω bits, but in practice, ηω is set
to 6 bits, as it proved sufficient to produce a reliable rotation. For instance in Fig. 5.7,
it is clear that with ηω = 4 (orange plot), the circle is damaged, whereas with ηω = 6
(blue plot), circular shape is accurate. Since the modulus of ej ωn

q is one (i.e. |ej ωn
q | = 1),

quantizing y(n) × ej ωn
q on η bits does not result in change in the signal dynamic. The

ηω + 1 LSBs added by the multiplication are thus truncated.

The second block depicted in Fig. 5.8b is the norm estimator. The transitive value of
2(η + p) + 1 allows preventing overflow throughout the accumulation of q = 2p values of
η bits. Then, the truncation of η + p + 1 bits reduces the footprint while preserving the
overall norm. Indeed, at low SNR, the norm is mainly influenced by the noise, so using
more than η bits to quantized it is pointless.

The third block is a TCU, depicted in Fig. 5.8c. It uses the index-shifting architecture
depicted in Fig. 4.5b, for the reasons discussed in section 4.2. It also alleviates (5.2) to
replace the multiplication by Pk+i(q − 1) by a multiplexer. The same reasoning as for
the norm applied to justify the 2 � (η + p + 1) quantization format for the accumulated
correlation. The following saturation has been selected to reduce the dynamic range of
the maximums without damaging the detection performance. Indeed, the value of the
maximum is not of interest in the remaining system. The only requirement is that the
saturation value must be high enough that it would not mask a detection. In practice, since
the norm is quantized on η bits, and since the score is the accumulation of N normalized
value, setting the saturation value to 2η × U0 is more than safe.

The remaining blocks are self-explanatory. The chosen saturation value in the corre-
lator depicted in Fig. 5.8d is safe, since it is performed after normalization, and η + 2 bits
are enough to distinguish signal and noise. The score accumulator represented in Fig. 5.8e
follows the same reasoning as the norm accumulator, and the complete score processor is
the combination of all previously presented blocks. The rotation hypothesis ω̂ is quantized
on dlog2(pω)e bits, as it is the address to a ROM which contains the actual rotation values.

Now that the quantization format are explicated, the performances achieved by the
quantized model are presented.
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Figure 5.9 – ROC curves for q = 64, for various value of pω and an SNR of −9 dB.

5.2.6.2 Quantization format effect on detection performances

Data quantization allows more efficient hardware implementations. The drawback is a
possible loss in detection performances. To evaluate the impact of our own quantization
choices, the model depicted in Fig. 5.8 has been simulated in software. It has been sim-
ulated with the same results as used in precedent simulations, e.g. q = 64 and N = 60.
For the simulation, η has been set to 16 bits. While being a large value for a low SNR
application, it is the bit wideness natively supported be X310 USRP, and we wanted to
spare ourselves the extra work required to adapt the USRP FPGA image.

ROC curves obtained by simulation are plotted in Fig. 5.9. As expected, quantization
has impacts performances negatively. Indeed, for p∆ = 4 (aquamarine curve), the Pmd of
the reference is at 3 × 10−5, while the one of quantized version is near ×10−4. However, it
still satisfies the detection performance requirements. This is encouraging, since it means
that a further studied quantization can help reduce resource utilization even more, while
achieving acceptable detection performances.

5.2.6.3 Preliminary implementation results

At the time of writing, the quantized model is being implemented onto FPGA tar-
gets, using HLS description in C/C++ for Vivado HLS 2019.1. To implement fixed-point
arithmetic with bit-accurate precision, the “arbitrary precision types” provided by Xilinx
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[83] has been used. While the implementation is not completed, preliminary results for
q = 64 and η = 16 are available for the TS correlator. Indeed, a correlator IP has been
completed and verified on chip. The utilization reports as well as the achieved throughput
of the IP are reported in Table 5.7, for two different targets:

1. a Kintex 7 XC7410T (speed grade -1) which is the FPGA embedded in the USRP
X310,

2. a Kintex 7 XC7325T (speed grade -2) which can be found on Digilent Genesys 2
boards.

The latter has been used to validate the correlator IP, since no standalone XC7410T was
accessible. Indeed, the one embed on the X310 cannot be used as standalone circuit. To
better compare with values in Table 5.6, the results of one IP have been multiplied by
pω to approximate the overall system utilization. It assumes that multiple independent
correlators can be implemented in parallel to address the //ω.

Table 5.7 – Hardware performance estimation of the quantized correlators on a Xilinx Kintex 7
XC7410T (speed grade -1) and XC7K325T (speed grade -2), with a working frequency of 100 MHz, for

q = 64, and several values of pω.

