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Algebraic Tools to Build Modulation
Schemes for Fading Channels

Xavier Giraud,Member, IEEE Emmanuel Boutillon, and Jean Claude Belfiovkember, IEEE

Abstract—A unified framework is presented in order to build the results given by this approach for the Rayleigh fading
lattice constella?ions matched to both the Rayleigh fading chanr_lel channel (RFC) were first presented in [2]. Specifically, we
and the Gaussian channel. The method encompasses the situay4ye shown that the design lattice problem is tantamount to the

tions where the interleaving is done on the real components or on S g .
two-dimensional signals. In the latter case, a simple construction determination of an admissible lattice of a baslydependent

of lattices congruent to the densest binary lattices with respect to 0N the channel. A latticd is S-admissible wherf N A = {0}
the Euclidean distance is proposed. It generalizes, in a sense to bewhere0 is the origin. In the Gaussian casgis a sphere. When

clarified later, the structural construction proposed by Forney. specialized to the case of a perfectly interleaved/de-interleaved
These constellations are next combined with coset codes. Thegayiaigh fading channel with ideal channel state information,
partitioning rules and the gain formula are similar to those used . L - .

a suitable upper bound on the pairwise error probability gives

for the Gaussian channel.
n
[I=| < 1}
i=1

when the interleaving is performed over coordinates, and
N a fading channel, errors occur systematically when the {

Index Terms—Coset codes, diversity, fading channels, lattices, o
number fields. Sp=qx= (21, ,2,) €ER",

I. INTRODUCTION

channel is in a deep fade. In this case, the transmitted S. =
information is lost for the receiver. However, if the receiver
can be provided with several replicas of the information which ) o
have been subjected to independent fadings, an appropfi€rez: = a; + jb; when the interleaving is performed on
ate combination of the replicas can restore the informatigivo—dimensional (2-D) symbols. .
There are several diversity techniques by which the receiver®dmissibility for a lattice is desirable because it guarantees
can be provided with independently fading replicas of tH&at any constellation carved out df offers annth-order
information-bearing signal. In the case of time diversity, thdiVersity on the Rayleigh fading channel. In this paper, we
replicas of the signal are transmitted at different times. TIgave @ unified construction fof,.- and 5.-admissible lattices.
time interval between each of these transmissions is londBrS€ction V, we show in which way-dimensional lattice
than the coherence time of the channel so that for eachG@nstellations, matched for both the Rayleigh fading channel
the transmission time slots the attenuation factors (or chan@8fl the Gaussian channel, can be built with full diversity on
states) can be considered as independent. Analogouslyhf fading channel. These constellations afeadmissible.
frequency diversity, the signal is transmitted on differedf Section VI, we give an alternative construction to the
frequency bands separated by at least the coherence bandwfRfi§. Proposed in [14] in order to builfl.-admissible lattices
In both cases, the diversity techniques can be represente&%@ruem_to the denses_t lattices with respe_ct to the Euclidean
repetition coding and interleaving in time and frequency éfistance, i.e., good lattices on the Gaussian channel. They
the replicas. These methods improve the error rate at iyjgld ann/2th-order diversity. Th_e construction does not need
expense of spectral efficiency. We have introduced in [1]&fvanced tools from number field theory and follows the
new approach for designing signal sets at high signal-to-nof&iguctural construction proposed by Forney in [5].
ratio (SNR). This method has no detrimental effect on spectralC0Set codes have been used on the Rayleigh fading chan-
efficiency and it provides the receiver with an order of divef2€! in order to increase the diversity order. Since diversity
sity dependent on the number of dimensions of the symigtn be obtained with pr_operly d_eS|_gned lattice cqnstellatlons,
constellation. It is based on a geometric formulation of th§¢ would rather combine admissible constellations on the
constellation design problem. The sphere packing formulati6ify'€igh fading channel with coset codes in a similar way

for the Gaussian channel is produced as a special case @pdor the Gaussian channel. In Section VI, the partitioning
rules and the coding gain are studied and the theoretical results
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z=(x1,,2,) € C", H(a?—i—b?)ﬁl}
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decision on the transmitted signal is based on the maximizatiorProposition 1:

of a metricm(u,y) with w € C. Under this decision rule,

we may define the pairwise error probabilijz — ¢) as Vie@ Vrelm fc(x) = f(S2).
the probability thatm(t,y) is larger thanm(z,y) whenz is
transmitted. Finally, we introduce the mappifign F™ x F"

wherel’ = Ror F' = C Proof:
~:{g,g+—>zjr(f—>t), :;2#3 te S5, eilf@)t)>e
, — , =t.

