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Abstract—Non-binary LDPC codes are now recognized as a
potential competitor to binary coded solutions, especially when
the codeword length is small or moderate. More and more works
are reported with good performance/complexity tradeoffs,which
make non-binary solutions interesting for practical applications,
such as 4G-wireless systems or DVB-like systems.

In this paper, we show that proposing non-binary LDPC
codes build on finite fields is actually a limitation, both from
performance and implementation aspects. By considering non-
binary codes on the general linear group, we show in particular
that one can obtain a slight performance improvement compared
to Galois field codes, with reasonable additional cost in the
hardware implementation. The performance gain is quite small,
but comes at a slight extra decoding cost, and is obtained by
proper generalization of the code optimization techniquesthat
are standard for non-binary LDPC codes on fields.

I. I NTRODUCTION

It has been shown in several recent papers that non-binary
codes can have very good performance/complexity tradeoffs,
when the order of the Galois field GF(q) in which the codes
are considered is highq ≥ 64 and when the minimum symbol
node connexiondv = 2 is used for the Tanner graph of the
code [1], [2]. Those codes are then nowadays considered as
real competitors to binary LDPC and Turbo-codes in the future
standarts of digital communication (4G, DVB, etc).

In this paper, we deal with a much more general family of
non-binary LDPC code, that is generalized low-density parity-
check (GLDPC) codes over the general linear group (GLG).
By considering codes in a wider ensemble, it is therefore
possible to find better codes without changing the Tanner
graph density or the order of the symbols finite set, therefore
without increasing significantly the decoding complexity.We
have therefore generalized the approaches proposed in [1] from
field codes to codes over the general linear group, and pro-
posed an efficient hardware implementation of the generalized
decoder, which improves the performance complexity tradeoff
of the coding system.
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In Section II, we give a brief introduction to non-binary
LDPC codes defined on the general linear group. Then, in
Section III, we present the optimization method that we use as
efficient code design. This approach is indeed a generalization
of the work presented in [1]. We show in particular that it is
possible to choose better code components (corresponding to
a single non-binary parity check) in the GLG set than in the
corresponding field GF(q), then we adapt the global minimum
distance maximization using a local full rank criterion (FRC)
to the GLG case. Then, in Section IV, we present the impact
of using GLG codes instead of field codes in the decoder
architecture, and show that the extra cost induced can negli-
gible. Finally, a performance comparison between optimized
field codes and optimized GLG codes is made in Section V.
For code rate R= 1/2 and various lengths, we show a slight
improvement in the waterfall region with expected neglegible
decoding complexity, while comparison at rate R= 3/4 shows
an improvement both in the waterfall and the error floor.

II. NON-BINARY LDPC CODES DEFINED ON THE GENERAL

LINEAR GROUP.

A. Non-binary LDPC codes ensembles

An LDPC code is a linear block code defined on a very
sparse parity-check matrixH with the dimensions ofM ×N ,
which can be defined over the binary Galois field or high
order Galois fields. Letx = [x0 . . . xN−1] be a codeword. If
the code is defined over a finite field GF(q) with q = 2p, the
i−th parity check equation can also be written as

∑

j:hij 6=0

hijxj ≡ 0

wherehij are non-zero elements from GF(q). This definition
can be generalized to the case of non-binary code ensembles
defined over the general linear group [3] or more generally
to the case of codes defined over the finite Abelian group
G(2p) = F

p
2 [4]. In these cases, thei−th parity check equation
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Fig. 1. Tanner graph of an LDPC code defined over a finite groupG(q).

can be written as
∑

j

hij(xj) ≡ 0 in G(2p) (1)

where hij : G(2p) → G(2p) is a linear function, also
called mapping, associated with each edge of the non-binary
Tanner graph representing the parity-check matrixH. The
corresponding Tanner graph of a non-binary code defined over
the GLG is given in Figure 1.

