
Signal Processing Systems manuscript No.
(will be inserted by the editor)

Architecture and finite precision optimization for layered
LDPC decoders

Cédric Marchand · Laura Conde-Canencia · Emmanuel Boutillon

Received: date / Accepted: date

Abstract Layered decoding is known to provide ef-
ficient and high-throughput implementation of LDPC

decoders. However, two main issues affect performance

and area of practical implementations: quantization and

memory. Quantization can strongly degrade performance

and memory area can constitute up to 70% of the total
area of the decoder implementation. This is the case

of the DVB-S2,-T2 and -C2 decoders when consider-

ing long frames. This paper is then dedicated to the

optimization of these decoders. We first focus on the
reduction of the number of quantization bits and pro-

pose solutions based on the efficient saturation of the

channel values, the extrinsic messages and the a pos-

teriori probabilities (APP). We reduce from 6 to 5 the

number of quatization bits for the channel and the ex-
trinsic messages and from 8 to 6 the APPs, without in-

troducing any performance loss. We then consider the

optimization of the size of the extrinsic memory, based

on the multiple code rates considered by the decoder.
The paper finally presents an optimized fixed-point ar-

chitecture of a DVB-S2 layered decoder and its imple-

mentation on an FPGA devide.

Keywords

Low-density parity-check (LDPC) code, layered de-

coding, VLSI implementation, DVB-S2.

1 Introduction

Low-Density Parity-Check (LDPC) codes were initially

proposed by Gallager in the early 60’s [1], but they

C. Marchand · L. Conde-Canencia · E.Boutillon
Université Européenne de Bretagne
Lab-STICC, CNRS, UBS
BP 92116 56321 Lorient, France.
E-mail: firstname.surname@univ-ubs.fr

were not used for three decades. This was mainly be-
cause the technology was not mature enough for practi-

cal implementation. LDPC codes were rediscovered by

MacKay [2] in 1995 and are now included in many stan-

dards. The existing standards can be categorized into

two type of standards: the standards using short frames
(648, 1296 and 1944 bits for Wi-Fi) and the standards

using long frames (16200 and 64800 bits for DVB-S2).

The use of long frames makes it possible to get closer

to the Shannon limit, but leads to delays that are not
suitable for internet protocols or mobile phone commu-

nications. On the other hand, long frames are suitable

for streaming or Digital Video Broadcasting (DVB).

The 2nd Generation Satellite Digital Video Broadcast

(DVB-S2) standard was ratified in 2005, the 2nd Gener-
ation Terrestrial DVB (DVB-T2) standard was adopted

in 2009 and the 2nd Generation Cable DVB (DVB-C2)

was adopted during 2010. These three DVB standards

include a common Forward Error Correction (FEC)
block. The FEC is composed of an LDPC inner code

and BCH outer code. The FEC supports eleven code

rates for the DVB-S2 standard frames and six code

rates for the DVB-T2 standard frames. In the follow-

ing, DVB-X2 stands for DVB-S2, -T2, -C2. The LDPC
codes defined by the DVB-X2 standards are structured

codes or architecture-aware codes (AA-LDPC) [3] and

they can be efficiently implemented using the layered

decoder architecture [4–6]. The layered decoder bene-
fits from three architecture improvements: parallelism

of structured codes, turbo message passing, and Soft-

Output (SO) based Node Processor (NP) [4–6].

Even if the state-of-the-art decoder architecture con-

verges to the layered decoder solution, the search of an
efficient trade-off between area, cost, low consumption,

high throughput and high performance still make the

implementation of the LDPC decoder a challenge. Fur-

2 Cédric Marchand et al.

thermore, the designer has to deal with many possible

choices of algorithm, parallelism, quantization param-

eters, code rates and frame lengths. In this article, we

study the optimization of the layered decoders. We con-

sider the DVB-S2 standard for comparison with previ-
ous designs in literature. However, our work can also be

applied to the Wi-Fi and WiMAX LDPC standards, or

more generally, to any layered LDPC decoder.

The well-known Min-Sum algorithm [7] and its vari-

ants significantly reduce the memory requirements thanks

to the compression of the extrinsic messages. For this
reason, we consider the Min-Sum algorithm for our study.

We also consider the Sum-Product algorithm for com-

parison in terms of memory area.

The natural way to reduce the memory needs is to

use a minimum number of bits to represent the data

in the circuit. This can be done first by an appropriate
scaling of the input symbol, second by an appropriate

saturation of internal data. One should note that using

a minimum number of bits to represent data also leads

to a reduction in the complexity of the interconnection
routing scheme, the area of the processing units and

their associated critical path. In the state-of-the-art,

the method that the SO and the extrinsic messages are

saturated is rarely explicitly explained. In this article,

we will discuss efficient saturation of the channel val-
ues, the extrinsic messages and the SO values. We also

present some ideas related to the efficient use of satura-

tion which leads to significant memory savings. Finally,

we introduce a methodology to optimize the implemen-
tation of the extrinsic memory under the constraints of

11 code rates and a single port RAM.

The paper is organized as follows: Section 2 presents

the layered decoder and the Min-Sum sub-optimal algo-

rithm. In Section 3, we explain the saturating process.

Section 4 deals with the optimization of the size of the
extrinsic memory. Finally, simulation and synthesis re-

sults are provided in Section 5.

2 LDPC decoder and Layered LDPC decoder

In this Section we first overview the principles of LDPC

decoding and then focus on the layered decoding ap-
proach and architecture.

2.1 LDPC code decoding principles

An LDPC code is defined by its parity-check matrix H

of M rows by N columns. Each column in H is associ-
ated with one bit of the codeword, and each row corre-

sponds to a parity check equation. A nonzero element in

a row means that the corresponding bit contributes to

the parity check equation. The set of valid code words

x ∈ C satisfy the equation:

x ·Ht = 0, ∀x ∈ C (1)

An LDPC decoder can be described by a Tanner
graph [8] which is a graphical representation of the asso-

ciations between code bits and parity-check equations.

Code bits are represented by Variable Nodes (VN) and

parity-check equations are represented by Check Nodes

(CN), with edges connecting them accordingly to the
parity check matrix. A message going from CN c to VN

v is called Mc→v, and a message going from VN v to

CN c is called Mv→c.

