
An LDPC Decoding Method for Fault-Tolerant
Digital Logic

Yangyang Tang∗, Chris Winstead†, Emmanuel Boutillon∗, Christophe Jego‡ and Michel Jezequel§
∗Universite de Bretagne Sud, UMR CNRS 3192 Lab-STICC, Lorient, France

†Dept. of Electrical and Computer Engineering, Utah State University, Logan, Utah 84322
‡Institut Polytechnique Bordeaux, UMR CNRS 5218 Lab-IMS, Bordeaux, France

§Institut TELECOM/TELECOM Bretagne, UMR CNRS 3192 Lab-STICC, Brest, France
Email: yangyang.tang@univ-ubs.fr

Abstract— A decoding algorithm and logic implementation is
proposed for fast, low-complexity error correction in environ-
ments with a high rate of transient faults as well as hard
errors. The circuit is able to correct a single error in one
clock cycle, making it suitable for mitigating faults in pipelined
digital logic systems. The proposed method is also resilient
against internal transient gate errors that may occur within
the decoder itself. In the presence of a high input error rate
(0.001) and high internal gate fault rate (10−5), the new decoding
algorithm is able to reduce the error probability by two orders
of magnitude. An asynchronous implementation is also presented
for the new algorithm, which performs iterative error-correction
with reduced latency compared to synchronous algorithms.

I. INTRODUCTION

In the emerging nano-scale era, electronic devices are
increasingly susceptible to logic errors that can degrade the
reliability and longevity of integrated electronic systems.
Logic errors may arise from short transient events induced
by noise or exogenous interference. Errors may also arise
from permanent manufacturing defects, device damage [1],
or from long-time transient events [2]. All of these error
varieties are expected to increase in post-CMOS nano-scale
devices. They are also expected to pose challenges in three-
dimensional integrated systems, where high thermal density
increases the likelihood of transient upsets due to thermal
noise, and permanent defects due to heat damage.

There is consequently an increased interest in developing
fault-masking techniques that provide tolerance for both mo-
mentary upsets and long-term defects. It is also important
for a fault-masking technique to be tolerant of internal er-
rors within its own logic, since any embedded fault-masking
solution is implemented using the same devices as the logic it
protects. Researchers previously investigated the performance
of a variety of error-correcting schemes under the influence
of intrinsic faults. One of the authors (Winstead) proposed
an LDPC-coded Fault Compensation Technique (LFCT) [3]
which achieves reliable operation in the presence of transient
and permanent defects. The LFCT method uses Gaudet and
Rapley’s theory of stochastic decoding [4], [5] to correct errors
that appear at the output of some logic computation.

In this paper, we present a new LDPC Stochastic Decoding
(LSD) architecture, which can be considered as a circuit-level
implementation of the LFCT concept. The LSD algorithm is

similar to the well-known Gallager-B algorithm [6]. Where
the Gallager algorithm uses majority logic, the new decoding
method uses a cascade of Muller C-element gates [7]. The
C-element is a flip-flop with two inputs a and b, and a
single output c. When a = b, the output is latched so that
c = a = b. When a 6= b, the output c holds its value.
In the LSD approach, C-elements are used to provide state
memory along the cascade. The memory suppresses transient
upsets at each point in the cascade, ultimately leading to
a reduced rate of uncorrected errors. We also introduce an
asynchronous architecture that implements the LSD algorithm
without clocked iterations.

The remainder of this paper is organized as follows: Section
2 presents the LSD algorithm. Section 3 presents the asyn-
chronous architecture implementation. Experimental results
are given in Section 4. Discussion and conclusions are given
in Section 5 and Section 6, respectively.

II. THE NEW LDPC STOCHASTIC DECODING TECHNIQUE

A. Code Structure and Decoding Algorithm

The proposed decoding method is based on the Tanner graph
[8] of a parity-check code. As usual, the graph contains two
sets of nodes – variable nodes vi and parity-check nodes pj .
During the decoding process, binary messages are exchanged
between the two sets of nodes. The message passed from
node vi to pj is written yij , and the returning message from
pj to vi is written fji. The parity-check nodes perform a
modulo-2 summation over their input messages, as is usual
with stochastic and Gallager-style decoders [3], [6]. These
operations are implemented by using a cascade of XOR gates.
In the proposed LSD algorithm, C-element gates are used to
implement the variable nodes, as is done with conventional
stochastic LDPC decoders [4], [5]. Unlike stochastic decoders,
our LSD method introduces a new two-phase operation for the
variable node, described as follows.