Using this representation, for codes defined over a field
GF(q), the 2p − 1 mapping functions reduce to the multi-
plicative group of GF(q) and they are equivalent to cyclic
permutations. For the general linear group, the setH of the
mappingshij(.) is the set of the bijective linear mappings
whose cardinality is|H| =

∏p−1
n=0 (2p − 2n) [3], whereas for

the last case of codes defined over an Abelian grouphij(.)
can be either linear or non linear mappings [4].

In the following, we will only consider the design of non
binary LDPC codes defined over the general linear group. As is
the case for non-binary LDPC codes over GF(q), we can easily
derive an equivalent binary representation of the non-binary
LDPC codes defined on the GLD. To this end, let us consider
the binary mapping of the non-binary symbols overG(2p).
The symbolsxj can be represented usingp-tuples defined over
GF(2). Using a binary vector notation, we can write

∑

j:Hij 6=0

HijxT
j = 0T (2)

whereHij is thep× p invertible matrix over the binary field
associated with the bijective linear mappinghij(.), xj is thep-
tuple associated symbol elementxj andT holds for transpose.
The vector0 is the all zero component vector. Note that the
mappingshij(.) define now some permutations of thep-tuples.
Considering thei−th generalized parity-check equation of
H involving exactly dc,i codeword symbols, we can define
Hi as Hi = [Hij0 · · ·Hijm

· · · ,Hijdc,i−1
] as the equivalent

binary parity-check matrix of thei−th row constraint, with
{jm : m = 0, 1, · · · , dc,i − 1} is the set of the indexes of
the codeword symbols involved in thei−th constraint. Let
Xi = [xj0 · · ·xjdc,i−1

] be the binary representation of the
symbols of the codewordx involved in thei−th generalized
parity-check equation. When using the binary representation,

the i−th parity-check equation ofH, can be finally written
as HiX

T
i = 0

T . We defined
(i)
min as the minimum distance

of the binary code associated withHi. This representation
will be used in the following to select good code components.
More generally, when using the binary matrix representation
of mapping functions, we can associate with the overall code
an equivalent binary code with associated parity-check matrix
Hb.

B. Decoders for non-binary LDPC codes

Aside from the Belief propagation decoder on GF(q) [5],
[6], other types of decoders have been introduced in the
litterature to decode efficiently non-binary codes in high order
fields [2]. The different proposed decoders are essentially
different for the symbol and/or the checknode updates, but are
exactly the same with respect to the edge computation and
especially in their treatment of the non-zeros labels supported
by the edges of the Tanner graph (depicted as “linear function
nodes” on figure 1). For example, a BP-like decoder with
proper modifications to encompass the GLG case is shortly
depicted below in this section. A thourough discussion on the
efficient implementation of theedge update or linear function
nodes update is conducted in section IV.

We will refer to the belief propagation decoder on group as
groupBP decoder. The Tanner graph of an LDPC code over
a finite group is depicted on Figure 1, in which we indicated
the notations we use for the vector messages. Additionally to
the classical variable and check nodes, we add function nodes
to represent the effect of the bijective linear mappingshij(.).
The groupBP decoder has four main steps which useq = 2p

dimensional probability messages:
• Data node update: the output extrinsic message is ob-

tained from the term by term product of all input mes-
sages, including the channel likelihood message, except
the one carried on the same branch of the Tanner graph.

• Function node update: the messages are updated through
the function nodeshij(.). In the case of general linear
functions fromG(2p) to G(2p) denotedβ = fij(α), the
update operation is:

Upc[βj ] =
∑

i

Uvp[αi] j = 0 . . . q − 1, βj = hij (αi)

• Check node update: this step is identical to BP decoder
over finite fields and can be efficiently implemented using
a Fast Fourier Transform. See e.g. [4] for more details.

• Inverse function node update: the update equation is

Vpv[αi] = Vcp[βj ] ∀αi : βj = hij (αi)

We do not have enough space in this paper to present in
details the BP equations, or its reduced compexity versions,
but the reader can refer to [4], [3], [2] for complete details.

