

Non-binary LDPC codes associated to high-order modulations

Ahmed ABDMOULEH

Directeurs de thèse: Emmanuel BOUTILLON et Catherine DOUILLARD

Encadrants: Charbel ABDEL NOUR et Laura CONDE-CANENCIA

Plan de la présentation

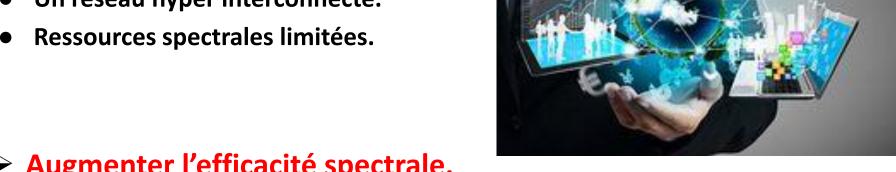
- 1. Contexte de la thèse.
- 2. Optimisation de la diversité de constellation.
- 3. Optimisation conjointe des codes LDPC non binaires et des modulations d'ordre élevé.
- 4. Conclusion et perspectives.

Plan de la présentation

- 1. Contexte de la thèse.
- 2. Optimisation de la diversité de constellation.
- 3. Optimisation conjointe des codes LDPC non binaires et des modulations d'ordre élevé.
- 4. Conclusion et perspectives.

Contexte général

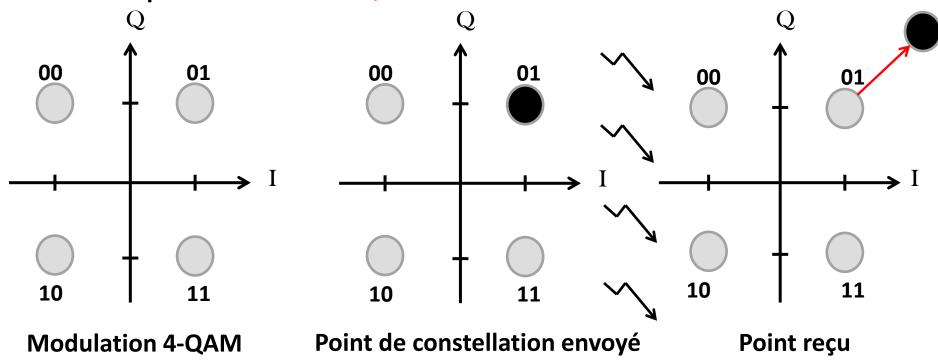
- Volume de données important.
- Nombre croissant d'appareils connectés.
- Un réseau hyper interconnecté.



Augmenter l'efficacité spectrale.

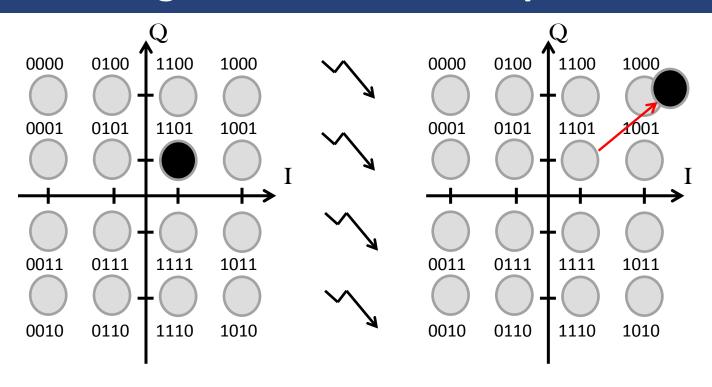
Augmenter l'efficacité spectrale

- Augmenter l'efficacité spectrale : envoyer « m » bits par transmission.
 - Modulations d'ordre élevé.
- Exemple : Modulation 4-QAM-> envoi de m=2 bits simultanément.



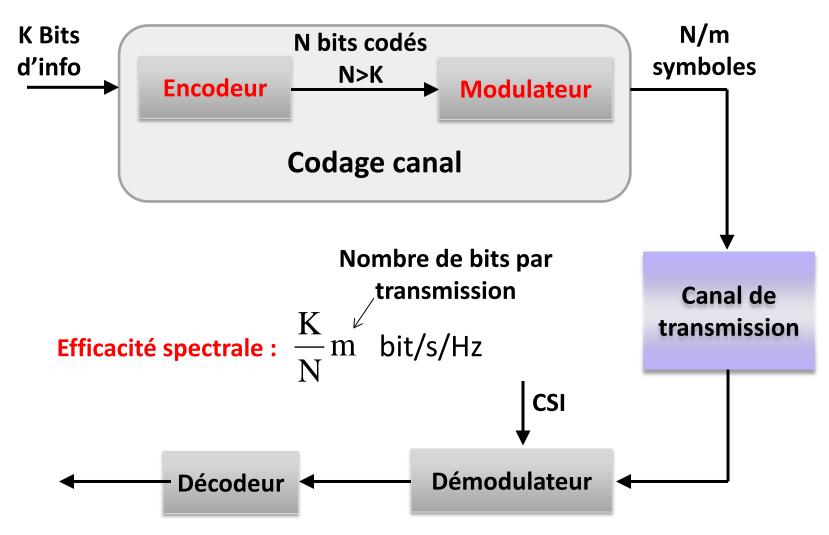
Bruit du canal -> Le point envoyé est dévié.

Augmenter l'efficacité spectrale



- Modulation 16-QAM -> m=4 bits transmis par utilisation canal -> système plus efficace.
- Bruit de canal plus influent-> plus d'erreurs
- Besoin de code correcteur d'erreurs efficace.

