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Abstract—This paper presents several techniques for the very
large-scale integration (VLSI) implementation of themaximum a
posteriori (MAP) algorithm. In general, knowledge about the im-
plementation of the Viterbi algorithm can be applied to the MAP
algorithm. Bounds are derived for the dynamic range of the state
metrics which enable the designer to optimize the word length.
The computational kernel of the algorithm is the Add-MAX
operation, which is the Add-Compare-Select operation of the
Viterbi algorithm with an added offset. We show that the critical
path of the algorithm can be reduced if the Add-MAX operation
is reordered into an Offset-Add-Compare-Select operation by
adjusting the location of registers. A general scheduling for the
MAP algorithm is presented which gives the tradeoffs between
computational complexity, latency, and memory size. Some of
these architectures eliminate the need for RAM blocks with
unusual form factors or can replace the RAM with registers.
These architectures are suited to VLSI implementation of turbo
decoders.

Index Terms—Forward–backward algorithm, MAP estimation,
turbo codes, very large-scale integration (VLSI), Viterbi decoding.

I. INTRODUCTION

I N RECENT YEARS, there has been considerable interest
in soft-output decoding algorithms; algorithms that provide

a measure of reliability for each bit that they decode. The
most promising application of soft-output decoding algorithms
are probably turbo codes and related concatenated coding
techniques [1]. Decoders for these codes consist of several
concatenated soft-output decoders, each of which decodes part
of the overall code and then passes “soft” reliability information
to the other decoders. The component soft-output algorithm
prescribed in the original turbo code paper [1] is usually known
as the maximuma posteriori(MAP), forward–backward (FB),
or Bahl–Cocke–Jelinek–Raviv (BCJR) algorithm [2], [3]. This
algorithm, originally described in the late 1960’s, was generally
overlooked in favor of the less complex Viterbi algorithm [4],
[5], moreover, applications taking advantage of soft-output
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information were not evident. In this paper, we describe tech-
niques for implementing the MAP algorithm that are suitable
for very large-scale integration (VLSI) implementation.

The main idea in this paper can be summarized as extending
well-known techniques used in implementing the Viterbi al-
gorithm to the MAP algorithm. The MAP algorithm can be
thought of as two Viterbi-like algorithms running in opposite
directions over the data, albeit with a slightly different compu-
tational kernel.

This paper is structured in the following way. Section II is a
brief description of the MAP algorithm in the logarithmic do-
main. Section III studies the problem of internal representation
of the state metrics for a fixed-point implementation. Section IV
focuses on efficient architectures to realize a forward (or back-
ward) recursion. The log-likelihood ratio (LLR) calculation is
also briefly described. Section V proposes several schedules for
the forward and backward recursions. As the computations of
the forward and the backward recursions are symmetrical in
time (i.e., identical in terms of hardware computation), only the
forward recursion is described in Sections III and IV.

II. MAP A LGORITHM

A. Description of the Algorithm

The MAP algorithm is derived in [3] and [6] to which the
reader is referred to for a detailed description. The original
derivation of the MAP algorithm was in the probability domain.
The output of the algorithm is a sequence of decoded bits
along with their reliabilities. This “soft” reliability information
is generally described by thea posteriori probability (APP)

. For an estimate of bit ( 1/ 1) having received
symbol , we define the optimum soft output as

(1)

which is called the log-likelihood ratio (LLR). The LLR is a
convenient measure, since it encapsulates both soft and hard
bit information in one number. The sign of the number corre-
sponds to the hard decision while the magnitude gives a relia-
bility estimate. The original formulation of the MAP algorithm
requires multiplication and exponentiation to calculate the re-
quired probabilities.