Target p∆ pω Chip Rate Bit Rate Usage
Mc/s kb/s FF LUT BRAM DSP

XC7410T-1 64 4 25 781 32100 45348 12 256
6.3% 17.8% 1.4% 16.6%

8 25 781 64200 90696 24 512
12.6% 35.7% 2.9% 33.3%

XC7325T-2 64 4 25 781 25980 46980 12 256
6.4% 22.9% 2.7% 30.5%

8 25 781 51960 93960 24 512
12.7% 45.8% 5.4% 61.0%

First, it should be noted that the (coarsely) quantized TS correlator, which achieve
the same detection performances as the floating-point one, consumes around the same
amount of FFs and LUTs as the quantized FFT for p∆ = 8, for any pω. However, it
requires even less DSPs and BRAMs than the floating-point TS correlator, while having
throughputs 2.8× higher. It is thus the best solution for q = 64.
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The 64 × pω DSPs used in the overall reported architecture correspond to the “Abs2”
functions. Concerning BRAMs, 2 × pω correspond to the IP input and output buffers,
and pω BRAMs correspond to the correlation registers. This indicates that a main axis
of enhancement could be to reduce the complexity of the “Abs2” function. An idea would
be to use a CORDIC [110] to implement the absolute value. Another obvious way to
minimize the hardware complexity would be to reduce the value of η, but it cannot be
performed blindly as it may impact detection performances. Since quantization format
manipulation is sensible, a thorough study to explore different trade-offs is needed.

5.3 Conclusion

In this chapter, we studied the viability of a QCSP real-time communication chain
implementation. Both transmitter and detector have been successfully characterized and
implemented on both CPU and FPGA targets.

The current transmitter implementations, whether it is on software or hardware tar-
gets, achieved throughputs superior to thoses demanded in LPWAN standard. Both soft-
ware and hardware implementations reach information throughputs superior to 2Mb/s.
These bit rates are 20× higher than the upper bound of the LPWAN requirements, for
costs comparable to established solutions. At the receiver side, the efforts have been fo-
cused on detection, especially on the most intensive task of the detector, the correlator.
It has been implemented in real-time on both CPU and FPGA circuits. It has been op-
timized, taking target specific features in account. Software implementations reach up to
100 kb/s of information throughput, and hardware implementations reach throughputs
3× higher, around 300 kb/s. Moreover, it has been demonstrated that a QCSP detector
can already be implemented for low costs thanks to the TS architecture, since a low-end
Raspberry Pi 4 can suffice to meet LPWAN requirements. In addition, hardware imple-
mentations demonstrated the advantages of the contributed TS architecture compared to
the legacy FFT one. Finally, to further improve the hardware implementation efficiency,
a quantized model is proposed. It enabled to achieve even higher throughputs, reaching
up to 780 kb/s on FPGA circuits.

While simulations and synthetic benchmarks allow apprehending achievable perfor-
mances, nothing can replace full-scale experimentation. The next chapter (the last before
the conclusion) is dedicated to the presentation of the full-scale experiments conducted
using the work presented in this thesis.
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The implementation results presented in chapter 5 demonstrate that the implementa-
tion of a real-time QCSP chain is feasible. These implementations offer new experimental
perspectives.

In this chapter, the first real-time QCSP communication chain ever fully implemented
is presented, as well as the experiments it has enabled. In a first time, the experimental
setup is detailed. It includes the description of the transmitter implementation and the
content of the messages it sends, as well as the description of the complete real-time
receiver. It is followed by the presentation of the experimental environment, as well as the
experimental protocol. In a second time, the results of two different experiments conducted
are reported and analyzed.

6.1 Experimental setup

This section aims to define the experimental setup, from the transmitting side to the
receiving side, as well as the various settings in use.

The complete system is represented on Fig. 6.1, with the actual settings used, as well
as the implementation used. This figure highlights the high heterogeneity of the commu-
nication system, that was required to meet real-time performances while still allowing
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an easy exploitation of experimental results. It required adapting and interconnecting
several components, from different projects, implemented in different languages and/or
frameworks. Thus, the full demonstrator has required a non-negligible work. This thank-
less engineering work, necessary to validate performances, is often time-consuming. We
wanted to evaluate the performances of the QCSP chain in the IoT context. We also
wanted to explore experimentally the worst performances of the waveform. The payload
to be sent must still contain information valuable for further research.

Consequently, let us present the values chosen for the QCSP specific settings and ex-
plain the rational of their choice. The first value of interest is q (and p since q = 2p) which
is both the size of GF(q) and the size of the PN sequence P0. It is set to 64 = 26, as it
is the smallest value planned to be supported. This choice is motivated by the desire of
defining a performance floor. Indeed, the more q grows, the more the performances im-
prove, as explained in chapter 3. Incidentally, the lower q is, the lesser the implementation
constraints are. Thus, it also limits the risks of unforeseen implementation issues. For the
same reasons, the number of GF(64) information symbols K is set to 20, which is the low-
est supported value as well. Thus, the transmitted message M is composed of K×p = 120
bits. The NB-LDPC code selected has a rate Rc = 1

3 , and has decoding performance above
theoretical detection performances. It ensures that any detected and synchronized frame
is decoded, thus focusing on detection and synchronization performances.