The decoding iterative process known as the Belief

Propagation (BP) algorithm, was first introduced by
Gallager [1] and rediscovered by MacKay [9] . This al-

gorithm propagates probability messages to the nodes

through the edges. These messages provide soft infor-

mation about the state (0 or 1) of a VN. The Log-BP

algorithm considers the probability messages in the log
domain and are called Log Likelihood Ratios (LLR).

The LLRs are defined as:

LLRv = log
(P (v = 0)

P (v = 1)

)

(2)

where P (v = x) is the probability that bit v eguals x.

The order in which the nodes are updated is called

the scheduling. The flooding schedule, first proposed by
Gallager [1] consists in four steps as follows:

2.1.1 Initialization

Set all the Mv→c to the channel LLR values, i.e: ∀(c, v)
such that H = 1,Mv→c = LLRv .

2.1.2 CNs update

The update of a node means that a node reads the in-

coming messages and then updates the outgoing mes-

sages. For all the CNs, update of the messages by ap-

plying the Bayes law in the logarithmic domain. For
implementation convenience, the sign and the absolute

value of the Mc→v messages are updated separately:

sign(Mnew
c→v) =

∏

v′∈vc/v

sign(Mv′→c) (3)

|Mnew
c→v| = f

(

∑

v′∈vc/v

f(|Mv′→c|)
)

(4)

Architecture and finite precision optimization for layered LDPC decoders 3

where vc is the set of all the VNs connected to CN c

and vc/v is vc without v. The function f(x) is expressed

by the equation:

f(x) = − ln tanh(
x

2
) = ln

expx+ 1

expx− 1
(5)

2.1.3 VNs update

All the VNs are updated. The VN update is performed
in two steps. First, equations the Soft Output (SO)

value is computed as in (6) where the LLRin
v value is

the initial soft input from the channel. Then, the new

Mv→c messages are computed as in (7).

SOv = LLRin
v +

∑

c∈cv

Mc→v (6)

Mv→c = SOv −Mc→v (7)

2.1.4 Hard decision and stopping criteria

If a codeword is found or a maximum number of itera-

tion is reached then the decoding process stop, else the

iterative process continues in step two. At the end of the
iterative process, a hard decision is made on the VN to

output the codeword. The word estimation ŷ is given

by the hard decision of the SO: ŷv = sign(SOv), v ∈
[0, ..., N] where sign(x) = 0 if x > 0 and sign(x) = 1 if
x < 0. If ŷ ·Ht = 0 then a codeword has been found.

From an implementation point of view, the flooding

scheduling LDPC decoder is not optimized. Major im-
provements have been proposed in the literature, lead-

ing to the horizontal layered decoder which is currently

the most efficient LDPC decoder architecture and can

be applied to the DVB-X2 matrices.

2.2 Horizontal Layered decoder

The layered decoder constitutes an optimized solution
for LDPC decoding in terms of convergence speed, par-

allelism, latency, memory requirements and complexity.

These are based on the following features:

2.2.1 The turbo message passing schedule [10,3]

The CNs are processed one by one. The VNs connected

to an updated CN are immediately updated with newly
generatedMc→v messages. The next CNs will thus ben-

efit from newly updated VNs which improves the con-

vergence speed.

0 720 10,800 16,200

0
360
720

3,600

5,400

C
N

m

V Nn

Fig. 1 Block-structured rate-2/3 DVB-S2 matrix (N=16200)

2.2.2 Structured matrices

The Group Horizontal Shuffle or Layered Horizontal

Shuffle [5] follows the same scheduling principle as the

turbo message passing, but instead of processing the

CNs one by one, they are processed by groups. This is

possible when the LDPC matrice is composed of iden-
tity matrices of size P . Then a group of P CNs can

be processed in parallel. The IEEE WiMAX standard

[11] uses this matrix structure leading to efficient de-

coding architectures as the one presented in [4]. Figure
1 shows the structure of the rate-2/3 short-frame DVB-

S2 LDPC parity check matrix. This structured matrix

is composed of shifted identity matrices of size P = 360,

allowing for parallel processing of up to 360 CNs.

2.2.3 SO centric decoder

Hereafter we present how the SO-centric NP architec-

ture is deduced. The update of the VNs connected to

a given CN is done serially in three steps. First, the
message Mv→c is calculated using (8):

Mv→c = SOv −Mold
c→v (8)

The second step is the serial Mc→v update as described
in equations (3) and (4). Finally, the third step is the

calculation of the SOnew value:

SOnew
v = Mv→c +Mnew

c→v (9)

Because the Mv→c is calculated from the SOv and

Mold
c→v values, the SO-centric decoder does not need to

save the Mold
v→c values, leading to memory saving.

2.3 Architecture overview

From equations (8) and (9), the NP architecture in Fig.

2 can be derived. The left adder of the architecture per-

forms equation (8) and the right adder performs equa-

tion (9). The central part is in charge of the serialMc→v

update.

Several CNs may be grouped together to form a

layer, whenever the column weights in the layer does not

4 Cédric Marchand et al.

++
−

NP

M
old
c→v

SOv SOnew
v

Mv→c

Mc→v
M

new
c→v

Fig. 2 Check Node centric Node Processor

exceed one. The structured matrices made of identity

matrices of size P allow us to compute layers made of P

CNs. The layered decoder architecture is mainly based
on P NPs that first read serially the Groups of P VNs

(VNGs) linked to one Group of CN (CNG). Then after

a given number of cycles ǫ, i.e. the NP latency, the P

NPs write back the result to the VNGs in the same
order.

Pipelining allows a more efficient use of the NP and

an increase of the throughput [12–16]. The pipelining

consists in reading the vci of one sub-iteration while

writing on vci−1
the result of the previous sub-iteration.

This means that as soon as the reading of one sub-

iteration is finished, a new one is started. The corre-

sponding maximum throughput is given by:

D =
64800.FClk

dc.
M
P .Nit + dc + ǫ+ init

bit.s−1 (10)

where Nit is the number of iterations to decode a code-

word, M is the number of CN, P is the number of NPs

working in parallel, dc is the average number of VNs
linked to a CN, init is the number of cycle required to

init the decoder, Fclk is the clock frequency and K is

the number of information bits in a codeword.

