
DESIGN AND PERFORMANCES ANALYSIS OF HIGH SPEED AWGN

COMMUNICATION CHANNEL EMULATOR

Adel Ghazel(1), Emmanuel Boutillon(2), Jean-Luc Danger(3), Glenn Gulak(4), Hédi Laamari (1)

(1)UTIC - Ecole Supérieure des Communications, Rte de Raoued km 3.5 – 2083 El Ghazala –Tunisia
(2)LESTER. University of Bretagne Sud, 56100 Lorient, France

(3)ENST PARIS, Ecole Nationale Supérieure des Télécommunications 46 rue Barrault, 75634 PARIS CEDEX 13, France
(4)EECG, University of Toronto, 10 King's College Street Toronto, M5S 3G Ontario

adel.ghazel@supcom.rnu.tn, emmanuel.boutillon@univ-ubs.fr, danger@enst.fr, gulak@eecg.toronto.edu

Abstract

A Gaussian noise generator model adapted to hardware
implementation is developed for mobile communication
channel emulation in FPGA circuit. High accuracy is reached
for the random distribution by combining the Box-Muller and
Central limit methods. The proposed present model is based on
reduced computation operations and memories in order to get
a fast and low-cost emulation plat-form. The performance of
the designed model is investigated by MATLAB simulation.
The complexity and the performance level are given for some
configurations and show the interest of the proposed model.

1 Introduction

The software estimation of the performances of a
communication system is very time consuming. Indeed, with a
Monte-Carlo simulation, an accurate (+-3.3%) estimation of a
Binary Error Rate around 10-6 needs 109 iterations. Moreover,
many variables (sampling frequency, digital format, carrier
resolution, rounding and quantification etc.) have to be
optimized for satisfying the best trade-off between
performances and complexity. In order to speed up the final
parameter optimization of a design, we proposed to perform
direct hardware simulation (emulation) on a FPGA. Such a
simulation needs a hardware emulation of the communication
channel.

In this paper, the authors (a joined research group with ENST-
Paris (France), SUP’COM (Tunisia), LESTER (France) and
the University of Toronto (Canada)) focus their attention on the
design of a "high quality" White Gaussian Noise Generator
(WGNG). The "high quality" WGNG considered in this paper
is the generation of a random variable X with the following
characteristics:

- at least b=6 bits of resolution after the decimal point,
- a periodicity of the WGNG greater than 248 samples

(function rand48 of C ANSI),
- a flat spectrum.
- a “(4σ, 1%) normal like probability density function

(p.d.f.)” i.e. the absolute value of the relative error ξX(x)
defined as:

))(1,0(

))(1,0()(
)(

xN

xNxX
xX

−
=ξ (1)

between the p.d.f. of X and the normal distribution N(0,1) -
mean 0 and standard deviation σ = 1 - is less than 1% for all
|x| < 4σ .

With the use of this WGNG, the Additive White Gaussian
Noise (AWGN) channel can be emulated as well as more
complex channels like Rayleigh channel and Ricean channel
(using filtering and appropriate mathematical functions [1]).

Sections 2 and 3 briefly present the two well-known methods
for generating a Gaussian noise, namely, the central limit and
the Box-Muller methods, and give some developments for
achieving better accuracy. Section 4 presents an efficient
combination of the two methods. Performances and hardware
complexity are evaluated.

2 Central limit based method

The central limit theorem tell us that if X is a real random
variable (r.v.) of mean mx and standard deviation σx, the
random variable (r.v). XN defined as:

∑
−

=

−=
1

0

)(
1 N

i
xi

x
N mx

N
X

σ
(2)

where xi , i=0..N-1 are N independent determinations of the
variable X, tends toward the normal distribution N(0,1, when N
tends toward infinity.

The central limit theorem gives a very simple method to
generate a white gaussian noise. Indeed, it is well known that a
Linear Feedback Shift Register (LFSR) of length l can generate

a very good random like binary variable of periodicity 2l-1.
The concatenation of q different LFSRs, gives a q bits vector

Uq. This vector can be seen as a random variable uniformly

distributed over {0, 1, 2, .., 2q-1}. Thus, the random variable
Uq

N obtained using (2) with N independent determinations of

Uq leads, after appropriate scaling, to a good approximation of
N(0,1) if N is large enough. Figure 2 shows the ξX(x) function

obtained for X=Uq
N , with q=8 and N=2, 4, 8, 16, 32.

