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Abstract: In this paper, the decoding of low-
density parity-check (LDPC) codes is considered. A
new algorithm, named λ−Min algorithm, for updat-
ing extrinsic information is proposed. The λ−Min
algorithm offers different trade-off performance ver-
sus complexity between the belief propagation (BP)
algorithm (optimal but complex) and the universal
most powerful (UMP) BP-based algorithm (simple
but leading to significant performance degradation in
some cases). Hardware implementation of the λ−Min
algorithm in a serial mode is also discussed. Reduc-
tion up to 75 % of the extrinsic memory information
can be obtained with high rate LDPC code without
any significant degradation of the performance.
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1. INTRODUCTION

With the choice of LDPC (low-density parity-
check) codes as a standard for DVB-S2, VLSI ar-
chitectures for LDPC code decoders become a real
challenge. In order to decrease the complexity of
the decoding algorithm, Fossorier and al. proposed
simplified versions of the Belief Propagation (BP)
algorithm named BP-Based, offset BP-based [1], [2],
[3]. These algorithms are efficient for regular LDPC
codes with small length, but they introduce some sig-
nificant degradation (up to almost 1 dB) for LDPC
codes with high degree and high length. In this pa-
per, we propose a new decoding algorithm named
λ−min algorithm which offers a complexity-perfor-
mance trade-off between BP (optimal) and BP-based
algorithm. Moreover, we study the VLSI implemen-
tation of the sub-optimal algorithm and we propose a
parity check processor which enables to compute effi-
ciently the λ−min algorithm and which reduces the
memory required to save extrinsic information be-
tween two decoding iterations. The rest of the paper
is organized as follows. In section 2, the BP, the BP-
based and the new λ−min algorithms are described.
Simulation results are given in section 3 and an op-
timization of the λ−min algorithm is proposed. Sec-
tion 4 describes an efficient serial architecture to pro-
cess the λ−min algorithm and a conclusion is given
in section 5.

2. ITERATIVE DECODING ALGO-
RITHMS

In the following, a codeword x = (x0 x1 · · · xN−1)
is transmitted with a BPSK modulation scheme over
an AWGN channel. The received bits are then yn =
−(−1)xn + bn where bn ∼ N (0, σ2). The signal to
noise ration (SNR) will refer to the ratio Eb/N0,
where Eb is the energy per bit before coding, and
N0/2 = σ2. The parity-check matrix H is an M ×N
regular or irregular sparse matrix.

According to the notations of [1] and [2], N (m) =
{vn : Hmn = 1} denotes the set of bits vn that par-
ticipate in parity check cm and N (m)\n denotes the
same set with bit vn excluded. Similarly, M(n) =
{cm : Hmn = 1} denotes the set of parity check cm in
which the bits vn participate and M(n)\m denotes
the same set with parity check cm excluded. The car-
dinality of a set A is denoted by |A|. Z

(i)
mn denotes

the Log-Likelyhood Ratio (LLR) of the information
which is sent from vn to cm in the ith iteration. L

(i)
mn

denotes the LLR of the information which is sent
from cm to vn in the ith iteration.

2.1. Belief propagation decoding:

BP decoding [4] is the optimal iterative algorithm
to achieve capacity-approaching performance with
LDPC codes. It is based on the propagation of the
bit information vn, n ∈ {0, · · · , N − 1} through the
parity-checks cm, m ∈ {1, · · · ,M − 1}:

Initialization: A-priori information is initial-
ized by the LLR of yn: L

(0)
n = 2yn

σ2 and set all the
L

(0)
mn to zero.
Iterations: An iteration i has 3 steps:

1. Update bits: for each vn and each cm ∈M(n),
compute:

Z(i)
mn = Z(i)

n − L(i−1)
mn (1)

with Z
(i)
n = L

(0)
n +

∑
m∈M(n) L

(i)
mn being the

soft values of bits vn. Calculate also the syn-
drome si(x̂) = Hx̂′i of the estimated received
codeword x̂i =

{
sign

(
Z

(i)
n

)}
1≤n≤N

.



