
Bubble check: simplified check node architecture for non-
binary LDPC

E. Boutillon, L. Conde-Canencia

The Extended Min Sum (EMS) algorithm has recently been proposed for non-binary LDPC decoding.

In this letter, we present a simplified version of the EMS check node update, named bubble check.

This novel technique can reduce the number of comparison operations by a factor of 3, resulting in a

lower hardware complexity, without introducing any significant perfomance degradation.

Introduction: Non-binary Low-Density Parity-Check (NB-LDPC) codes are constructed as a

set of parity equations over a Galois Field GF(q). They are known to be an efficient alternative

to binary LDPC for the transmission of short frames. However, high decoding complexity of

NB-LDPC codes (especially the check node processors) remains a bottleneck in their

hardware realization. In this letter we propose a low complexity algorithm named Bubble

Check to perform efficiently the check node processing.

Check node processing in NB-LDPC decoders: Using the forward-backward algorithm, a

check node of degree dc can be decomposed in 3(dc-2) Elementary Check Nodes (ECN)

where an ECN has two input messages U and V and one output message E. Each message

U contains the probability distribution of the associated variable u, i.e. the probability density

function U defined by the q probabilities {P(u=α)}α∈GF(q). In order to verify the elementary

check equation, u, v and e must verify the parity equation: u+v+e=0, where “+” stands for the

addition in GF(q). Assuming that U and V are known, the extrinsic information E can be



computed for every value γ of GF(q) as [1]:
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The direct computation of (1) requires q2 multiplications and additions. Performing the

computation in the frequency domain reduces the computational complexity to q.log(q)

multiplications and additions [2]. The complexity of (1) can be further reduced by a) only

considering the nm highest values of vectors U, V and E; b) performing the operation using the

Log-Likelihood Ratio (LLR) LLRU(α)=Log(P(u=α)/P(u=α0)) where α0 is the GF(q) value with

the highest probability and c) approximating the addition in the probability domain by the

maximum in the LLR domain. These are the simplifications considered in the EMS algorithm

[3]. Equation (1) then becomes:
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where Ugf(nm) (respectively Vgf(nm)) is the set of the nm GF(q) values corresponding to the

highest LLR values of U (respectively V). Since the LLR are all negative, it is more convenient

to consider LLRm = -LLR to deals with positive values. Note that using LLRm instead of LLR

replaces the MAX operator in equation (2) by the MIN operator. In the rest of the paper, U(i)

will denote the ith smallest LLRm value and Ugf(i) the associated GF(q) symbol (i.e. U(i) =

log(P(u=Ugf(0)=α0)-log(P(u=Ugf(i))). Thus, the values U(i)i=1..nm verify U(1)=0≤ U(2)≤… ≤ U(nm).

The same convention holds also for V and E.

From U and V, it is possible to generate the nm×nm matrix TΣ defined as TΣ(i, j) = U(i)+V(j), for

(i,j) ∈ [1, nm]2. As U and V are sorted in increasing order, TΣ satisfies:

Theorem 1: ∀ (i,j) Є [1, nm]2, ∀ (i’,j’) Є [1, nm]2,  i ≤ i’ and j ≤ j’ => TΣ (i, j) ≤ TΣ (i’,j’)

In other words, the lines and the columns of TΣ are still sorted in increasing order. Using this



property, the EMS tries to extract the nm lowest values of TΣ corresponding to nm distinct

GF(q) symbols as described by the following.

The EMS algorithm

1. Initialization: E = ∅ and initialize the set of nm competing candidates, or competing

bubbles (CB), with the first column TΣ(i,1) of TΣ.

2. FOR k=1 to nop LOOP

a. Extract the lowest value of CB TΣ(i,j) and compute the associated GF(q) value

γ(i,j)= Ugf (i)+Vgf(j).

b. Replace the extracted value in CB by TΣ(i,j+1).

c. IF γ(i,j)∉ Egf, then add the new candidate to the set E, EXIT loop if card(E)=nm.