Figure 1: ξX(x) function for X=U8
N, N=2, 4, 8, 16, 32.

However, one can note, from this figure, that even with N
large, the approximation of the distribution N(0,1) between 0
and 4σ is not adequate (|ξX(x)| > 5% for |x| > 3σ) considering
the present requirements. Moreover, in terms of hardware
implementation, this solution is costly since qN = 256 binary
variables (and thus 256 LFRSs) are needed to obtain a single
sample. Thus, this method used alone is inadequate for the
present purpose. The box-Muller method is now investigated
and the WGNG quality is analyzed at low hardware cost.

3 Box-Muller based reference model

The Box-Muller method is first presented. Then, a new
quantized version of the Box-Muller method matched for
hardware implementation is proposed. Hardware complexity of
the WGNG is described as well as an example of realization.

3.1. Description of the method

The Box-Muller method is widely used in simulation program
to generate a random variable (see [3] for a C program
example). This method includes 3 steps: the first two ones
generate independent values x1 and x2 of a random variable
uniformly distributed over [0, 1]. In the third step, the
functions, f(x1) and g(x2) are derived from x1 and x2 by :

)ln()(11 xxf −= (3)

)2cos(2)(22 xxg π= (4)

Finally, the product

n = f(x1)g(x2) (5)

gives a sample of the N(0,1) distribution (see [3] for a proof).
Using a 32 bit floating point CPU unit, the equations (3), (4)
and (5) are efficiently computed in a small number of clock
cycles. Unfortunately, these operations (square root of a
logarithm, cosine function, multiplication) require a lot of
hardware. To reduce the complexity, a quantized version of (3)
and (4) using pre-computed values is proposed by the authors.
Let us first focus our attention on equation (3).

The plot of the function f(x) is shown in figure 2.

f
-1
(1)=0.36

f
-1
(2)=1.8 10

-2

f
-1
(3)=1.2 10

-4

f
-1
(4)=1.1 10

-7

x
1

0

1

2

3

4

0 0.2 0.4 0.6 0.8 1

)ln()(11 xxf −=

Figure 2: Plot of function f(x1)

Since the average of g(x) is close to 1 (π/22 exactly), a value
of f(x) greater than 4 should be generated in order to generate
sample n greater than 4.

3.2. non-uniform quantification of the segment [0, 1]

To do so, the quantification step of segment [0,1] should be
very small, i.e. of the order of f-1(4) < 10-7. Since only the
vicinity of 0 should be accurately quantified, a recursive non-
uniform quantification of the segment [0,1] is proposed (see
figure 3):

0 2 ∆=1∆= 2-q 2∆ 3∆ q

rank 1

rank 2

rank K

...
∆2

∆K

2∆ 3∆

2∆ 3∆

2

K

2

K

2 ∆ =∆

2 ∆ =∆

2

K

q

q K-1

Figure 3: Non uniform quantization of segment [0,1]

where K is the number of recursion and q is the number of bits
to select one of the 2q segments of length ∆ r = 2-rq at the level r
of the recursion. Thus, K q-bit random generators s1, s2... sK
are used to define the position of a sub-segment of [0,1]. At the
first level (r=1), the quantization step of [0,1] is ∆=2-q. The
value s1 defines the segment [∆s1, ∆(s1+1)[, if s1 is equal to 0,

the sub-segment [0, ∆[is sub-divided in 2q sub-segments of
size ∆2 indexed with s2. Once again, if s2 is equal to 0, the

sub-segment [0, ∆2[is sub-divided in 2q sub-segments indexed
by s3. The process is repeated recursively K times. The

probability to select a segment s of rank r is equal to ∆r , i.e.,
the size of the segment. The process is thus uniformly
distributed over [0,1]. The quantized value fr(s) associated to

this segment is given by:

  )2())((2)(mrm
r sfsf −×∆+= δ (6)

where m is the number of fractional bits used to represent fr(s)
(i.e. fr(s) is coded on 3+m bits, 3 for the integer part, m for the

fractional part) and  x denotes the largest integer lower than x

and δ, a real number between 0 and 1, gives the relative
position of the sample in the segment [∆rs, ∆r(s+1)[.

