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ABSTRACT

Many of the current LDPC implementations of DVB-S2,

T2 or WiMAX standard use the so-called layered architec-

ture combined with pipeline. However, the pipeline process

may introduce memory access conflicts. The resolution of

these conflicts requires careful scheduling combined with

dedicated hardware and/or idle cycle insertion. In this paper,

based on the DVB-T2 example, we explain explicitly how

the scheduling can solve most of the pipeline conflicts.

The two contributions of the paper are 1) how to split

the matrix to relax the pipeline conflicts at a cost of a

reduced maximum available parallelism 2) how to project

the problem of the research of an efficient scheduling to

the well-known ”Travelling Salesman Problem” and use a

genetic algorithm to solve it.
Index Terms—Low-density parity-check code (LDPC), mem-

ory conflicts, scheduling, genetic algorithm, layered decoding.

I. INTRODUCTION

Low Density Parity-Check (LDPC) codes [1] have gained

a lot of attention due to their remarkable error correcting

capabilities. Among all the published work on LDPC, the

approach introduced in [2] led to the concept of structured

codes which are now included in standards such as DVB-

S2 and DVB-T2 [3] for digital video broadcasting, Wire-

less Local Area Networks (WiFi) (IEEE 802.11n), Wireless

Metropolitan Area Networks (WiMAX) (802.16e) [4] and

Wireless Regional Area Networks (WRAM) (IEEE 802.22).

These structured codes or architecture-aware codes (AA-

LDPC [5]) can be efficiently implemented using a semi-

parallel architecture [6], [7], [8], a block-serial architecture

[9], [10], [11], or a layered decoder architecture [12], [13],

[14].

The turbo-decoding message-passing algorithm, intro-

duced by Mansour [5], [15] and then referred to as layered

decoding by Hocevar [14], presents the following main

advantages over the standard decoding algorithm: 1) faster

convergence speed by a factor of two in terms of decoding

iterations and 2) reduced decoder complexity. Moreover, the

use of a Soft-Output (SO) based Check Node Processor

(CNP)[9], [12], [13], [14], [16] significantly reduces memory

requirements.

The throughput of the layered decoding architecture can

be easily doubled by pipelining, but problems of memory

conflicts arise. In [13] and [16] the authors present a solution

based on the computation of the variation (or delta) of the

SO metrics to allow concurrent updates. The computation

of this SO update needs either a costly memory access

or an increase in the clock frequency by a factor of two.

In [6], the use of idle time is proposed to deal with the

conflicts. However this solution decreases the throughput.

The scheduling of the SO in [10] reduced the use of idle time

by using CNP able to deliver its outputs values in a different

order than its input values, which increase the complexity of

the CNP architecture. Finally, we should also note that [9],

[10] propose an appropriate scheduling of the check node as

a solution to avoid pipeline conflict but in none of them, the

idea is fully developed.

In this paper, we focus on the conflicts due to the

pipelining of a layered decoder and we propose solutions

with an example on the DVB-T2 matrices. We first explain

the reordering of the matrices depending on the required

parallelism. The new reordered matrices solve by itself a

part of the pipeline conflicts. In order to find an efficient

scheduling to solve the remaining conflict, we show that

the research of an efficient scheduling is equivalent to the

well known ”Travelling Salesman Problem”. Thus, all the

numerous methods described in the literature to solve the

former problem can be used for our scheduling problem.

In this paper, we present scheduling results using a genetic

algorithm.

The remainder of the paper is organized as follows:

Section II presents the layered belief propagation schedule

and the memory conflicts. Section III shows how the spliting

process can reduce the number of conflicts. Section IV

explains how most of the remaining conflicts can be avoided

by an appropriate scheduling of the layers. A method based

on genetic algorithm is then proposed to find efficient

scheduling for all the DVB-T2 code rates and frame types.

II. LAYERED BELIEF PROPAGATION

SCHEDULING

The AA-LDPC codes are constructed from a m× n base

matrix Hbase. All positive elements of Hbase have values
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Fig. 1. Base DVB-T2 Matrix

given by shift ∈ {0, ..., P} and are expanded as P × P
shifted identity matrix. The elements of Hbase with ’−1’

values are expanded as a P × P zero matrix. Fig. 1 shows

a graphical representation of the (m, n) = (15, 45) Hbase

matrix of the rate-2/3 short-frame DVB-T2 LDPC parity

check matrix, with P = 360. cgj stands for the jth group

of P = 360 Check Nodes (CN) and vgi for the ith group

of P = 360 Variable Nodes (VN). The size of the expanded

LDPC matrix is then (15×360, 45×360) = (5400, 16200).
The black squares represent shifted identity matrices while

the grey squares are double identity sub-matrices which are

the cause for another type of conflict solved in [17]. They are

beyond the scope of our work. Note the DVB-T2 structured

matrices are efficient for highly parallel decoding using the

layered decoder algorithm.