The central part of Fig. 2 manages the serial Mc→v

update described in equation 4. The f(x) function shown
in this equation is difficult to implement. This function

can be implemented using look up tables or linear piece-

wise approximation [17], but can also be implemented

more efficiently by using a sub-optimal algorithm as
described in the following subsection.

2.4 The normalized Min-Sum algorithm and other

related algorithms

The most used sub-optimal algorithms are improved

versions of the well-known Min-Sum algorithm [7] such

as: the normalized Min-Sum algorithm, the Offset Min-
Sum algorithm, the A-min* algorithm [18], the λ-min

algorithm [19] and related [20]. The advantages of these

algorithms are the simplified computation of equation

Fig. 3 Resulting distribution of a quantized BPSK modula-
tion

(4) and the compression of the Mc→v messages. Al-

though all these algorithms present different perfor-

mances, the memory space they require to store the

Mc→v messages is identical (considering λ = 2 for the
λ-min algorithm). Hence, without loss of generality, for

the rest of the paper, we will consider the normalized

Min-Sum algorithm. With this algorithm, equation (4)

becomes:

|Mnew
c→v| = α min

v′∈vc/v
|Mv′→c| (11)

where α is the normalization factor, 0 < α ≤ 1.

The CN generates two different values: Min and
Submin. The Min value is the normalized minimum

of all the incoming Mv→c values and the Submin is

the second normalized minimum. Let Indexmin be the

index of the minimum. For each |Mnew
c→v| value, if the in-

dex of Mnew
c→v is Indexmin then |Mnew

c→v| = submin, else

|Mnew
c→v| = Min. The Mc→v from one CN can be com-

pressed into four elements, i.e.Min, Submin, Indexmin

and sign(Mnew
c→v). For matrices with a check node degree

greater than four, this compression leads to significant
memory savings.

3 Saturation

An SO value is the sum of the channel LLR with all the

incoming extrinsic messages. Considering the case of
the LDPC codes from the DVB-S2 standard, the maxi-

mum variable node degree (dv) is 13. Even if the channel

LLR and the Mc→v are quantized on 6 bits, the SO val-

ues must be quantized on 10 bits to prevent overflows.
However, to avoid prohibitive word sizes, efficient satu-

ration of the values can significantly reduce the size of

the data.

Architecture and finite precision optimization for layered LDPC decoders 5

3.1 Channel LLR saturation

For floating point simulation, it is known that the de-

coders using the Normalized Min-Sum algorithm are

not sensitive to scaling in the LLRin values. During

the initializing process, the equation LLRin = 2y/σ2

can be simplified to LLRin = y, saving the need to
compute the variance. The received y value is quan-

tized in a way to have integer values at the input of the

decoder. We assume here that the quantized value of y

denoted by LLRq is represented on nLLR bits and that
the quantification function is defined as:

LLR(y)q =

⌊

sat(y,R)× 2nLLR−1 − 1

R
+ 0.5

⌋

, (12)

where sat(a, b) = a if a belongs to [−b, b] and sat(a, b) =
sign(a)× b otherwise. The R value is the interval range

of quantization (y is quantized between [−R,R]) and

also represents the saturation threshold value. Consid-

ering the BPSK modulation, we saturate y at R = 1+β.

Fig. 3 shows the Probability Density Function of a
quantized BPSK modulation (-1 and +1) that is per-

turbed by an Additive White Gaussian Noise (AWGN)

of variance σ = 0.866 (corresponding to Eb/No = 2

dB). The channel is quantized on 5 bits and the satu-
ration threshold is R = 1 + β = 2.47. The distribution

filled in black shows the +1 offset, and the unfilled dis-

tribution is the -1 offset. The quantized distribution

varies from LLRmin
q = −(24 − 1) to LLRmax

q = 24 − 1.

The problematic is to find the saturation threshold pro-
viding the best performance for a given number of bits

of quantization. If the saturation threshold is low, then

the information given by the tail of the Gaussian curve

is saturated. If the threshold is high, then the quantiza-
tion step increases. The precision is then reduced and

the Root Mean Square (RMS) value of the quantiza-

tion error increases (proportionally with the quantiza-

tion step).

The saturation limit 1+β can be calculated so that
the proportion of saturated values is equal to the aver-

age proportion of the other values. The average propor-

tion of a given value is 1/(2nLLR − 1)(probability of a

value in a uniform distribution). On the other side of the
equality, the Cumulate Distributive Function (CDF) of

a -1 offset distribution applied to the negative satura-

tion limit will give the proportion of saturated values

for a -1 offset signal. The equality can be written as:

1

2

[

1 + erf
(−β√

2σ

)

]

=
1

2nLLR − 1
(13)

From equation (13), β can be deduced:

1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

E
b
/N

o
(dB)

B
E

R

3−8−4
4−9−5
5−10−6
6−11−7
Std limit

Fig. 4 Effect of the channel LLR quantization on the BER
performance. Simulation of a rate-2/3 long frame over the
AWGN channel.

β = σ ×
√
2

(

erf−1

(2nLLR − 1

2nLLR + 1

)

)

(14)

Thus the β value is a function of nLLR and propor-

tional to σ. By applying equations (14) and (12), the

optimum saturation threshold and the scaling factor

can be computed. The problem of this solution is that

an adaptative quantization of y is needed that requires
a channel estimation of σ .

In fact, to prevent the σ computation, an optimal

scaling factor is calculated for a given SNR. If the per-

formance requirement is reached for a given SNR, then
for a higher SNR, the quantization would be sub-optimal.

However, even with sub-optimal quantization, with a

higher SNR, the performance continues to improve. For

each code rate, a constant scaling factor ω and satura-

tion value 1 + β can be pre-computed saving the need
for the σ value.

3.1.1 Effects of the channel LLR saturation on BER

performance

Fig. 4 shows the simulation results for a normalized

Min-Sum fixed-point layered decoder, with a maximum
of 30 iterations, long frame, and code rate 2/3 in AWGN

channel. The normalization factor is α = 0.75. We con-

sider the following notation: a 3-8-4 configuration refers

to channel LLRs quantized on 3 bits, an SO value word

size of 8 bits and a Mc→v word size of 4 bits. In Fig. 4
”‘Std limit”’ corresponds to the standard limit, which

is set at 1 dB from the Shannon limit. The quantization

values of the Mc→v messages and SO values are not op-

timized and are chosen to be large enough so that they
do not affect the results of the channel quantization.