Schéma de transmission



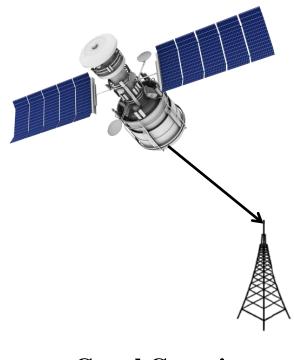
Canal de transmission

Canal Gaussien

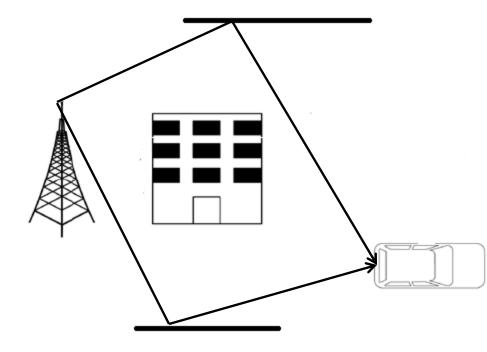
$$Y = X + W$$

Diffusion point à point

Canal de transmission



Canal Gaussien



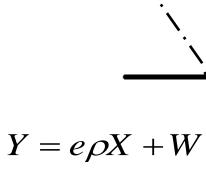
$$Y = \rho X + W$$

Canal de Rayleigh

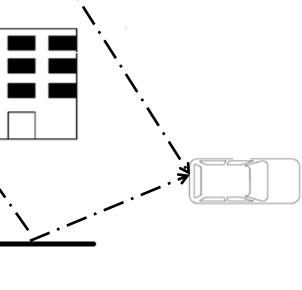
Diffusion terrestre

Canal de transmission

Canal Gaussien



 $e \in \{0, 1\}$



Canal de Rayleigh avec effacement.

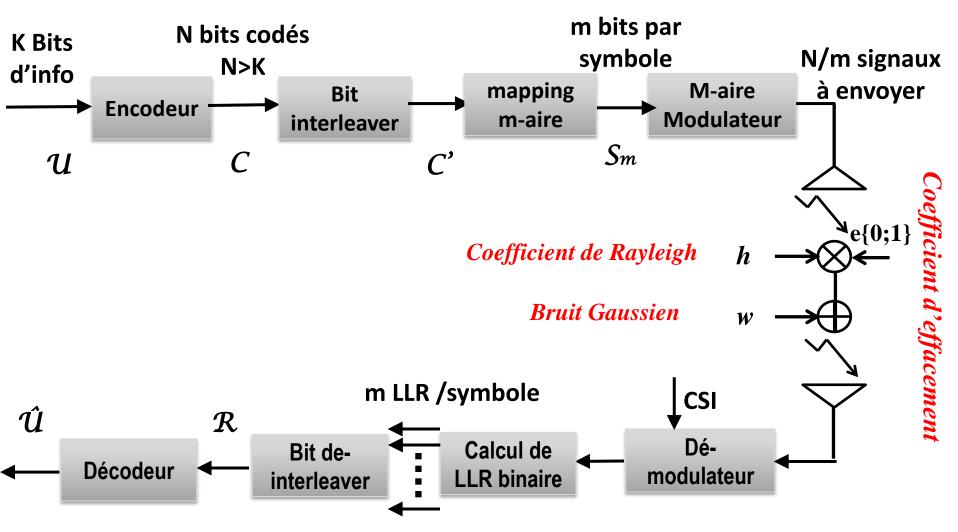
Schéma de codage

Deux schémas de codage possibles.

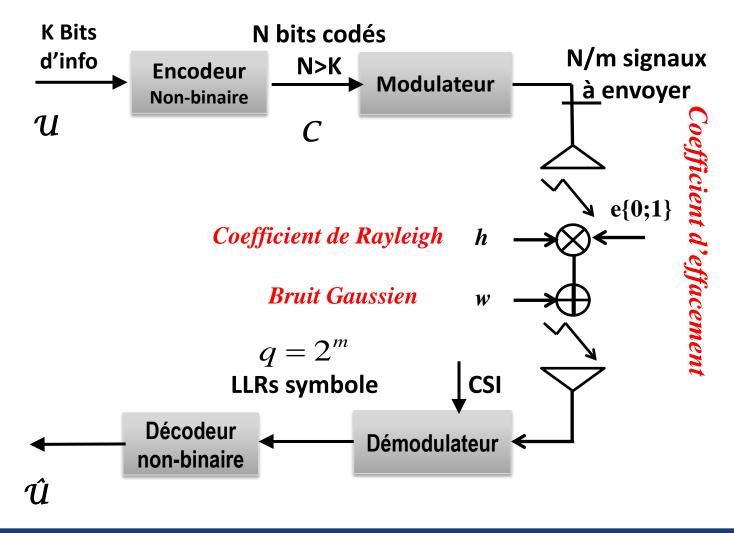
- Bit-interleaved coded modulation (BICM).
 - ➤ Association de code correcteur d'erreur binaire et d'une modulation non-binaire. (LDPC + Entrelaceur + modulation non binaire)

- Coded modulation (CM).
 - ➤ Association de code correcteur d'erreur non-binaire et d'une modulation non-binaire. (LDPC-NB + modulation non binaire)

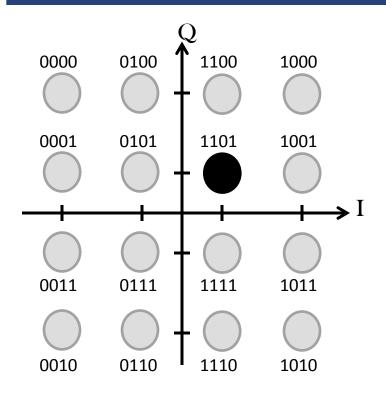
Bit-interleaved coded modulation

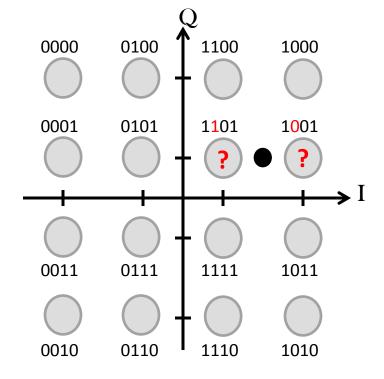


Coded modulation



Capacité de transmission



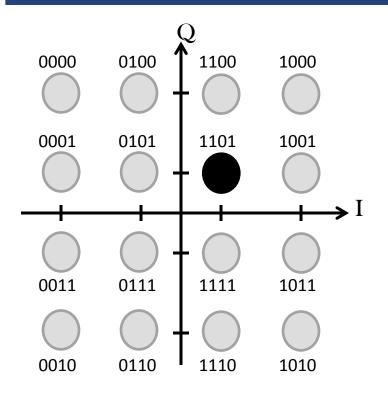


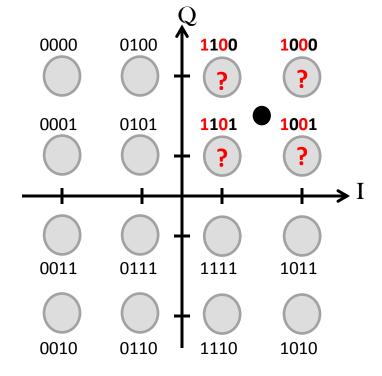
4 bits d'information envoyés.