For each variable node vi, we associate a set of C-element
gates Ck, 0 ≤ k < (dv − 1), where dv is the variable degree.
Each C-element gate Ck contains a single-bit storage element
ck. The error correction algorithm is:

1) Initialize yij = xi (the channel-side message), for all i.
2) Compute fji = ⊕m∈Pj\iymj for all j.



Fig. 1. Local implementation of a variable node. The circuit is a cascade
of C-element gates, modified for the initialization of the state memory. In
this figure, dv = 4. Each C-element has three inputs; the left-side inputs are
the usual inputs, and the top-side input is the initial state for the C-element’s
memory. Moreover, a table that illustrates the behaviors of ck is given.

3) For a given variable node vi, let f0, · · · , fdv be the
locally received messages for this node, where f0 = xi
(the channel-side message), and f1, · · · , fdv

are the mes-
sage from parity-check nodes. Initialize each memory as
ck = fm, where m = (k + dv) mod (dv + 1).

4) The C-element’s port connections are as follows. For
C0, the inputs are f0 and f1, and the output is c0. For
the remaining Ck, the inputs are ck−1 and fk+1, and the
output is ck.

5) Iterate steps 2 and 4 during a fixed number of iterations.
The initialization in step 3 is performed only during the
first iteration.

6) The corrected output is zi = c(dv−1).
The algorithm is able to correct a single error during one

iteration, and can correct many multi-error patterns as well.
Fig. 1 shows the structure of a variable node, such as, a
cascaded C-element set.

B. Error-correction Analysis

An error appearing at some fk may originate from an
internal error within the decoder. The C-element cascade
helps to stop the propagation of such errors. For example,
if a transient upset occurs in one of the C-element’s state
memories, this error is masked by the subsequent C-element
in the cascade. In the rest of this section we show that single
error events are corrected by the LSD algorithm, regardless of
where those errors originate.

1) A Single Error Apprears at xi: If a single error occurs
at some input xi, then the error is initially propagated along
several messages yij . The error is further propagated to the
messages fjm for all nodes m ∈ Pj . If the code has no four-
cycles (i.e. cycles of length four), no variable node receives
more than one erroneous fjm message. Suppose that erroneous
messages are sent from variable node i to distinct check
nodes j1 and j2, causing both j1 and j2 to send erroneous
messages to the same variable node m. Then, a cycle has to
link nodes i → j1 → m → j2 → i, which has length four. If
four-cycles are excluded, then this cannot occur. Furthermore,
no erroneous message is propagated back to variable node i
because all other nodes carry correct values. Therefore, each
variable node receives at most a single erroneous message
among the locally-received messages fk. As shown in the next

Fig. 2. Asynchronous iterative decoding architecture.

subsection, all such single errors are corrected.
2) A Single Error Apprears at fk: If variable node vi

receives one erroneous message fk, then cm is initialized to
an erroneous value, but all other ck (k 6= m) are initialized
to correct values. Then, for each C-element, there are three
possible cases:

1) The C-element has two correct inputs and an initially
erroneous memory state. In this case, the memory state
is corrected because the inputs agree.

2) The C-element has a correct memory state but one
incorrect input. In this case the correct memory state
is retained because the inputs do not agree. Hence, the
fault is masked by the C-element’s memory.

3) The C-element has two correct inputs and an initially
correct memory state. In this case there is no error.

III. IMPLEMENTATION OF THE LSD METHOD

A. Asynchronous Iterative Decoding Architecture

In this subsection, we present an asynchronous iterative
decoding architecture that uses handshaking signals to control
the iterative operations. This approach allows the decoder to
operate at its maximum local speed, which is likely to be
faster than the main system clock. The asynchronous decoder
architecture is shown in Fig. 2. The XOR and C-element
blocks are triggered by an external Enable signal. An internal
Enable flag then ripples through each gate in the respective
cascades, controlling the flow of operations. Once all cascade
operations are finished in one block, the other block is enabled.
Each time the C-element block completes its operations, an
iteration counter is incremented. Once the counter reaches a
pre-defined number of iterations, it asserts a Done signal to
indicate that decoding is finished.

B. Handshaking signal flow

Fig. 3 shows the flow of handshaking signals in the asyn-
chronous LSD architecture. Its operations are detailed as
follows:
• During the initialization phase, Rst = 0. During this

phase, the input codeword bits are loaded into the XORs,
and signal Flag is set as low. After the XOR computation
are complete, the Flag signal is toggled to indicate that
data is available for the C-elements. The first C-element
of each variable node is enabled by Flag. When the
first C-element operation is complete, it propagates the
enabling Flag to the second C-element, and so on until
the cascaded operations are complete. The last C-element



Fig. 3. Asynchronous handshaking signal flow for the LSD algorithm.

passes its Flag to the iteration counter. The counter then
responds with a signal Switch = 1 to indicate the end
of initialization phase.