II-A. Layered decoder algoritm

In the horizontal layered decoding algorithm, a VN is

represented by a Soft Output (SOv) value. The SOv value

is first initialized by the Channel Log Likelihood Ratio

(LLR = log(P (v = 0)/P (v = 1)) ). Then the decoding

proceeds iteratively until all the parity-checks of the code

are verified or a maximum number of iterations is reached.

For layered decoding, one iteration is split into sub-iterations

and each sub-iteration processes one layer. A layer can be

made of one or several CNs and the sub-iteration consists

in updating all the VNs connected to the CNs of the layer.

The update of the VNs connected to one CN is done

serially in three steps. First, the messages from VN to CN

(Mv→c) are calculated using equation (1) with Mc→v = 0
during the first iteration.

Mv→c = SOv − Mc→v (1)

The second step is the serial Mc→v update, where Mc→v

is a message from CN to VN. For implementation con-

venience, the sign (2) and the absolute value (3) of the

messages are updated separately. Let vc be the set of all

the VN connected to the CN c and vc/v be vc without v.

sign(Mnew
c→v) =

∏

v′∈vc/v

sign(Mv′→c) (2)

++
−

Mc→v

SOv SOnew
v

Mv→c

Fig. 2. SO based CNP

|Mnew
c→v| = f

(

∑

v′∈vc/v

f(|Mv′→c|)

)

(3)

where f(x) = ln tanh
(

x
2

)

. Equation (3) can be implemented

using a sub-optimal algorithm such as min-sum algorithm

[18], normalized min-sum algorithm or the λ -min algorithm

[19]. The third step is the calculation of the SOnew value

using (4) .

SOnew
v = Mv→c + Mnew

c→v (4)

From these equations, the CNP architecture in Fig. 2

can be derived. The left adder of the architecture performs

equation (1) and the right adder performs equation (4). The

central part is in charge of the serial Mc→v update.

Several CNs may be grouped together to form a layer,

whenever the column weights in the layer does not exceed

one. In other words, a given VN is connected at most to

a single CN of a layer. The layered decoder architecture is

mainly based on P CNPs that read serially the VGs linked

to the CG and then the P CNPs write back the result to the

VGs in the same order.

II-B. Non pipelined CNP

The chronogram in Fig. 3 illustrates a non-pipelined CNP.

The CNP first reads the SO. Then after a given number of

clock cycles ǫ, i.e. the CN latency, the CNP writes back the

result of the calculation. We can see on this chronogram that

the CNP starts to read the new set of variable nodes vci+1

only when all the previous vci
have been calculated. The

corresponding throughput is given by:

D1 =
K.Fclk

(2dc + ǫ).M
P .Nit

bit.s−1 (5)

where Nit is the number of iterations to decode a codeword,

M is the number of CN, P is the number of CNPs working

in parallel, dc is the average number of VNs linked to a

CN, Fclk is the clock frequency and K is the number of

information bits in a codeword.

II-C. Pipelining

Pipelining allows a more efficient use of the CNP and

an increase of the throughput [6] [11] [10]. The pipelining

consists in reading the vci
of one sub-iteration while writing
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on vci−1
the result of the previous sub-iteration. This means

that as soon as the reading of one sub-iteration is finished,

a new one is started. The chronogram is given in Fig. 4

and the corresponding throughput is given by the following

equation:

D2 =
K.FClk

dc.
M
P .Nit + dc + ǫ

bit.s−1 (6)

The pipelined architecture offers at least two times greater

throughput compared to the non pipelined one: D2

D1
≈ 2+ ǫ

dc
.

We will see in the next subsection that this architecture can

lead to memory conflicts.

II-D. The problem of memory conflicts

In this section, we show that two type of memory conflicts

can occur.

”Type i + 1” memory conflict: In Fig. 4 a common

variable SOcom (filled square) is used in two successive

sub-iterations. During the second sub-iteration, the SOcom

is still not updated from the previous sub-iteration and the

result of the current sub-iteration will overwrite the result of

the previous sub-iteration. This is known as a ’cutting edge’

problem because it is equivalent to a cut in an edge of the

Tanner graph representation of the matrix. Let vgcgi
be the

set of all the vgi connected to cgj . During pipelining, the

P CNPs write on vgcgi
while the P CNPs read on vgcgj

.

The layers cgi and cgj can work one after the other without

memory access conflict when the two groups don’t share any

common variable 1. Mathematically speaking, this constraint

can be expressed by:

vgcgi
∩ vgcgj

= ∅

1As mentionned in [10], if dc > ǫ, it is still possible to avoid memory
conflict between two groups sharing the same common variable SOcom by
an appropriate scheduling of the SOcom inside the two consecutive layers.