S p(f(@), [(f7H() >e
We take liberty in referring t@y as the pairwise error prob- i, f1 ) >e
ability function. ol e s

Let C = (@;)c1, I, an index set, be a finite signal set s
with |I| equiprobable signals. If the pairwise error probability ete f(55) u
p(x; — ;) between any two different signals is smaller
thane then, by means of the union bound, the symbol error Based on this property, we are now in a position to build

probability is upper-bounded by an admissible constellation. Léf be a subgroup of¥ and
1 zo € F™ an arbitrary fixed point. The orbit a, under the
Ps < T Zp(:l‘i —x;) < |I| xe. action of H is defined as
i#]
Considering this bound, a signal sétis said to be &- H.xo = {h(zo),h € H}.
admissible” if for any pairz,t € C, the pairwise error
probability p(x — t) is smaller thare. We have

Letz € £ be an arbitrany-dimensional point. By means Proposition 2: The signal seff .z, is admissible if and only
of the mappings we define the set of the nonadmissible point§ H.xo N S5, = {Zo}.
with respect toz as Proof: The direct implication is obvious. For the con-

_ ~ verse, letx € H.xy, we havex = h(zy) for someh in H
St ={teF" plz,t)>e}. and

We assume in the following tha§s is an open set, if it

is not the case, then we take its topological interior. With Sz N H.zo =h(8;,) N H.go = h(S;, N H.20)

these notations, the signal sg&tis e-admissible if each region ={h(zo)} = {=}
S¢, & € C, contains only one signal fror?, this signal being
x. becausehH = H. Hence,H .z, is admissible. [ ]
) Proposition 2 asserts that the admissibilityagtis tanta-
SzNC={z} mount to the admissibility of.z,. Besides, ifH is a normal
subgroup ofG and H.z, is admissible therH.g(z) is also
A. Geometrical Properties admissible whicheveg € G is considered, i.e., if the “center”

Before we tailor our analysis to the Rayleigh fading channelf the constellation is moved to another point@te,, we still
we will discuss in greater detail the concept of admissibilinbtain an admissible constellation. Whéireduces to the set
We show here how most of the ideas introduced by Forney @ translations, a subgrould of G such that.o is admissible
[4] can be translated in terms of admissible constellatiorghould be obtainedo is the origin).

This is not surprising since both concepts are geometrical
and it points to a construction technique similar to that @8 Translation Invariance
geometrically uniform signal sets. . . .

Let G be the set of permutations of thedimensional vector . we speglallge our analysis to the case of a mappingich

spaceF™ leaving the pairwise error probability unchanged. Is translation-invariant

VieG Vx,sel™ p(f(x),f(s) =D s). Vo, W, t € F" pla+w,t+ W) = p(z,t)

(G, 0) is a subgroup of the group of the permutations/6t .
under composition. so that from Proposition 1, we haw, = S¢ + za'.

When the Gaussian channel is considerg@,s) is a 1) The Packing Formulationlet S be an open subset of
function of the Euclidean distandér — s||,; betweenz and F™. The system consisting of the translates + x)zcc is
s. Consequently, the elements 6f are the isometries aR™ called a (S, C))-packing of S if for any two distinct points
and S¢ is the open ball centered atwith radius depending z,t € C, the setse + S andt + S are disjoint. We assume
on ¢ and on the variance of the noise. now thatS: is open, bounded;onvex ando-symmetric, i.e.,

If 2 ¢ R" and f is in G then the set of nonadmissible(—z,z) C S: for all z € S5.
points with respect ta and the set of nonadmissible points Proposition 3: A signal setC, finite or not, ise-admissible
with respect tof (z) are closely related. In fact, we have if and only if (3 S5, C) is a packing of} 53.
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X _| Memoryless y
— Encoder > channel > Decoder E—
A
CSI
Fig. 1. A general baseband transmission model.
Proof: where
Ve.te F" 16y (¢4 Lse et_zc St * oy Iis a random amplitude describing. the slow fading
- (@+55)NE+55)70 'T i effect. We assume that the random fading phase has been
stex+S5; compensated for. The amplitudg, is Rician-distributed
ote S, with normalized probability density function
24 A2 A
Suppose thatC is S-admissible and letz and ¢ be two plz) = %exp <_%)]0<$b )7 x>0
distinct points inC' thent ¢ SZ, hence, : elswhere
(®+35)N(E+355;) =0 and A2 + 2b = 1. The model is characterized by the

ratio K = A%/2b. When A = 0, we have the Rayleigh

1 ¢ge i H 1 ¢e H
Therefore, (3 5;,C) is a packing of; 5;. The converse is statistical model and wheA = 1, we obtain the AWGN

similar. [ |
C tly, th tellation desi blem for the, MO0C"
onsequently, the consteliation design problem for the, wy, IS a sample of a zero-mean white Gaussian noise

Ga#sila;Ncgannel liftanfmou?t to the Isp_here_ pac_klng prgblhem process. The components are either real or complex zero-
at hig since this channel is translation invariant and the "\ o1 os with variance? in the real case anfo?