1 bit d'incertitude.

> 3 bits transmis.

Capacité de transmission



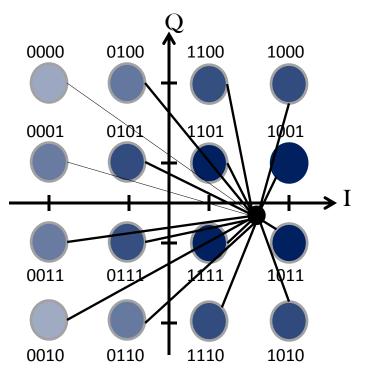


4 bits d'information envoyés.

2 bits d'incertitude.

2 bits transmis.

Capacité de transmission



 Pour un point y reçu, l'incertitude sur X est donnée par l'entropie

$$H(X \setminus y)$$

La quantité d'information envoyée :

$$I(X; y) = m - H(X \setminus y)$$

• L'information mutuelle moyenne :

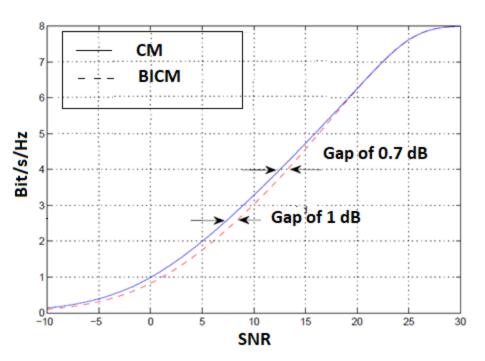
$$I(X;Y) = m - E[H(X \setminus y)]$$

Evaluée par simulation de Monte Carlo.

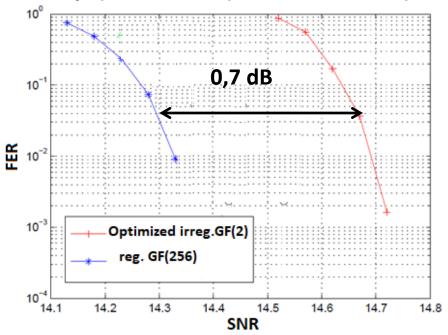
La capacité de canal est la limite théorique absolue, appelée limite de Shannon. Elle est définie par: $C = \max_{Y} I(X;Y)$

Information mutuelle et performances

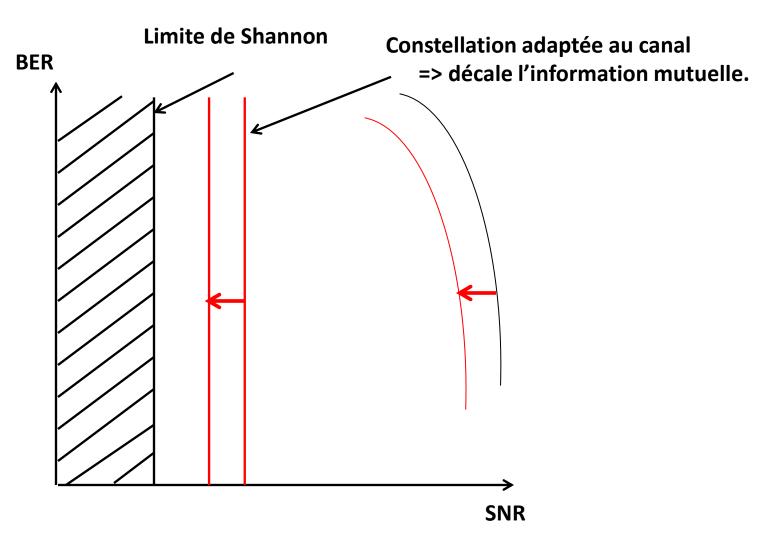
Les courbes d'information mutuelle : CM et la BICM, 256-QAM et canal Gaussien.



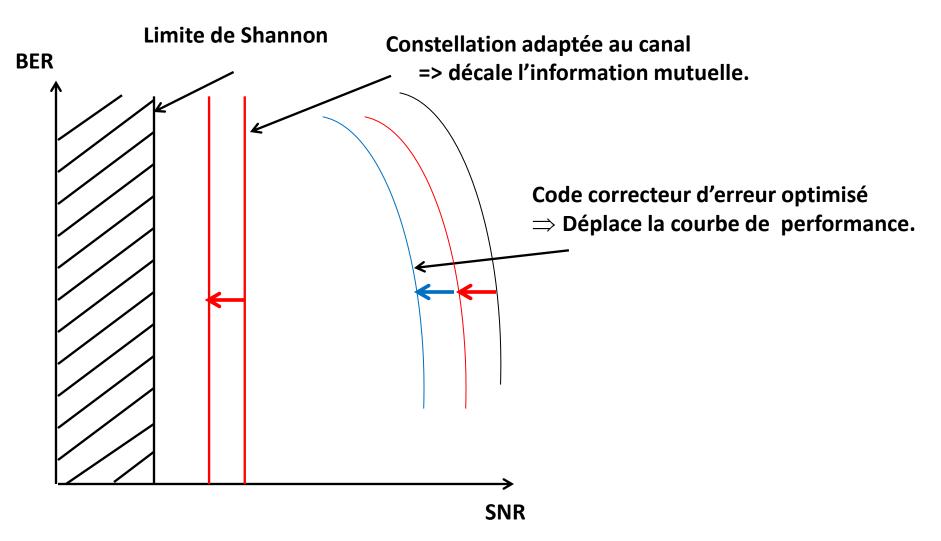
Courbes de décodage : Codes LDPC Vs codes LDPC-NB- GF(256), rendement 1/2, 64000 bits, canal Gaussien,



Comment améliorer les performances?



