
Towards an optimal parallel decoding of turbo codes

David Gnaedig *, Emmanuel Boutillon
+
, Jacky Tousch *, Michel Jézéquel

–

* TurboConcept, 115 rue Claude Chappe, 29280 PLOUZANE, France

+ LESTER – Unité CNRS FRE 2734, UBS, BP 92116, 56321 LORIENT Cedex, France
– GET/ENST Bretagne/PRACOM – Unité CNRS UMR 2658, CS 83818, 29238 Brest Cedex 3, France

E-mail: david.gnaedig@turboconcept.com, emmanuel.boutillon@univ-ubs.fr,

jacky.tousch@turboconcept.com, michel.jezequel@enst-bretagne.fr

Abstract

High throughput decoding of turbo-codes can be achieved thanks to parallel decoding. However, for finite block

sizes, the initialisation duration of each half-iteration reduces the activity of the processing units, especially for

higher degrees of parallelism. To solve this issue, a new decoding scheduling is proposed, with a partial process-

ing overlapping of two successive half iterations. Potential memory conflicts introduced by this new scheduling

are solved by a constrained interleaver design. An example of application of the proposed technique shows that

the complexity of the decoder is reduced by 25 % compared to a conventional approach.

1. Introduction

Since the introduction of turbo codes, there has

been a large demand for high data rate, low complex-

ity, turbo decoders. To avoid the duplication of

memories required by the iterative decoding process,

parallel decoding structures working on a single

frame have been proposed. The frame is divided into

sub-blocks that are simultaneously and independently

decoded by several Processing Units (PUs) associated

with as many memory banks (MBs) and performing a

sliding window (SW) algorithm [1]. Such a parallel

architecture leads to memory conflicts called parallel

conflicts which occur when two PUs try to access the

same MB. They are caused by the presence of the in-

terleaver in the coding scheme. This issue has been

widely addressed in the literature and the proposed

solutions can be classified into three types. They are

characterized, by analogy with software development

terminology, by the stages at which they tackle the

issue of concurrent accesses (ranked from the lowest

level to the highest level):

• "execution" stage solutions: during the execution of
the parallel processing, the concurrent accesses are

handled by additional hardware specially designed

to solve the parallel conflicts [2].

• "compilation" stage solutions: during the design of

the parallel decoding architecture a memory map-

ping preventing the emergence of any parallel con-

flict is found [3].

• "design" stage solutions: the interleaver and the ar-
chitecture are designed jointly in order to guarantee

the absence of parallel conflicts [4].

These solutions have succeeded in finding archi-

tectures enabling an efficient usage of memory re-

sources. However, another issue arises when dealing

with parallel architectures: the efficient usage of the

computational resources. The idea behind this optimi-

zation is that it is not efficient to increase the number

of PUs if the computational power they offer is used

only partially. This issue is particularly critical in the

context of sequential decoding of turbo codes where

half-iterations are processed sequentially. Due to data

dependencies and pipeline stages in the hardware im-

plementation, the SW algorithm leads to idle time at

the beginning and ending of each sub-block process-

ing. This idle time can waste a significant part of the

total processing power when the sub-block size is

short, i.e., short codeword length and/or high degree

of parallelism. This paper addresses the efficiency of

parallel turbo decoding architectures and gives effi-

cient solutions for increasing significantly the activity

of the PUs. To the best of our knowledge, this issue

has not been considered so far in the literature.

This paper is divided into six sections. In section

2, a model of the throughput and activity of the turbo

decoder is proposed. This model is applied in section

3 to evaluate the efficiency of two different SW de-

coding schedules in the context of parallel decoding.

Section 4 proposes a solution to increase the activity

of the PUs in the context of iterative decoding. The

idea is based on a processing overlapping of consecu-

tive half-iterations. The resulting conflicts are handled

at the design stage by a new joint interleaver-

architecture methodology proposed in section 5. Sec-

tion 6 concludes and summarizes the performance re-

sults and the complexity reductions.

2. Throughput and activity of the
turbo decoder

This section introduces the issue of the implemen-

tation of high-throughput turbo decoder. In particular,

we will introduce an analytical model for the expres-

sion of the throughput of a turbo decoder architecture.

We will derive a measure of its efficiency by evaluat-

ing the ratio between the throughput and the complex-

ity.