SO

dc

ǫ
SOnew

Fig. 5. Conflict due to pipelining at i + 2

For example, we can check in Fig. 1 that there is no vgi

in common between the set of vgi linked to the group of

check node number one cg1 and eleven cg11:

{vgcg1
} ∩ {vgcg11

} =

{1,2,12,16,19,24,31,45}∩{3,11,13,15,17,21,26,40,41}=∅

Thus the decoding of cg1 and cg11 can be processed

consecutively without memory conflict. We have to take care

that the next sub-iteration does not use the same SO as the

previous one.

”Type i + 2” memory conflict: Fig. 5 illustrates that the

same consideration must be taken with the i+2 sub-iteration

because of the latency ǫ. In this figure, one value of SO

generated by layer i is writen in memory after it is read by

layer i + 2. This situation also leads to a memory conflict

and can be avoided by appropriate scheduling of the layers.

III. CONFLICT REDUCTION BY GROUP

SPLITTING

To achieve the minimum required throughput of 90Mbps

in the DVB-T2 standard, parallel processing of only a

fraction of the 360 CNs is enough [8] [9]. In [9], the authors

have used 45 CNPs, therefore splitting the group of 360
CNs is considered. In [8] and [9], the splitting process

has already been done implicitly through memory mapping.

In the next subsection, we will show how to reorder the

structured matrices initially designed for a parallelism of 360
to matrices designed for a parallelism of 360/S, where S is

the number of splits.

III-A. Construction of the sub-matrices

Let us define Ps the number of CN working in parallel

after a split. P , Ps and S are then linked by the equation:

S × Ps = P

The construction process of the new matrix relies on the

permutation of the rows and the columns defined as:

σ(i) = (i mod S)Ps + ⌊i/S⌋ (7)

where ⌊x⌋ is the largest integer not greater than x. We first

permute the row using (7), where i is the row number. Then

we permute the columns in the same way.
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Fig. 7. New base DVB-T2 Matrix after factor 2 split

III-B. Example

Let us consider the following example of a shifted identity

matrix I2 of size P = 12 in Fig. 6(a). After reordering

the rows and columns using equation (7) with S = 3 and

Ps = 4, we obtain the new matrix I
′
2

in Fig. 6(b). Note that

I
′
2

is a structured matrix made of identity matrices of size

Ps.

III-C. Results

Fig. 7 illustrates the new base matrix after a split by a

factor of 2. We can see that the new base matrix is sparser

than the base matrix in Fig. 1 (in terms of identity matrix

density). In fact, the number of identity matrices increases

by 2 while the size of the base matrix is increased by 4.

Increasing the split decreases the risk of memory conflicts

due to pipelining. An appropriate scheduling of the groups

of CN can solve the remaining conflicts.

IV. CONFLICT RESOLUTION BY SCHEDULING

A schedule provides timing information about a series

of arranged events. To avoid the cutting edge conflict, we

explore the scheduling of the layers. After defining the

scheduling strategy, we show that this problem is an instance

of the well known ”Traveling Saleman Problem”. This

problem can be efficiently solved by a Genetic Algorithm

(GA).

IV-A. Scheduling of the layers

The schedule is done in the set of groups of CNs cg =
{cg1, cg2, ..., cgmg}. We define a schedule sequence index

π, where π is one permutation in the set {1, 2, ..., mg}. The

number of conflicts due to the pipelining between two check

node groups , cgi and cgj is given by equation (8).

c(i, j) = |vgcgi
∩ vgcgj

| (8)

The number of conflicts after one full iteration using

scheduling π is given by equation (9).

cit(π) =

(

i=mg−1
∑

i=1

c(π(i), π(i+1))

)

+c(π(mg), π(1)) (9)

where the second term is the cost between the last layer

of an iteration and the first layer of the following iteration.

We have to find the optimal permutation πopt that gives the

smallest number of conflicts; this can be translated into an

optimization problem which consists in the minimization of

the cost function:

πopt = arg min{cit(π), π ∈ Π} (10)

where Π is the group of all the possible permutations of π.

The use of graph theory is dedicated to solve this kind of

problem.

IV-B. The Traveling Salesman Problem (TPS)

Finding the schedule to avoid cutting edge is described by

the minimization problem (10). An equivalent formulation in

terms of graph theory is: given a complete weighted graph

(where the node would represent a group of CNs, and the

number of cutting edge would be the cost of the edge), find

a Hamiltonian cycle with the least cost. This problem is also

known as a TSP [20]. The TSP statement is as follows: given

a number of cities and the cost of travelling from one city

to any other city, what is the least-cost round-trip route that

visits each city exactly once and then returns to the starting

city. In our case a town is a group of check node and the

travelling cost is the number of cutting edges (8).