In this paper, we consider the MAP algorithm in the loga-
rithmic domain as described in [7]. The MAP algorithm, in its
native form, is challenging to implement because of the expo-
nentiation and multiplication. If the algorithm is implemented in
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the logarithmic domain like the Viterbi algorithm, then the mul-
tiplications become additions and the exponentials disappear.
Addition is transformed according to the rule described in [8].
Following [9], the additions are replaced using the Jacobi loga-
rithm

(2)

which is called the operation, to denote that it is essen-
tially a maximum operator adjusted by a correction factor. The
second term, a function of the single variable , can be pre-
calculated and stored in a small lookup table (LUT) [9]. The
computational kernel of the MAP algorithm is the Add–
operation, which is analogous, in terms of computation, to the
Add–Compare–Select (ACS) operation in the Viterbi algorithm
adjusted by an offset known as a correction factor. In what fol-
lows, we will refer to this kernel as ACSO (Add–Compare–Se-
lect–Offset).

The algorithm is based on the same trellis as the Viterbi al-
gorithm. The algorithm is performed on a block ofreceived
symbols which corresponds to a trellis with a finite number of
stages . We will choose the transmitted bit from the set
of { }. Upon receiving the symbol from the additive
white Gaussian noise (AWGN) channel with noise variance,
we calculate the branch metrics of the transition from stateto
state as

(3)

where is the expected symbol along the branch from
state to state . The multiplication by can be done
with either a multiplier or an LUT. Note that in the case of a
turbo decoder which uses several iterations of the MAP algo-
rithm, the multiplication by need only be done at the
input to the first MAP algorithm [6].

The algorithm consists of three steps.
• Forward Recursion. The forward state metrics are recur-

sively calculated and stored as

(4)
The recursion is initialized by forcing the starting state to state
0 and setting

(5)

• Backward Recursion. The backward state metrics are recur-
sively calculated and stored as

(6)

The recursion is initialized by forcing the ending state to state 0
and setting

(7)

The trellis termination condition requires the entire block to be
received before the backward recursion can begin.

• Soft-Output Calculation. The soft output, which is called the
LLR, for each symbol at time is calculated as

(8)

where the first term is over all branches with input label1, and
the second term is over all branches with input label1.

The MAP algorithm, as described, requires the entire mes-
sage to be stored before decoding can start. If the blocks of data
are large, or the received stream continuous, this restriction can
be too stringent; “on-the-fly” decoding using a sliding-window
technique has to be used. Similar to the Viterbi algorithm, we
can start the backward recursion from the “all-zero vector”
(i.e., all the components of are equal to zero) with data {},

from down to . iterations of the backward recur-
sion allows us to reach a very good approximation of
(where is a positive additive factor) [10], [11]. This additive
coefficient does not affect the value of the LLR. In the following,
we will consider that after cycles of backward recursion, the
resulting state metric vector is the correct one. This property can
be used in a hardware realization to start the effective decoding
of the bits before the end of the message. The parameteris
called the convergence length. For on-the-fly decoding of non-
systematic convolutional codes as discussed in [10] and [11],
five to ten times the constraint length was found to lead only to
marginal signal-to-noise ratio (SNR) losses. For turbo decoders,
due to the iterative structure of the computation, an increased
value of might be required to avoid an error floor. A value of

is reported in [12] for a recursive systematic code with
a constraint length of five. In practice, the final value ofhas
to be determined via system simulation and analysis of the par-
ticular decoding system at hand.

B. Upper Bounds for

All the following upper bounds are derived from the defini-
tion of in (2):

(9)

For practical implementation, one can notice that, due to the
finite precision of the hardware implementation, the function

gives a zero result as soon as is large
enough. For example, if the values are coded in fixed precision
with three binary places (a quantum of 0.125), then

, thus it will be rounded to 0. In
that case, the computation of the offset of the operator
can be performed with two pieces of information: a Boolean

(for zero) that indicates if is above or equal to the
first power of two greater than 2.5, i.e., four. If is true, then
the offset is equal to 0. If not, its exact value is computed with
the five least significant bits of . The maximum number
is , which will be quantized to 0.75, i.e., the width of the
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LUT is three bits for our example. An LUT is the most straight-
forward way to perform this operation [9], [15]. In the general
case, there is a positive valuesuch that

if (10)

We also have

(11)

with equality if (note that quantization of the LUT is also
discussed in [14]).

III. PRECISION OFSTATE METRICS

The precision of the state metrics is an important issue for
VLSI implementation. The number of bits used to code the
state metrics determines both the hardware complexity and the
speed of the hardware. This motivates the need for techniques
which minimize the number of bits required without modifying
the behavior of the algorithm.