Euclidean ballS: is convex ande-symmetric. in the complex case.

2) The Lattice Design Problemtn view of Proposition 2, The ch | input alphabet . ianal bol
we restrict ourselves to signal sets carved out of lattices in € channel input alphabet compri signal Symoois
ith average energy per dimensidid. The signal-to-noise

order to draw benefit from the translation invariance and
ratio is then defined as

have I
Proposition 4: A lattice A, i.e., a discrete subgroup of I = b
(F™,+), or any of its translates + A is e-admissible if and 202
only if S: N A = {o}. We assume that the channel is memoryless by means of perfect

In order to minimize energy, we want to maximize thénterleaving/de-interleaving. The components are real, i.e.,
number of lattice points per unit volume. This is obtained by; € R, when the interleaving is performed at the coordinate
choosing ansS:-admissible lattice of which the determinant idevel and complex, i.ez; € C, when the interleaving is done
minimum. over the complex symbols. After de-interleaving and when

Admissibility is a notion borrowed from the geometry otthe channel state information is ideally known, the maximum-
numbers [7]. Wher$? is o-symmetric, Malher's selection the-likelihood detection involves the minimization of the following
orem asserts that if there exists 8fradmissible lattice, then metric:
there exists a;-admissible lattice with minimal determinant,
called a critical lattice of5;. Such a lattice is not necessarily m(t.y) = Z lyi — citi]®
unique. Hence in the language of the geometry of numliees, i
lattice design problem is tantamount to determining a criticaver all the vectorg in the constellation. The Chernoff bound
lattice of S; provided thatS; is o-symmetric. technique proposed by Divsalar and Simon [8] can be used to

If in addition, S¢ is convex, a critical lattice of; achieves upper-bound the pairwise error probability, which leads to
g:)ehsrgaxmum density o_f_ a lattice packing (%f_S; as a p(z — 8) < FK,u) 1)

guence of Proposition 3. In the Gaussian case, for
example, our formulation reduces to the lattice packing @fhere

spheres. ﬁ 1+ K < Kl |? )
exp | ———17
V1K g PAUTTHE +wl
Il. A CASE OF STUDY: THE FADING CHANNELS
w; =4/ =l — si-
A. The Pairwise Error Probability iE

The notation|x| denotes the absolute value or the modulus,

A general transmission model is shown in Fig. 1. Corre
g g- depending on whether € R or x € C. When A =

sponding to the input vectat = (z1,---,x,), the channel
outputs the sequengewhosekth coordinate is related to;, (Rayleigh channel) (1) simplifies to
by

plx — 8) < 2
B - H1+|uz|2 )
Yk = 0Tk + Wi
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« If the shadowing is severe arki approache$, the body
S5, is a scaled version of

5¢ = {a: e F™ [ [(lzil* +eV™) < 1}

=1

e=0.001

where /' = R when the interleaving is performed over
coordinates and” = C when it is done on 2-D symbols.

K=100 (~ Gaussian ) K=10 (Rician ) Observe thats5® C S where
n
S = {m € F",H |lzi]? < 1}.
=1

If Ais S-admissible, then it i$*-admissible and* goes to
S ase decreases. Besides, any pair of channel symbols picked
out of A have all their coordinates distinct iff, hence any
constellation carved out of the lattideprovides ammth-order
diversity, i.e., the pairwise error probability varies inversely
with I'. At low error rate, the design of a lattice matched
to the Rayleigh fading channel reduces to finding a critical
lattice of S.

If the components are real (interleaving over the coordi-
nates), we write

S,,:{a:eR", 1= 51}. (3)
=1
When the interleaving is performed on 2-D symbols, we write
Fig. 2. Behavior ofS.. S. = {a: € Cm,l_[(ai2 +07) < 1} 4)
=1

When A = 1 (AWGN channel), (1) is the Bhattacharyyawherez; = a; + ib;, with ¢ standing fory/—1.

bound. The effective construction of ary-admissible lattice is
Although (1) is not the exact expression of the pairwise errapt easy. Techniques from number theory are proposed to

probability, the framework of Section Il is applicable but th@vercome this difficulty. This problem is treated in Section

performance may not be optimal. The functig0i,u) may IV.