Comment améliorer les performances?



Problématiques

Peu d'études concernent les avantages de l'association des codes non binaires et des modulations non binaires.

Quels avantages présente le schéma de transmission en modulation codée ?

Comment améliorer les modulations codées ?

Plan de la présentation

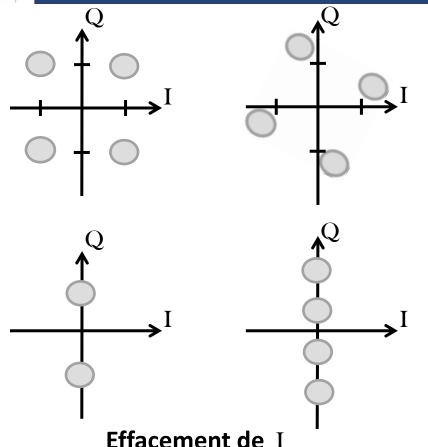
- 1. Contexte de la thèse
- 2. Optimisation de la diversité de constellation
- 3. Optimisation conjointe des codes LDPC non binaires et des modulations d'ordre élevé.
- 4. Conclusion et perspectives

Diversité de constellation (Signal Space Diversity)

- La diversité de constellation est une forme de diversité qui s'intéresse à la partie modulation (Signal Space Diversity).
- C'est une technique innovante introduite dans la norme DVB-T2.

- Deux points clés sont nécessaires pour une bonne application de cette technique de diversité.
 - 1. Rotation de la constellation.
 - 2. Entrelacement entre I et Q.

Diversité de constellation (Signal Space Diversity)



Rotation de la constellation.

Corréler l'information portée par les composantes (I) et (Q).

Entrelacement entre I et Q.

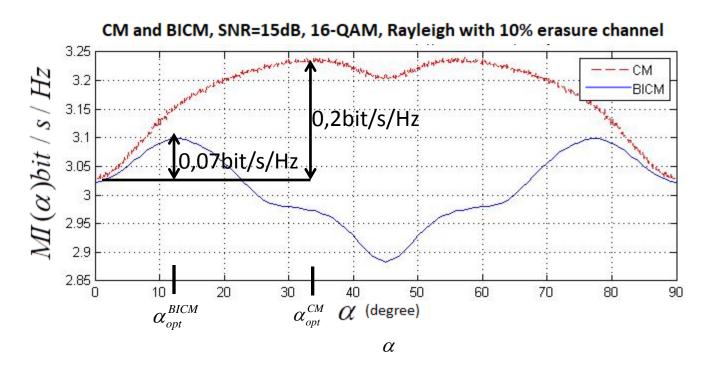
Evanouissement et/ou effacement indépendant entre (I) et (Q).

Plus de diversité en appliquant la rotation et l'entrelacement des composants (I) et (Q)

Optimisation de la diversité de constellation

- Paramètre à optimiser : angle de rotation.
- Nombreuses méthodes d'optimisation :
 - Minimiser le FER (=> simulation)
 - ➤ Un compromis entre la distance de Hamming et la distance produit de la constellation initiale et de ses projections sur l et Q.
- On propose de déterminer l'angle de rotation par une optimisation de l'information mutuelle.
 - **──→** Maximiser l'information mutuelle.

L'IM en fonction de l'angle de rotation



$$MI_{SNR}^{CM}(\alpha) = I_{CM}(X;Y)$$

$$MI_{SNR}^{BICM}(\alpha) = I_{BICM}(X;Y)$$

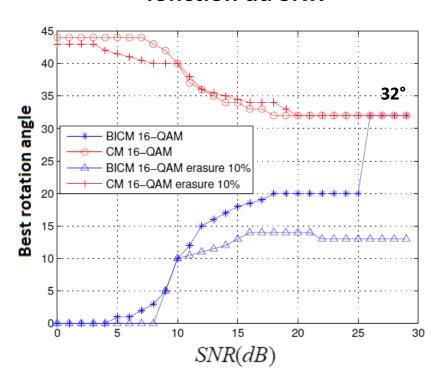
1.
$$\forall \alpha, MI_{SNR}^{CM}(\alpha) \ge MI_{SNR}^{CM}(0)$$

2.
$$\exists \alpha, MI_{SNR}^{BICM}(\alpha) < MI_{SNR}^{BICM}(0)$$

3.
$$\forall \alpha, MI_{SNR}^{CM}(\alpha) \ge MI_{SNR}^{BICM}(\alpha)$$

Meilleur angle de rotation en fonction du SNR

Angle de rotation optimal en fonction du SNR



$$\alpha_{opt}^{CM}(SNR) = \underset{\alpha[0..90]}{\operatorname{arg max}} \{ MI_{SNR}^{CM}(\alpha) \}$$

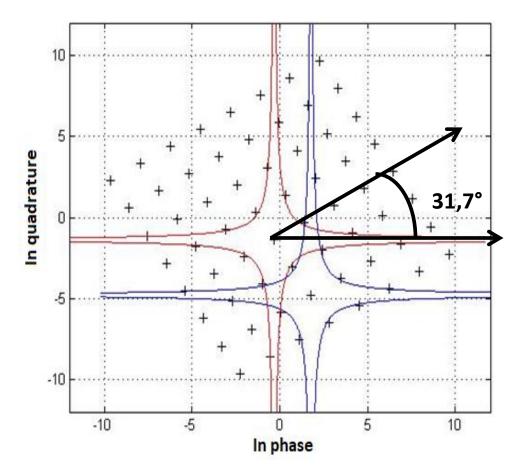
$$\alpha_{opt}^{BICM}(SNR) = \underset{\alpha[0..90]}{\operatorname{arg max}} \left\{ MI_{SNR}^{BICM}(\alpha) \right\}$$

$$\alpha_{opt}^{CM} \rightarrow 32^{\circ}$$
 $SNR \rightarrow \infty$

Meilleur angle de rotation en pour les forts SNRs

L'angle de rotation optimal a été déjà proposé pour les forts SNR par Giraud et al. [1].