2.1 Model of the throughput

Let us first introduce a simplified model of a turbo

decoder that takes into account the architectural con-

straints. To this end, we make the two following as-

sumptions. On the algorithmic side, the computational

complexity of the Max-Log-MAP algorithm is evalu-

ated as the total number of additions and comparisons

required to perform one half decoding iteration (in

fact, these two operations are of equivalent complex-

ity). On the architecture side, we assume that the de-

coder is composed of Γ physical elementary operators

(one operator performs indifferently additions or

comparisons). Under these assumptions, the decoded

throughput (in bits/sec) for a two dimensional m-

binary turbo code can be expressed as

u

clk
b

I

f
mD

χ
α

⋅⋅
Γ⋅

⋅⋅=
max2

, (1)

where:

• fclk is the clock frequency of the architecture (a fully
synchronous design is assumed).

• Γ is the number of elementary operators of architec-

ture. They enable a maximal computational power of

Γ elementary operations per clock cycle to be exe-

cuted. This parameter is proportional to the compu-

tational complexity of the architecture. The product

fclk ⋅ Γ corresponds to the available computational

power per second.

• Imax is the number of turbo decoding iterations.

• χu represents the computational complexity of one

trellis stage of the Max-Log-MAP algorithm in num-

ber of elementary operations. The product

2 ⋅ Imax ⋅ χu corresponds to the computational com-

plexity of the algorithm.

• α is called the activity of the Pus and corresponds to
the average utilization of the computational re-

sources during the execution of the algorithm.

T

nTu

⋅Γ
⋅

=
χα . (2)

where nT correspond to the number of trellis stages

processed during a period of T cycles.

The concept of activity is very important since it

measures the efficiency of the architecture. In the

ideal case α = 1, i.e. the architecture is efficient and
all computational resources are always used. Other-

wise, when α < 1 there are some resources that are

used only partially resulting in a lower architecture

efficiency. Obviously, α depends on the algorithm,

especially the data dependencies induced by the algo-

rithm and also on the resources that are implemented.

2.2 Validation of the model

Our study uses the Max-Log-MAP algorithm,

which is composed of three main computational

blocks per trellis stage: a computation of the forward

state metrics (SMs), a computation of the backward

SMs and a computation of the soft outputs (SOs) ob-

tained by combining the forward and backward SMs.

We have evaluated the number of elementary op-

erations needed by these three main blocks for a dou-

ble-binary 8-state RSC code of memory ν = 3, that
uses m = 2 input bits to produce n = 4 output bits. The

computational complexities relative to the computa-

tion of the SMs (either forward or backward) and the

SOs are χSM = 72 and χSO = 74 elementary operations,

respectively. Using the Max-Log-MAP algorithm, the

total number of elementary operations χu needed for
the production of the soft outputs for one trellis stage

is thus given by

χu = 2χSM + χSO = 218. (3)

Therefore, the SM and SO computational blocks rep-

resent a fraction among the overall complexity of

33 % and 34 %, respectively.

A more accurate evaluation of the complexity of

the computational units has been obtained by the syn-

thesis of a functional turbo decoder in a 0.18µ tech-

nology. The total complexity of the processing units

amounts to 15398 gates and the SM and SO blocks

represent a fraction among the overall complexity of

31 % and 38 %, respectively. These synthesis results

demonstrate the validity of our model for evaluating

the complexity of the algorithm. In particular, the

relative complexities for each module are equivalent

for the circuits considered. Therefore, in the follow-

ing of the manuscript, the complexity of the Max-

Log-MAP algorithm and the activity figures will be

obtained by counting the number of elementary op-

erators.

3. Decoding schedules

Different SW algorithms are described in the lit-

erature, differing mainly in the schedule used for the

respective forward and backward processings, and by

the SM initialisation scheme. We consider here that

the same schedule is applied simultaneously to the P

sub-blocks of size M trellis stage. The size of the

frame in number of m-binary symbols is denoted N (N

is also the number of trellis stages of the whole trel-

lis). The initial values of the SMs are the correspond-

ing metrics computed in the previous iteration, as de-

scribed in [5]. After a brief review of two main sched-

ules and the calculation of their activities, the last part

of this section will compare their activities and will

bring to the forth the decrease in the architecture effi-

ciency with the increase in the degree of parallelism.