The size of the codeword in symbols N is equal to K
Rc

, the codeword C is thus composed
of N = 60 symbols of 6 bits, or 360 bits in total. The CCSK mapping (see section 3.2)
transform each 6-bit symbol into a circular rotation of P0, resulting in a CCSK frame
FCCSK of N×q = 3840 chips, which result in a modulation rate Rm = 6

64 . After application
of the Overmodulation (OM) and of the BPSK, the frame F of N × q = 3840 chips is
shaped by the root-raised cosine filter of roll-off factor β = 0.35. The result is provided to
a Digital Analog Converter (DAC) tuned to achieve a chip rate of 125 kc/s. Considering
the effective rate Reff = Rc ×Rm = 1

32 , the chip rate corresponds to a bit rate of 125
32 = 3.9

kb/s. This value is below the Low Power Wide Area Network (LPWAN) requirements,
but issues have been encountered with the B205 mini USRP (the SdR device used in
transmission, see section 6.1.1) when higher values were used. The packet is broadcasted
over the ISM radio band centered on fc = 433.92 MHz. It is worth noting that since the
payload is composed of 120 bits, it takes 120

3.9 ' 31 ms to send one frame.

In reception, an oversampling factor O = 4 is used, i.e. 4 samples per chip. It results
in a sampling frequency fs = O × 125 = 500 kHz. An oversampling of 2 and a frequency
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Chapter 6 – Real-Time Full-Scale Experiments

of 250 kHz would have been enough to satisfy the Shannon criterion, so 4 ensures good
performances. Samples are filtered by another root-raised cosine filter of roll-off factor 0.35,
then 4 parallel detectors are run on 4 parallel data streams cadenced at 125 kc/s. Since they
process each new sample, it results in p∆ = q = 64. They all use 8 hypotheses of rotation
over [−2π, 2π], which is equivalent to pω = 4. The detailed explanation has been given in
section 3.3.3.2. In summary, frequency errors induced by local oscillator inaccuracies or
Doppler effect result in rotation of the arriving frame. The rotation is considered at symbol
level for representation reasons. A rotation span of [−2π, 2π] means that each incoming
symbol is expected to make at most one full rotation clockwise or counter-clockwise. Since
pω has been defined over [−π, π], which is half as long as [−2π, 2π], 8 hypotheses over the
latter result in 4 over [−π, π]. The symbol rotation error is thus bound by ϑ = π

4 , which
corresponds to a normalized residual frequency of ϑ

2πq
= 1

512 . Taking into account the chip
rate of 125 kc/s, it results in a maximum residual frequency error of 125×103

512 = 244 Hz.
When a detection occurs, only the detector associated with the highest score transmit

the detected frame FD of 2N × q = 7680 chips to the synchronizer. This is similar to a
decimation by a factor 4 of the signal. A synchronized frame FS of 3840 chips is passed to
the NB-LDPC decoder [99], which correct eventual errors. When the resulting codeword
syndrome is composed exclusively of null-element, it means that the message is correct.
It is thus printed to the operator and saved. Otherwise, the erroneous codeword is shown
and saved. The detailed implementation of the detector, the synchronizer and the decoder
are given in section 6.1.2.

Now that all settings have been defined and explicated, let us present the heterogeneous
transmitter implementation and the physical devices used in details. The content of the
messages sent is also given. It will explain how the payload is generated and why we
decided to add those data.

6.1.1 GNSS-enabled mobile QCSP transmitter

Transmitter system description

This section is dedicated to the description of the real-time mobile transmitter system
used during the experiments, depicted in Fig. 6.1. The transmitter is required to be mobile,
to allow moving it throughout distances. From a system point of view, it is composed of
the QCSP transmitter, an SdR device, a Global Navigation Satellite System (GNSS)
module, and a battery.
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6.1. Experimental setup

Battery

Raspberry
Pi 4

GPS Module

USRP
B205 mini-I

power

GPS data

frames

Vehicle Vehicle roof

R. Pi 4 + GNSS

Battery USRP

Figure 6.2 – Implemented transmitter component diagram.

The QCSP transmitter is fully implemented in software, including the root-raise cosine
filter. We used the version presented in chapter 5, as well as the Raspberry Pi 4 SBC used
in benchmarking. This choice is motivated by the higher flexibility of this implementation,
where bug fixes and enhancement can be added on-the-fly. Moreover, it allows to access all
the sensors already present on the SBC. This platform is also the most energy efficient of
the one we have tested. A determinant advantage, since it enables hours long experiments.
It must be noted that the NB-LDPC encoder comes from work presented into [68].

Figure 6.3 – GNSS module
embed into the Raspberry Pi

chassis.

The SdR device is an USRP B205mini-I. The selling point
of the device is that it both communicates with its “host” (the
Raspberry Pi) and is powered through USB. Thus, it is easily
transportable. The drawback is that the FPGA image can not
be tweaked easily, since it required an old software, Xilinx
ISE 14.7, and is entirely implemented in pure RTL language.
That also explains why the filter has been implemented in
software. The transmitting device is hooked up to a GNSS
module, depicted in Fig. 6.3. This cheap module allows to

fetch the precise location of the mobile transmitter during experiments. In order to track
the device in real time from the QCSP receiver, the NMEA 0183 frame are parsed to add
the position to the payload sent. The power source of the device is a 4000 mAh battery,
that has been measured to last at least 12 hours in function. This helps to embody an
off-grid device.