The problem is easier for the g(x) function. Let us define s’, a q’
bit random variable. ∆’ = 2-q’ is the quantization step of
segment [0,1/4] (the problem of sign is analysed later) so g(x)
is quantized as:

)2(
2

)’’(’
cos22)’(’’ mm s

sg −×












 +∆= δπ (7)

where δ’ and m’ have the same meanings as those of δ and m of
equation (6). g(s’) is coded on 1+ m' bits, 1 for the integer part,
m’ for the fractional part.

From fr(s) and g(s’), the quantized Half Box-Muller random

variable HBM with b bits after the dot is obtained using:

)2(
2

)’()(
’

b
bmm

r sgsf
n −

−+
+ ×







 ×
= (8)

The probability P of obtaining a given couple (fr(s),g(s’)) is:

)’(2))’(),((qrq
r sgsfP +−= (9)

Let Sx be the subset of {0, ..., 2q-1}x{1, ..., K}x{0,..., 2q’-1} of
all triplets (s,r,s') that gives n+ using (8). The probability
P(HBM=n+) is then given by:

P(HBM=n+) = ∑
∈),,(nSs’rs

 P((fr(s),g(s’))) (10)

Using (8), (9) and (10), the p.d.f. of HBM can easily be
computed.

Finally, the Box-Muller r.v. BM is obtained from the Half Box-
Muller r.v. HBM using a binary r.v. sign:

n = (1-2sign)n+ (11)

The schematic representation of the algorithm is shown in
figure 4

q s1

q s2

q sK

q’ s’

1 sign

f
(3.m)2

fr(s)

g
(1.m’)2

g(s’)

2).4(b
trunc.

LFSRs

(4.(m+m’))2

n+ n

(4.b)2

Figure 4: Overall architecture where 2).(ba , respectively
2

).(ba ,

indicates a non-signed (a two-complement) number with a bit before
the dot and b bits after the dot.

3.3.Hardware complexity

As shown in figure 4, the WGNG requires (K*q + q’ + 1)
LFSRs for generating a the binary variables, K ROM of size
2q×(3+m), one ROM of size 2q’×(1+m’), one (3+m) ×(1+m’)
multiplier and one adder for the sign multiplication. Hardware
complexity of the WGNW is then easy to evaluate.

In 1995, a first Box-Muller WGNG has been investigated by a
training student, supervised by E. Boutillon and G. Gulak, at
ENST. The characteristics of this WGNG are listed table 1
(line BM). The quality of the result is given in figure 5.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

x

ξBM(x)

Figure 5: ξBM(x) function

As shown in figure 5, the function ξBM(x) lies around 0 on the
average. However, the variation can be large and a substantial
increase of the cost should be used for a substantial decrease of
these variations. Thus, the Box-Muller method used alone is
not appropriate for the present purpose.

4. Proposed new WGNG model

For improving the methode we propose to use the central limit
theorem to generate BMN as the sum of N independent
determinations of BM (see eq. (2)). Thus, the p.d.f. of the r.v.
BMN, will be more flat than that of BM. Since the p.d.f. of BM
is, on the average, “gaussien like”, the central limit theorem
converges very quickly. Note that, once again, the p.d.f. of BMN

can be computed as the Nth convolution of the p.d.f. of BM with
itself. The standard deviation of BMN is equal to the standard

deviation of BM multiplied by a factor N . Thus, for N=4,
the division by 2 of BM4 gives r.v. with a standard deviation of
1.

A program (MATLAB) has been elaborated which performs
the exact computation of BMN, given any set of parameters. It is
given in the annex. With this program, the optimization of a
WGNG for a given set of parameters is very fast. For
illustration, Table 1 gives the results of a previous paper [3].
Line BM1 shows the parameter of a WGNG optimized for an
FPGA circuit (namely, the FLEX10K100EQC240-1 of Altera
[4]).

Param. b q K m δ q’ m’ δ’
Matlab b q_f K m_f d_f q_g m_g d_g

BM 6 8 3 6 0.5 8 8 0.5
BM1

6 4 5 7 0.36 8 6 0.5

Table 1: Characteristics of the Box-Muller WGNG, The second
line of the array gives the names of the variables used in the

MATLAB program given in this annex.