be viewed as the pairwise error probability of some fictitious 2) The Rician Channeld < K < o0): The characteristic of

channel worse than the fading channel. In this respect, te Rician fading channel lies between the Gaussian channel

admissible constellation for the fictitious channel is admissib#d the Rayleigh fading channel. When the components are

for the fading channel. In view of Section II-B, we look forreal, this intermediate position is illustrated by Fig. 2. When

a critical lattice of the star body K = 10, it clearly suggests to approximate the set of

nonadmissible points with respect to the origin by a diamond

Sk ={z e ", f(K,u)>¢}, where F'=RorC. Py ={(z,y) € R |a| +ly| <1}.
A critical lattice of the diamond is
The size ofS5, is actually larger than needed. Fig. 2 represents g2 def 1 -1 72
the curve f(K,u) = ¢ for different values of K with 11 '

1073 < ¢ < 1072, = 2 and real components. Observe that

S5, is not necessarily convex; in that case, we remind that e correspon(_:iing packing density gaip ox&;zrvyith respect
packing formulation does not apply. to the 4;-norm is 3 dB. Indeed, the latticRZ~ yields about

3-dB gain overZ? on the Rician channel wheR = 10. The
n-dimensional crosspolytope is
B. The Lattice Design Problem n
1) Asymptotic Values: P, = {(3717 cxn) € RN Jmil < 1}-
¢ WhenK approaches infinity (Gaussian channel), the body =1
S5, is a sphere and we have already mentioned in Sectiéh) is the unit ball for the/;-norm. As such it is convex.

[I-B that the lattice design problem is tantamount to thA good lattice for the Rician channel is expected to be a
lattice packing of spheres. dense packing lattice of crosspolytopes, i.e., a dense lattice
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with respect to the;-norm. Construction of such lattices and ¢ The set
their performance on the Rician channel are studied in [9]’K[9]:{a0+a19+---+a 671 (g, a1, an_1) €KY

[2], [10]. _ T ,
is an n-dimensional vector space overl with
R ) LA .
V. A FAMILY OF S-ADMISSIBLE LATTICES ]Sile]g, y }(9 ) as a basis. In addition, it is an extension
The algebraic norm at first appears in solving problems suche There are exactly, embeddings off( in € which fix
as simple cases of the Fermat theorem, for exanfiold,all K pointwise. Each of them is uniquely determined by
integer solutions of? 4 y? = 27, for p = 2. The introduction sendingd to any one of itsn conjugated, - - -, 6,
of the number fieldQ[i] = {a + ib,(a,b) € Q*} turns the - o
problem m"to a muItlpI|cat|ve one2|n the ring c_>f .Gaussuan Ouid = inei — ox(z) = Zwﬂi
integers Z[i] = {a + ib,(a,b) € Z“}. Besides, it is usual = =

to represent[i] by its embedding in the two dimensional real By means of these embeddings two mathematical objects
spaceR’. Actually, these two facts are tightly related and Cajevant for our problem can be built:

be generalized in higher dimension. These are the key ideas 0? . P o o .

what follows. The lattice design problem leads us to consider® & Mapping: K[6] — C" is obtained by sending eaghc

inlicati i n ; K[8] on then-tuple (o1(¢), - - -, 0 (¢)). This mapping is
a multiplicative expression of”™* as given by (3) and (4). For T
P P g y @) “) an additive homomorphism with trivial kernel. As such, it

each pointx = (x1,---,z,) € F", we set " . )
P (1 #n) preserves the additive structure and the dimension. Hence,
N(@) =1 X - X &p,. an R-module of rank: in K is mapped onto ak-module
of rankn in C".
In fact, this expression looks as if it were contrived to agree * the norm of¢ € K is defined as
with the field norm, the analog of the modulus@ji] as we N($) = 01($) X -+ X 0 ().

shall see. We first review some basic definitions from field _ _ _
theory and we give the key results needed for the constructiorAs we mentioned before, the mappingand the algebraic
that we propose. Some of them are far from easy even thout@im should be compared with the canonical embedding of

they may look natural to a certain extent. Proofs can be foufdi] in C and the modulus. Proposition 5 is central to our
in [11], [12]. construction. Its proof can be found in [11] whéh= Z and

it is generalized in [12].

A. Some Useful Definitions and Results »
Proposition 5:

In what follows F' is always the fieldR of real numbers or ) )
the fieldC' of complex numbers. The capital lett& denotes LetRO _I?r? the set of elements dt[f] which are integral
over R. Then

the ring Z of ordinary integers whet” = R and Z[i] or . '
Z[j] = {a+ bj,(a,b) € Z2} with jd:efegiﬂ-/g it F - C. |) the.norm' ofp € O\{0} is an element ofR\{0};
Whatever the situation here, the ridyis Euclidean. Finally 1) © is aring, called the number ring df[6] over &;
K denotes the quotient field o, i.e., iii) O is a free module of rank over R.