• Once the Switch signal is asserted, the error-correction
phase is initiated by asserting Rst = 1. The propagation
of handshaking signals occurs as in the initialization
phase. When the iteration counter reaches a pre-set num-
ber of iterations, it asserts the Done signal to indicate that
decoding is complete.

The signal flow presented in Fig. 3 represents a hand-
shaking specification. The circuit-level implementation of this
handshaking procedure can be synthesized by following well-
known rules for delay-insensitive circuits [9].

C. Application of the LSD architecture in fault-tolerant logic.

In this subsection, we apply the LSD architecture to achieve
fault-resilience in a digital logic circuit. The LSD algortihm is
applied to a digital computation as shown in Fig. 4. A logic
function F (x) is implemented using a digital technology that
is subject to errors at its output. The original function F (x)
is augmented by the addition of a redundant parity-generator
module, E · F (x), where E represents the encoding function
that generates parity bits codeword space at the output of F (x)
as in [3]. The systematic output word s with a length K from
F (x) is then concatened with the parity outputs r from E ·
F (x), yielding a complete codeword [s r] of length N . If
there are no errors, then the resulting codeword should satisfy
the standard parity-check constraint, [s r]H = 0, where H is
the parity-check matrix that defines the error-correction code.

According to the code’s H matrix, the LSD architecture
is synthesized by XOR and C-element modules, which are
indicated by + and =©, respectively. Based on the code’s
Tanner Graph, the circuit’s interconnect corresponds to an
interleaver, which is synthesized from well-known rules [8].
The system’s final decisions z are taken from the C-elements
modules.

In order for the LSD method to function properly, the
encoding logic must be folded into the duplicate functions
in a way that avoids correlated errors among the parity bits.
Fig. 4 shows the functional form of E · F (x) as a cascade
of the function F (x) with the encoding function E. If the
architecture were physically implemented, then an error in
F (x) might propagate through E to generate several errors
in the parity bits, leading to an uncorrectable pattern. The

Fig. 4. The proposed fault-tolerant architecture. The shaded area represents
an asynchronous LSD decoder implementation.

composite function E ·F (x) must therefore be synthesized as
a flat Boolean function to avoid correlated error patterns. The
most reliable approach is to use a flat truth-table synthesis,
as is done with cross-bar logic arrays [10]. This approach
guarantees that error events occur independently on all the
codeword bits, so that correlated error bursts are precluded.

IV. SIMULATION RESULTS

To evaluate the proposed architecture, a system composed
of five systematic regular (4, 8) LDPC codes was simulated.
All codes are rate 1/2, meaning that there is one redundant
parity bit for each systematic bit, i.e. N = 2 ·K. Moreover,
the codeword sizes N are set as 64, 128, 256, 512, and 1024.
Longer codes are expected to provide better error protection
but are also more complex to integrate.

In our simulations, the output bits s and r from F (x)
and E · F (x), respectively, are assumed to have a uniform
independent error probability of α. The XORs and C-elements
that comprise the LSD architecture are assumed to be faulty
boolean operations. Each gate in the LSD architecture has a
uniform error probability of ε. To take into account of the
impact of hard defects,“stuck-at” faults were also inserted in
uniformly random positions in [s r] with a fault rate of β,
here, β = 0.001.

The Bit Error Rate (BER) results for the LDPC codes
applying LSD algorithm are shown in Fig. 5. As long as
α < 0.05, the output s from F (x) can be recovered with a
significantly reduced error probability. As α is reduced below
β, the performance becomes dominated by the gate-level fault
probability ε. The results show that, in the case of β = 10−5,
the LSD architecture introduces gains about two orders of
magnitude by comparison with uncoded data (output s from
F (x)). Consequently, the proposed deocding method is able
to suppress the resulting error probability to a level equal to
the decoder’s internal fault rate. For the sake of asychronous
iterative decoding, the extra time cost of each iteration is
considered as the latency of one XOR operation plus (dv−1)
C-element operation. Note that the results are obtained after
five asynchronous iterations of the LSD architecture.



Fig. 5. Simulation results for rate-1/2 LDPC codes based on LSD architecture
with five iterations. The hard-fault rate β is 0.001.

V. DISCUSSION

To evaluate the redundancy cost of the proposed architec-
ture, we suppose F (x) is a large block of crossbar logic (i.e.
gate array logic) representing a minimized sum-of-products
expression. The crossbar fabric may consist, for example, of a
layer of AND operations followed by a layer of OR operations,
which may be used for flat truth-table synthesis. This style of
logic is generally not optimal in terms of device count, but
it is useful in our analysis for three reasons. First, crossbar
logic is quite popular in research on next-generation, post-
CMOS logic implementation, and reliability is a key concern
for crossbar implementations [10].