The same problem has been intensively studied for the Viterbi
algorithm ([16], [17]) and solutions using rescaling or modulo
2 arithmetic are widely used [18], [19]. These techniques are
based on the fact that, at every instant, the dynamic range
of a state metric (i.e., the difference between the state metrics
with the highest and lowest values), is bounded by .

The forward recursion in the MAP algorithm is slightly dif-
ferent than the Viterbi algorithm since:

1) the outputs of the recursion are the state metrics them-
selves and not the decisions of the ACS;

2) the Add– is an ACS operation with an added offset
(ACSO).

These differences lead us to question whether the well-known
implementation techniques for the Viterbi algorithm are also ap-
plicable to the MAP algorithm. The first part of this section
shows that the LLR result is independent of a global shift of
all of the state metrics of the forward and backward recursions.
The bounds on the dynamic range of the state metric are then
given.

A. Rescaling the State Metrics

Let us first show that the operator is shift invariant,
that is, it still produces a valid result if both of its arguments
have a common constant added to them. Let, , and be real
numbers. From the definition of , it follows that:

(12)

Thus

(13)

According to (13), the operator is linear. Thus, a
global shift of for all values (or ) would not
change the value of , since the contribution of , when
put outside the two operators, is cancelled. Thus, it is

the differences between the state metrics and not their absolute
values that are important. Rescaling of the state metrics can be
performed.

B. Approximate Bound on the Dynamic Range of
the State Metrics

Let us define as the minimum number such that, for all
, there is a path through the trellis between every state at time
and . Let us define as the maximum absolute value

of the branch metric. Then, for all , a rough bound on the
dynamic range of the state metrics is

(14)

Proof: Let and be, respectively, the
maximum and minimum value of the state metric at time.
Then, according to the definition of, there is a path of length

in the trellis between every stateat time and the state
with value at time . Since at every step, the
maximum state metric (with, eventually, a positive correction
factor) is taken, in the worst case, among the path between
and , the state metric can decrease byat each step. Thus,

is at least equal to or greater than .
Similarly, the maximum increase at each stage of the state metric
among this path is ( is the maximum value of
the correction factor added at each stage). Thus, is
lower than, or equal to, . Grouping
the upper bound of and the lower bound of
leads to (14).

Note that in the case of a trellis corresponding to a shift reg-
ister of length , is equal to .

C. Finer Bound on the Dynamic Range of the State Metrics
for a Convolutional Decoder

A more precise bound can be obtained in the case of a convo-
lutional decoder using the intrinsic properties of the encoder. All
the following developments are based on a previous work based
on the Viterbi algorithm [17]. Note that this problem has already
been independently addressed by Montorsiet al. [20], where
they extend through intensive simulation, without any formal
proof, the result obtained in [21] for the case of Viterbi algo-
rithm.

1) Exact Bound on : The lower bound of can be ob-
tained using the Perron–Frobenius theorem [25]. Let us work in
the probability domain and let us assume that the branch prob-
abilities

(15)
are normalized so that

(16)

In a real system, the are bounded (by the analog–digital con-
version) and the standard deviation of the noiseis a nonzero
value, thus, according to (15) and (16), we have the relation

for all (17)
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Let us first assume that the all-zero path is sent in the channel
and that all the received symbols have the highest possible relia-
bility. The forward recursion is performed on the received sym-
bols. Let us study, in this case, the ratio of state probabilities
between the state with the highest probability and the state with
the lower probability when the forward recursion is performed.
Note that this ratio, in the log domain, is associated with the
maximum difference between state metrics, i.e., the dynamic
range of the state metric.

The initial state vector is the
uniformly distributed vector of length , where is the number
of states of the trellis.

Since by hypothesis all the branch metrics are independent of
time, we can express the forward recursion in an algebraic form
using transition matrix

(18)

By recursion, we have

(19)

By construction, is a positive irreducible matrix (the coeffi-
cients are positive, and only performs a modification of the
probability distribution of the state metric vector). Thus, ac-
cording to the Perron–Frobenius theorem [25],can be ex-
pressed, in the basis of eigenvectors , by a diag-
onal matrix with the two properties:

1) , the Perron eigenvector of, is the only eigenvector of
that has all of its components positive;

2) , the Perron eigenvalue associated withis positive
and for all .