3.1 Schedule SW-ΣΣΣΣ -
This schedule is depicted in Fig. 1, where we

adopt the graphical representation proposed in [6].

The horizontal axis represents the time τ, with units
of clock periods (it is assumed that one complete

stage of forward or recursion can be performed in ex-

actly one clock period). The vertical axis represents

the indices of the stages of the trellis. It is assumed

that the soft inputs (observation data and a priori in-

formation) related to the M symbols are stored in a

memory and are all available at time τ = 0. For the
sake of clarity of the figure, the pipeline latency of l

cycles corresponding to the pipeline stages of a real

architecture is represented at the end of the data path,

i.e. at the computation of the soft outputs. However,

in the general case, the pipeline registers are uni-

formly distributed along the data path.

Fig. 1 Execution and resource allocation of schedule

SW-Σ -.

The sub-block is divided into non-overlapping

windows of L trellis stages on which a SW algorithm

is performed. The backward recursion precedes the

forward recursion and the backward state metrics are

stored in memory BSM MEM. They are read out from

BSM MEM during the forward recursion to be com-

bined to the forward state metrics to produce the cor-

responding soft outputs.

The architecture for implementing this schedule

requires the following computational units:

• a backward recursion unit (BRU) computing back-

ward state metrics that are stored into BSM MEM.

• a forward recursion unit (FRU) computing the for-

ward state metrics.

• a soft output unit (SOU) computing the soft outputs

using the forward state metrics and the backward

state metrics read out from the state metric memory

BSM MEM.

Therefore, the complexity of an architecture per-

forming the schedule SW-Σ - is equal to

−Σ−Γ
SW

 = 2⋅χSM + χSO. (4)

The shaded areas in the lower part of Fig. 1 represents

the time when the three computation units FRU, BRU

and SOU are working, i.e. processing data. Since,

with schedule SW-Σ -, each of the −Σ−Γ
SW

 operators is

used M times during M+L+l cycles, putting (3) and

(4) into (2), yields the activity of SW-Σ -:

lLPN

PN

lLM

M
SW ++

=
++

=−Σ− /

/α . (5)

Due to the term L in the denominator, the activity de-

creases for small frame sizes. On the contrary, when

the size of the frame tends toward infinity, the activity

tends toward 1.

Fig. 2 Execution and resource allocation of schedule

SW-Σ 0.

3.2 Schedule SW-ΣΣΣΣ 0
In schedule SW-Σ 0 proposed in [7] and shown in

Fig. 2, the forward and backward recursions are com-

puted concurrently. From time τ = 0 to time τ = L/2,
the forward and backward recursion units process the

symbols 0 to L/2 – 1 and the symbols L-1 down to

L/2, respectively, and store the corresponding forward

and backward state metrics. The two recursions cut

across each other at time τ = L/2. Then, from time τ =
L/2 to L, the soft outputs are produced along with the

two recursions: the forward (backward) state metrics

produced by the forward recursion (respectively back-

ward) are combined to the previously stored back-

ward (respectively forward) state metrics. Note that

SW-Σ 0 has the same algorithmic computational com-

plexity and memory requirements as SW-Σ -. The half-
iteration decoding duration is reduced to M+l cycles,

however. This reduced decoding duration comes at

the expense of a more complex implementation, since

two soft outputs for two trellis stages are computed

concurrently, thus requiring two SOU. The complex-

ity of this schedule is given by:

0Σ−Γ
SW

 = 2⋅χSM + 2⋅χSO (6)

It is worth noting that the SOUs are used less than

half of the time, which has a significant impact on the

activity. Let 0Σ−SW
β represent the ratio of computa-

tional complexity χu over the available computational

complexity of the architecture 0Σ−Γ
SW

, 0Σ−SW
β =

χu / 0Σ−Γ
SW

. Using the expressions of χSM and χSO,

0Σ−SW
β ≈ 0.74. Putting (3) and (6) into (2) and intro-
ducing 0Σ−SW

β yields the expression of the activity

lPN

PN
SWSW +

= Σ−Σ− /

/
00 βα . (7)

The second term of this product shows that the activ-

ity of SW-Σ 0 is independent of the window length L.
Thus the throughput loss for small frames is reduced

compared to SW-Σ -. Unfortunately, due to the first
term 0Σ−SW

β , the architecture is rather inefficient,

even for long frames: when the size of the sub-block

tends towards infinity, the activity tends toward this

first term, while it tended toward 1 for schedule

SW-Σ -.