2. Update parity-checks: for each cm and each
vn ∈ N (m) compute:

L(i)
mn = S(i)

mn ×M (i)
mn (2)

with S(i)
mn = sign

(
Z(i)

mn

) ∏
n∈N (m)

sign
(
−Z(i)

mn

)
and

M (i)
mn = −

⊕
n∈N (m)\n

(
−

∣∣∣Z(i)
mn

∣∣∣) (3)

and
⊕

n (In) = I0 ⊕ I1 ⊕ · · · ⊕ In, where ⊕ is
the commutative and associative function such
that [5]:

I0 ⊕ I1 = ln
exp(I1) + exp(I2)
1 + exp(I1 + I2)

(4)

3. Stop the iterations if i = imax or if si(x̂) = 0.

Iterative BP-based algorithm for LDPC codes de-
coding has been proposed by Fossorier and al. [1].
It simplifies the check-node processing, and does not
need any knowledge of the channel: initialization is
replaced by L

(0)
n = yn and (3) is replaced by:

M (i)
mn = min

n∈N (m)\n

∣∣∣Z(i)
mn

∣∣∣ (5)

The degradation of the Bit Error Rate (BER) intro-
duced by the BP-based algorithm can be very signif-
icant. In fact, equation (5) over estimates the LLR
of the extrinsic information. This over-estimation
can be partially corrected by the addition of an off-
set factor (offset BP-based algorithm [2], [3]) but
still, for near shannon limit LDPC codes (irregular
LDPC codes with high length), the offset BP-based
algorithm introduces significant performance degra-
dation (up to 1 dB of SNR).

2.2. λ−Min Algorithm

We present here a more accurate simplification,
based on the BP algorithm. Equation (4) can be
decomposed as the sum of 3 terms:

I0 ⊕ I1 = −sign (I0) sign (I1) min (|I0|, |I1|)

+ ln
(
1 + e−|I0−I1|

)
− ln

(
1 + e−|I0+I1|

)
(6)

If I0 >> I1, the two last correction factor of (6) are
negligible, and thus I0 +I1 ' I0. More generally, the
result of (3) depends mainly on the smallest values
of Z

(i)
mn. In order to simplify the computation of this

equation, we propose to compute (3) with only the λ
lowest magnitude of extrinsic information, with λ >
1. Let Nλ(m) = {n0, · · · , nλ−1} be the subset of
N (m) which contains the λ bits of parity check cm

which LLR have the smallest magnitude. Equation
(3) is then approximated by:

M (i)
mn = −

⊕
n′∈Nλ(m)\n

−
∣∣∣Z(i)

mn′

∣∣∣ (7)

Two cases will occur: if the bit vn belongs to the sub-
set Nλ(m), then the Z

(i)
mn are processed over λ − 1

values of Nλ(m)\n, otherwise the Z
(i)
mn are processed

over the λ values of Nλ(m). Hence, for the second
case, the computation have to be performed only
once.

Note that the case λ = 2 differs only from the
BP-based algorithm by the approximation of Z

(i)
mn in

the case of n /∈ N2(m) = {n0, n1}: the BP-based
uses Z

(i)
mn0 whereas 2−min uses Z

(i)
mn0 ⊕ Z

(i)
mn1 .

3. SIMULATION RESULTS

Simulations have been performed using two differ-
ent codes: C1 is a regular (5,10) LDPC code of length
N = 816, from [6] and C2 is an irregular LDPC code
of length N = 2000 and rate R = 0.85. Its distribu-
tion degree is taken from [7], code number 325.

3.1. Algorithm Comparison
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Figure 1: Performance of λ−Min algorithm with λ =
{2, 3, 4} for code C1 and code C2 (50 iterations max).

Figure 1 compares the performance of C1 and C2

using respectively the BP, the λ−min and the BP-
based algorithms, all with 50 decoding iterations. As
expected, the λ−min algorithm outperforms the BP-
based algorithm and gets closer to the BP algorithm
as λ increases. Using the 3−min algorithm for the
code C2, which have check node degree of 40 or 41,
introduces a small degradation of 0.15 dB at a BER
of 10−4 (instead of 0.9 dB for BP-based) and can save
up to 67% of memory compared to the BP algorithm
(see figure 5 in section 4).
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Figure 2: Influence of the offset value on the BER for
the 3−min algorithm, for several SNR and several
max iteration number, for C1. The BER obtained
with the BP algorithm is represented with a dashed
line. Similar results stand for code C2.

3.2. Optimization

As shown in figure 1, the λ−min algorithm im-
proves the performance compared to the BP-based
algorithm but there is still a degradation compared
to the BP algorithm. This degradation can be re-
duced by the addition of an offset, as proposed by [3]
in the case of BP-Based algorithm: the offset com-
pensates the over estimation of extrinsic information
given by (7). Equation (2) is then replaced by:

L(i+1)
mn = S(i)

mn ×max
(
M (i+1)

mn − β, 0
)

, β > 0. (8)

In a practical case (finite code length and finite num-
ber of iterations) the optimal value of β can simply
be found by simulations.