B. Two Cases of Interest

R Z Z[i] Z[j]
* When R = Z and Q[¢] is totally real, i.e., when

K Q Q] Q] f1,---,0, are real numbers, them ranges inR" and
Proposition 5 states that

A field L is said to be an extension &f provided thatK is > the norm of¢ € O\{0} is an nonzero ordinary
a subfield ofZ. An element? € C is said to be algebraic over integer, hence
K provided thatf is the root of some nonzero polynomial
P € K[X], the ring of polynomials with coefficients i, If IN(9)| = |o1(¢) X -+ X on()| > 1.
P can be chosen monic with coefficients &) the number > o(O) is a free module of rank over Z, i.e., a lattice
is integral overR. Apart from these definitions, we need the of R", denoted byAe.

following results. Combining these two results, we obtain that the embedding
Let ¢ be integral overk. of the number ring of a totally real number field of degree
y Th_ere is an irre(_jucible monic polxnomng € K[X] jss,-admissible. The densest lattices obtained by this way are
uniquely determined by the condition thady(6) = 0, given in [1]. Simulation results confirm that the constellations
and called the minimal polynomial &. carved out of such lattices offer aith-order diversity and lead
* If n = deg Mj, the polynomialMs hasn distinct roots g considerable gain ove#™ on the Rayleigh fading channel.

in C, denoted byé, ---,8,. * In the case thaRk = Z[i] or Z[j], we have

Letd = ¢**/4; it is an integral oveZ and overZ[i] as L
a root of X® — 1. However, the minimal polynomial of > the norm of¢ € O\{0} belongs toR and it is
nonzero, hence

6 depends omR. If we setR = Z, then M, = X* + 1,
while over R = Z[i], we haveM, = X? — 4. IN(@)| = |o1(p) X+ X on ()| > 1
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because the modulus of a nonzero Gaussian integedafined by
of a nonzero Eisenstein integer is a nonzero ordinary "
|nteger T © A: (:L'17 ceey :L'n) — H(ailxl + e + ainxn)_
> o(0), denoted by\, is a free module of rank over i=1
R, ie. itcan pslwmten' as((g) = AF" Whefrf?A 'S" We say that two lattices\; and A, are equivalent and we
anlil xn invertible matrix with complex Coefficients, \y it A, ~ A, if there exist a generating matrit; of A; and
_ called a generating matrix af(0). _ _agenerating matri¥, of A, such thatr,, o A4, =, o A.
Using these two results, we have obta2|7[1e_d a family @pserve that ifr, o Aj(x) = 7, o Ay(z) for all z in Z"
S.-admissible lattices. A mappin@” — R™ is obtained thenr, o A; = 7, o A, all over @" hence, equality holds
by sending each-tuple of complex numbergzi,---,z.) all over R".
where zj, = ) + iy t0 the 2n-tuple of real numbers | emma 1: Let A = (a;;) be ann x n invertible matrix such
(1,91, 22,52, Tn; yn). When R = Z[i] or R = Z[j], thatr, o A = m, oL,. Then A = DP where D is diagonal
this mapping can be applied tho; it yields a lattice of with determinantl and P is a matrix of permutation.

R*™ denoted byAo,.. A constellation carved out o\, Proof: The mapping

yields annth-order diversity on the Rayleigh fading channel. N

In Section VI we propose an alternative construction to the . .
method initiated by Craig [13] and applied by Boutreisal. fii(ss i) = ; i35

[14] in order to build rotated versions of the densest lattices

with respect to the Euclidean norm. defines a linear form the kernel of which is an hyperplane
denoted byH;. If £ € H;, thenm, o A(x) = 0 = 7,(x)
hence
V. OF S,.-ADMISSIBLE LATTICE n
The foregoing development could be made more general. H; C U P
Since the proposed applications are restricted to the situation j=1

where interleaving is performed at the coordinate level, Wehere P; is the jth coordinate hyperplane; = 0. Therefore,
specialize it toS,.-admissible lattices. The embeddidg, of F, is equal to one of the?;, hence f; = X;z;. Defining
the number ring? of a totally real number field yields a.- 7. — j such thatf; = XiZ-(;), We have

admissible lattice with low sphere packing density as pointed . .

outin [2]. This consideration has motivated Boutetsl. to re- H N — Hw

lax the requirement on diversity and investigateadmissible by (@) b} !

lattices, the diversity of which is halved when compared to

S,-admissible lattices. They built a rotated version of thBencer is a permutation of1,---,n} and

densest lattices with respect to the Euclidean distance out n

of which they carved constellations with good properties on H A=1. [ |
both the Gaussian channel (a high sphere packing density) i=1

and the Rayleigh fading channel (ary2th-order diversity). Proposition 6: Two equivalent latticed\; and A, have the