The value nop is the number of allowed trials to find nm distinct GF(q) values in E, thus nop ≥

nm. If nop is large enough, then equation (2) will be exactly computed. In order to extract the

lowest value of CB in one clock cycle, [3] proposes to perform a parallel insertion of the new

incoming value in CB. This operation requires nm comparisons in parallel. Since nop cycles are

needed, the global complexity of the EMS algorithm is then nop×nm comparisons.

The bubble check principle: As TΣ(1,1) is the minimum value of TΣ, E(1) = TΣ(1,1) can be

extracted directly. Similarly, the second lowest value of TΣ is either TΣ(2,1) or TΣ(1,2),  i.e.

there are only two possible candidates for E(2). The third element E(3) can be either between

TΣ(3,1) and TΣ(1,2) or between TΣ(1,3) and TΣ(2,1) according to the selected second smallest

value i.e. TΣ(2,1) or TΣ(1,2) respectively. A more general question is: what is the maximum

number nb of competing bubbles that needs to be checked in order to extract the nth lowest

value?  This problem can be answered by reversing the question: assuming nb bubbles, what



is the maximum number of lowest values that can be extracted from TΣ? When the nb bubbles

form a diagonal {TΣ (k, nb-k+1)}k=1..nb in TΣ, if each of the 2/)1( −bb nn  elements above the

diagonal are smaller or equal to the nb elements of the diagonal, then the 2/)1( −bb nn +1

lowest value is one of the nb bubbles. In other words, with nb bubbles, it is possible to extract

at least n= 2/)1( −bb nn +1 values. Reciprocally, by inverting this relation, the minimum value nb

required to extract the nth value will be given by nb=Ψ(n)=ceil( )2/)118( −+n ) where ceil(x)

represents the smallest integer greater than or equal to x. Consider the example in Fig. 1,

where a grey circle represents a candidate that has already been selected to be an element

of E and a white circle represents a competing bubble for the nth position. In Fig. 1(a), 3

candidates compete for the 5th position in E, Fig. 1(b) and 1(c) represent the worst case, or

the maximum number of candidates for the nth position for n=7 and 11, respectively. Note that

the number of candidates is exactly Ψ(n) when the (n-1)th first elements in E form a triangle in

TΣ.

Theoretical complexity reduction: As in [3], the core component of the algorithm is the sorter

that delivers the lowest value in CB to the output message E and replaces it with a new

element of TΣ.  A corollary of Theorem 1 is that the maximum theoretical size of the sorter that

feeds E is Ψ(nm). This means that the complexity of the elementary check is no longer

dominated by nop×nm but by nop×Ψ(nm), which results in a significant complexity reduction (for

example, for nm=15, the number of comparison operations is reduced by a factor of 3).

The bubble check algorithm: The main originality of the bubble check algorithm is its two-

dimensional (2D) strategy for the values in TΣ that successively feed the sorter. This means



that once the element TΣ(i, j) is moved from the sorter to the vector E, it can be replaced by

either TΣ(i+1, j) or TΣ(i, j+1). To control this, we introduce a flag “horizontal” (H): if H is true,

then the value TΣ(i, j) is replaced by TΣ(i, j+1); If H is not true (i.e. Vertical mode), then TΣ(i, j)

is replaced by TΣ(i+1, j). The step 2.c) of the EMS algorithm, i.e. the rule to replace the

extracted value TΣ(i, j) in the set CB is then modified as follows:

Modified step 2.b)

Flag control: change the value of H.

a) when (i=1) then H=1;

b) when (j=1 and i ≥ nb ) then H=0.

Test if TΣ(i+H , j+H) has already been introduced in the set CB.

If no, then include TΣ(i+H , j+H) in CB;

If yes, then include TΣ(i+H, j+H ) in CB.

Fig 2. shows the extraction of the 9 smallest values in TΣ using the bubble check algorithm

with nb=4  for inputs U={0,3,5,6,8,…} and V={0,2,6,9,10,…}.  In this example, the flag changes

from horizontal (H=1) to vertical (H=0) at the 7th clock cycle.