3.3 Activity comparison

The respective activities of schedules SW-Σ - and
SW-Σ 0 are compared in Fig. 3. For a single PU im-

plementation (P = 1, M = N), schedule SW-Σ - has a
higher activity than schedule SW-Σ 0 for sub-block
sizes above 70 trellis stages (see Fig. 3. case a). On

the contrary, when sub-block size is reduced, (due to

higher parallelism or small frames processing) the

two activities drop, and the schedule SW-Σ 0 becomes

more efficient. The activity drop can be dramatic. For

example, with schedule SW-Σ 0, about half of the
computational resources are not used if P = 8 PUs

decode a frame of size N = 160 trellis stages (see Fig.

3. case b). This explains the need for other techniques

for increasing the activities of parallel turbo decoder

implementations.

 Fig. 3 Activity comparison for schedules SW-Σ - and
SW-Σ 0 as a function of the size of the trellis section
M = N / P.

4. Increasing the activity

There are several directions that can be followed

in order to increase the activity of the processing

units. One can change the schedule of a SW algo-

rithm, but whatever the schedule, this solution still

suffers from the constant value l due to the pipeline

registers. Another direction would be to process si-

multaneously the two dimensions of the turbo code as

proposed in [8]. The solution that is proposed in this

paper maintains the sequentiality of the half-iterations

and improves the activity of the schedule SW-Σ -.

4.1 Overlapping of half-iterations

In the context of iterative decoding of turbo codes,

a significant activity improvement, virtually reaching

the optimal value 1 could be obtained by starting the

processing of the next half-iteration before the end of

the current half-iteration as shown in Fig. 4. The

depth of the overlapping region expressed in number

of clock cycles is denoted ∆. This new schedule is de-
noted OSW-Σ -(∆) (also denoted OSW-Σ - for simplic-

ity). The overlapping depth ∆ is bounded by

∆max = L + l which is the idle time of each of to the

computation resources of schedule SW-Σ -. When

∆= ∆max the activity of SW-Σ - is raised to 1 (no idle
time left).

Fig. 4 Overlapping of two consecutive half-iterations

with an overlapping depth ∆.

Unfortunately, this solution leads to another type

of memory conflict, which we term a consistency

conflict: due to interleaving/de-interleaving the ex-

trinsic inputs required at the beginning of the next

half-iteration might not yet have been produced by

the current half-iteration. The next section describes

this phenomenon in more details.

4.2 Consistency conflicts

In order to illustrate a consistency conflicts, let us

use a two-dimensional representation of an interleaver

Π. The natural addresses are represented on the y-

axis, whereas the interleaved addresses are repre-

sented on the x-axis. Then the symbol with index x

that is interleaved to the index y = Π(x) is represented

by a point with coordinates (x,y). Fig. 5 shows the

representation of a random interleaver. On this figure,

the shaded regions correspond to the regions where

the points are associated with a consistency conflict.

They are obtained by adding the temporal dimension

resulting from schedule SW-Σ -. Regions ∉n→i
 and

∉i→n are associated respectively with the transition

Tn→i from the natural to interleaved half-iterations and

with the transition Ti→n from the interleaved to the

natural half-iterations.

It is assumed that the reading of the extrinsic in-

puts starts at time τ = 0 and is performed window by

window according to the backward order, i.e. in the

decreasing order from N to 0. From time τ = L + l, the
extrinsic outputs are written into the memory window

by window in the increasing order. If the first data

read at time τ = 0 (for the example of Fig. 5: x = L-1)

corresponds to one of the data generated by the pre-

ceding half-iteration during its last ∆ cycles (for the
example of Fig. 5: y > N - ∆), there is a consistency
conflict. At time τ = τ’ the conflict region is reduced
to ∆-τ’ positions, and for τ = ∆, all symbols are con-

flict-free. This leads to the upper-triangle shape of

∉n→i in the first window associated with the transition

Tn→i. For transition Ti→n,, the region ∉i→n also corre-

sponds to an upper-triangle shape.

 Fig. 5 Consistency conflicts regions.