Fig. 4 shows that a quantization on 4 or 5 bits of the

LLRin is enough to fulfill the standard requirements.

6 Cédric Marchand et al.

3.2 SO saturation

Once the LLRin are quantized, they are stored in an

SOmemory that evolves with the iterative process. This
SO memory needs to be saturated to limit its size.

3.2.1 The problem of SO saturation

Let us first consider the saturation case where SOmax <

SOnew
v during the SO update (9). The saturation pro-

cess will bound SOnew
v to the SOmax value. This will

introduce an error ǫv in the SOnew
v value (ǫ = SOnew

v −
SOmax). During the next iteration, the newM ′

v→c value

will be M ′
v→c = SOv −Mc→v = Mv→c − ǫv.

Let us also consider the worst case: during an itera-

tion, SOv is saturated at +SOmax, each CN confirms a
positive Mc→v value, and dv=13 (i.e. SOv is saturated

13 times). At the beginning of the next iteration, SOv =

SOmax. From (8) and (9), we can deduce that SOnew =

SOold + ∆Mc→v where ∆Mc→v = Mnew
c→v − Mold

c→v. If

∆Mc→v < 0, the SO value decreases. The SO value can
even decrease 13 times and change its sign. To summa-

rize, with the SO saturation, the SO value cannot in-

crease, but it can decrease. The saturation introduces a

non-linearity that can produce pseudo-codewords and
an error floor. In the next section we propose a solution

to overcome this problem.

3.2.2 A solution for SO saturation

The solution that we propose was first introduced in
[21] and relies partially on the A Priory Probability

(APP) based decoding algorithm [7]. The APP-variable

decoding algorithm simplifies equation (8) to:

Mv→c = SOv (15)

which greatly reduces the architecture complexity but

introduces significant performance loss. The idea is to

use equation (15) only when there is saturation. This

leads to the APP-SO saturation algorithm, which is de-
scribed as follows:

Algorithm 1 APP-SO saturation algorithm
if SOv = SOmax then

Mv→c = SOv

else

Mv→c = SOv −Mc→v

end if

1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

E
b
/N

o
(dB)

B
E

R

5−7−6 *
5−7−6
5−6−5 *
5−6−5
Std limit

Fig. 5 Effect of the channel LLR quantization on the BER
performance. Simulation of a rate-2/3 long frame over the
AWGN channel.

++
−

NP

SatMMEM
c→v

Mold
c→v

SOv SOnew

v

Mnew
c→v

MFIFO
v→c

Fig. 6 NP with saturation of the extrinsic messages

3.2.3 Effects of the SO saturation on the BER

performance

Fig. 5 shows the simulation results using the same con-
ditions as in Fig. 4. An asterisk symbol in the legend

means that the APP-SO algorithm is used. The results

show that with the APP-SO algorithm it is possible to

reduce the number of SO quantization bits from 7 to
6 without performance loss (compare curves 5-7-6 and

5-6-5*). However, without considering the APP-SO al-

gorithm this one-bit reduction would lead to dramatic

performance loss (curve 5-6-5).

3.3 Saturation of the extrinsic messages

Fig. 6 shows the SO based node processor. The newly

updated extrinsic Mnew
c→v is used to compute SOnew

v

from equation (9). Mnew
c→v is also stored in the extrinsic

memory for the calculation of Mv→c (8) at the next it-

eration. Any saturation on the value Mnew
c→v responsible

for the SO update would not produce area savings and

would degrade performance. This is the reason why we

do not saturate this value. On the other hand, satura-

tion of the Mnew
c→v messages that are stored in a memory

would lead to significant area savings. Furthermore, the

saturation of the Mnew
c→v stored in the extrinsic memory

is much less critical because it will be used only once

Architecture and finite precision optimization for layered LDPC decoders 7

1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

E
b
/N

o
(dB)

B
E

R

5−10−5
5−10−4
Std limit

Fig. 7 Effect of the extrinsic message saturation on the BER
performance. Simulation of a rate-2/3 long frame over the
AWGN channel.

1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

E
b
/N

o
(dB)

B
E

R

5−7−5
5−6−5
4−6−4
Std limit

Fig. 8 Effect of the SO and the extrinsic message saturation
on the BER performance. Simulation of a rate-2/3 long frame
over the AWGN channel.

during an iteration to compute an Mv→c. Furthermore,

this computed Mv→c will affect SOnew only if it is a

minimum value (see equation (11)).

3.3.1 Effects of the extrinsic message saturation on the
BER performance

Fig. 7 shows the simulation results using the same con-

ditions as in Fig. 4. Using the same number of bits

for the LLR and the extrinsic messages quantization,

i.e., nLLR = next = 5, results in performance results

within the standard requirement. However, considering
next < nLLR = 5, leads to dramatic performance loss.

3.4 Combining the SO and the extrinsic saturation

processes

Fig. 8 shows to simulation results when combining the

APP-SO saturation algorithm with the extrinsic satu-

ration. These results show that the quantization and
saturation solution we propose makes it possible to re-

duce the 6-8-6 configuration to a 4-6-4 configuration

that respects the standard requirements. Considering a

Rate M WSign WIndex WMc→v
Memory

1/4 48600 4 2 14 680400
1/3 43200 5 3 16 691200
2/5 38880 6 3 17 660960
1/2 32400 7 3 18 583200
3/5 25920 9 3 21 544320
2/3 21600 10 4 22 475200
3/4 16200 14 4 26 421200
4/5 12960 18 5 31 401760
5/6 10800 22 5 35 378000
8/9 7200 27 5 40 288000
9/10 6480 30 5 43 278640

Table 1 Memory size of extrinsic messages as a function
of the DVB-S2 code rates when implementing the Min-Sum
algorithm

5-6-5 configuration leads to performance gains of about

0.1 or 0.2 dB, compared to the 4-6-4 configuration.