III. F INITE LENGTH DESIGN OF REGULAR(2, dc)
NON-BINARY CODE OVER GLG.

For codes defined over GF(q), when addressing finite length
design, it has been shown in [5] and [1] that selecting



carefully the non binary entries of the parity-check matrixcan
improve the overall performance of the code when compared
to randomly chosen coefficients. The selection of the non zero
values can impact both on the waterfall and the on error floor.
The observed performance gains are dependent of both the
field order and the code rate.

In the waterfall region, selecting the edges label row-wise
is critical. It is shown in [1] that “best” rows are selected
according to their equivalent binary minimum distance and
multiplicity of the minimum distance. In addition to that,
for ultra-sparse non-binary codes (i.e. strictly regular(2, dc)
codes, also called cyclecodes), it has been also shown in
[1] that it is possible to lower the error floor by avoiding
low weight codewords induced by some algebraic topological
structures of the underlying Tanner graph, such as cycles
or stopping sets. Choosing properly the edge labels of the
stopping sets has a direct influence on the local minimum
distance of the code, and therefore on the global minimum
distance as well. Since the error floor performance of ultra-
sparse non-binary LDPC codes are limited by the global
minimum distance and not the pseudo-distance as for the
binary LDPC codes, it is therefore very important to maximize
the minimum distance of the code by proper optimization. In
this paper, we aim at generalizing the method proposed in [1]
to the case of non-binary codes over the general linear group.
We will restrict our contribution to the case of ultra-sparse non
binary codes for two main reasons:

(a) It has been shown in [1][7] that ultra-sparse codes can
perform very well under iterative decoding, being com-
petitive in both the waterfall and the error-floor region in
comparison with the state-of-the-art iteratively decodable
codes.

(b) it has been pointed out by [3] that codes defined over
GF(q) and G(q) of the same order seem to have approxi-
mately the same thresholds. As a consequence, the same
behavior under iterative decoding is expected, indicating
that the use of LDPC edge distributions well suited for
iterative decoding over GF(q) is a reasonable choice for
G(q) codes.

Before describing in detail our design method, let us first intro-
duced the main features. Basically, the proposed finite length
design is based on two main steps:(i) building the graph,
i.e. optimizing the edge connections and(ii) selecting the
non zeros entries ofH , i.e. choosing carefully the application
hij(.). The first part can be efficiently addressed using some
instances of the PEG algorithm [8] [9], aiming at maximizing
the local girth. It can be shown as a first requirement to ensure
good achievable minimum distance when considering direct
extensions of the results in [1] to our case. Then, non zeros
entries are selected carefully to ensure both good waterfall
behavior and low error floors.

To this end, we will first consider the search for good code
components,i.e. having good minimum distance properties.
Based on these sets of potentially good codes, we then de-
scribe how we perform the optimization using random bitwise

permutations of these component codes.

A. Component Code Selection

In [1], the authors selected the best row entries according
to the maximum ofdmin using the equivalent binary parity-
check matrix of each row. This can be naturally extended to
the case of non-binary code ensemble defined over the GLG
by selecting component codes having good minimum distance
and minimum multiplicity for each row. Using this selection
criterion, we can then consider better codes in the GLG than
in GF(q). For example, the bestdc-tuples of coefficients for
GF(64) with dc = 4 have minimum distance of3 in GF(q)
while it is possible to consider component codes withdmin = 4
in the GLG. This will have a direct impact on the waterfall of
the LDPC code.

This motivates the search for components codes achieving
the best bound in terms of minimum distance and multiplicity
[10]. For our example, this can be done for example by finding
good codes using carefully chosen shortened versions of a
(63, 57) Hamming code, or by shortening a(32, 26) extended-
Hamming code. This is not the optimal choice, but we will
see in the performance results section that this example is
sufficient to ensure some gain compared to GF(q) LDPC
codes. Future work will aim at considering the optimum
choice for the component codes. Once a code component or
a collection of code components has been selected, we can
easily generate other good codes using bitwise permutations.
We make use of the bitwise permutation technique in order to
maximize the global minimum distance with a generalization
of the algorithm presented in [1]. This optimization methodis
depicted in the next section.