The whole package can be transported in a vehicle, or in a backpack. When transported
inside a vehicle, it can be linked to external antennas, to ensure good reception of the
GNSS signal and good transmission properties for the QCSP signal.
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Figure 6.4 – Structure of the payload sent over the radio channel.

It results in a highly flexible, easy-to-transport and to use mobile transmitter, which
can be used in various environment.

Payload specification

Data sent in the packet should reflect the reality of the targeted context. More im-
portantly, they have to help in analyzing the results, in order to highlight possible im-
provement axis. Thus, the packet sent by the transmitter can not be composed of random
data.

To fulfill the two precedent objectives, the payload represented in Fig. 6.4 has been
elaborated. This payload contains the latitude and longitude of the mobile transmitter,
as fetched by the GNSS module. To avoid precision issues, these values are represented
using 32-bit floating-point values. The next 24 bits are used to store the time of sent,
as reported by the Raspberry Pi clock. We use this reference instead of the GNSS time
to be able to easily find the associated logs on the SBC, if needed. The classical way of
measuring time, the Unix time in epochs, the number of seconds since the 1st of January
1970, would require 64 bits. To be able to use only 24 bits while sending the cents of
seconds too, a 12-hours representation has been used. It allows to store the hours on
5 bits using dlog2(12)e = 4 and a bit to store if we are the morning or the afternoon.
Minutes and seconds are stored on dlog2(60)e = 6 bits, and cents on dlog2(99)e = 7 bits.
To increase the likelihood of the frame with some already in-use in IoT, we added the
SoC temperature, as reported by ARM on-board sensors. Incidentally, it can also be used
to monitor the proper functioning of the device from the receiver. The payload is ended
by a counter, that allows to keep track of the frames. A 16-bit integer is enough, since it
enable unique frame IDs during up to 18 hours of experimentation while sending 1 frame
per second. It allows to immediately notice missing frame at the receiver side.
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Figure 6.5 – Implemented receiver component diagram.

6.1.2 Real-time QCSP receiver

This section aims to explain the choices and trade-offs made to implement the complete
real-time receiver, depicted in Fig. 6.5. Due to its higher complexity compared to the
transmitter, it is not mobile and powered using the grid. It is composed of two parts.
The first one is the “host”, a Linux laptop that performed all software related tasks. The
second one is the “device”, an USRP X310, which is assigned all the RF related tasks, as
well as those implemented on hardware, thanks to RFNoC [91].

As already stressed out, this is a highly heterogeneous system. Like represented in
Fig. 6.6, the QCSP receiver is implemented using four different languages, on two different
platforms used simultaneously, and involves the use of at least two multithreaded processes
on the software side. Besides, it uses contributions from other people, who had different
research objectives. It thus needed adaptations. Let us quickly walk through each function.

The first step is the sampling of the channel. This is performed by the USRP. Allevi-
ating RFNoC, the root raise cosine filter has been implemented directly on the device. It
uses an already tried and tested FIR filter block, provided by Ettus Research. It allows
releasing the stress put on the CPU off the host.

The filtered data are streamed to the host using USRP Hardware Driver (UHD) [111],
handled directly in the software implementation using the UHD C++ API. The complete
real-time detector is implemented using the software TS SIMD correlators described in

From the
channel ADC + Filter

On the USRP On the laptop

Detection Synchronization NB-LDPC
Decoder

Received Message
M ′

(20× 6 bits)
VHDL C/C++

Matlab C/C++ called
from Matlab

Legend

Figure 6.6 – Languages and platforms involved in the receiver.
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chapter 5. The software implementation has been chosen due to its higher flexibility and
scalability. As for the transmitter, it permitted us to experiment more easily different
setup. It also eases the transport of the receiver to reach the experimentation site. Lever-
aging the single threaded nature of TS correlators, the 4 detectors required to address
oversampling can be reliably executed in parallel. We used OpenMP to enable MT. Since
the host is a multicore system, it means that each detector have a dedicated core. More-
over, the kernel used in the host has been patched with PREEMPT-RT to enable real-time
capabilities [112]. Thus, thread priorities have been tweaked, ensuring the detector will
be run in priority.

When a detection occurs, the detector transfers the detected frame FD to the synchro-
nizer using a software FiFo, allowing both process to communicate and to be synchronized
with each other. The synchronizer is the adaptation of the MATLAB/Octave code devel-
oped by K. Saied in is work [17]. It has been heavily optimized, in order to reduce the
original code execution time. We leveraged MATLAB/Octave underlying Basic Linear Al-
gebra Subroutines (BLAS) [113], which perform better on large matrix calculations than
on incremental computations. After analysis of the algorithm and of the code, it has been
reformatted to let such matrix calculations appears. The original proof-of-concept descrip-
tion was able to process one frame every 15 seconds. The results of our efforts is able to
process one frame every 0.7 seconds. In other words, since FD contains 2 × N × q = 7680
chips, we improved the input throughput from 512 c/s, to 10100 c/s, which is 21× higher.