3.5 Conclusion on the saturation optimization

The analysis of the saturation process shows that a bet-

ter trade-off between word size and performance can be

obtained with an efficient saturation of the LLRin, the
SO and the extrinsic values. Simulations show the ro-

bustness of our saturation solutions allowing for the use

of fewer bits than the usual 6-8-6 configuration. To be

specific, the 5-6-5 configuration leads to quantization
bit saving while providing the same performance as any

other known implementation.

4 Optimizing the size of the extrinsic memory

The decoder requirements in terms of extrinsic memory

size strongly depend on the coding rate. In this section

we focus on the design of an optimal decoder imple-
mentation that supports all the DVB-S2 standard code

rates.

4.1 Memory size

The memory requirements of each CN is determined by

the Mold
c→v messages needed for the CN computation.

In the case of the normalized Min-Sum algorithm [7],

the Mold
c→v values are compressed with Min, Submin,

indexmin and Sign(Mc→v). In terms of memory, one

address must be allocated for every CN, which means

that the RAM address range (RRAM) is given by the

number of CNs (M). The RAM word size (WRAM) is
given by the size of the compressed Mold

c→v values. If

we denote by Wh the word size of h, then WMc→v =

W|Min|+W|Submin|+WIndex+WSign. Table 1 presents

8 Cédric Marchand et al.

the required memory capacity (M × WMc→v
) for each

rate. To calculateWMc→v
, we giveW|Min| andW|Submin|

a constant value of 4. To handle the eleven code rates

of the standard, a simple implementation would define

RRAM with the maximum M value, and WRAM with
the maximum WMc→v in Table 1. The total memory

capacity would give: 48600 × 43 = 2089800 bits. For

rate 1/4, 67% of word bits are wasted but addresses

are fully used. On the other hand, for rate 9/10, word
bits are fully used but 86 % of the addresses are wasted.

Theoretically, a memory size of 691200 bits would be

enough to cover all the rates. A solution needs to be

found for a better utilization of the memory.

4.2 Optimization principle

The idea is to add flexibility to both the address range

and the word size. For this, we benefit from the fact

that the RAM that stores the compressed Mold
c→v value

is needed only once per layer. The delay to compute the

next layer is of dc cycles, so we can use up to dc cycles to
fetch the data in the memory. A word can be split into

two if we take two cycles to fetch the data, and split in

three if we take three cycles. If we consider a single port

RAM to implement the memory, up to ⌊dc/2⌋ cycles can
be used to read data, and ⌊dc/2⌋ cycles to write new

data.

Let us consider the example of a memory bank of

size 48600(RRAM) × 22(WRAM). In a first configura-

tion, where one cycle is used, we have a memory size of
48600 × 22. This first configuration fits the rates 1/4,

1/3, 2/5, 1/2, 3/5, and 2/3. In a second configuration,

where two cycles are used and two words of size 22 are

fetched at consecutive addresses, we have the equivalent
of a memory of size 24300× 44 which fits the rates 3/4,

4/5, 5/6, 8/9 and 9/10. The total memory size for the

two-cycle option is equal to 48600× 22 = 1069200 bits.

This constitutes a memory saving of 50% compared to

the straightforward implementation.

4.3 Results

The previously described process can be used for differ-

ent word sizes. Table 2 gives an example with WRAM =

9. For each rate, the number of cycles is given by:

ncycles = ⌈WMc→v/WRAM⌉

The RAM range for a code rate RRAM is deduced from

RRAM = ncycles ×M . The global RAM range (Rglobal
RAM)

is given by the maximum RRAM in Table 2 and the

total memory capacity is Rglobal
RAM ×WRAM = 97200×9 =

874800 bits.

Rate M WMc→v ncycles RRAM

1/4 48600 14 2 97200
1/3 43200 16 2 86400
2/5 38880 17 2 77760
1/2 32400 18 2 64800
3/5 25920 21 3 77760
2/3 21600 22 3 64800
3/4 16200 26 3 48600
4/5 12960 31 4 51840
5/6 10800 35 4 43220
8/9 7200 40 5 36000
9/10 6480 43 5 32400

Table 2 Memory capacity of the extrinsic message with
WRAM = 9

0 5 10 15 20 25
0

2

4

6

8

10

12

14
x 10

5

W
RAM

bi
ts

Fig. 9 Memory capacity as a function of WRAM

Fig. 9 shows the total memory capacity as a function

of the word length WRAM . There are local minima for
word sizes 1, 9, 14, 18 and 21 bits. As the number of

clock cycle to fetch Mold
c→v is bounded by ⌊dc/2⌋, the

possible solutions are limited to WRAM values greater

than 7. A word size of 9 bits gives the best memory

optimization of 874800 bits. This is only 26 % more
than the theoretical minimum memory size.

4.4 Case of the Sum-Product algorithm

When using a Sum-Product algorithm [22–24] instead

of a Min-Sum algorithm, the CN update equation (4)

is computed for each Mc→v value and then each Mc→v

value is stored. The process described in subsection 4.2

can be used, but a simpler and more efficient imple-

mentation is also possible. We consider the architec-

ture overview of Fig. 2 with a dual port RAM that
stores the Mc→v values. At every cycle, a Mnew

c→v value

is stored and a Mold
c→v value is read from the dual port

RAM simultaneously. The address range of this mem-

Architecture and finite precision optimization for layered LDPC decoders 9

ory is then determined by the number of Mc→v values.

With the constraint of 11 code rates, 5 bits quantization

and dual port RAMs, the memory requirement is deter-

mined by the code rate with the maximum number of

Mc→v values. The code rate 5/6 requires storing 237600
values of 5 bits, which results in 1.2 Mbits. Although

this size is 37% higher than the solution that we pro-

posed for the Min-Sum algorithm, the additional cost

can be worth it, due to the performance increase espe-
cially at low code rates. The implementation of a FIFO

memory with single port RAM for allowing simultane-

ous read and write operations is presented in [25]. This

solution requires one memory bank for even addresses

and another memory bank for odd addresses. This de-
sign leads to area savings when compared to the dual

port RAM solution.

4.5 Conclusion on the extrinsic memory optimization

The Mc→v memory optimization becomes an issue, es-

pecially when the LDPC decoder supports multiple code

rates with single port RAMs. A careful implementation

of the Min-Sum algorithm results in only 26 % more

than the theoretical minimum. A straightforward im-
plementation would require 200% more memory over

the theoretical minimum. The Sum-Product algorithm

leads to a 37% over cost compared to the Min-Sum

algorithm, but presents better performance, especially
for low code rates. The implementation of the Sum-

Product algorithm can then be a reasonable solution.

