
DECODER-FIRST CODE DESIGN

Emmanuel BOUTILLON*, Jeff CASTURA** and Frank R. KSCHISCHANG**

*ENST, 46 rue Barrault, 75634 Paris Cedex 13, France
**University of Toronto, 10 King's College Road, M5S 3G4, Toronto, Ontario

E-mail: emmanuel.boutillon@enst.fr, {fcastura,frank}@comm.toronto.edu

Abstract: The natural approch for the design of an
error correction system is first to construct a code, then,
define the hardware structure of the decoder.
Unfortunately, such a constructed code has very little
chance to be suited for a hardware implementation. This
paper proposes to operate the other way: in the first step
an efficient hardware structure is chosen and in the
second step, a code is constructed that adequately fits
this structure.

An example of such a methodology is exposed for a
Low Density Parity Check code. A cascadable high
speed (clock cycle equal to bit rate) decoder archictecture
is presented and simulation results are given. For an
N=4096 LDPC code of rate 1/2, a Bit Error Rate of 10-4

is acheived respectively for SNRs of 2.63 dB (1 circuit),
2.3 dB (2 circuits) and 2.05 dB (10 circuits).

Keywords: LDPC, VLSI, architecture, code, design.

1. INTRODUCTION

Shannon theory tells us that all "random" codes are
"good codes". Unfortunately, "random" codes are not
likely to be practically decodable. Indeed, for many
years, people in the coding theory community operated
under the assumption that "all codes are good, except the
ones we can imagine," (or more accurately, "except the
ones we can imagine decoding"). However, thanks to the
work of Gallager [1], Berrou [2] and others, we know,
nowdays, that good codes can not only be constructed,
but can also be decoded efficiently at signal-to-noise
ratios very nearly approaching the Shannon limit.

Such codes are often represented geometrically by a
bipartite graph, sometimes called a Tanner graph or
factor graph, in which the two vertex classes represent
the codeword symbols (and hidden state variables) on the
one hand, and codeword "checks" on the other. Codeword
checks might constrain neighbouring variables to form a
codeword in a linear "constituent" code. Usually a
"random-like" interconnection network between the two
rows allows one to create good "random-like" codes.
Such codes can be decoded with an iterative decoding
strategy, sometimes with astounding performance.

Turbo codes can be thought of as an extreme case of
this family of codes with just two complicated check
vertices, constraining certain subsets of the variables to
form a convolutional codeword. Due to the coarse
granularity of the check vertices, the hardware realisation
of the decoder is straightforward, since the

interconnection network of the factor graph leads to a
temporal shuffling of bits through an interleaver [3].

At the other end of the spectrum are low-density
parity-check (LDPC) codes, where each check vertex is
extremely simple: it constrains the neighbouring
variables to form a word of even parity (i.e., a codeword
in a simple parity-check code). Recent results [4,5]
show that this type of code can outperform turbo-codes.
Moreover, LDPC codes have excellent Hamming
distance properties, which makes it unlikely for the
decoder to converge to a wrong codeword.

At the present time, part of the coding theory
community is working to improve the performance of
this type of code. The "Holy Grail" is to construct the
"best" code, but little consideration is given to its
hardware implementation. Unfortunately, due to the
large number of check vertices in the factor graph, the
realization of a high speed decoder implies not only
temporal shuffling, but also spatial shuffling of the data
in order to emulate the interconnection network of the
factor graph. Thus, the question arises about whether the
LPDC can be suitable for high speed hardware
realizations that are required in many communication
links.

This paper proposes to reverse the sequence order of
conventional approach to code design. In a first step a
suitable hardware structure is chosen and in the second
step, a code is constructed that adequately fits this
structure. Thus, by construction, the code is suitable for
VLSI implementation. The target, in this paper, is high
speed LDPC decoders for which the input symbol and
clock rates are equal.

2. DESCRIPTION OF THE METHOD

The general architecture of the hardware is defined
prior to the code construction, as said above. The
general architecture is first presented, then the
sequencing of the computation is explained. Finally,
sub-blocks are described.