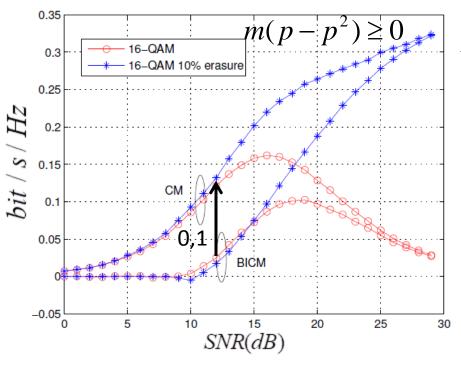
Le principe est de maximiser la valeur de « Distance produit »



[1] X. Giraud, K. Boulle and J. C. Belfiore, "Constellations Designed for the Rayleigh Fading Channel," IEEE International Symposium on Information Theory, 1993.

Meilleur angle de rotation en fonction du SNR

Accroissement des gains de performance en fonction du SNR

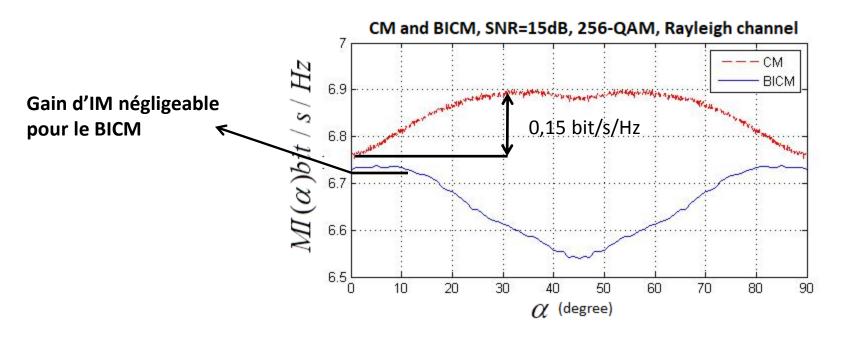


$$MI_{gain}^{CM}(SNR) = MI_{SNR}^{CM}(\alpha_{opt}) - MI_{SNR}^{CM}(0)$$

$$MI_{gain}^{BICM}(SNR) = MI_{SNR}^{BICM}(\alpha_{opt}) - MI_{SNR}^{BICM}(0)$$

- Canal de Rayleigh avec effacement:
- Pas de constellation tournée pertes : mp
- Constellation tournée pertes : mp^2

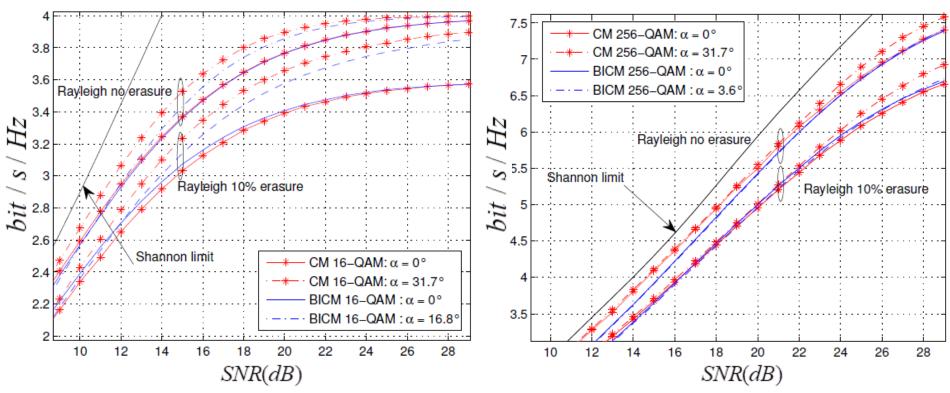
L'IM en fonction de l'angle de rotation



On peut étendre l'étude de l'impact de l'angle de rotation sur l'IM sur différentes constellations e.i. 256-QAM, 64-QAM ect ...

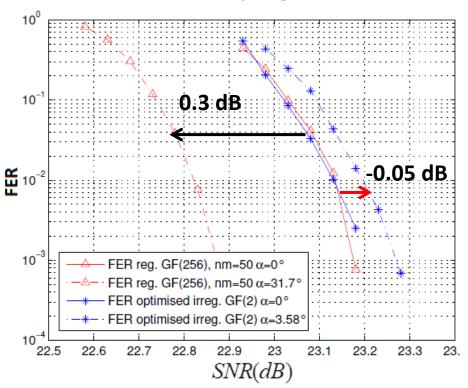
L'IM en fonction du SNR

- Courbe de l'IM en fonction du SNR. (Il faut fixer un angle de rotation pour la CM et pour la BICM). C'est une bonne indication pour les courbes de performances.
- CM: 31,7° (meilleur angle pour les SNR élevés).
- BICM: 16,8°(16-QAM) 3,6°(256-QAM) -> valeurs proposées par la norme DVB-T2.

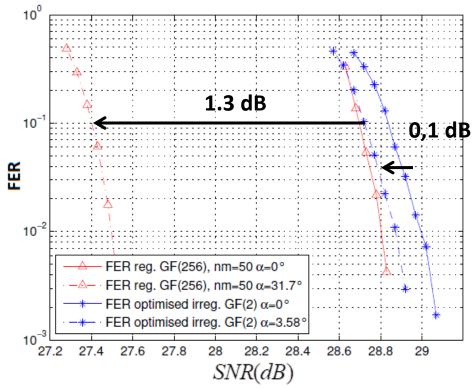


Courbes de performances

CM vs BICM, trame taille 64000 bits, rendement 3/4, 256-QAM et canal de Rayleigh.