Since, in the trellis, all the states at timeare connected to
the states at time , we deduce that all the coefficients of

are strictly positive. Using the Perron–Frobenius theorem
for gives an extra property: the Perron eigenvalue ofis
strictly greater than its other eigenvalues. From this property,
we deduce that this property is also true for, i.e.,
for all .

Let be the decomposition of in the basis
. The vector can be expressed as

(20)

with , for .
Let us call (respectively, ) the maximum

(minimum) coordinate value of vector , and the ratio
.

Conjecture: For all , .
Proof: First, , since
. Second, using (20), we have

(21)

and thus

(22)

Finally, we justify the monotonic increasing of (which
achieves the proof) by an intuitive argument. is the like-
lihood ratio between the state that has the highest probability
(state 0, by construction) and the state with the lowest proba-
bility. Since every new incoming branch metric confirms state
0, is an increasing function of.

Using the same type of argument, if one, or more, of the first
received signals do not have the highest reliability, the resulting
ratio will be smaller than .

Since the code is linear, the result obtained for the all-zero
sequence is true for all sequences of bits. Thus, the logarithm
of the ratio gives the maximum differences of the state
metric.

2) Exact Bound in Finite Precision:The exact maximum
difference obtained with a fixed precision architecture is
obtained from (19) starting from the all-zero vector until the
system reaches stationarity, i.e., if all state metrics increase by
the same constant value at each iteration, is then equal
to .

Note that this algorithm is a generalization of the algorithm
proposed in [22] for the case of Viterbi decoder.

3) Simplification of the Computation of the Branch Metrics
for a Convolutional Decoder:For a rate convolutional
code, is an -dimensional vector with elements
{ } (or { 1, 0, 1} in the case of a punctured code
where 0 is used for a punctured bit). Using (13), the computa-
tion of the branch metrics can be extended and simplified

(23)
The first terms are common to all branch metrics, thus, they can
be dropped. The last terms can be decomposed on thedimen-
sions of the vector. Thus, the modified branch metrics
are

(24)
where takes the value of zero for a punctured code
symbol. This expression can be used to find the exact bound
of .

4) Example: As an example, let us consider a recursive sys-
tematic encoder with generator polynomials (7, 5). Moreover,
let us assume that the modified branch metrics are
coded using 128 levels, from15.75 up to 15.75 (the inputs

are coded between7.875 up to 7.875, with a step size
of 0.125). We assume that the all-zero path is received with
the maximum reliability. The resulting state transition diagram
(with values of modified branch metrics) is given in Fig. 1.
Table I shows the evolution of the state metrics for the first eight
iterations of the forward recursion.

As shown in Table I, the value of does not increase after
seven iterations. The limit value is the maximum
value of the state metric dynamic range obtained for our ex-
ample. The approximate bound of (14) gives, for this example,

. The bound obtained by the above method is much
more precise and can lead to more efficient hardware realiza-
tions, since the precision of the state metrics is reduced.
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Fig. 1. State transition of a systematic recursive encoder with polynomials (7,5) and modified branch metric when, for allk, (y =� ; y =� ) =
(�7:875;�7;875).

TABLE I
VARIATION OF STATE METRICSAFTER t STAGES ON THEALL-ZERO PATH

Note that the initial state vector is important (the all-zero
vector). In the case where the initial state is known (state 0, for
example), using an initial state that gives the highest probability
possible for state zero and the lowest probability for all the other
states can lead to some transitory values greater than .
The natural solution to avoid this problem is to use the obtained
eigenvector (vector (47.250, 0, 15.750, 0) in this example). For
turbo-decoder applications, the method can also be used, taking
into account the extrinsic information as the initial state.

IV. A RCHITECTURE FOR THEFORWARD

AND BACKWARD RECURSIONS

This section is divided into two parts. The first part is a review
of the architecture usually used to compute the forward state
metrics [9]. The second part is an analysis of the position of the
register for the recursion loop in order to increase the speed of
the architecture.