The NB-LDPC decoder is based on a software implementation of C. Marchand [114].
To reduce inter-process communications, it has been implemented as a MATLAB exe-
cutable “MEX” file by J. Jabour, and as an Octave executable “octfile” by myself, to be
called within the same process as the synchronizer.

Finally, a terminal-based Human Machine Interface has been added, reporting in real-
time the decoding results. It allows the operator to monitor the time of arrival of the
frames on the host. It also informs about symbol and chip errors, as well as measured
frequency inaccuracies.

In the end, the development work performed results in a GNSS-enabled mobile trans-
mitter and a real-time receiver, able to carry out full-scale experiments for a wide range
of settings. The main experimental protocol elaborated to validate the waveform and the
implemented system in real conditions is presented in the next section.
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6.1.3 Experimental environment and protocol

To study the viability of the QCSP waveform, it is necessary to try it out in uncon-
trolled environments. It has been decided to conduct an experiment in real conditions,
with a mobile transmitter broadcasting messages and a static receiver listening. We choose
to experiment in the urban area around the laboratory, to find out if indirect transmissions
can be successful. Indeed, simulations has been performed on the CAWGN channel, while
the real radio channel in urban area looks more like a Rician channel, where multipath
interferences are possible.

It has been decided to take advantage of the high mobility of the transmitter system. It
has been equipped with external antennas, and is disposed in a vehicle. This way it can be
transported, allowing to test different locations and also to add Doppler effect. The real-
time receiver is placed in-height, typically on the edge of a building roof. It allows to ensure
the predominance of the direct path. The transmitter is then set to send a frame every 2
seconds, to be sure that the synchronizer can keep up. The frame transmitted are locally
saved by the transmitter, to allow to track it post-experiment. For redundancy reasons, the
path taken by the mobile is also recorded by an independent GNSS device. A telephonic
communication is maintained between the operator monitoring the transmitter in the
vehicle and the one monitoring the receiver. This way, the experiment can be adapted
in real-time, to avoid losing time. After the experiment, the number of frame missed is
estimated, and the data associated to erroneously synchronized frames are inspected. In
the next section, the results associated to two of the conducted experiments are presented.

6.2 Experimental results analysis

The two different experiments presented in this section have respected the experimen-
tal protocol, and used the previously described transmitter and receiver.

They are distinguished by one setting: the quality of the 433.92 MHz ISM radio band
antennas. Indeed, the antennas used during the second experiment was marketed as
adapted for the targeted frequency, but revealed themselves to be flawed. Incidentally,
it allows to define the worst case scenario.

A first interesting data is the maximum range reached in each experiment. Indeed,
as represented on the map realized thanks to [115] in Fig. 6.7, we successfully detected,
synchronized and decoded frames sent up to 500 m away from the receiver in the second
experiment. It is remarkable, since the antennas used were not adapted. Another impress-
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ing point is that we have successfully sent and received frames within a 1 km radius in an
urban area. Second, some frames have been received and successfully decoded even in the
absence of a direct path, which consolidates the hypothesis of robustness of the QCSP
waveform.

Finally, let us look at the absolute value of the channel associated to some successfully
decoded frames, presented in Fig. 6.8. The red mark on the figures highlights the location
of the frame in the channel. When the SNR is high like in Fig. 6.8a, i.e. when conditions
are optimum, the frame can be seen easily, even by a naked eye. The strength of the
QCSP system is its ability to transmit frames even when the frame is drowned in the
noise, like in Fig. 6.8b. Even more impressing, it seems to be robust to interferences, as
frames in Fig. 6.8c and Fig. 6.8d were successfully detected, synchronized, and decoded.
These kinds of interferences are expected on the ISM radio band, since the frequency
band is already used by other IoT protocols like LoRa and SigFox. The algorithm has not
been developed to be robust to interferences, but thanks to its resilience to low SNRs and
also thanks to the new normalization method, sudden variation in SNR does not block
frame detection. These observations would not have been possible without the real-time
communication chain developed in the current work.

1000 m

500 m

Figure 6.7 – Maximum ranges reached for reliable QCSP transmissions in the first experiment (in blue)
and in the second experiment (in magenta), along the tracks followed in each experiment.
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6.3 Conclusion

In the current chapter, both a complete standalone real-time mobile transmitter and
a fully functional real-time receiver have been described. These systems were challenging
to design and to implement. However, they will be decisive in the future. They allow
conducting full scale experiments, which have already served to validate the QCSP wave-
form. These experiments also proved the viability and flexibility of the implementations
presented in previous chapters.