CM vs BICM, trame taille 64000 bits, rendement 9/10, 256-QAM et canal de Rayleigh.



récapitulatif

- Nous avons réalisé une étude théorique de l'IM pour optimiser l'angle de rotation pour les schémas en CM et en BICM, on peut conclure que :
 - 1. Il n'y a pas d'angle de rotation optimal absolu pour la BICM.
 - 2. L'angle 31,7° est quasi optimal pour la CM sur une large plage de SNR pour le canal de Rayleigh avec et sans effacement.
 - 3. L'étude théorique montre que la CM présente des performances supérieures à celles de la BICM en appliquant la constellation tournée.
- Avantages des codes LDPC-NB pour les futurs standards de transmissions.

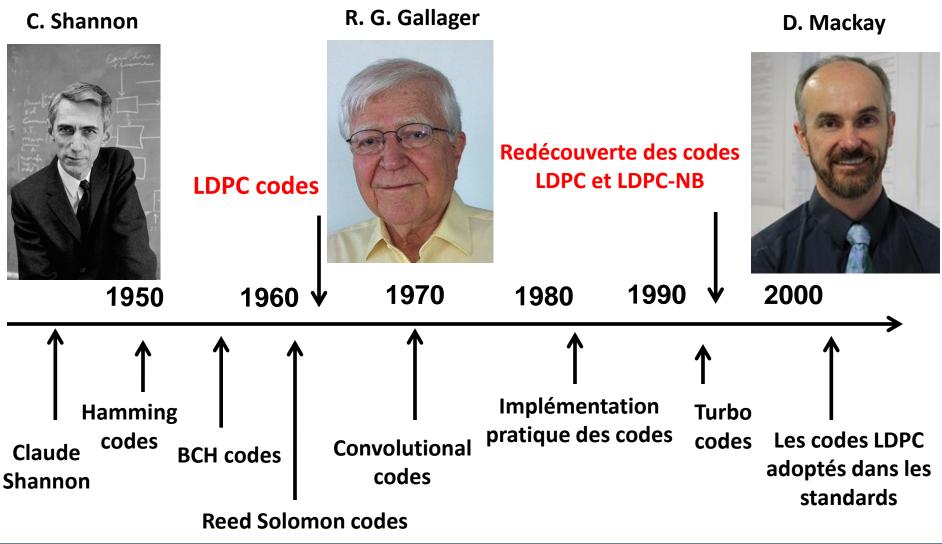
Nous avons valorisé ces travaux par un article de conférence [2] à « International Conference in Telecommunications», Grèce.

[2] A. Abdmouleh, E. Boutillon, L. Conde-Canencia, C. A. Nour, and C. Douillard, "On signal space diversity for non binary coded modulation schemes," *IEEE International Conference on Telecommunications (ICT)*, May 2016.

Plan de la présentation

- 1. Contexte de la thèse.
- 2. Optimisation de la diversité de constellation.
- 3. Optimisation conjointe des codes LDPC non binaires et des modulations d'ordre élevé.
- 4. Conclusion et perspectives

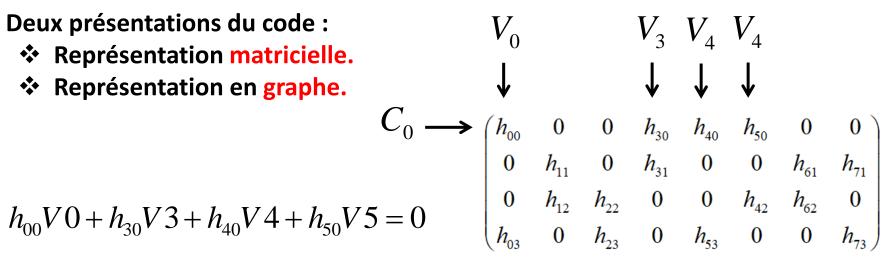
Evolution vers les codes LDPC non-binaires



Codes LDPC non-binaires

- Les codes LDPC sont des codes linéaires.
- Ils sont représentés par une matrice de parité creuse.
- Les symboles sont définis dans le corps de Galois.

Matrice de parité

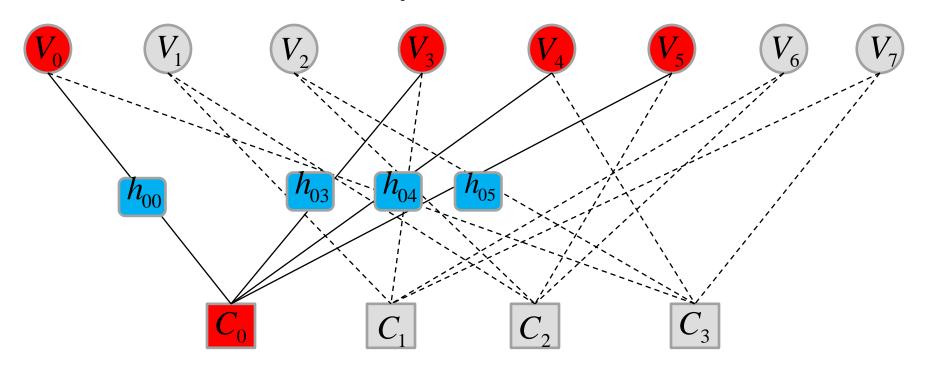


$$h_{00}V0 + h_{30}V3 + h_{40}V4 + h_{50}V5 = 0$$

Non-binary LDPC CODES: Tanner Graph

- Les codes LDPC peuvent être représentés par un Graphe de Tanner.
- L'intérêt d'une telle représentation : Décodage itératif.

Graphe de Tanner



Optimisation de la matrice de parité (LDPC-NB)

- Optimiser la construction d'une matrice d'encodage LDPC-NB revient à :
 - 1. Choisir la topologie de la matrice (maximiser le « Girth »).
 - 2. Choisir les coefficients associés à une contrainte de parité de façon à avoir un code local puissant.
 - 3. Affecter les coefficients aux branches en respectant certaines contraintes.