A. Computation of the Forward State Metrics: ACSO Unit

The architecture of the processing unit that computes a new
value of is shown in Fig. 2. The structure consists of
the well-known ACS unit used for the Viterbi algorithm (grey
area in Fig. 2) and some extra hardware to generate the “offset”
corresponding to the correction factor of (2).

As said in Section II, the offset is generated directly with a
LUT that contains the precalculated result of .
Then, the offset is added to the result of the ACS operation to
generate the final value of . In the following, we will call
this processor unit an ACSO unit.

B. Architecture for the Forward State Metric Recursion

The natural way to perform the forward state metric recursion
is to place a register at the output of the ACSO unit, in order to
keep the value of for the next iteration. This architecture

Fig. 2. Architecture of an ACSO.

Fig. 3. Three different positions of the register in the data flow of the forward
(or backward) algorithm leading to three types of ACSO recursion architectures.

is the same as the one used for the Viterbi algorithm, and all
the literature on the speed-area tradeoffs for the ACS recursion
can be reused for the ACSO computation. Nevertheless, there
is another position for the register which reduces the critical
path of the recursion loop. Fig. 3 shows two steps of a two-state
trellis.
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Fig. 4. Architecture of an OACS unit.

Three different positions of the recursion loop register
are shown. The first position is the classical one. It leads to
an ACSO unit. The second position leads to a compare-se-
lect-offset-add (CSOA) unit, while the third position leads
to an offset-add-compare-select (OACS) unit. The last one,
the OACS unit shown in Fig. 4, has a smaller critical path
compared with the ACSO unit. Briefly, in the case of a ACSO
unit, the critical path is composed of the propagation of the
carry ( ) in the first adder, the propagation of one full adder
( ) for the comparison (as soon as a result of the sum is
available, it can be used for the comparison), the time of the
LUT access ( ) and the multiplexer ( ), and then, once
more, the time of the propagation of the carry in the offset
addition. For the OACS unit, the critical path is only composed
of the propagation of the carry in the first adder (the addition of
the offset), the propagation of one full adder for the addition of
the branch metric, another propagation of one full adder for the
comparison, and then, the maximum of the LUT access and the
multiplexer. Thus, the critical path is decreased from

(25)

to

(26)

The decrease of the critical path is paid for by an additional
register needed to store the offset value between two iterations.
The area-speed tradeoff is determined by the specification of
the application. As mentioned by one of the paper’s reviewers,
a Carry–Save–Adder (CSA) architecture can also be efficiently
used in this case [23].

The last step of the MAP algorithm is the computation of the
LLR value of the decoded bit. Parallel architectures for the LLR
computation can be derived directly from (8). The first stage
is composed of 2 adders. The second stage is composed of
two 2 operand operators. Finally, the last operation is
the subtraction. A classical tree architecture can be used for the
hardware realization of the operand operators.

V. GENERAL ARCHITECTURE

Each element of the MAP architecture has now been de-
scribed. The last part of our survey on VLSI architectures
for the MAP algorithm is the overall organization of the
computation. Briefly speaking, the generation of the LLR
values requires both and values, which are generated
in chronologically reverse order. The first implication is that,

somehow, memory is needed to store a given type of vector
(say, ), until the corresponding vector ( ) is generated.
Each state metric vector is composed of 2state metrics (the
size of the trellis), each one bits wide. The total number of
bits for each vector is large ( ) and thus, the reduction of
the number of state metrics is an important issue for minimizing
the implementation area.

The first part of this section describes the architecture of
a high-speed VLSI circuit for the forward algorithm. Then,
through different steps, we propose several organizations of
computation that reduce the number of vectors that need to be
stored by up to a factor of eight. Note that several authors have
separately achieved similar results. This point will be discussed
in the last section.

A. Classical Solutions [( ) and
( )] Architecture

The first real-time MAP VLSI architectures in the literature
are described in [11], [13], and [24]. The architecture of [11]
and [13] is based on three recursion units (RUs), two used for
the backward recursion ( and ), and one forward
unit ( ). Each RU contains operators working
in parallel so that one recursion can be performed in one clock
cycle. The two backward RUs play a role similar to the two
trace-back units in the Viterbi decoder of [26].