5 Finite precision architecture of the layered

decoder

Fig. 10 presents the finite precision architecture of the

NP (Fig. 2). Word size, type (signed or absolute) and

direction are detailed for each signal connection. The

architecture implements the normalized Min-Sum algo-
rithm.

In the CN core, the Mv→c values arrive serially in a

two’s complement representation from the adder modi-

fied to implement Algorithm 1 (see Section 3.2.2). The

values are transformed to sign and magnitude repre-

sentation, so that the sign and magnitude of the mes-
sages can be computed separately. The serial sorting of

the incoming magnitude values is implemented, in or-

der to give Min, SubMin and Index values until all

the incoming messages are read. In the serial Mc→v

block, the previously sorted Min, SubMin and Index

values are used to serially compute the new outgoing

messages. An XOR function is applied recursively on

8

4

Generator

+

dc

+
APP

2’s

2’s

R
A

M

Sign

2’s

FIFO(Dc)

Sorting
Serial

Signt XOR

Serial

generator

abs
4

Check node core

2’s

2’s

S
er

ia
l t

o
P

ar
al

le
l

1

−

5

6

6
7

6S
M

→
2
′
s

SerialMc→v

Sign

Min

Submin

Index

2
′
s
→

S
M |Mc→v|

S
M

→
2
′
s

MV →C

Mc→vMemory

SOin SOnew

Fig. 10 Finite precision architecture of the Node Processor

the incoming sign bits in the Signt, until all the incom-

ing messages are read. Next, a XOR block computes an

XOR function between the output of the Signt block
and the sign of the outgoing message Mv→c from the

FIFO memory of size dc. The sign and magnitude, from

theXOR block and the serialMc→v block, respectively,

are transformed into a two’s complement representation

ready for subsequent computations.

In the Mc→v memory block, the Min, SubMin,

index and sign of each Mc→v linked to one check node

are stored in a RAM. From the Min, Submin, Index

and Sign values, the serial Mc→v generator computes
the two’s complement representation of theMc→v value.

Min and SubMin are quantized on 4 bits (absolute val-

ues) which gives Mc→v values quantized on 5 bits (with

the sign bit). Note that Signt represents the result of
the parity check equation of one CN. The syndrome can

easily be computed by using the result of Signt for each

CN. The computation of the syndrome allows for the

decision of an early termination of the decoding process

that can significantly reduce the number of iterations.

Fig. 11 is an overview of the proposed layered de-

coder architecture (see [26] and [27] for a more detailed

description). In this figure, the NP block is made of 45

NPs (Fig. 10) working in parallel. The Barrel Shifter
shifts seven 45-bit words. The RAM SO block stores

the SO values. Due to the systematic syndrome calcu-

lation, it is possible to use a built-in stopping rule for

a variable-iteration decoder. The addition of a buffer
on the decoder input allows for the exploitation of the

decoding time variations of the different frames. A pre-

emptive buffer control, described in [28], is used to re-

10 Cédric Marchand et al.

6 x 45

45 NP
Barrel
Shifter

R
A

M
_S

O

Buffer
Channel

Control

5x45

Fig. 11 Layered decoder architecture

0.5 1 1.5 2 2.5 3 3.5
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

E
b
/N

o
(dB)

B
E

R

1/4
1/2
2/3
3/4
4/5
5/6

Fig. 12 BER for long frames

duce the buffer size. Note that the saturation and quan-
tization solutions described in Section 3 for memory

area saving also leads to area reductions of the NP and

the barrel shifter. The latency in the CN core is also re-

duced due to the complexity reduction of the addition
and comparison hardware.

6 Results

6.1 Performance results

Fig. 12 shows simulation results for code rates 1/4, 1/2,

2/3, 3/4, 4/5 and 5/6 with the 5-6-5 configuration. The

code rates 2/3, 3/4, 4/5 and 5/6 fulfill the standard re-

quirements. The code rate 1/4 shows poor performance.
The code rates 1/4, 1/3 and 2/5 have a CN degree

smaller than 7 (4, 5 and 6 respectively), which leads to

an error floor when using the normalized Min-Sum al-

gorithm. Note that code rate of 1/2, with a CN degree

of 7, produces an error floor that can be corrected with
the BCH outer decoder. The error floor produced by low

code rates can be solved by implementing an A-min* or

λ-min algorithm instead of the normalized Min-Sum in

the NP, with no change in the rest of the architecture.
It is also possible to implement a Sum-Product algo-

rithm, described in [17], combined with the proposed

saturation processes.

XQ5VLX85 LUT LUT RAM BRAM

Node Processor 143 2 0
sorting 37 0 0

gen mc→v 34 0 0
fifo mv→c 12 2 0

mc→v memory 46 0 3
Total 1 node 189 2 3
Total 45 nodes 8586 90 135

Control 667 3 0

block SO RAM 360 0 22

Channel RAM 48 0 25

Barrel shifter 945 0 0

Total 11005 93 182

Percentage [%] 5 1 50

Table 3 Synthesis Results for DVB-S2 LDPC decoder

Paper [20] [29] [30] This

Parallelism 180 360 180 45
Air Throughput[Mb/s] 180 135 135 120

Extrinsic [bits] 6 6 6 5
SOram [bits] 10 8 8 6
Channel [bits] 6 6 6 5
Capacity[Mbits] 2.61 2.83 3.18 2.0

Table 4 Memory capacity comparison

6.2 Implementation results

The architecture presented in Fig. 11 was synthesized
on a Virtex-V Pro FPGA (XQ5VLX110) from Xilinx

for validation purposes. The system decodes long frames

of code rate 2/3 and a parallelism of 45. Table 3 gives

the hardware resources required. The clock frequency is
200 Mhz, the average number of iterations is 20 and the

maximum average air throughput is 120 Mbps, which

allows for the decoding of two simultaneous High-Definition

Television (HDTV) streams.

The state-of-the-art provides results for different tech-

nologies, architectures and sub-optimal algorithm im-

plementations which make comparison difficult. How-
ever, the number of NPs and the required memory ca-

pacity are fair points of comparison to highlight our

contributions.