Let us introduce the notion of uniform interleaver

as follows. A uniform interleaver maps each symbol

of the natural order to a given symbol of the inter-

leaved order with a probability 1/N. Under this as-

sumption, the proportion of consistency conflicts is

given by the ratio of the area of the region

∉n→I
 ∪ ∉i→n divided by the total area of the space:

()2 (1) ² 2 ² ²
()

² ²

P P

N N
η

∆ ∆ + ∆∆ = ≈ . (8)

It can be seen that the proportion of consistency con-

flicts grows quadratically with ∆ and P. Thus for high
throughput architectures with large P there will be a

large proportion of consistency conflicts.

4.2 Solving consistency conflicts

Similarly to the parallel conflicts mentioned in

section 1, different techniques can be considered to

resolve the issue of consistency conflicts. One exam-

ple of execution-stage solution (involving using ad-

hoc hardware) would be to use, instead of the “not-

available” piece of data, a not up-to date version of it,

namely its previous iteration version. Such a solution

leads however to a suboptimal algorithm. Another al-

ternative is proposed in the next section.

5. Joint interleaver / architecture
design

In this section, we present a general methodology

for avoiding consistency conflict by an adequate de-

sign of the interleaver matched to the decoding sched-

ule. This methodology is illustrated on a simple inter-

leaver construction enabling a significant activity in-

crease.

5.1 Methodology

The interleaver design methodology is obtained by

constraining the interleaver with “prohibited regions”

corresponding to the overlapping parameter ∆. These
constraints are modelled on the two dimensional rep-

resentation of the interleaver by the prohibited regions

∉n→i
 and ∉i→n that define a mask for the interleaver,

denoted ∈. The constraint interleaver is then designed

in order to satisfy the mask ∈, i.e. no points (x,Π(x))

are inside the prohibited regions. If the interleaver de-

sign succeeds, there are by construction no conflicts

in the ∆-overlapping architecture.

5.2 A simple example

In this example, we design a turbo code of size N

that is decoded using P PUs performing schedule

OSW-Σ –(∆) with window size L = M = N / P. The
corresponding interleaver mask is given in Fig. 6.a.

Fig. 6 Interleaver mask ∈ for a turbo code with P PUs

performing schedule OSW-Σ –(∆): a) complete mask;

b) partial mask for permutation TΠ and ∆ = L-1.

First, in order to guarantee the absence of parallel

conflicts when accessing the memory banks in paral-

lel, a specific parallel interleaver is used. This parallel

interleaver is said to be “hierarchic” because it is de-

signed with two levels of permutations: a first level

(permutation SΠ) exchanges the data between the

sub-blocks of M symbols and a second level (permu-

tation TΠ) shuffles the data within each sub-block. A

similar interleaver structure has also been used in [10]

and [4] for solving parallel conflicts. The equation of

the interleaver is given by the following equation:

())mod()(MxxMx TS Π+Π⋅=Π . (9)

where SΠ is a circular rotation of equation

() () PMxPxAxS mod/mod +=Π
(10

)

and A is bijection of 0,...,P-1 to 0,...,P-1 chosen at

random. With this interleaver structure, the permuta-

tion SΠ resolves all parallel conflicts. Hence we use

the permutation TΠ to solve consistency conflicts.

The temporal permutation satisfying the mask is rep-

resented in Fig. 6.b for an overlapping depth ∆ = L-1.

For ∆ ≥ L, the mask is said to be closed since no inter-

leaver can satisfy it. For ∆ = L-1, a single permutation

TΠ satisfy the mask: the reverse order where the

symbol with index 0 is mapped to index M-1, index 1

to M-2, ..., M-1 to 0.

5.3 Results

Let us consider a double-binary turbo code of size

N = 1024 double-binary symbols decoded by an ar-

chitecture with parameters P = 32, M = 32, L = 32,

l = 8. The turbo code is associated with a constrained

hierarchical interleaver designed as described above.

Its performance is compared to a conventional turbo

code design using an ARP interleaver [9]. This latter

is also decoded with P = 32 PUs but with schedule

SW-Σ 0 of activity 0
SW

α
−Σ

 = 0.6, higher than schedule

SW-Σ -. Using the schedule OSW-Σ –(L-1) for the pro-
posed interleaver enables the activity to be increased

from
SW

α −−Σ
 = 0.45 to

OSW
α −−Σ

 = 0.8, resulting in a

significant increase in throughput. It is worth noting

that the complexity of the corresponding architecture

remains unchanged:
OSW −−Σ

Γ =
SW −−Σ

Γ .