This section is aimed at finding a way to increase the sph&fgme performance over the Rayleigh fading channel at high
packing density ofS,-admissible lattices in order to build g\R.

constellations with good properties on the Gaussian channel pyoof: Since A; and A, are equivalent, there exist a
(a high sphere packing density) and sah-order diversity on generating matrixd; of A; and a generating matrids of A,
the Rayleigh fading channel. For this purpose, we character@é:h thatr,, o A; = 1, o A,, hencer,, o (A1A7Y) = 7, oL,
equivalent lattices on the Rayleigh fading channel and W&, the lemma aboveAl’: DPA, where2D is diagonal
show that inside the set of the lattices equivaleni\ts, the  yjth determinantl and P is the matrix of some permutation.
lattice Ao is the worst regarding the sphere packing densityyerefore, the pairwise error probability functions fof and
These facts naturally point to a lattice equivalentMe with . have the same distribution amiét A; = det As. m

maximal sphere packing density. The method is illustrated by is therefore, natural to consider lattices up to equivalence.
several examples.

_ _ _ _ B. Examples
A. Equwalent.La-ttlces OI.‘I the R.aylelgh Fadllng Charlmel (RFC) Let Ao be the embedding of the number rikg of some
An S,.-admissible latticeA with generating matrixA = totally real number field. Since we wish to improve the proper-
(a;;) is such that ties of A on the Gaussian channel, we need to determine the

densest lattices with respect to the Euclidean distance inside

Ve = (21, 2,) € R"\{0} H |Gt + - + G| > 1. the set€ of the lattices equivalent td.». The ratio

i=1 72(A) = d2,(A)/ det ()"

min

Let 7,: (21, -+, 2,) — 21 X -+ X z,. An n x n matrix can be used to evaluate the sphere packing density of a lattice
A = (a;;) determines a homogeneous form of degree A. We have
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Proposition 7: The sphere packing density df € £ is

lower-bounded byy:(Ap). This statement may be rephrased
as: the latticeA» has the lowest sphere packing density inside

E.
Proof. SinceA € &, the two latticesA andA» have the
same fundamental volume. Besides, ahyadmissible lattice

in R is such that/2. (A) is greater than the minimal distance

min

between the origin and the boundary $f, i.e.,
(A) 2n= dmm(AO) n

Let G be a generating matrix ohp, A = (A1, A)
and Dy, denote the diagonal matrixiag (A1,---, A,,). Using

Hence, the latticé\o . is generated by (1) ando(v/3),

ie.,
_ g2 i (1 V3

Aoﬁ_GZ with G = <1 _\/§>.
Fig. 4 shows the effect of the multiplication by, on
the lattice density. The maximum of the sphere packing
density iSy2 max = 2/v/3, instead ofya(Ao ) = 1/v/3.
It is obtained for € {(2+v/3)"*1/2, n € Z}. There is
only one corresponding latticd, » which is congruent
to the hexagonal latticel, (see Fig. 3(b)). Specifically,
we have

Lemma 1 and Proposition 7, we ought to fixdsuch that i) Az2 =UA;
* A =1 andii) 2, (DAGZ™) is as large as possible. where o
We propose three examples to illustrate the method. cos ( ) —sin (—)
. o : — (2¢/3)1/2 12 12
+ The ring of algebraic integers of[v/2] is Op = =( ) o T .
Z & /2Z and the embedding a@[v'2] in R? is S (ﬁ) cos (5)

» Finally, we show how a rotated version of the Sfhl
lattice D, can be found by this way with the ring of

algebraic integers oQ[f],6 = v/2++/2. In that case,
0 =2Z30Z36>Z56%Z and the lattice\» is generated

o:(a+bv2) — (a4 bv2,a — bV2).

Hence, the latticé\o_, is generated by (1) ando(v/2),

ie., by
2 i L V2 16 6 &
Ao, =GZ" with G= <1 _\/5) L g g2 g3
=11 -6 2 -
Fig. 3 showsAoﬁ and the effect of the multiplication 1 —¢ 92 —g3
by Dy = diag(A,1/X) on the lattice points: the points
are moved along the curvesx y = ¢. The maximum where#’ = \/2 — /2. The effect of the multiplication by

D, on the lattices points is again periodic. The maximum
of the sphere packing density i mnax = V2, instead
of va(Ao) = 1/23/*, For example, it is obtained with

of the sphere packing density 48 .« = 1 instead of
Y2(Ao ;) = 1/4/2. It is obtained for