Results in terms of range are very encouraging, and suggests that the current imple-
mentations could already be used in the IoT context, for transmitting tracking data for
instance.
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Chapter 7

Conclusion

7.1 Synthesis

The ever-growing number of interconnected devices, coupled with the need of ener-
getic efficiency induced by recent shortages, require innovations in the field of digital
communications. This thesis presented a solution to improve the efficiency of transmit-
ting devices in the context of Low Power Wide Area Networks (LPWANs). In addition, it
also demonstrated the relevance and efficiency of the Quasi-Cyclic Short Packet (QCSP)
communication chain proposed implementation. To this end, several computational and
architectural optimizations have been proposed, supported by benchmarks and real-time
implementation results on both hardware and software targets.

The involved issues and the context are stated in chapter 2. The limitation induced
by context-specific constraints, the critical issue of short packets and limited amount of
bandwidth resources are also explicated. An overview of existing methods trying to answer
the same question as the current work, like LoRa [4] and SigFox [53], is given. In partic-
ular, the challenge that their implementation represent is stressed out. It is followed by
the introduction to Software-defined Radio (SdR) platforms, and the breakthrough they
represent for the design and implementation of Digital Communication Systems (DCSs).
This chapter also includes an extensive presentation of the different parallelism levels
that can be alleviated in digital signal processing algorithms, and how to leverage them
on multicore and manycore systems. The chapter is concluded by a report on the state of
High-Level Synthesis (HLS) and associated tools, that highlight how this workflow, com-
bined with the previous points, allow the design of efficient and flexible implementations.

In the third chapter, the QCSP communication chain is thoroughly presented. To allow
a complete comprehension of the challenges involved in its implementation, the necessary
notions are defined and explicated. This includes the Galois Fields (GFs) theory, as well
as the functioning of Non-Binary Low Density Parity Check (NB-LDPC) codes, which are
a core concept of the QCSP system. The second most important concept of the system,

117



the Cyclic Code Shift Keying (CCSK) is also presented. Then, the communication chain
is explained in details, from the transmitting side to the receiving side. In the process, the
exact transmitter algorithm is summarized, as well as the channel model in use. Then,
the detection algorithm is introduced. It mainly consists on the comparison of the output
of the score function to a threshold U0. When the score exceeds the threshold, a frame is
supposed detected. In order to be resilient to frequency inaccuracies and Doppler effect,
and also to reduce the overall complexity, the time-frequency space is divided in a search
grid of p∆ × pω bins. The impact on detection performances of the values of p∆ and pω is
thus explicated. For completeness, the synchronization process is briefly summarized.

The fourth chapter introduces a method that makes the detection algorithm robust
against input scaling factors, which may appear due to gain instability. The 2-norm is se-
lected after a comparative study between several candidate normalization method, due to
its good efficiency/complexity rate. Then, the new Time Sliding (TS) windows correlation
method is proposed. This method permit computing CCSK correlations in the time do-
main for a computational complexity lower than the legacy FFT based method for p∆ = q.
The new contributed approach has been demonstrated to have a superior efficiency when
aiming for the best achievable detection performances. A software implementation has
been used to benchmark both approach, reinforcing the conclusions.

The fifth chapter is the heart of the thesis. It begins by proving the viability of QCSP
waveform for the LPWANs by proposing optimizations to the transmitting side, made for
the purpose of energy efficiency and throughput. Moreover, both software and hardware
implementations are proposed, both exceeding the throughput required in an LPWAN
by at least an order of magnitude. Then, the QCSP detection is addressed. To concen-
trate the efforts, the most critical task of the detection, the correlator, is specified. Then,
parallelism levels inherent to the correlator are identified, for each architectural varia-
tions. Based on the identification results, the complexity of each correlator approach is
reduced, taking advantage of the specific structure of P0, and of the features offer by
multicore CPUs and FPGA circuits. Both software and hardware real-time efficient im-
plementations are then realized, leveraging the previous studies. Both implementations
met the requirements of LPWAN, and even competed with longtime established solution
like LoRa. More impressing the TS hardware real-time implementation proved to be very
efficient, while using a disadvantageous quantization scheme. To further improve its per-
formances, a quantized model of the score processor is introduced, and explicated. It has
been proved to have a negligible impact on detection performances, while doubling the
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throughput compared to the original hardware implementation. It even reached 200× the
highest required throughput in LPWANs, utilizing less than half of the FPGA circuit that
was targeted. Considering the results, a lot of room is available to improve the model.

The penultimate chapter proposed a complete QCSP demonstrator, taking advantage
of all the efforts made during the current work, but also leveraging the results and products
developed in other related research works. This system required a titanic amount of often
thankless engineering work, due to the constraints. Indeed, the demonstrator is, at the
same time, a convenient research object, a real-time highly heterogeneous communication
chain, and a flexible test bench enabling full-scale experiments. The demonstrator has
been already used to validate the behavior of the waveform under real world conditions,
and established the encouraging lowest range of 1 km in an urban area, when transmitting
over the ISM radio band (433.92 MHz) with adapted antennas.

7.2 Perspectives

The current work is considered a success, as it has fulfilled its original goal. However,
many research opportunities have been encountered during the studies. A non-exhaustive
list of perspectives is thus provided hereafter.