B. Code Optimization with Random Permutations of One
Component Code

In this paper, we further propose rank-guaranteed random
bitwise permutations to expand the possible entries which can
construct a component code with good distance properties.
With bitwise permutations, more component codes with good
minimum distance can be generated ensuring the diversity of
the non zero entries to fully benefit from the optimization
procedure of [1]. We can denote the bitwise permutation using
a pdc × pdc permutation identity matrixΠ, and thendc

different non-zero entries overG(2p) are achieved as follows.

H
′
i = [Hij0 . . .Hijm

. . .Hijdc,i−1
] ·Π

= [H′
ij0

. . .H′
ijm

. . .H′
ijdc,i−1

]
(3)

On one hand, we limitH′
ijm

, 0 ≤ m ≤ dc,i−1, to be invertible
or to be full rank. This guarantees thathijm

(·) is a bijective
mapping orH′

ijm
∈ G(2p). In this way, all the function node

update step can use the similar component and the decoder
has a uniform architecture. Additionnaly, it is obvious that
the good minimum distance property is maintained with the
bitwise permutation and thus the new row entries are also the
best entries in terms of minimum distance and its multiplicity.
Then, when considering these permutations, we apply a direct
generalization of the optimization method proposed in [1].



The optimization consists in iteratively selecting the randomly
permuted rows to ensure the FRC condition for the cycles of
the underlaying graph while maximizing the binary minimum
distance over the set of the topological stopping sets.

IV. EFFICIENT IMPLEMENTATION ARCHITECTURES FOR

NON-BINARY LDPC CODES OVERGLG

Proposing efficient codes, like GLG LPDC, would only
remain a good theoretical work if no consideration is given to
its hardware implementation. In the case of GLG LDPC codes,
the only difference between the non-binary LDPC decoder and
the non-binary GLG LDPC decoder is the updating of the
edges (defined by the mapping functions). In this section we
recall some complexity issues in non-binary LDPC decoders
and then we focus on the implementation of the edge updates.

A. GLD LDPC decoder architectures

So far, there are very few, if any, reported implementation
of non-binary LPDC decoders. The only works deal with the
simplification of the GF(q) check node (see [12] and [2]).
Those papers reduce the complexity of the check node pro-
cessing fromq · log2(q) andn · log2(n) arithmetic operations,
respectively (n << q). The last solution, the Extended Min-
Sum (EMS), allows the implementation of an LDPC decoder
at a hardware cost competitive with binary LDPC codes or
Turbo-codes. The FP7 European project DaVinci aims to build
such decoder [11], but in this paper, we only focus on the
difference between non-binary LDPC decoder and GLG LDPC
decoder, i.e., in the edge computation.

B. Edge computation

For a given edge, its associated permutationh can be repre-
sented in binary by aP ×P binary matrixH . Using the binary
representationX = [x0, x1, ..., xp−1] of the GF(q) symbolx,
the permutationy = h(x) is then given byY = H · XT ,
where Y is the binary representation of GF(q) symbol y.
The direct storage of theH matrix requiresp2 bits and the
computation ofY requiresp2 AND functions andp p-input
XOR functions. With a classical non-binary LDPC decoder, a
single GF(q) value is enough to characterise the transformation
(i.e. p binary elements). At first glance, moving towards GLG
LDPC increases by a factorp the size of the memory to store
the edge transformation. However, there are simple tricks that
allow to limit, or even avoid, this increase of memory.

First, if the architecture is fully parallel, i.e., a hardware unit
is dedicated for each branch computation, then both Galois
Fields and group permutation will have a same hardware
complexity, since both implement a wired permutation. In this
case, GLPDC has no hardware penalties compared to non-
binary LDPC.