The second reason is that a single gate-level fault will
typically propagate only to a single output of F (x). In alter-
native combinational styles, a single gate fault may propagate
catastophically to many outputs. The LSD architecture is likely
to fail in such cases of sudden error bursts. Therefore, we have
to constrain its application to logic styles such as crossbar
fabrics where such bursts are precluded.

The third motivation for considering crossbar logic is that
it provides a precise strategy for synthesizing the auxilliary
function E · F (x). For arbitrary functions F (x), the average
complexity in terms of logic gates to synthesize E · F (x)
is close to the average number of logic gates necessary to
synthesize F (x). Hence the LSD method requires an average
extra complexity of approximately two, plus the additional cost
by implementing the decoder.

For a given LDPC code with length N , the number of C-
elements assigned for the design of the decoder is approxi-
mately N · dv , where dv is the average variable node degree.
The number of XOR gates is approximately N ·R·dc, where R
is the code’s rate (R = 1/2 in our example simulations), and
dc is the parity-check node degree. In one of the considered
codes, N = 1024, R = 1/2, dv = 4 and dc = 8. In this case

the approximate total hardware complexity is 8k logic gates.
One interesting result of our experimentations is that the

LSD method provides similar performance across a wide range
of code lengths. Error-correcting benefits may therefore be
obtained for short codes, such as the N = 64 example, which
have a length compatible with data words in current 64-bit
processors. As suggested in [3], the LSD method can also
achieve a reduced net redundancy if several parallel operations
are packaged together, yielding a larger code size. In this
“bundled-function” case, the relative hardware complexity of
the decoder is reduced compared to the complexity of the
functions themselves.

VI. CONCLUSION

In order to correct the internal hardware errors of a combi-
national logic block, we proposed a new LDPC Stochastic
Decoding (LSD) technique as a forward error correction
mechanism. The originality of LSD method is the use of
C-elements to implement the symbol node computations. C-
elements are able to block the propagation of internal faults
within the decoder, yielding a design that is robust to transient
errors. The resulting algorithm is similar to the well-known
Gallager-B method, but with additional error protection from
the C-elements’ state memory. Our simulation results show
that LSD approach is able to reduce the error probability α at
the output of a combinational function by multiple orders of
magnitude.

ACKNOWLEDGMENT

This work was supported by the US National Science
Foundation under award ECCS-0954747.

REFERENCES

[1] J. Sequra and C. F. Hawkins, MOS Electronics: How it works, how it
fails, Wiley-IEEE Press, 2004.

[2] R. C. Baumann, “Soft errors in advanced semiconductor devices-part i:
the three radiation sources,” IEEE Transactions on Device and Materials
Reliability, vol. 1, no. 1, pp. 17–22, 2001.

[3] C. Winstead and S. Howard, “Probabilistic LDPC-coded fault compen-
sation technique for reliable nanoscale computing,” IEEE Transactions
on Circuits and Systems II – Express Briefs, vol. 56, no. 6, pp. 484–488,
June 2009.

[4] V.C. Gaudet and A Rapley, “Iterative decoding using stochastic
computation,” Electronics Letters, vol. 39, no. 3, pp. 299–301, 2003.

[5] C. Winstead, V. C. Gaudet, A. Rapley, and C. Schlegel, “Stocahstic iter-
ative decoders,” in Proc. IEEE International Symposium on Information
Theory (ISIT), 2005.

[6] T. J. Richardson and R. L. Urbanke, “The capacity of low-density parity-
check codes under message-passing decoding,” IEEE Transactions on
Information Theory, vol. 42, no. 2, pp. 599–618, 2001.

[7] D.E. Muller and W.S. Bertky, “A theory of asynchronous circuits,” in
Proc. International Symposium on the Theory of Switching, Part 1, 1959,
pp. 204–243.

[8] F.R. Kschischang, B.J. Frey, and H.-A. Loeliger, “Factor graphs and
the sum-product algorithm,” IEEE Transactions on Information Theory,
vol. 47, no. 2, pp. 498–519, 2001.

[9] Chris J Myers, Asynchronous Circuit Design, Wiley-IEEE, 2003.
[10] Wenjing Rao, A. Orailoglu, and R. Karri, “Logic mapping in crossbar-

based nanoarchitectures,” Design Test of Computers, IEEE, vol. 26, no.
1, pp. 68 –77, jan.-feb. 2009.