2.1. Architecture overview

 As shown is figure 1, the architecture is based on N
memory banks of length L (for the N .L codeword
variables) ; an interconnection network for the spatial
shuffling, and an array of P parity check decoders. The
randomness of the code is obtained with the N Random
Address Generators (RAG) associated to the memory
banks and a Random Permutation Generator (RPG) that

configure the interconnection network. The P check
nodes are connected to the output of the shuffle network.

RAG0

MEM
0

L

RAGi

MEM
i

RAGN-1

MEM
N-1

... ...

... ...
P parity checks

c =3j

Shuffle Network RPG

k=0..M-1

N

c =4P-1c =30

Figure 1: Principle of the architecture

The first check node is connected to the first (from
left to right) c0 output of the shuffle network, the
second to the next c1 output and so on. The sum of the
{ci}i=0..P-1 values is thus equal to N.

2.2. Decoding process

The decoding process, as well as the architecture, is
defined prior to the code construction. It is composed of
D decoding iterations. Each decoding iteration is
processed in M clock cycles. At every clock cycle, the 5
following operations are performed (eventually, with
some pipeline):

- retrieve N data from the memory banks at the
adresses given by the N RAG.

- shuffle the N data according to the RPG index.
- perform the MAP algorithm on the P parity checks.

The result is the extrinsic information associated to
each data.

- unshuffle the N extrinsic information computed by
the parity checks.

- store the unshuffle data into the memory bank at
theire initial location.

The code characteristics are derived from the hardware.
parameters.

2.3. Code characteristic

The code length is N.L, and the number of parity
checks of the code is M .P. Since each parity check
corresponds to one bit of redundancy, the rate r of the
code is:

 r =
NL-M P

NL
(1)

From the throughput constraint (input symbol rate
equal to the bit rate), the D codeword iterations should
be performed in NL clock cycles. This constraint leads
to:

 D =
N L
M

(2)

The average numbers dv of parity checks associated to
each bit and the average number dv of bits involved in
each parity check are:

 dv =
P M
NL

 ; dc =
N
P

(3)

Let us describe in more detail the different sub-blocks
of the architecture.

2.4 Parity check

All the parity checks are factored [6] linearly in order
to obtain a regular architecture, as shown in figure 2 for
the case of a 4 bit parity check.

e0 e1 e2 e3

i0 i1 i2 i3

0

0

dummy unused

a
b a⊕ b

a
0 a

used
Figure 2: Block diagramm of a 4 bit parity check

If the Log-Likelihood Ratio (LLR) is used to
represent the reliability of the bits, the output
information e2 of the binary operator is computed from
the input information i0 and i1 by the relation [7]:

 e2 = i0 ⊕ i1 = ln(1+ei0.ei1

ei0+ei1
) (4)

One can note, from figure 2, that the parity check
processor can be easily dynamically reconfigurable. In
that case irregular LDPC can be decoded as well with the
proposed architecture.

2.5. Shuffle network

The shuffle network is realized with a q layer
network. As shown in figure 3, each layer is
progammed with a single bit si leading to a given
permutation πi if s i =1 (πi

1), or to the identity
permutation (Id = πi

0) otherwise.

π or Id0

π or Id1

π or Id2

... ...

... ...
Random

Permutation
Generator

From the N Memories

To the P Parity Check

s0

s1

s2

k=0..M-1

Figure 3: Interconnection network for q = 3.

A q bit word s=(sq-1,...,s1,s0)2 defines simply the
permutation πs to be performed (see figure 2):

 πs = πq-1
sq-1 o ... o π1

s1 o π0
s0 (5)

The RPG is thus an hashing function from [0,M-1]
to [0, 2q-1] that associates to the iteration number k the
value s=RPG(k), i.e. the index of the permutation.

For the unshuffling process, the network is exactly
symmetrical.