Let us use the same graphical representation as in [11],
[27], and [28] to explain the organization of the computation.
In Fig. 5, the horizontal axis represents time, with units of
a symbol period. The vertical axis represents the received
symbol. Thus, the curve ( ) shows that, at time ,
the symbol { } becomes available. Let us describe how the

symbols are decoded (segment I of Fig. 5).
From to , performs recursions, starting
from down to (segment II of Fig. 5). This process
is initialized with the all-zero state vector , but after
iterations, as noted in [11], the convergence is reached and
is then obtained. During those samecycles, generates
the vectors (segment III of Fig. 5). The vectors

are stored in the state vector memory (SVM)
until they are needed for the LLR computation (grey area
of Fig. 5). Then, between and , starts
from state to compute down to (segment IV
of Fig. 5). At each cycle, the vector corresponding to the
computed is extracted from the memory in order to compute

. Finally, between and , the data are
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Fig. 5. Graphical representation of a real-time MAP architecture.

reordered (segment V of Fig. 5) using a memory for reversing
the LLR (light grey area of Fig. 5). The same process is then
reiterated every cycles, as shown in Fig. 5.

In the case where the MAP unit is being used in a turbo de-
coder, the reordering can be done implicitly by the interleaver.
Moreover, thea priori information to be subtracted [1] can be
reversed in time in order to be directly subtracted after gener-
ation of the LLR value (segment IV of Fig. 5). Note that the
role of the memories is to reverse the order of the state vectors.
Reordering of the state metrics can be done with a single RAM
and an up/down counter duringclock cycles. The incoming
data are stored at addresses . In the next cycles,
the counter counts down and the state vectors are retrieved from

and at the same time, the new incoming state vectors
are stored in the same RAM block (from addresses down
to 0). Only one read/write access is done at the same location
every clock cycle. This avoids the need for multiport memories.

This graphical representation gives some useful information
about the architecture. For example, the values of:

1) the decoding latency: (horizontal distance be-
tween the array “acquisition” and “decoded bit”);

2) the number of vectors to be stored: (maximum
vertical size of the grey area);

3) the “computational cost” of the architecture, i.e., the total
number of forward and backward iterations performed for
each received data: (the number of arrows of RU
cut by a vertical line).

Note that to perform the recursions, branch metrics have to be
available. This can easily be done using three RAMs of size
that contain the branch metrics of the three last received blocks
of size . Note that the RAM can simply store the received
symbols. In that case, branch metrics are computed on the fly
every time they are needed. Since the amount of RAM needed
to store branch metric information is small compared with the
amount of RAM needed to store the state metric, evaluation of
branch metric computation will be omitted in the rest of the
paper.

In what follows, this architecture is referred to as
( ), where and are, respec-

Fig. 6. Graphical representation of the(n = 1; n = 2;M )
architecture.

tively, the number of RUs used for the forward and backward
recursions. (for the memory of state metric ) indicates
that the vectors are stored for the LLR bit computation. Note
that in this architecture, the forward recursion is performed 2
cycles after the initial reception of data.

With the ( ) architecture, state vec-
tors have to be stored. The length of convergenceis relatively
small (a few times the constraint length) but the size of the
state vector is very large. In fact, a state vector is composed of 2
state metrics, each state metric is bits wide, i.e., bits
per state metric vector. The resulting memory is very narrow,
and thus, not well suited for a realization with a single RAM
block, but it can be easily implemented by connecting several
small RAM blocks in parallel.

The architecture ( ) is reported in [10]. It
is equivalent to the former one, except that the forward recursion
is performed 4 cycles after the reception of the data, instead
of 2 cycles (segment V of Fig. 5 instead of segment III). In
this scheme, the vectors generated by are stored until
the computation of the correspondingvectors by (light
grey of Fig. 5). Then, the LLR values are computed in the natural
order.

Other architectures have been developed. Each presents
different tradeoffs between computational power, memory size,
and memory bandwidth. Their graphical representations are
given below.

