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Abstract: The main problem concerning the hardware
implementation of turbo codes is the lack of parallelism
in the MAP-based decoding algorithm. This paper
proposes to overcome this problem with a new family of
turbo codes, named Slice Turbo Codes. This family is
based on two ideas: the encoding of each dimension
with P independent tail-biting codes and a constrained
interleaver structure that allows parallel decoding of
the P independent codewords in each dimension. The
optimization of the interleaver is described. A high
degree of parallelism is obtained with equivalent or
better performance than the best known turbo codes.
The parallel architecture allows reduced complexity
turbo decoder for very high throughput applications.
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1.  INTRODUCTION

High-throughput turbo-decoder architectures
generally use N symbol cycles to perform one decoding
iteration on an N-symbol frame. I iterations then require
the sequential use of I decoders. This scheme is
relatively inefficient in terms of hardware complexity
since the extrinsic information memories are duplicated
I times [1]. Some authors propose to parallelize the
decoding process of the convolutional code for each
turbo code dimension. For that, they arbitrarily divide
the frame to be decoded into P segments of equal size,
in order to handle each segment by a MAP decoder.  In
these architectures, side effects at the ends of the
segments are treated by the use of a learning period [2],
or by the method of a pointer which gives the initial
states of each segment between two iterations [3].
However, these papers perform the decoding process of
one dimension without tackling the problem of memory
conflicts that can arise from the interleaving while
decoding the second dimension.

In this paper, we propose a new turbo code family
where both constituent codes are constructed with P
independent Circular Recursive Systematic
Convolutional codes [4] (CRSC, also called tail-biting
code), called "slices". The decoding process of P slices
in parallel is made possible in the two code dimensions
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by using an adapted interleaver structure. It can be noted
that another similar parallel interleaver has been
independently studied by Dobkin et al., but associated
with a convolutional turbo code [5]. The interleaver
structure is constructed in a similar way to that
presented in this paper, but the equations are not
described.

The paper is divided into four sections. In section 2,
the global coding process of the Multiple Slice Turbo
Codes is described. In section 3, the choice of the
interleaver and its influence on the performance is
discussed. Finally, the complexity reduction associated
with the proposed scheme is presented in section 4 and
the performance are given in section 5.

2.  MULTIPLE SLICE TURBO CODES

Multiple Slice Turbo Codes are constructed as
follows.  An information frame of N m-binary symbols
is divided into P blocks (called "slices") of M symbols,
where PMN ⋅= . The resulting turbo code is denoted
(N,M,P). As with a classical convolutional turbo code,
the coding process is first performed in the natural order
to produce the coded symbols of the first dimension.
Each slice is encoded independently with a CRSC code.
The information frame is then permuted by an N symbol
interleaver. The permuted frame is again divided into P
slices of size M and each of them is encoded
independently with a CRSC code to produce the coded
symbols of the second dimension. Puncturing is applied
to generate the desired code rate.

The interleaver is constructed jointly with the
memory organization to allow parallel decoding of the P
slices. In other words, at each symbol cycle k, the
interleaver structure allows the P decoders to read and
write the P necessary data symbols from the P Memory
Banks MB0, MB1,…, MBP-1 without conflict. Indeed,
only one reading can be made at any given time from a
single port memory. In order to be able to access P data
symbols in parallel, the memory has to be split into P
memory banks. With the solution described in the
present paper, the degree of parallelism can be chosen
according to the requirements of the application for
avoiding memory duplication. Note that only the
functional units are duplicated.

The next section presents the interleaver
construction, ensuring parallelism constraints while
maintaining good performance.



3.  INTERLEAVER CONSTRUCTION

The interleaver design is based on the one proposed
in [6]: The interleaver structure is mapped onto a
hardware architecture allowing a parallel decoding
process.

3.1.  Interleaver structure
Figure 1 presents the interleaver structure used to

construct a slice turbo code constrained by decoding
parallelism.
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Figure 1: Interleaver structure for the (N,M,P) code
In the natural order, the coding process is performed

on independent consecutive blocks of M symbols.
Symbol index j is used in the slice j/M at temporal index
time j mod M. Likewise, in the interleaved order,
symbol index k is used in slice r = k/M at temporal
index Mkt mod= . We then have the relation

trMk +⋅= , where { }1..0 −∈ Pr  and { }1..0 −∈ Mt .
The permutation  Π associates for each symbol at index
k of the interleaved order, a corresponding symbol in the
natural order at index )(kΠ . The interleaver function
can be split into two levels: a spatial permutation

( )rtS ,Π  and a temporal permutation ( )rtT ,Π , as
defined in (1).

( ) ( )rtMrtrtk TS ,,),()( Π+⋅Π=Π=Π (1)
The symbol at index k in the interleaved order is read

from the memory bank ( )rtS ,Π  at address ( )rtT ,Π .
While decoding the first dimension of the code, the
frame is processed in the natural order. The spatial and
temporal permutations are then simply replaced by
Identity functions.