The implementation of a layered decoder for the

DVB-S2 standard was considered in [20], [29] and [30].

Table 4 considers these implementations for compar-

ison in terms of parallelism, air throughput and sig-
nal width. The parallelism provides information on the

number of implemented NPs and an indication on the

shuffling network complexity. The air throughput is in

all cases higher than the standard requirement defined
at 90 Mbps. The extrinsic and SOram word width di-

rectly impact on the memory size and the NP complex-

ity. the number of bits for the main memory units. Note

Architecture and finite precision optimization for layered LDPC decoders 11

that no information is provided on the ROM memories

that store the matrices for every rate. In our architec-

ture, a buffer of size two is added to store the channel

LLR values to halve the average number of iteration as

described in [28].
Thanks to the proposed saturation solution, our ar-

chitecture provides significant memory savings indepen-

dently of the considered suboptimal algorithm.

7 Conclusion

In this paper, we have presented optimization solutions

for a layered LDPC decoder. Our first approach was

to analyze the saturation problem in the layered de-
coder. An efficient saturation leads mainly to a reduc-

tion of memory area and also a reduction of latency in

the computing elements. We developed a finite preci-

sion layered decoder architecture that implements the

proposed saturation solution. This architecture outper-
forms the state-of-the-art in terms of memory needs

while satisfying the standard requirements in terms of

performance. In our second approach, we studied the

problem of implementing an efficient multi-code-rate
decoder. Our solution relied on the word split of the

extrinsic memory for the Min-Sum algorithm. This so-

lution allows for the use of single port RAMs and leads

to significant memory reduction. Even though we have

only considered the DVB-S2 standard in our study, the
proposed techniques can be extended to DVB-T2,-C2

and to any layered LDPC decoder. Future work will be

dedicated to optimizing the hardware implementation

(area and frequency) of the proposed decoder architec-
ture and to the evaluation of its performance at low

BER.

References

1. R. Gallager, Low-Density Parity-Check Codes. PhD the-
sis, Cambridge, 1963.

2. D. MacKay, “Good error-correcting codes based on very
sparse matrices,” Information Theory, IEEE Transac-
tions on, vol. 45, pp. 399–431, Mar. 1999.

3. M. M. Mansour and N. R. Shanbhag, “High-throughput
LDPC decoders,” IEEE Transactions on Very Large
Scale Integration VLSI Systems, vol. 11, pp. 976–996,
Dec. 2003.

4. T. Brack, M. Alles, F. Kienle, and N. Wehn, “A synthesiz-
able IP core for WIMAX 802.16e LDPC code decoding,”
in Personal, Indoor and Mobile Radio Communications,
2006 IEEE 17th International Symposium on, (Helsinki,
Finland), pp. 1–5, Sept. 2006.

5. M. Rovini, F. Rossi, P. Ciao, N. L’Insalata, and
L. Fanucci, “Layered decoding of non-layered LDPC
codes,” in Digital System Design: Architectures, Methods
and Tools, 2006. DSD 2006. 9th EUROMICRO Confer-
ence on, (Dubrovnick, Croatia), pp. 537–544, Sept. 2006.

6. D. Hocevar, “A reduced complexity decoder architecture
via layered decoding of LDPC codes,” in Signal Pro-
cessing Systems, 2004. SIPS 2004. IEEE Workshop on,
(Austin, USA), pp. 107–112, Oct. 2004.

7. M. Fossorier, M. Mihaljevic, and H. Imai, “Reduced com-
plexity iterative decoding of low-density parity check
codes based on belief propagation,” IEEE Transactions
on communications, vol. 47, pp. 673–680, May 1999.

8. R. Tanner, “A recursive approach to low complexity
codes,” Information Theory, IEEE Transactions on,
vol. 27, pp. 533–547, Sept. 1981.

9. D. MacKay and R. Neal, “Near shannon limit perfor-
mance of low density parity check codes,” Electronics
Letters, vol. 33, pp. 457–458, Mar. 1997.

10. M. Mansour and N. Shanbhag, “Low-power VLSI decoder
architectures for LDPC codes,” in Low Power Electronics
and Design, 2002. ISLPED ’02. Proceedings of the 2002
International Symposium on, (Monterey, USA), pp. 284–
289, Aug. 2002.

11. I. std, “Air interface for fixed and mobile broadband wire-
less access systems,” in P802.16e/D12 Draft, (Washing-
ton, DC, USA), pp. 100–105, IEEE, 2005.

12. Y. Sun, M. Karkooti, and J. Cavallaro, “High through-
put, parallel, scalable LDPC encoder/decoder architec-
ture for OFDM systems,” in Design, Applications, Inte-
gration and Software, 2006 IEEE Dallas/CAS Workshop
on, (Richarson, USA), pp. 39–42, Oct. 2006.

13. J. Dielissen, A. Hekstra, and V. Berg, “Low cost LDPC
decoder for DVB-S2,” in Design, Automation and Test in
Europe, 2006. DATE ’06. Proceedings, vol. 2, (Munich,
Germany), pp. 1–6, Mar. 2006.

14. A. Segard, F. Verdier, D. Declercq, and P. Urard, “A
DVB-S2 compliant LDPC decoder integrating the hor-
izontal shuffle schedule,” in IEEE International Sym-
posium on Intelligent Signal Processing and Communi-
cation Systems (ISPACS 2006), (Tottori, Japan), Dec.
2006.

15. T. Bhatt, V. Sundaramurthy, V. Stolpman, and D. Mc-
Cain, “Pipelined block-serial decoder architecture for
structured LDPC codes,” in Acoustics, Speech and Signal
Processing, 2006. ICASSP 2006 Proceedings. 2006 IEEE
International Conference on, vol. 4, (Toulouse, France),
p. IV, May 2006.

16. M. Rovini, G. Gentile, F. Rossi, and L. Fanucci, “A
minimum-latency block-serial architecture of a decoder
for IEEE 802.11n LDPC codes,” in Very Large Scale In-
tegration, 2007. VLSI - SoC 2007. IFIP International
Conference on, (Atlanta, USA), pp. 236–241, Oct. 2007.