B. ( ) Architecture

In this architecture, the forward recursion is performed 3
cycles after the reception of the data (see Fig. 6). Thus,
vectors and vectors have to be stored. The total number
of state vectors to be stored is still. Moreover, with this solu-
tion, bits have to be decoded in the last clocks cycles of an
iteration, thus, two APP units have to be used. This scheme be-
comes valuable when two independent MAP decoders work in
parallel. Since two MAP algorithms are performed in parallel, it
is possible to share thememory words between the two MAP
algorithms by an appropriate interleaving of the two operations,
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Fig. 7. Graphical representation of the (n = 1; n = 3;M ) architecture.

as shown in Fig. 6. In this figure, the second iteration is repre-
sented with dotted lines and the corresponding vector memory
with a striped region. This scheme can be used in a pipeline
of decoders to simultaneously decode two information streams.
With this interleaving, the amount of memory for state metrics
corresponding to each MAP is divided by two. Thus, the final
area will be smaller than the simple juxtaposition of two “clas-
sical” MAP algorithms. With this solution, two read and two
write accesses are needed at each symbol cycle. Those accesses
can be shared harmoniously with two RAMs of size with
a read and write access at the same address for each of the two
RAMs.

The MAP architecture can use more than two RUs for the
backward recursion and/or more than one RU for the forward
recursion. The following sections describe some interesting so-
lutions.

C. ( ) Architecture

An additional backward unit leads to the schedule of Fig. 7. A
new backward recursion is started every cycles on a length
of symbols. The first steps are used to achieve conver-
gence, then the last steps generate vectors . The new
latency is now 3 , and the amount of memory needed to store
the vectors is only . Two observations are worth noting:

1) the reduction of the latency and the memory size is paid
for by a new backward unit;

2) a solution of type ( ) can also
be used.

D. ( ) Architecture

The addition of an extra forward unit can also decrease the
SVM by a factor of two, as shown in Fig. 8. This scheme has
the same number of processing units ( ) and the
same state metric memory size as the (

) architecture, but its latency is 4compared with 3 for
the architecture of the previous section. However, the second re-
cursion unit can be simplified, since it only copies, with a
time shift of cycles, the computation of . Thus, there ex-
ists a tradeoff between computational complexity and memory.

Fig. 8. Graphical representation of the (n = 2; n = 2;M ) architecture.

Fig. 9. Simplified ACSO unit.

By storing, during cycles, each decision and offset value gen-
erated by , the complexity of is almost divided by
two (see Fig. 9).

This method is very similar to the method used for the soft-
output Viterbi algorithm [29].

Note that once more, an ( )
method can be used.

E. ( ) Architecture

This type of architecture is a generalization of the idea de-
scribed above: instead of memorizing a large number of(or

) vectors, they are recomputed when they are needed. For this,
the context (i.e., the state metrics) of an iteration process is saved
in a pointer. This pointer is used later to recompute, with a delay,
the series state metric. Such a process is given in Fig. 10.

In this scheme, the state metrics of are saved every
cycles (small circles in Fig. 10). Those four state metrics

are used as a seed, or pointer, to start the third backward process
( , in Fig. 10) of length . The third backward recur-
sion is synchronized with the forward recursion in order to min-
imize the size of the vector to be stored. In practice, only
three seeds are needed, since and process the same
data during the last quarter of a segment ofcycles. With this
method, the latency is still 4, but the number of state metrics
to store is now . With such a small number of vec-
tors, the use of registers instead of RAM can be used to store
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Fig. 10. Graphical representation of the (n = 1; n = 3;M ; P t )
architecture.

Fig. 11. Graphical representation of the (n = 1; n = 3;M ;

P t ) architecture.

the state metrics. This avoids the use of a RAM with an un-
usual aspect ratio and a consequent negative impact on perfor-
mance. This scheme becomes particularly attractive if two in-
dependent MAP algorithms are implemented in a single chip,
since an ( ) architecture can
be used to share the vectors of the two MAP algorithms
(see Fig. 11). As with the ( ) archi-
tecture, this scheme can be used in a pipeline of decoders to
simultaneously decode two information streams.