Ae {(1+V2)t2 n e Zy. A = (A1, A2, A3, Ay) Where ), = /2-3/%q; and
These values yield two lattices congruentZd (see Fig. ar =(2-v2)(2-1/2-V2)
3(a)). More exphcnely, we hav2e oy = (21 \/5)(2 far \/5)
where . a3 =(2-v2)2+y2-V2)
=i (0TI ang o= s T =@ +VEE- 2+ V2

This4-tuple yieldsD, 4, a lattice congruent to the Séfli
The subscript indicates that these lattices offer a second- lattice Dy, with a fourth-order diversity on the Rayleigh
order diversity on the Rayleigh fading channel. It has been fading channel. We hav®, , = DyxAo = UyDy where
previously observed by Bowllin [3] that Z* should be Uy is a similitude. Numerically,

rotated byx/8 in order to get full diversity. a b ¢ d a = —3.02516
The periodic behavior of the curvg;(DaAo ;) = b —¢ —-d a b= —92.5646

£(\) shown on Fig. 4 originates from the structure of the U= | _. _g o & |° Wher®y . _ o60174

multiplicative group of units in a number ring. This results -d a b ¢ d=—1.71361.

from the Dirichlet's unit theorem [11] which describes theI'he error curves obtained with constellations carved out of

organization of the lattice points on the cumve y = c. §Z2)2 and (Z4)4 for a normalized rate of 2 bits/dim are
In spite of its interest, we do not give this result in orde Lhown on Fig. 5(a) and (b). In Section VII, we shall combine
. _??]';tc;::jcgfr etgzlsri?]apt; V;I|the[)nr:2eirrr1]$ '(;Srs V3 these constellations with coset codes. We conjecture that the
9 9 gers Qfv'3] standard embedding of the ring of algebraic integer€{#

is similar in principle. The number ring of[v/3] is with
=1\2+\2+V2

. . LD .
O 3 = Z & /3% and its embedding iR” is
Authorized licensed use limited to: UNIVERSITE DE BRETAGNE SUD. Downloaded on December 12, 2008 at 13:13 from IEEE Xplore. Restrictions apply.
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(b)
Fig. 3. (a)Ao\/5 and the effect of the multiplication by y. (b) Ao\/g and the effect of the multiplication by .
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Fig. 4. q/z(D,\A@ﬁ) and A,/g(D,\A@\/g) as a function of\.

can be used to find a congruent lattice &t with an eighth- The Cartesian produd® [¢]™ can be rewritten as an orthogonal

order diversity and that this can be generalized with direct sum
Z[i]" = ZliloZ[{o- - - oZ[d]. (5)
0= \/2+ V24 V2 We have already noticed that the number ri@gof an n-

dimensional extensiod of Q[i] is a free module of rank
over Z[:] (see Proposition 5), i.e., there exjst, - - -, y1,, in O

VI. OF S.-ADMISSIBLE LATTICE . .
such that® arises as the direct sum

A. Desirable Features O =2l & & Zt]pn

Recently, Boutrost al have pointed out that the methochence its embedding i€" is
proposed by Craig [13] can be further applied to construct ) )
the densest binary lattices. This method yieiddimensional Ao = Zlilo(p1) & - - - & Zli]o(un). (6)
lattices with built-in diversity of order,/2 and good distance g, (5) and (6) are formally very similar and one may
propertieg. In the rema_inder of the paper, we propose a SIMRl&Snder what is preventingo from having a sut#[i] module
constructlo.n from Wh_'Ch the Barnes—Wall lattices ahd L ngruent to thex-dimensional Barnes—Wall lattice. Observe
ternary lattices as defined by Forney [5], [6] can be built. Thgthe sum (5) is an orthogonal direct sum whereas it is only
principal purpose of th|§ sect_|on is to obtain a qnltary matrifirect in (6). If the family (o(su1),---, () can be made
that rotatesZ™ into a lattice with am/2th-order diversity on o qn0rmal with respect to the canonical Hermitian structure

the Rayleigh fading channel. _ of C™ then Z[i]" and Ao are congruent; we shall say that the
For example, the Barnes—Wall lattices are a &j}-module o ypeqing, is isometric. In that case, there is a similarity,

of th_e n-fold Qartesian proc_iucIZ[z‘]". Geomgtrically, their the matrix of which is denoted by, such that\e = AZ[i]".
metric properties are obtained by endowidd" with its pegjges, ifc is a generating matrix ove£[i]" of some lattice

canonical Hermitian structure A, then AA = AGZ[i]" is a sublattice ofA,, congruent to
n A. As such
V(z,y) e C" xC" (zly) = szyz « from the properties of\»», any constellation carved out
i=1 of AA offers annth-order diversity.
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« since AA and A are congruent, they have the sama generating matrix of the embeddidg, of O, in C" is

properties over the Gaussian channel.