17. X.-Y. Hu, E. Eleftheriou, D.-M. Arnold, and A. Dholakia,
“Efficient implementations of the sum-product algorithm
for decoding LDPC codes,” in Global Telecommunica-
tions Conference, 2001. GLOBECOM ’01. IEEE, vol. 2,
pp. 1036–1036E vol.2, 2001.

18. C. Jones, E. Valles, M. Smith, and J. Villasenor,
“Approximate-min* constraint node updating for LDPC
code decoding,” in IEEE Military Communication Con-
ference, pp. 157–162, Oct. 2003.

19. F. Guilloud, E. Boutillon, and J.-L. Danger, “lambda-
min decoding algorithm of regular and irregular LDPC
codes,” Proceedings of the 3rd International Symposium
on Turbo Codes and Related Topics, Sept. 2003.

20. S. Muller, M. Schreger, M. Kabutz, M. Alles, F. Kienle,
and N. Wehn, “A novel LDPC decoder for DVB-S2 IP,”
in Design, Automation & Test in Europe Conference &
Exhibition,2009. Date ’09., (Nice, France), Apr. 2009.

21. J. Doré, Optimisation conjointe des codes LDPC et de
leurs architecture de décodage et mise en oeuvre sur
FPGA. PhD thesis, INSA, Rennes, France, 2007.

12 Cédric Marchand et al.

22. S. Papaharalabos and P. Mathiopoulos, “Simplified sum-
product algorithm for decoding LDPC codes with opti-
male performance,” Electronics letters, vol. 45, pp. 536–
539, June 2009.

23. M. Gones, G. Falcao, J. Goncalves, V. Silva, M. Falcao,
and P. Faia, “HDL library of processing units for generic
and DVB-S2 LDPC decoding,” in International Confer-
ence on Signal Processing and Multimédia Applications
(SIGMAP2006), (Setubal, Portugal), 2006.

24. O. Eljamaly and P. Sweeney, “Alternative approxima-
tion of check node algorithm for DVB-S2 LDPC de-
coder,” in Second International Conference on Systems
and Networks Communications (ICSNC 2007), pp. 157–
162, Oct. 2007.

25. A. Andreev, A. Bolotov, and R. Scepanovic, “Fifo mem-
ory with single port memory modules for allowing simul-
taneous read and write operations,” US patent 7181563,
Feb. 2007.

26. C. Marchand, J.-B. Doré, L. Conde-Canencia, and
E. Boutillon, “Conflict resolution for pipelined layered
LDPC decoders,” in Signal Processing Systems, 2009.
SiPS 2009. IEEE Workshop on, (Tampere, Finlande),
pp. 220–225, Nov. 2009.

27. C. Marchand, J.-B. Doré, L. Conde-Canencia, and
E. Boutillon, “Conflict resolution by matrix reordering
for DVB-T2 LDPC decoders,” in Global Telecommuni-
cations Conference, 2009. GLOBECOM 2009. IEEE,
(Honolulu, USA), pp. 1–6, Nov. 2009.

28. M. Rovini and A. Martinez, “On the addition of an in-
put buffer to an iterative decoder for LDPC codes,” in
IEEE 65th Vehicular Technologie Conference,VTC2007,
(Dublin, Ireland), pp. 1995–1999, Apr. 2007.

29. P. Urard, E. Yeo, L. Paumier, P. Georgelin, T. Michel,
V. Lebars, E. Lantreibecq, and B. Gupta, “A 135mb/s
DVB-S2 compliant codec based on 64800b LDPC and
BCH codes,” in Solid-State Circuit Conference, 2005.
Digest of Technical Papers. ISSCC. 2005 IEEE Inter-
national, (Sam Francisco, USA), pp. 446–447, Feb. 2005.

30. P. Urard, L. Paumier, V. Heinrich, N. Raina, and
N. Chawla, “A 360mw 105b/s DVB-S2 compliant codec
based on 64800b LDPC and BCH codes enabling
satellite- transmission portble devices,” in Solid-State
Circuits Conference, 2008. ISSCC 2008. Digest of Tech-
nical Papers. IEEE International, (San Francisco, USA),
pp. 310–311, Feb. 2008.

Cédric Marchand was born in 1976,
France. He received the B.E. degree
in electrical and electronics engineer-
ing from the North East Wales Insti-
tute, Wrexhan, Wales, 1999, M.Sc. and
Ph.D. degrees in electrical engineer-
ing from the Université Européenne
de Bretagne in 2007 and 2011 re-
spectively. From 2007 to 2011, he has
been working with NXP Semiconduc-
tor France on the implementation of
an LDPC decoder for the DVB-S2, -

T2 and -C2 standards. His current research interests include
error correcting code decoder and VLSI design.

Laura Conde-Canencia received
her M.Sc. degree from Universidad Po-
litecnica de Madrid, Spain, in 2000,

and Ph.D. from Telecom Bretagne,
Brest, France, in 2004. Her Ph.D. the-
sis dealt with spectral-efficiency max-
imization in high-performance digital
communication systems. In 2004, she
joined Universidad San Pablo-CEU, in
Madrid (Spain), as an Assistant Pro-

fessor in Telecommunication Engineering. In 2006, she joined
the LabSTICC Laboratory in Université de Bretagne Sud
(Brittany, France), where she is currently an Associate Profes-
sor. Her research interests include Advanced Channel Coding
such as Turbo-Codes, LDPC Codes and Cortex codes, fo-
cussing on decoder designs.

Emmanuel Boutillon was born in
1966, France. He received the Engi-
neering Diploma from the Ecole Na-
tionale Supérieure des Telecommunica-
tions (ENST), Paris, France in 1990.
In 1991, he worked as assistant pro-
fessor in the Ecole Multinationale
Supérieure des Télécommunications in
Dakar (Senegal). In 1992, he joined
ENST as research engineer where he

had conducted research in the field of VLSI for digital com-
munications. While he was working as engineer, he obtained
his Ph.D in 1995 from ENST. In 1998, he spent a sabbatical
year at the University of Toronto, Ontario, Canada. In 2000,
he joined the Lab-STICC laboratory (Université de Bretagne
Sud, Lorient, France) as Professor. His current research inter-
ests deal with the interactions between algorithm and archi-
tecture in the field of wireless communications. In particular,
he works on Turbo Codes and LDPC decoders.