The same temporal permutation is chosen for all
memory banks, in order to simplify the hardware
implementation. Thus, it depends only on the temporal
index t. This solution has the advantage of requiring
only one computation of the address to read P data
symbols from  P memory banks, that can, in fact, be
merged into a single memory. The spatial permutation
allows the P data read out to be transferred to the P
decoders (named DEC in Figure 1). Decoder r receives
at instant t the data from the memory bank ),( stSΠ .
For all fixed t, the function ),( rtSΠ , is then a bijection
from the decoder index { }1..0 −∈ Pr  to the memory
banks { }1..0 −P .

Furthermore, to maximize the shuffling between the
natural and the interleaved order, we constrain the
function ( )rtT ,Π  such that, for each fixed r, P
consecutive data symbols of slice r come from a distinct
memory bank. Function  ),( rtSΠ , for fixed r, is then a
bijection from the temporal index { }1..0 −∈ Pt to the set
{ }1..0 −P  of memory bank indices. The function is also
P-periodic on the temporal index. This means that for

jt ∀∀ ,  satisfying MPjt <⋅+ , one obtains
( ) ( )rtrPjt SS ,, Π=⋅+Π .

In the rest of the paper, P-periodic bijective functions
are now considered for the spatial permutation.
Optimization of the interleaver aims to fulfill two
performance criteria: first, a good minimum distance for
the asymptotic performance of the code at high signal to
noise ratios (SNR); second, fast convergence, i.e.
obtains most of the coding gain performance in few
decoding iterations at low SNRs. As described in [7],
the convergence is influenced by the correlation
between the extrinsic information, caused by the
presence of primary and secondary cycles. We study the
influence of the spatial and temporal permutations on
these two criteria.

3.2.  Definitions
For an m-binary convolutional code, a Return To

Zero (RTZ) sequence is defined as an ordered list of
symbols that makes the encoder diverge from state 0
and then reconverge to state 0 [8]. The number of
symbols in the list defines the length of the sequence.
These RTZ sequences represent the low weight error
patterns of a convolutional code. As a first
approximation, we will consider that their Hamming
weight grows linearly with their length. A Primary Error
Pattern (PEP) is defined as a primary cycle [7] whose
symbols form an RTZ sequence in both code
dimensions. Note that, by construction of the constituent
codes, symbols of a PEP are in the same slice in both
code dimensions and they will be defined as co-cyclic
symbols. Let us consider 2  symbols of a slice. Because
of the tail-biting technique, two RTZ sequences are
possible (see figure 2). But the one with the smallest
length penalizes the minimum distance the most
(smallest Hamming weight) and the good convergence
ability of the code. We then define the arc length

),( 21 ttA between symbols 1t and 2t of a slice by the
length of the smallest path ( ) 1,min 2121 +−−− ttMtt
between 1t and 2t , as presented on figure 2. The cyclic
girth of two co-cyclic symbols is defined as the sum of
the arc lengths in both dimensions. Let ρ be the division
of the number  of symbols in a slice by the number P of
slices: PM /=ρ . In what follows we suppose without
loss of generality that ρ is an integer.
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Figure 2: Example RTZ sequences for 2 given positions
with the tail-biting duo-binary code defined in [9].

3.3.  Temporal permutation
For the sake of simplicity, Let us define the temporal

permutation ( )tTΠ  as a regular one, where α and M are
mutually prime. Then, ( ) MttT mod⋅=Π α .

 Let us consider a bijective and P-periodic spatial
permutation. In order to choose the parameter α of the
temporal permutation, we try to maximize the cyclic
girths. This maximises the weight of RTZ sequences,
while also favouring the decorrelation of the extrinsic
information and therefore the convergence of the turbo
code [7]. As the spatial permutation is P-periodic, every
couple ( )Pjtt ⋅+, ,where 1..1 −= ρj , forms a co-cyclic
couple. Then, the cyclic girth between two co-cyclic
symbols is then ( )( )PjttAPjttAA j ⋅+⋅+⋅+= αα ,),( ,
where the first (second) term is the arc length in the
interleaved (natural, respectively) order. We define

{ }1..1, −== ρjAA j  as the set of cyclic girths of all co-
cyclic symbols of a slice. The optimal value of α  is the
one that maximizes the minimal cyclic girth. Since

M<α , an exhaustive search can be performed.
The influence of the spatial permutation on more

complex error patterns is now analysed.