This scheme is particularly efficient because it avoids the use
of a RAM for storing the state metrics.

F. Generalization of the Architecture

Many combinations of the above architectures can be real-
ized, each one with its own advantages and disadvantages. In
the above examples, the ratiobetween the hardware clock and
the symbol clock is one. Other architectures can be uncovered
by loosening this restriction. For example, if this ratiois two
(i.e., two clock cycles for each received symbol), the speed of

Fig. 12. Graphical representation of the (p = 2; n = 1; n = 1;M ;

P t ) architecture.

the RU is doubled. Thus, an architecture such as (
) can be used (see Fig. 12) to obtain an

SVM of size .

G. Summary of the Different Configurations

In Table II, different configurations are evaluated in order to
help the designer of a system. Note thatis a generalization
factor and that 0.5 (in columns and ) denotes the simpli-
fied ACSO unit of Fig. 9. We can see that in the case of two
MAP algorithms implemented together in the same circuit, it is
possible to decrease the number of vectors fromto .
This reduction allows the realization of this memory using only
registers.

Note that the final choice of a solution among the different
proposed alternatives will be made by the designer. The de-
signer’s objective is to optimize area and/or power dissipation of
the design while respecting application requirements (decoding
latency, performance). The complexity of the MAP algorithm
depends on the application (continuous stream or small blocks,
simple or duo-binary encoder [30], [31], number of encoder
states, etc.). The consequence is that the merit of the proposed
solution can vary with the application and no general rules can
be found. In practice, a fast and quite accurate complexity esti-
mation can be obtained in terms of gate count and memory cells
by simply using a field-programmable gate array synthesis tool
to compile a VHDL or Verilog algorithm description.

H. Similar Works in This Area

Since the first submission of this paper, much work has been
independently published on this topic. In this final subsection,
we give a brief overview of these fundamental works.

The architecture of Sections V-B–D has also been proposed
by Schurgerset al. In [32] and [33], the authors give a very
detailed analysis of the tradeoffs between complexity, power
dissipation, and throughput. Moreover, they propose a very in-
teresting architecture of double flow structures, where for ex-
ample, two processes of type ( ) and
( ) are performed in parallel on a data
block of size , the first one, in natural order, from data 0



184 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 51, NO. 2, FEBRUARY 2003

TABLE II
PERFORMANCE OF THEDIFFERENTARCHITECTURES

to , the second, in reverse order, from datadown to
. Moreover, Wormet al.[34] extend the architecture of Sec-

tions V-A and -B for a massively parallel architecture where
several processes are done in parallel. With this massive paral-
lelism, very high throughput (up to 4 Gbit/s) can be achieved.

The pointer idea described in Section V-E has been proposed
independently by Dingninouet al.in the case of a turbo decoder
in [35] and [36]. In this “sliding window next iteration initializa-
tion” method, the pointer generated by the backward recursion
at iteration is used to initialize the backward recursion at itera-
tion . As a result, no further backward convergence process
is needed and area and memory are saved at the cost of a slight
degradation of the decoder performance. Note that Dielissenet
al. have improved this method by an efficient encoding of the
pointer [37].

Finally, an example of an architecture using a ratio of two be-
tween clock frequency and symbol frequency (see Section V-F)
is partially used in [38].

VI. CONCLUSION

We have presented a survey of techniques for VLSI imple-
mentation of the MAP algorithm. As a general conclusion, the
well-known results from the Viterbi algorithm literature can be
applied to the MAP algorithm. The computational kernel of the
MAP algorithm is very similar to that of the ACS of the Viterbi
algorithm with an added offset. The analysis shows that it is
better to add the offset first and then do the ACS operation in
order to reduce the critical path of the circuit (OACS). A gen-
eral architecture for the MAP algorithm was developed which
exposes some interesting tradeoffs for VLSI implementation.
Most importantly, we have presented architectures which elimi-
nate the need for RAMs with a narrow aspect ratio and possibly
allow the RAM to be replaced with registers. An architecture
which shares a memory bank between two MAP decoders en-
ables efficient implementation of turbo decoders.
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