The first step is to build the cost matrix Hc = {Hc(i, j) =
c(i, j), i, j ∈ [1, mg]2}. This matrix gives the number of

cutting edges for each possible couple of groups of CN

cgi and cgj . The cost matrix for a rate 2/3 short frame is

illustrated in Fig. 8(a). On this graphical representation, a

white square is for no cutting edge and a grey square means

one (light grey) or more (darker grey) cutting edge.

We can see in Fig. 8(a) that there are only three couples

cg1,11 , cg8,14 and cg10,14 that can perform consecutively

without conflicts. Fig. 8(b) shows the cost matrix after a split

factor of 2. The new matrix offers more possible couples

without memory conflict (from 3% to 20% after splitting

by two). The split process gives fewer cutting edges and a

greater degree of freedom for scheduling.

The problem of trying all permutations (|Pi| = mg!) and

selecting the minimum cost (10) is NP hard in O(mg!). For

a long frame of rate 1/4 and split 4, the number of cities is

540. Thus a suboptimal or heuristic algorithm is needed to

solve the problem.
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IV-C. Principle of Genetic Algorithm

Genetic algorithms [21], [20] use techniques inspired by

evolutionary biology such as inheritance, mutation, selection

and crossover. The genetic algorithm process is summarized

in Fig. 9. First, many solutions are randomly generated to

form an initial population. Then individual solutions are

selected through a two round tournament selection using

the fitness function given by equation (9). The next step

is to generate the ’children’ through a two point crossover

between solutions previously selected. The last step is the

mutation of the children for diversity purpose by swapping

two randomly chosen cities. This generational process is

repeated until a null cost is found for an individual solution

or a fixed number of generations is reached.

The result of the genetic algorithm applied to the schedul-

ing problem is presented in the next section.

IV-D. Results

In this section, we present the result of the genetic algo-

rithm. The maximum number of generation and the initial

population were set to 1000. Every solution was obtained in

less than 15 minutes on a standard desktop processing unit.

Code rate

S Ps 1/4 1/2 3/5 2/3 3/4 4/5 5/6

1 360 1 1 0 0 0 0 0

2 180 2 2 1 0 1 0 0

3 120 2 2 1 1 1 1 0

4 90 2 2 1 1 1 2 1

5 72 2 2 1 1 2 2 1

6 60 2 2 2 2 2 2 1

8 45 2 2 2 2 2 2 1

9 40 2 2 2 2 2 2 2

Table I. Scheduling solutions for short frames

Code rate

S Ps 1/2 3/5 2/3 3/4 4/5 5/6

1 360 2 1 1 1 0 0

2 180 2 1 2 1 1 0

3 120 2 1 2 2 1 1

4 90 2 1 2 2 1 1

5 72 2 1 2 2 1 1

6 60 2 2 2 2 2 1

8 45 2 2 2 2 2 2

9 40 2 2 2 2 2 2

Table II. Scheduling solutions for long frames

In order to take into account the ”type i+2” cutting edge

defined in section II.D, i.e vgcgi
∩ vgcgi+2

= ∅, we modify

the cost function cit defined in (9) as:

c′it(π) = αcit(π) +

mg
∑

i=1

c(π(i), π((i + 2) mod mg)) (11)

where α ∈ N+ and is high enough to give an absolute

priority to the i + 1 conflicts against the i + 2 conflicts. The

next subsection gives some results using a genetic algorithm

to find an efficient schedule.

Table I and Table II present the results found for the

DVB-T2 LDPC decoder. In these tables, a ’0’ means that

the genetic algorithm found no solution that avoids ”type

i+1” conflict. A ’1’ (respectively ’2’) means that it found a

scheduling solution without type i + 1 conflict (respectively

without type i + 1 and type i + 2 conflicts). We can check

that for Ps = 40, there are schedules without conflicts at

i + 2 for all code rates and frame types. Note that, after a

scheduling at i+1, the remaining conflicts due to the latency

ǫ can be avoided using a scheduling of the vgi inside the

layers [10]. This option allows a parallelism of up to 120

for long frames and 90 for short frames.

V. CONCLUSION

Pipelining a layered decoder doubles the throughput but

leads to memory conflicts. The proposed reordering of the

matrices reduces the parallelism and creates a sparser base

matrices. Using the new base matrices, schedules without

conflicts can be found. Due to the huge amount of possible

solutions after reordering, a genetic algorithm is used to find

the best schedule. This algorithm finds schedules that avoid



conflicts with the next sub-iteration (i+1) and with the sec-

ond next sub-iteration (i + 2). Although this article explains

the process for matrices defined by the DVB-T2 standard,

the same process can be used for structured matrices such

as the ones defined by the WiMAX standard. Future work is

focused on hardware implementation and evaluation of the

performance in terms of area and throughput.
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