2.6. Memory block

The management of the extrinsic information from
iteration d to iteration d+1 is done directly in the
memory block. The memory block is composed of 4
dual port RAM blocks, RAM I, Sa, Sb and E, as shown
in figure 4.

Intrinsic Sum of extrinsic

Sa Sb

+
+

-
RAG

 k

i +e +e

i
M

d
0

d
2

d+1
1e

e +e +ed ddL

I

E

ed+1
1 20 0

ed
1

Shuffle network

previous current

Extrinsic

Figure 4: Management of extrinsic information in a
memory bank

At clock cycle k of iteration d+1, the intrinsic
information i of the current data (RAM I) is added to the
sum of all the extrinsic information computed during
iteration d (RAM Sa). Simultaneously, the extrinsic
information generated by the current parity check during
the previous iteration is retrieved from RAM E and
subtracted from the total. Then, the result is sent to the
parity check. The updated extrinsic information
computed by the parity check is accumulated with the
previous extrinsic information of the iteration d+ 1
(RAM Sb). This information replaces also the old
extrinsic information in RAM E (note that the size of
RAM E is equal to M). During the next decoding
iteration, the roles of RAM Sa and RAM Sb are flipped
and so on.

The use of a RAM size of 3L for I, (decomposed of 3
areas Ia, Ib and Ic, each of size L) allows to load, decode
and output simultaneously 3 consecutive blocks.
According to (2), during the DM decoding cycles of the
a block (stored in area Ib, for example), the previous
decoded block (respectively, the next block), can be
output (can be loaded) at the same rate than the clock
from Ic (to Ia). For the next decoding block, the role of
the areas Ia, Ib and Ic are permuted. Thus, the decoding
hardware can be fully used.

3. Example of realization

To illustrate the relation between architectural
characteristics and the obtained LDPC code, a very
simple example is first given. Then simulation results
for a 4096 length, half rate LDPC code based on the
proposed architecture are given.

3.1. A simple decoder'first code

Let us consider the code with the architecture
parameters of table 1:

N P M L q D r {ci}i=0..P-1
6 2 3 2 2 4 0.5 {3,3}

Table 1: Characteristic of the hardware.

Let us take the M=3 length sequence of the N=6
RAG: {0,1,1}; {1,1,0}; {1,0,1}; {0,0,1}; {1,0,1};
{1,1,0}. Let us assume that the M=3 length sequence of
the RPG is {1,0,3} and finally, let us choose the q=2
permutations π0 and π1 of the shuffle netword equal
respectively to (3,5,0,1,2,4) and (4,0,5,2,3,1). The
NL=12 data of the codeword are naturally indexed with
their position in the memory bank: address i of MEM j
contains data number Lj + i = 2j + i .

During the first cycle of a decoding iteration, data
number 0, 3, 5, 6, 9, 11 are retrieved from the RAM,
after the shuffling (π0 , since RPG(0)=1), check nodes 0
and 1 receive respectively data {6,11,0} and data {3,5,9}.
Table 2 shows the operation performed during the M=3
cycle of a decoding iteration.

Read data shuffle Check 0 Check 1

0 {0,3,5,6,9,11} π0 {6,11,0} {3,5,9}

1 {1,3,4,6,8,11} Id {1,3,4} {6,8,11}

2 {1,2,5,7,9,10} π1 o π0 {5,7,9} {1,2,10}

Table 2: sequence of a decoding iteration.

The resulting factor graph of this code is given in
figure 5.

0 1 2 3 4 5 6 7 8 9 10 11

NL = 12 bits

PM = 6 parity check

cycle 1 cycle 2 cycle 0 P=2

Figure 5: Bipartite graph obtained with the chosen
RAGs and RPG.

Note that in the present example, the bit numbers 6
and 11 have 2 differents parity check nodes in common

(distance in the graph of 2). Generally, this type of
configuration leads to a weak code. The generation of
the RAG and RPG sequences is thus constrained in order
to avoid such configuration.