Figures 2 depicts the evolution shape of the BER
as a function of β, for several SNRs and for sev-
eral max iteration number. The maximum number
of word errors is only 50, within a maximum of 105

transmitted codewords. One can note that the off-
set 3−min algorithm outperforms the BP algorithm.
This is explained by a faster convergence; when the
number of iterations increases (figure 3), the two al-
gorithm perform almost identically.

4. ARCHITECTURAL ISSUES

The detailed architecture of the λ−min algorithm
is not described in this paper. We just give an ex-
ample of the scheduling that enables to perform the
λ−min algorithm very efficiently and to decrease the
amount of memory needed to store the extrinsic in-
formation.

The architecture is based on a serial-parallel-serial
scheduling. Each decoding iteration requires the com-
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Figure 3: Comparison between BP algorithm and
offset 3−min algorithm as a function of the number
of iterations for a fixed SNR of 3 dB.

putation of M parity check equations. A decoding it-
eration is divided into M/P macro cycles. In a macro
cycle, P Parity Checks Processors (PCP) perform se-
rially the computation of P parity checks. Note that
this architecture is a modification of [8]. A detailed
architecture is given in [9].

Each PCP of iteration i works in 3 steps:

1. Generating the Z
(i)
mn values: during the first

|N (m)| clock cycles, the PCP associated to the
parity check cm received serially the Z

(i)
n , n ∈

N (m), from an external memory. At cycle n,
the L

(i−1)
mn of the previous decoding iteration is

retrieved from an internal memory of the PCP
and subtracted to Z

(i)
n in order to generate Z

(i)
mn

according to (1).

2. Sorting of the Z
(i)
mn: the sorting of the Z

(i)
mn

value is performed serially by an insertion tech-
nique. Every clock cycle, the current value of
Z

(i)
mn is compared to the λ previous value, which

are stored with their index in a register file of
size λ. According to the result of the compara-
tors, the new value is inserted in the sorting
order in the register and the highest values is
forgiven. Meanwhile, the product of all signs
is also computed.

3. Generating extrinsic information: the extrin-
sic values are computed on the fly, one at each
clock cycle, from the Nλ(n) values stored in
the register file. Figure 4 gives an example of
a possible realization for λ = 3. When the cur-
rent cycle correspond to a value of Nλ(n), the
corresponding boolean is set to +∞ in order to
bypass the XOR function that perform (7) in
order to compute (8).

In order to save memory, the information needed to
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Figure 4: On the fly parity check scheme for λ = 3.
When the reading phase is over, λ values are saved
and are addressed via t0, · · · , tλ−1 by the writing
phase for on the fly LLR computing.

Table 1: Details of the memory required for saving
extrinsic information for each parity check with the
λ−min algorithm. d.e denotes the ceil function.
Information to be stored Number of bits
λ + 1 results of (7) (λ + 1)Nb

λ index of Nλ(m) λdlog2(|N (m)|)e
|N (m)| signs + product of signs |N (m)|+ 1
Storage of all Z

(i)
mn (Nb + 1)|N (m)|

recompute the Z
(i)
mn are stored in the PCP, instead

of saving the |N (m)| values of Z
(i)
mn. Table 1 gives

the amount of memory in the 2 cases, assuming that
the magnitudes of Z

(i)
mn are coded on Nb bits. Figure

5 shows the memory reduction factor obtained for
Nb = 5. For |N (m)| = 40 and λ = 3, the proposed
solution requires only 33% of memory compared to
the classical solution, which means 67% of memory
saved.

5. CONCLUSION

In this paper, the decoding of LDPC codes has
been considered. A new algorithm, named λ−Min al-
gorithm, for updating extrinsic information has been
proposed. The λ−Min algorithm offers different trade-
off performance versus complexity between the BP
algorithm and the BP-based algorithm. Simulation
results for a (5, 10) regular LDPC code of length
N = 816 and for an irregular LDPC code of high
rate r = 0.85 and of length N = 2000 show that the
degradations introduced by the λ−min algorithm are
below 0.15 dB for λ ≥ 3. Moreover, the addition
of an offset increases the convergence speed of the
λ−min algorithm: for a given number of iterations,
it can outperform the BP algorithm. A hardware
realization of the λ−Min algorithm in a serial mode
has been also discussed. Reduction up to 75 % of
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Figure 5: Evolution of the memory ratio of the 2
way of saving extrinsic information, depending on
the parity check degree, for several λ value. Nb = 5
bits

the extrinsic memory information can be obtained
with high rate LDPC code without any significant
degradation of the performance.
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