Etape 2 : Dans le cas du canal Gaussien, il faut maximiser la distance euclidienne entre les mots de code associés à la contrainte de parité.

Optimisation des coefficients pour la BPSK

Dans l'état de l'art, l'optimisation des coefficients est réalisée pour la modulation BPSK.

✓ En BPSK la distance Euclidienne et la distance de Hamming sont équivalentes.

Distance sur un espace de dimension D=2dc

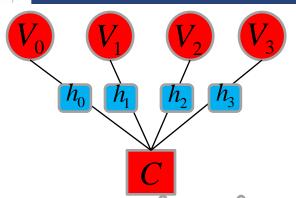
Le nombre de bits différents

Optimisation basée sur la distance de Hamming.

Poulliat et al [3] ont déterminé les coefficients de l'équation de parité optimaux pour un degré de nœud de parité $d_c = 4$.

[3] C. Poulliat, M. Fossorier, and D. Declercq, "Design of (2,dc)-LDPC codes over GF(q) using their binary image, IEEE Transactions on communications, vol 56, NO. 10, Oct 2008.

Optimisation des coefficients pour la BPSK



$$V_0, V_1, V_2, V_3 \in GF(q)^4 = (GF(2)^m)^4$$

Mot de code binaire de taille $4 \times m$ bits, $m = Log_{\gamma}(q)$

Si
$$C_1 = (0000, 0100, 0010, 0001)$$
 est un mot de code $C_0 = (0000, 00000, 00000, 00000)$ mot de code « tout zéro »

3 bits de différence
$$d_H(C_0, C_1) = 3$$

Problème d'optimisation : trouver h_0 h_1 h_2 h_3 tel que :

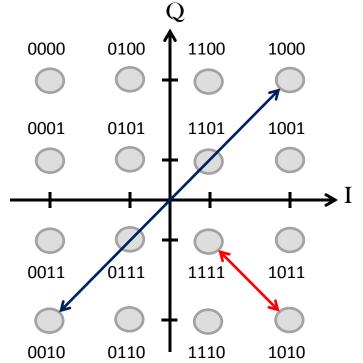
$$d_{\min} = \min_{C \in C^*} d_H(C_0, C)$$
 soit maximale

$$S(d_{\min}) = \left|\left\{C \in C^* / d_H(C_0, C) = d_{\min}\right\}\right|$$
 soit minimale

Solution dans [3] pour $d_C=4$, GF(64) l'ensemble { $\alpha^0 \alpha^9 \alpha^{22} \alpha^{37}$ }

On a
$$d_{\min} = 3$$
 et $S(d_{\min}) = 20$

Distance Euclidienne vs distance de Hamming pour les modulation d'ordre <u>élevé</u>



On considère une modulation avec un Gray mapping.

$$d_H(0010,1000) = 2$$
 $D(0010,1000) = 6\sqrt{2}$

$$d_H(1111,1010) = 2$$
 $D(1111,1010) = 2\sqrt{2}$

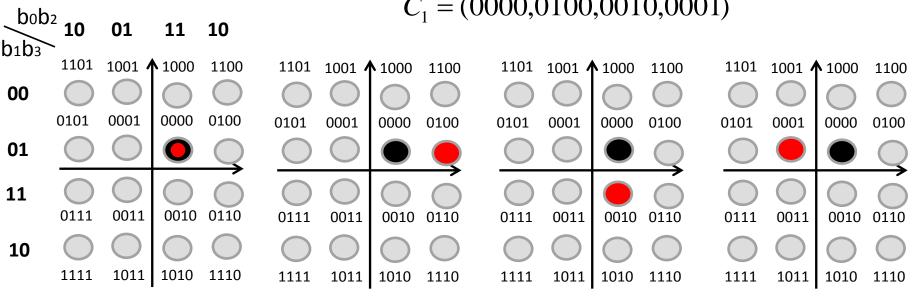
- **❖ L'équivalence** entre distance Euclidienne et distance de Hamming n'est pas vérifiée pour les modulations d'ordre élevé.
- > Il faut utiliser les distance Euclidienne pour choisir les coefficients non nuls.

Relation entre distance Euclidienne et mapping

Mapping de Gray ∏ 0

$$C_0 = (0000,0000,0000,0000)$$

$$C_1 = (0000,0100,0010,0001)$$



$$D(C_0^0, C_1^0) = 0$$

$$D(C_0^1, C_1^1) = 2$$

$$D(C_0^2, C_1^2) = 2$$

$$D(C_0^0, C_1^0) = 0$$
 $D(C_0^1, C_1^1) = 2$ $D(C_0^2, C_1^2) = 2$ $D(C_0^3, C_1^3) = 2$

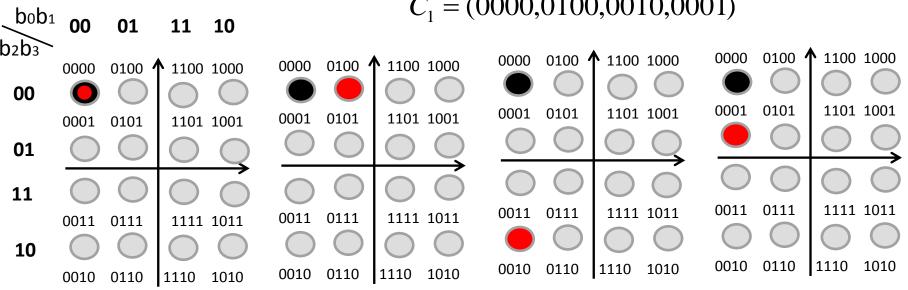
$$D(C_0, C_1)^2 = \sum_{k=0}^{3} D(C_0^k, C_1^k)^2 = 12 \Rightarrow D(C_0, C_1) = 2\sqrt{3}$$

Relation entre distance Euclidienne et mapping

Mapping de Gray $\prod 1$

$$C_0 = (0000,0000,0000,0000)$$

$$C_1 = (0000,0100,0010,0001)$$



$$D(C_0, C_1)^2 = \sum_{k=0}^{3} D(C_0^k, C_1^k)^2 = 44 \Rightarrow D(C_0, C_1) = 2\sqrt{11} \neq 2\sqrt{3}$$

La distance Euclidienne entre les mots de codes dépend du mapping de utilisé.