A complete hardware description of the QCSP detector implemented following the
quantized model is at last stages of development. When finished and validated, it will
be embedded onto the X310 USRP FPGA circuit. It should enable even more accurate
real-time experiments, and allow achieving very high throughput. The next efforts will
be directed on the efficient implementation of the synchronization process, following the
same process successfully used for the detector. Due to algorithm similarities, the syn-
chronizer will undoubtedly benefit from the improvement made to the real-time detector.
A complete overview of the implementation planning is presented in Fig. 7.1. Step 1 and
2 are completed. Step 3 and 4, as said, are in course to be validated. The remaining steps
will be worked on in the near future. In the same vein, an updated and stabilized version
of the simulation and demonstration software framework can be finalized and released
under a free and open source license, to support future research on the topic.

It is worth noting that the systems implemented along this work are considered for use
in high seas buoys. These buoys have to transmit information about marine occupation
in harsh environments, especially due to the sea swell. Thus, sending small packets can
lower the risk of losing data, thanks to the lower transmission latency.
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In a more distant future, the issues related to multi-user systems should be addressed.
Some works are already performed on the subject by L. Montaya Obesso. The imple-
mentation of a multi-users capable QCSP receiving system will be challenging. But if the
current work has demonstrated one thing, is that such implementation is possible.

Besides, the waveform is also considered for spatial use cases. Indeed, since the com-
munication chain is resilient to Doppler effect by design, and is energy efficient, it may
be well suited for use in satellite systems. Nevertheless, the spatial context will require
thorough implementation studies, as space-grade devices are even more constrained than
LPWAN ones. It may be possible to draw inspiration from work realized in this topic for
the LoRa waveform [6].

In this prospect, the energy efficiency have to be enhanced, as well as resource utiliza-
tion. This can be achieved by mutualizing operators, by redesigning the receiving system
no longer as a purely dataflow system, but as a modular system, composed of hardware
accelerators accessible to a bus attached CPU. This would be particularly well suited to
the system-on-programmable-chips used in the spatial context.

For the long foreseeable future, it could be interesting to study the QCSP waveform
in a mesh network context. This network topology allows simplifying transmitters, since
it reduces direct range requirements. Recent works in this direction are reported in the
literature [116].
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Appendices

A Algebraic definitions

Algebra is a mathematic broad area that allows to describe and define interactions
inside and between sets of numbers (like N, Z, R or C) or even more abstracted sets (e.g.
the set of second-degree polynomial functions or the set of bijective applications in R).
It uses symbols instead of numbers, while operations are defined as applications on one
or more symbols that returns one or more symbols. An Algebraic structure consists on
a non-empty set and a collection of operations with a finite number of operands, which
verify a number of properties. Each structure have its own set of properties, but some
structures can be defined as superset of others. It is especially the case for a Galois field
that is obviously a field, the latter being itself composed of groups.

This appendix aims to detail some mathematic definitions use inside this thesis.
First, the notions of associativity, commutativity and distributivity are defined. Then, the
algebraic structures group, field, and Galois field are defined.

Associativity

An operation “�” is called associative on a set A if it verifies

∀(a, b, c) ∈ A3, a � (b � c) = (a � b) � c. (7.1)

Associativity denotes that for multiple operation ”�”, the execution order does not
affect the result.

Commutativity

An operation “�” is called commutative on a set A if it verifies

∀(a, b) ∈ A2, a � b = b � a. (7.2)
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Commutativity denotes that for in a unique operation “�”, operands order does not
affect the result.

Distributivity

An operation “�” is called distributive over another operation “�” on a set A if it
verifies

∀(a, b, c) ∈ A3, a � (b � c) = a � b � a � c. (7.3)

Distributivity denotes a priority of execution of one operation over another.

Group

Let A be a set of elements, and “�” a binary operation on A which takes two elements
of A and results in one element of A (i.e. ∀(a, b) ∈ A2, ∃! c ∈ A / a � b = c). Then, the
couple formed by the set A and the operation “�” is a group if and only if:

1. the operation “�” is associative,

2. an identity element I exists in A, i.e. ∀a ∈ A, I � a = a,

3. any element of A has an inverse in A, i.e. ∀a ∈ A, ∃ a′ ∈ A / a′ � a = I.

From these requirements follow the two properties that I is unique, and that for all a in
A, its respective inverse a′ is also unique. A group can optionally be commutative if “�”
is commutative. It this then called an Abelian group or a commutative group.

Field

Let A be a set of elements defined with a binary operation ”+” called the addition,
and another distinct binary operation ”×” called the multiplication. The tuple formed by
A and the two operations is a field if:

1. (A, +) is an Abelian group (The identity element for the addition is called the zero
element and is denoted 0A),

2. (A\{0A}, ×) is an Abelian group. The identity element for the multiplication is
called the unit element and is denoted 1A,

3. the multiplication is distributive over the addition.
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Table 7.1 – Examples of primitive polynomials Pp for different values of p and the corresponding order
q = 2p

Polynomial degree p Galois field order q Primitive polynomial Pp

1 2 x + 1
2 4 x2 + x + 1
3 8 x3 + x + 1
4 16 x4 + x + 1
6 64 x6 + x + 1
8 256 x8 + x4 + x3 + x2 + 1

Galois Field

Before defining what a Galois Field (GF) is, the remembering of some algebra notions
is needed. The exact definition of each structure is given in appendix A.