In this design, q=4 in order to match the size of the logical cell
of the circuit. Figure 6 shows the resulting p.d.f. for BM1, BM2
and BM4. One can note that BM4 resulting from the summation

of 4 independent variables BM1 is “(4σ, 1%) gaussian like”: the

required specifications are fulfilled1.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

x

ξX(x)

BM1
BM2
BM4

Figure 6: ξX(x) function for BM1, BM2 and BM4

Table 2 gives the characteristics of the design of BM4. In this
design (specified in VHDL), the summation of the 4 variables
is made serially every clock cycle, i.e. a sample of distribution
BM4 is generated every 4 clock cycles.

Number of
LCELL

Number of
LAB

Maximum
clock rate

Maximum
output rate

434 1 98 MHz 24.5 MHz

Table 2: Characteristics of the design.
The number of LCELL includes also the LFSRs.

The overall complexity is low (10 % of the available LCELL)
and the p.d.f. of the WGNG obtained by real measurements
matches the theorical p.d.f obtained by MATLAB.

5. Conclusion

In this work, we use both the Central limit theorem and the
Box-Muller methods for obtaining a probability density
function. with a (4σ, 1%) accuracy. Moreover, a MATLAB
reference program is elaborated which takes into account the
hardware architecture characteristics (memory size, data
format,…). For easy evaluation, a linear representation of the
distribution, together with its deviation from the theoretical
gaussian distribution, is defined. The MATLAB code has been
parameterized to allow the designer to adapt the quality of the

1 The parameters of table 1 have been obtained by a "try and see" method
using the MATLAB program reported in the Annex.

gaussian distribution to his needs and consequently to ajust the
parameters of the VHDL model.

One can note that using filtering and appropriate mathematical
functions, the WGNG can also be used to emulate the
Rayleigh, the Ricean channel or even more complex channels.
Studies are pursued in this direction.

References

[1] J.G. Proakis, “Digital communications”, Mc GRAW-HILL
International Editions, Electrical Engineering Series, 1998.

[2] Donald E. Knuth, "The Art of computer programming",
ADDISON-WESLEY, 1998.

[3] ALTERA Data Book 1998.
[4] J.L Danger, A. Ghazel, E. Boutillon H. Laamari,"Efficient

FPGA Implementation of Gaussian Noise Generator for
Communication Channel Emulation", The 7th IEEE Int.
Conf. on Electronicsm Circuits & Systemes (ICECS’2K),
Kaslik, Lebanon, Dec 2000.

Appendix: Reference MATLAB Program

The name and the value of the parameters are defined in table
1.

%*** Creation of the ROM f(x) **************%
for r=1:K
 for s=1:pow2(q_f)-1
 rom_f(s,r)=floor(sqrt(-log((s+d_f)*pow2(-
r*q_f)))*pow2(m_f));
 end;
 rom_f(pow2(q_f), r) = 0;
end;

%*** Creation of the ROM g(x) ***************%
for u=1:pow2(q_g)
 rom_g(u)=floor(sqrt(2)*cos(pi*((u-
1+d_g)*pow2(-q_g-1)))*pow2(m_g));
end;

scaling = pow2(m_f + m_g - b);
% To have exactly b bits after the dot

%*** Initialisation of the distribution HBM
max = floor(1 + rom_f(1,K)*rom_g(1)/scaling)
HBM = zeros(1,max+1);

% Construction of half the distribution
for s=1:pow2(q_f)-1
 for r=1:K
 for u=1:pow2(q_g)
 n=floor((rom_f(s,r)*rom_g(u)/scaling));
 HBM(n+1) = HBM(n+1) + pow2(-(r*q_f + q_g));
 end;
 end;
end;

% Symetrisation of the distribution
for i = 1 : max
 BM(i) = 0.5*HBM(max+2-i);
 BM(2*max+2-i) = BM(i);
end;
BM(max+1)=HBM(1);

%*** Convolution loop
BMi = BM;
for i = 1 : Nbre_Accu-1
 BMi = conv(BMi , BM);
end;