Second, there are exactly2N edges on the bipartite graph of
the code, i.e.,2N different permutations (and inverse permuta-
tion). It is possible to limit the search of permutation in a sub-
group of permutation. In this case, instead of storing the whole
permutation matrix, we can store only a value that defines the
permutation. For example, all rotations on a vector ofp bits

can be characterised by an offset ofp bits. More generally,
if we define e elementary permutations{mr}r=0..e−1, then
2e different permutations can be defined by ane-bit vectors
p = (pe−1, ..., p1, p0) as hp = m

pe−1

e−1 ◦ ...mp1

1 ◦ mp0

0 where
◦ stands for the composition operator andmpr

r is the identity
permutation ifpr = 0, the mr permutation ifpr = 1.

Finally, although not yet formally verified, the same permu-
tation can be shared by several different edges. In this case,
permutation matrices (or, as seen above, methods to generate
a permutation) can be stored in a shared memory. An index
is then associated to each edge to refer to the permutation
associated to this edge. In that case, the increase of memory
size is very limited.

To conclude, compared to a classical non-binary LDPC, a
direct implementation of a GLG LDPC requires an increase
of a factorp of the memory size. In this section, we proposed
several ideas that could limit this increase.

V. SIMULATION RESULTS.

In this section, we present some simulation results for differ-
ent code lengths and rates for some codes defined over G(64).
The results will be compared to optimized codes defined over
GF(64) with identical parameters. For our simulations, we are
using non binary belief Propagation decoding over fields or
groups using100 decoding iterations.

First, we consider three rate one-half codes with code lengh
N = 48 symbols defined over GF(64) and G(64) respectively.
All codes have the same graph built using the RPEG algorithm
[9]. For the code defined over GF(64), we perform the global
minimum distance optimization using the method described in
[1]. Then, for the last two codes, we consider the optimization
using, in one case, component codes with minimum distance
dmin = 3 and, in the other case,dmin = 4. The result-
ing codes are noted ‘GLG-d3’ and ‘GLG-d4’ respectively.
For the ‘GLG-d3’ code, the component codes are obtained
using bitwise interleaved versions of a shortened version of
the (63, 57) Hamming code. The bitwise permutations are
carefully selected in order to mimimize the global minimum
distance using a generalization of the method described in
[1]. For the ‘GLG-d4’code, the component codes are obtained
using bitwise interleaved versions of a shortened version of
the extented(32, 26) Hamming code. Then, the optimization
is performed as previously described. Simulation results are
given in figure 2. The results show that all codes behave almost
the same in the error floor region, but the optimized GLG code
with dmin = 4 exhibits a slight performance improvement in
the error floor region. In this case, the ‘GLG-d4’ code seems to
outperfom the ‘GLG-d3’ code based on a “weaker” component
code. The same behavior has been also observed for rate one-
half codes with code lenghN = 192 symbols defined over
GF(64) and G(64) respectively. As shown in figure 3, the error
floors are the same and the waterfall improvement is almost0.1
dB. Here, the ‘GDG-d4’ code outperfoms clearly the ‘GDG-
d3’ code. Note that the codes have been optimized with the
same parameters as before in all three cases but targeting
a different codelength. Finaly, we have designed a code for
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Fig. 2. Performance comparison of rateR = 1/2 codes defined over GF(64)
and G(64) for N = 48 symbols.
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the code lengthN = 384. As seen in figure 3, the error
floors are exactly the same, but the designed ‘GLG-d4’ code
outperfoms the GF(q) code by 0.1 dB in the waterfall. Finally,
following the same optimization method, we have performed
the optimization of a rateR = 3/4 code of lengthN = 192.
For that rate et codeword length, it can be seen in figure 4
that the GLG code outperforms slightly the code over GF(q)
both in the waterfall and in the error floor region.

VI. CONCLUSION

In this paper, we have shown that by considering non-binary
codes on the general linear group, one can obtain a slight per-
formance improvement compared to Galois field codes, with
reasonable additional cost in the hardware implementation.
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Fig. 4. Performance comparison of rateR = 3/4 codes defined over GF(64)
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The performance gain is quite small, but comes at a slight
extra decoding cost, and is obtained by proper generalization
of the code optimization techniques that are standard for non-
binary LDPC codes on fields.
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