Méthode d'optimisation

- 1. Utiliser un mapping de Gray au niveau de la constellation pour garantir des propriétés entre distance de Hamming et distance Euclidienne : $d_H(C_0,C_1) \ge 3 \Rightarrow D(C_0,C_1) \ge 2\sqrt{3}$
- 2. Pour un couple (coefficients Gray mapping) donnée, définition d'une méthode rapide de détermination de $S(2\sqrt{3})$, le nombre de couples de mots de code à une distance de $2\sqrt{3}$ les uns aux autres.
- 3. Enumération d'une classe de codage de Gray par permutation des bits et détermination du couple (codage de Gray coefficients) qui minimisent $S(2\sqrt{3})$.

Exemples de spectres de distances

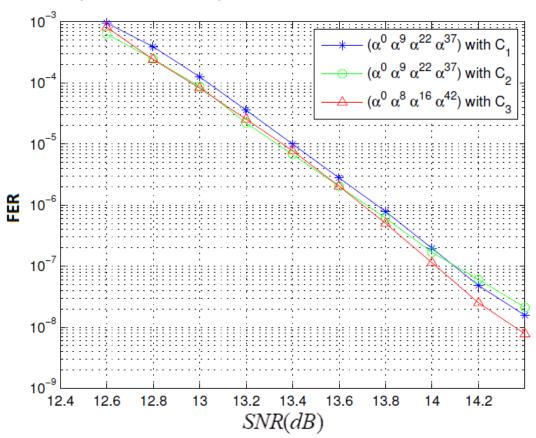
Nous avons réalisé une étude exhaustive sur les couples (Gray mapping – coefficients) d'une équation de parité. Nous présentons trois combinaisons comme suit :

- 1. Coefficients + Gray mapping de l'état de l'art. [1] et (DVB-T2).
- 2. Gray mapping qui maximise $S(2\sqrt{3})$, associé aux coefficients de l'état de l'art [1].
- 3. La meilleure combinaison entre Gray mapping et coefficients trouvée.

Code	Mapping σ	Coeff.	$S_{\pi,\mathcal{C}}(2\sqrt{3})$		$S_{\pi,\mathcal{C}}(4)$	
$(\mathcal{C},\pi)_0$	$\{5,4,3,2,1,0\}$	$\alpha^{\{0,9,22,37\}}$	516,096		3,868,672	
$(\mathcal{C},\pi)_1$	$\{3, 0, 2, 1, 5, 4\}$	$lpha^{\{0,9,22,37\}}$	909,312	+76%	2,910,208	-24%
$(\mathcal{C},\pi)_2$	$\{4,2,1,0,5,3\}$	$\alpha^{\{0,8,16,42\}}$	385,024	-25%	3,499,008	-10%

Résultats de simulation

• Nous avons réalisé la construction de deux matrices d'encodage de taille 48 et rendement 1/2 utilisant les deux quadruplets de coefficients $\{\alpha^0 \alpha^9 \alpha^{22} \alpha^{37}\}$ et $\{\alpha^0 \alpha^8 \alpha^{16} \alpha^{42}\}$.



- Les résultats de simulation comparent les trois cas de figure que nous avons choisis.
- Un gain de performance qui atteint 0,2 dB peut être obtenu.
- Les gains obtenus n'ajoutent pas de complexité au système de transmission.

Récapitulatif

Nous avons réalisé une optimisation conjointe des codes LDPC-NB et des modulations.

Meilleur schéma en modulation codée est proposé. Des gains de performances sont obtenus sans ajout de complexité.

Nous avons valorisé ces travaux par un article de conférence à ISTC [4], et une demande de Brevet en collaboration avec France Brevet [5].

[4] A. Abdmouleh, E. Boutillon, L. Conde-Canencia, C. A. Nour, and C. Douillard, "A new approach to optimise Non-Binary LDPC codes for coded modulations," *IEEE International Symposium on turbo Codes and Iterative Information Processing (ISTC)*, pp. 295–299, Sep 2016.

[5] A. Abdmouleh, E. Boutillon, Methods and devices for generating optimized coded modulations," *Numéro de Demande : EP16306110.4, Déposant : UNIVERSITE DE BRETAGNE SUD*, Sep 2016.

Plan de la présentation

- 1. Contexte de la thèse.
- 2. Optimisation de la diversité de constellation.
- 3. Optimisation conjointe des codes LDPC non binaires et des modulations d'ordre élevé.
- 4. Conclusion et perspectives

Conclusion

Optimisation de la constellation tournée:

- ✓ Optimisation basée sur une analyse théorique de l'IM pour les schémas en CM et en BICM.
- Des avantages théoriques observés pour le schéma en CM par rapport au schéma en BICM.
- > Des gains en performances importants pour le schéma en CM.

Optimisation conjointe des codes LDPC-NB et des modulations-NB:

- ✓ Optimisation conjointe des codes LDPC-NB et des modulations, basée sur une maximisation de la distance Euclidienne : Méthode innovante.
- Amélioration du schéma en modulation codée.
- ➤ Des gains de performances sont obtenus (0.2dB) sans ajout de complexité.

Perspectives

Optimisation de la technique de la constellation tournée :

- ✓ La méthode d'optimisation proposée peut être généralisée à d'autres types de modulations (M-QAM et en q-PSK), rendements, et d'autres corps de Galois.
- **Application sur les transmissions en n-dimension.**

Optimisation conjointe des codes LDPC-NB et des modulations-NB:

- ✓ La méthode d'optimisation proposée peu être généralisée à d'autres rendements, longueurs de codes, types de modulations et codes non-binaires (turbo codes NB).
- ❖ Considérer des LDPC-NB définis sur un anneau. Des résultats préliminaires démontrent qu'on peut atteindre une distance Euclidienne minimale de 4.

Merci de votre attention.