Simulation results: We simulated the bubble check with ultra-sparse NB-LDPC codes

designed in GF(q=64) and characterized by a fixed variable node degree dv=2 [4]. Codewords

of length N=48, 96, 192, 288, 384 symbols (i.e. a length of Nx6 bits) and rates R=1/2, 2/3, 3/4

and 5/6 were considered. The decoder performs an EMS with horizontal shuffle scheduling

and forward/backward processing, with nm=16, nop=18 and offset=1 or 2 (see [3] for the

definition of the offset value). Fig. 3 shows simulation results for N=192 and R=1/2, with

different number of bubbles in the sorter (nb = 2, 3, 4, 5 and Ψ(nm)=6). As shown in the figure,



there is no performance loss with the bubble check algorithm for nb ≥ 4. For nb = 3 and 2, the

performance loss is around 0.04 dB and 0.4 dB respectively. The simulation of other code

lengths and rates (not shown in this letter) confirms that the performance of the bubble check

algorithm with only nb=4 bubbles remains identical to the performance of the EMS algorithm.

This shows that it is possible to further reduce the complexity of the algorithm by using

nb<Ψ(nm).

Conclusion:  In this letter we have presented the bubble check, a novel algorithm for the

elementary check node processing of NB-LDPC decoders that introduces significant

complexity reduction without performance loss. The check node update being the bottleneck

of the decoder complexity, we believe that this complexity reduction is a key feature for

possible future hardware implementation (FPGA or ASIC) of NB-LDPC decoders.

Acknowledgement: This work is supported by INFSCO-ICT-216203 DAVINCI “Design And

Versatile Implementation of Non-binary wireless Communications based on Innovative LDPC

 Codes” (www.ict-davinci-codes.eu) funded by the European Commission under the Seventh

 Framework Program (FP7).



References

1  DECLERCQ, D. and FOSSORIER, M. : “Decoding algorithms for nonbinary LDPC codes
over GF(q)”, IEEE Trans. on Communications, vol. 55, pp. 633– 643, April 2007.

2  WYMEERSCH H., STEENDAM H. AND MOENECLAEY M., “Log-Domain Decoding of
LDPC Codes over GF(q),” The Proc. IEEE Intern. Conf. on Commun., pp. 772-776, Paris,
June 2004.

3 VOICILA A., DECLERCQ D., VERDIER F., FOSSORIER M. and URARD P., “Low-
complexity decoding for non-binary LDPC codes in high order fields”, IEEE Trans. on
Communications, accepted in 2008.

4   POULLIAT, C., FOSSORIER, M., AND DECLERCQ, D., "Design of regular (2,dc)-LDPC
codes over GF(q) using their binary images", IEEE Trans. on Communication, vol. 56(10), pp.
1626 - 1635, Oct. 2008.

Authors’ affiliations:

Université Européenne de Bretagne – UBS, Lab-STICC,  Centre de Recherche - BP 92116.

F-56321 Lorient Cedex - FRANCE



Figure captions:

Fig. 1 Candidate values in TΣ to occupy the nth position of E. A grey circle stands for a value
already selected from TΣ and a white circle stands for a candidate value (a bubble).

(a) Input vectors U and V, matrix TΣ  and 3 bubbles for n = 5
(b) Maximum number of candidates for n = 7. The first six values in E form a triangle in TΣ
(c) Maximum number of candidates for n = 11. The first ten values in E form a triangle in

TΣ

Fig. 2 Extraction of the 9 smallest values in TΣ using the bubble check algorithm with nb=4  for
inputs U={0,3,5,6,8,…} and V={0,2,6,9,10,…}.

(a) Initial configuration. Extraction of the first value E(1)=TΣ(1,1) = 0, flag H = 1 (horizontal
mode).

(b) Extraction of the 7th smallest value in TΣ. Since i=nb, the flag H is flipped to 0 (vertical
mode): the next bubble will then be TΣ(5,1).

(c) Extraction of the 9th smallest value of TΣ, H is still equal to 0.

Fig. 3 Simulation results for N=192, R=1/2, nm = 16, nop = 18, offset = 1.0 and at 20 decoding
iterations. “EMS” corresponds to the EMS algorithm defined in [3].
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Figure 2
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Figure 3
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