3.2. SIMULATION RESULTS

Simulation of this architecture has been made with
the parameters of table 3.

N P M L q D r {ci}i=0..P-1
32 5 409 128 3 10 0.50 {6,6,6,7,7}

Table 3: Simulation parameters.

Figure 6 gives the performance obtained for different
signal to noise ratios. Each point is obtained with the
transmission of 250 blocks. The data are coded with one
bit of sign, and 6 bits for the value (4.2, i.e. with two
bits after the decimal point). The internal representation
of the sums of extrinsic information is on 8 bits (6.2)
but information is saturated to 6 bits before entering the
shuffle network. The equation (4) is quantized and
saturated: the 6 bit result of the function are read from a
simple access in a 64x64 look-up table.

Eb/N0 (dB)

-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0
1.5 1.75 2 2.25 2.5 2.75

1
Decoding

iteration (x10) 2 3 10

L
og

 (B

E
R

)
10

Figure 6: Simulation results of a LDPC (4096, 2045).

A simulation using the floating point representation
of the LLR has also been performed. For a SNR of 1.75
dB, all of the 250 received blocks are decoded in less
than 40 iterations. This result shows that the
constructed code has similar performance than regular
LDPC codes of same size. The one-chip decoder
architecture proposed in the paper has performance, for a
BER of 10-4, similar to the TURBO4 chip [3], as
shown in table 4.

Iterations 1 2 3 5 10
LDPC 2.65 2.3 2.2 - 2.03

TURBO4 3.5 2.4 1.9 1.6 -

Table 4: SNR (dB), needed to obtain a BER of 10-4

A hardware complexity evaluation of the proposed
architecture, as well as the definition of an efficient
encoding process, have still to be done in order to make
a full comparaison with the TURBO4 chip.

4. CONCLUSION

We believe that conceiving of the hardware
architecture prior to, or at least jointly with, the choice
of the code is a key that leads to efficient high speed
hardware decoders for LDPCs and similar codes. The
excellent performances (see table 4) obtained with the
proposed high speed LDPC decoder architecture shows
the efficiency of the "decoder first code design" approach.

Many topics have still to be addressed: estimation of
the hardware complexity; development of an efficient
coding strategy, extend the methodology to irregular
LDPC or Tanner codes. Another promising direction of
research is to use non uniform RAGs in order to
construct codes with different levels of errors correction
capability. The unequal error protection is very useful
for some applications.

Acknowlegments

Thanks for Eric Perpere for the simulations on the
LDPC code architecture, made during his training period
at ENST (mai to august 2000).

REFERENCES

[1] R.G. Gallager, "Low-Density Parity-Check Codes",
Cambridge, Massachusetts: M.I.T. Press, 1963.

[2] C. Berrou, A. Glavieux, P. Thitimajshima, "near
Shannon limit error-correcting coding and decoding",
in Proceeding of ICC'93 (Geneve, Switzerland), pp.
1064-1070, May 93

[3] M. Jézéquel, C. Berrou, C. Douillard, P. Pénard
"Caracteristics of a sixteen-state turbo-
encoder/decoder (turbo4)", Proceedings of the
International Symposium on Turbo-Codes topics,
Sept. 97, Brest, France.

[4] T. Richardson, A. Shokrollahi, R. Urbanke, "Design
of Provably Good Low-Density Parity Check
Codes", submitted to IEEE trans. on Information
Theory.

[5] D.J.C. MacKay, R.N. Neal, "Near Shannon limit
perfomance of low density parity check codes",
Electronics Letters, vol 33, no 6, March 1997, pp.
457-458.

[6] G. D. Forney, "On Iterative Decoding and the Two-
Way Algorithm", Proceedings of the International
Symposium on Turbo-Codes topics, Sept. 97,
Brest, France.

[7] G. Battail, H.M.S El.Sherbini, "Coding for radio
channels", Ann. Télécommun., vol. 37, no 1-2, pp.
75-94, Jan./Feb. 1982.