3.4.  Spatial permutation
A Secondary Error Pattern (SEP) is a secondary

cycle whose symbols give two distinct RTZ sequences
in both natural and interleaved order as shown on figure
3.b.
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Figure 3: Primary and secondary error patterns
We have built a tool that, for a given permutation,

determines all SEPs and their Hamming weight. This
tool exhibits SEPs with low Hamming weight with the
regular interleaver ( ) )mod(, Ptrotrt PT =Π , where

)(trotP  is the rotation of amplitude { }1..0 −P , which at
the index slice r associates the slice of index
( ) Ptr mod+ . In order to reduce the number of these

error patterns, we introduce irregularity in the spatial
permutation, with a rotation whose amplitude does not
depend linearly on the temporal index. To do so, the
spatial rotation is generated by a function S(t), P-
periodic and bijective from { }1..0 −P  to { }1..0 −P , and
is given by

( ) ))((, tSrotrt PT =Π (2)
Using (2) with an appropriate irregular function S

reduces the number of short secondary cycle and low
weight SEPs and therefore improves the convergence of
the code.

3.5. Optimization of the minimum distance
With increasing frame size, the study of the PEPs and

SEPs, in order to choose the optimal parameters α and S
is not sufficient to improve the minimum distance of the
code. Indeed, other error patterns appear, penalizing the
minimum distance. In practice, the analysis and the
exhaustive counting of these new patterns are too
complex to be performed.  Thus, as in the DVB-RCS
standard [9], another degree of freedom in introduced
by adding four coefficients,  β(i)i=0..3 multiples of 4, in
the temporal permutation:

( ) MtttT mod)4mod(βα +⋅=∏ (3)
Even with irregularity in the temporal permutation,

the irregularity in the spatial permutation is still
compulsory because all symbols distant of 4 are not
affected by the irregularity introduced by (3). The
choice of the β parameters, which maximize the
minimum distance, is determined by the error impulse
method proposed by Berrou et al. [10] for the evaluation
of the minimum distance.

4.  HARDWARE IMPLEMENTATION

For a high-throughput turbo decoder, a sequential
architecture, having no parallelism, requires for each
iteration a duplication of the memories and of the
functional units. Conversely, in a parallel architecture,
only the functional units have to be duplicated. In this
latter case, the same hardware (memory and SISOs) are
reused twice for each iteration in order to perform
decoding in both code dimensions. The memories can
account for up to 90% of the total area of a sequential
decoder using 10 iterations. Then with only one
memory for extrinsic information and two for channel
values, the total area reduction for the parallel decoder
can be up to 75% for a 150Mbits/s turbo decoder,
compared to a classical sequential solution. Moreover
interleaving equations are simple and can be
implemented in hardware with low complexity.



5.  RESULTS

Table 1 presents the minimum distance optimization
by applying the different methods developed in section
3. A duo-binary code is constructed with the following
parameters (2048,256,8). An intra-symbol permutation
[9] is also applied to increase minimum distance. When
optimizing the parameter α, the minimum distance of 14
comes from SEPs and not from PEPs for which the
minimal weight is above 30. By optimizing the spatial
permutation through S, low weight PEPs and SEPs are
eliminated and the minimum distance increases to 18.
When introducing irregularity in the temporal
permutation the minimum distance is raised to 21.

α S β dmin

23 or 27 IdS = {0,0,0,0} 14
27 S={0,3,2,7,4,6,5,1} {0,0,0,0} 18
27 S={0,3,2,7,4,6,5,1} {0,4,36,48} 21
Table 1: Minimum distance optimization for

(2048,256,8) duo-binary codes
Figure 4 compares codes (2048,256,8) of Table 1

with a (2048,2048,1) code for a rate of 1/2 and 8
decoding iterations of the Log-MAP algorithm [11]. The
code with one slice is constructed using the same
equation (3) as the DVB-RCS code with parameters α =
45 and β(i)={0,20,12,20} and has a minimum distance
of  19.

Figure 4: Performance of the (2048,256,8) duo-
binary codes and  (2048,2048,1) code for 8 iterations
Simulation results are in accordance with the

minimum distances of the codes. The (2048,256,8) code
performs 0.3 dB better at BER of 10-6 than the DVB-
RCS. The codes proposed in this standard are between
48 and 1728 bits long and the interleaver has not been
designed for longer frames. For shorter frames, Slice
Turbo Codes have the same performance than the DVB-
RCS codes, in terms of convergence and minimal
distance.

6.  CONCLUSION

A new family of convolutional turbo codes is
proposed. A study of an interleaver construction has

been made, ensuring the decoding parallelism, simple
hardware implementation and good performance. The
interleaver is split into two levels: first, the spatial
permutation handles the parallelism and its irregularity
improves the convergence of the code and the minimum
distance of the code; second, the temporal permutation
further optimizes the minimum distance. The proposed
scheme allows a hardware complexity reduction of 75
% for a 150Mbits/s turbo decoder. The performance
simulations show that the parallelism constraint in the
interleaver construction introduces no degradation in
performance, and can even improve it.
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