On the one hand, the Frame Error Rate (FER) per-

formance given in Fig. 7 shows that down to a FER of

10-2 (a practical FER for ARQ applications) the pro-

posed solution does not suffer from performance deg-

radation. On the other hand, the proposed solution

enables the complexity of the decoder to be reduced

by 1 −
OSW −−Σ

Γ / 0SW −Σ
Γ = 25 %. And this, for an

equivalent throughput (given by (1)) since, using (4)-

(7) we have
OSW OSW

α − −−Σ −Σ
⋅Γ ≈ 00 Σ−Σ− Γ⋅

SWSW
α . In

this didactic example, where the interleaver has been

highly constrained, the increase in the efficiency of

the decoder (throughput divided by complexity) is

paid by a degradation of the decoding performance

for low FERs. Other trade-offs efficiency-

performance can be achieved easily. In particular, for

lower overlapping depth, and thus lower increase in

efficiency, the constraints on the interleaver are re-

laxed, enabling this latter to be optimised for better

performance at low FERs.

Fig. 7 FER performance of the proposed interleaver

compared to a conventional ARP interleaver for 8 it-

erations of the Max-Log-MAP algorithm.

6. Conclusion

A new issue of parallel decoding of turbo codes

has been addressed: how to use efficiently the compu-

tational resources? A general methodology for a joint

interleaver-architecture design enabling a higher us-

age of these resources has been proposed. A simple

example has been described enabling a typical com-

plexity reduction of 25 % to be achieved easily. The

proposed solution opens up a new direction for im-

provement of high-speed parallel turbo decoders. This

approach is studied more deeply in [11], where maxi-

mal activity decoders associated with hierarchical in-

terleavers are obtained in conjunction with Multiple

Slice Turbo Codes [4].

7. References

[1] S. Benedetto et al., “A soft-input soft-output

maximum a posteriori (MAP) module to decode

parallel and serial concatenated codes," JPL

TDA Progress Report, Vol. 42-127, Nov. 1996.

[2] M.J. Thul, F. Gilbert, N. When, "Concurrent In-

terleaving architectures for high-throughput

channel coding", ICASSP'03, Hong Kong, vol 2,

pp 613-616, Apr. 2003.

[3] A. Tarable, S. Benedetto, G. Montorsi, "Mapping

interleaving Laws to Parallel Turbo and LDPC

decoder Architectures", IEEE Transactions on

Information Theory, Vol. 50, No. 9, Sept. 2004.

[4] D. Gnaedig et al., "On Multiple Slice Turbo Co-

des", Proc. 3rd Int. Symp. on Turbo Codes and

Related Topics, Brest, pp.153-157, Sept. 2003.

[5] A. Dingninou, F. Raouafi et C. Berrou, "Organi-

sation de la mémoire dans un turbo décodeur uti-

lisant l'algorithme SUB-MAP", GRETSI '99,

Vannes, pp. 71-74, Sept. 1999.

[6] E. Boutillon, W. J. Gross and P. G. Gulak, “VLSI

Architectures for the MAP Algorithm,” IEEE

Transactions on Communications, Vol. 51, No.

2, pp. 175-185, February 2003.

[7] C. Schurgers, F. Cathoor and M. Engels, "Mem-

ory Optimization of MAP Turbo Decoder Algo-

rithms", IEEE Trans. on VLSI, vol.9, no. 2, Apr.

2001.

[8] Y. Wang et al., "Reduced latency turbo decod-

ing", Proc. 6th Workshop on Signal Proc. Ad-

vances in Wireless Com., pp. 930-934, June

2005.

[9] C. Berrou et al., "Designing good permutations

for turbo codes: towards a single model, " in

Proc. ICC’04, Vol. 1, pp.341-345, June 2004.

[10] A. Nimbalker et al., "Inter-Window Shuffle In-

terleavers for High Throughput Decoding," in

Proc. 3rd Int. Symp. on Turbo Codes and Related

Topics, Brest, pp.355-358, Sept. 2003.

[11] D. Gnaedig, “High Speed Decoding of Convolu-
tional Turbo Codes”, PhD dissertation, June

2005.