A Galois Field denoted GF, also called finite field, is a field which contains a finite num-
ber of elements, the number of elements being called the order of the field. A Galois Field
of order q is denoted GF(q). The q elements are denoted {0, α0 = 1, α1 = α, α2, . . . , αq−2},
where α is called the field primary symbol. All non-zero elements are power of the pri-
mary symbol. The only orders considered in this thesis are the power of 2, i.e. when it
exists p in N, such that q = 2p. All elements of GF(q = 2p) can be represented in a
polynomial format[117]. In this format, each non-zero element can be seen as an element
of GF2[α]/Pp, the set of polynomials with coefficients in {0, 1} modulo Pp, with Pp a
degree-p irreducible polynomial called the primitive polynomial. Examples of primitive
polynomials for a degree p ∈ {1, 2, 3, 4, 6, 8} are presented in Table 7.1. Since any element
of GF(q) can be represented as a polynomial with binary coefficients, and since a poly-
nomial can be represented as a vector of its coefficients, a binary representation of GF(q)
elements can be easily derived. An example of such representation is given in Table 7.2,
for p = 3 (thus q = 8), and a primitive polynomial P3 = α3 + α + 1.

From these considerations, the addition in GF(q) can be reduced to a binary XOR
between binary representations, while the multiplication can be performed using the poly-
nomial representation, using the result modulo-Pp of the multiplication of the polynomials.
This can be efficiently implemented using arrays or lookup tables, to leverage the finite
size of GF(q) while avoiding the burden of the operation at runtime. It may also be
implemented as an addition modulo-q on the power of the symbols.
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Table 7.2 – Binary and polynomial representations of GF(8) elements for P3 = α3 + α + 1.

Element Polynomial representation Binary representation

0 0 000
α0 1 100
α1 α 010
α2 α2 001
α3 1 + α 110
α4 α + α2 011
α5 1 + α + α2 111
α6 1 + α2 101
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Titre : Implémentation Temps-Réel d’un Récepteur Quasi Cyclic Short Packet

Mot clés : Implémentation Temps Réel, CCSK, Paquets Courts, Matériel, Logiciel, Réseaux Éten-
dus à Faible Puissance

Résumé : Dans les communications sans fil, la
détection et la synchronisation des trames sont
généralement effectuées à l’aide d’un préambule,
ce qui consomme une quantité de bande pas-
sante et de ressources non négligeables lors de
l’envoie de petits paquets de données. Récem-
ment, un nouveau type de trame sans préambule
appelé Quasi Cyclic Short Packet (QCSP) a été
proposé. Cette thèse étudie les possibilités de
mise en œuvre temps-réel de la chaine de com-
munication QCSP. À cette fin, les algorithmes
sont détaillés, tant en émission qu’en réception,
puis, lorsque cela est possible, optimisés. De

plus, la tâche la plus critique du récepteur, la
détection, est étudiée en profondeur. Différents
niveaux de parallélisme et stratégies d’implé-
mentation sont détaillés pour des implémenta-
tions logicielles, mais aussi matérielles. Plusieurs
compromis entre le débit et l’utilisation des res-
sources sont également discutés. Enfin, des ex-
périences grandeur nature sont présentés. Ainsi,
la thèse démontre que le processus d’émission/-
réception d’une trame QCSP est réalisable à
un faible coût matériel, ce qui rend la trame
QCSP attrayante pour les réseaux étendus à
faible puissance (LPWAN).

Title: Real-Time Implementation of a Quasi Cyclic Short Packet Receiver

Keywords: Real-Time Implementation, CCSK, Small Packets, Hardware, Software, Low Power
Wide Area Network

Abstract: In wireless communications, frame
detection and synchronization are usually per-
formed using a preamble, which consumes a
significant amount of bandwidth and resources
when sending small data packets. Recently, a
new kind of preamble-less frame called Quasi
Cyclic Short Packet (QCSP) has been proposed.
This thesis investigates the possibilities of real-
time implementation of the QCSP communi-
cation chain. To this end, the algorithms are
detailed, both in transmission and reception,
and then, where possible, optimized. In addi-

tion, the most critical task of the receiver, the
detection, is studied in depth. Different levels
of parallelism and implementation strategies are
detailed for both software and hardware imple-
mentations. Several trade-offs between through-
put and resource utilization are also discussed.
Finally, full-scale experiments are presented.
Thus, the thesis demonstrates that the process
of transmitting/receiving a QCSP frame is fea-
sible at a low hardware cost, which makes the
QCSP frame attractive for low power wide area
networks (LPWAN).
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