B. The Construction

We now look for a sufficient condition for the embedding
to be isometric. The following lemma recalls simple properti
of polynomials which will prove useful in the following.

Lemma 2: Let oy, - -, @, be the roots ove€ of P(X) =
X™ —a whereaq € C and|a| = 1. Then

NIE

S, fl<k<n-—1 @)

p_
ag, = 0,

=~
Il

—

S

(8)

lag|? = n.

=
-
3

Proof: This fact stems from the properties of tih
roots of unity inC, specifically

n—1

d =0

k=0

again the Vandermonde matrix
Gn = VDM (9]\7,17 B} 9]\7,71)

evghere On1 = On,--+,0n 1 are the roots of the minimal
polynomial My, = X™ + j of 65 over Q[j] and we have
Ao, = G, Z[j]".

Both facts can be derived from the key results gathered in
section 4.1 and from the fact thatif is an extension field of
K then the dimension of. as a vector space ové€) is the
product of the dimension of over K by the dimension of
K over @. Finally, the minimal polynomials are derived by
factorizing X~ — 1 in Q[i] in the first case, and i®[j] in
the second instance.

Proposition 8: The matrix(1/y/n)G,, is unitary.
Proof: Let Cy = (65, --+,051)(1 < k < n) denote
the kth column of G,,. From (6), we have

n

k—
ICkl]? = Z |9N,i1|2 =n

=1

wherew = exp (2ir/n) and1 <p <n - 1. B and orthogonality stems from (5)
The cyclotomic fields exert a great deal of control over

algebraic number theory in general. For example, when trans-
mission occurs on a Rayleigh fading channel, the decoding of
a constellation carved out of a lattidecan be eased ik has a

circulant generating matrix [2]. In fact, it is a theorem that for proposition 8 says that,, andZ[i]* are congruent in the

Ao to have a circulant generating matrix, the number fiéld first situation whereas\», and Z[j]* are congruent in the
needs to be contained in a cyclotomic field. Bgt be aNth  second one.

primitive root of unity. The field[f~] is called a cyclotomic

extensipn of ordeN. The dimensior_w ofa cyclotomic extensions Examples
overQ@ is related to the Euler functiop which assigns to each
positive integern the numberyp(N) of integersk such that _ °, ; i
1< k < N andkAn = 1. For example, for every primg, we 2"2(r > 3), lattices congruent to the Barnes—Wall lattices
ha_\/ewfp“) = p*~1(p—1) and if p andq are relatively prime and their principal sublattices can be easily obtained\,Jf
then o(p x q) = ¢(p) x @(q). Finally, the number ring o,f is the Barnes—Wall lattices of dimensi@s or some of its

Q[9x] overQ is Z[Ax]. Two situations are of special interestSuPlattices, thertz, A, is a congruent version af,, which
o Situation 1: If N = 2" (+ > 3) thenQ[i] is contained in offers annth-order diversity on the Rayleigh fading channel

Q[0 specifically, the fieldQ[¢y] is an extension of order instead of the one-order diversity of the standard version. For
- ’ ‘ example, withy denoting the Gaussian intege#-¢, we have:

(Cley) =S 65 =S ohi=0, ifh#l m
=1 =1

e Situation 1 (cont.):In the case of Situation 1 where=

- @ — 92 > Following [5], the latticeD, arises as
of Q[i]. The number ring 0Q[¢x] overQ[i] is O, = Z[i][#]. Dy= G 0 ) Z[i.
An integral basis of0,, over Z[4] is (1,6, --,87% ). Con- ¢

sequently, a generating matrix of the embeddig, of O,

Applying the method described in Section VI-B with
in C" is the Vandermonde matrix

N = 8, a congruent version oD, with diversity 2 on

Gp = VDM (Ox.1, -+ Oxn) the Rayleigh fading channel B, » = G»>D, where
where 6y, = Ox,---,0y, are the roots of the minimal Gy = G z>7 with 8 = exp (LE)
polynomial M, = X™ — ¢ of 6y over Q[i]. In short, - 4

Ao, = GLZ[i]".
e Situation 2: If N = 32 x 2"(r > 1) then Q[j] is
contained inQ[8~] and Q[fx] is an extension of order

_ o)

2
of Q[j]. The number ring ofQ[0x] over Q[j] is O, =
Z[j][6x]. An integral basis 0D, is (1,6, ---,6% 1) hence,

As for D,, the construction also naturally points to
structural decomposition

D472 = U(¢02 + (2, 1, 2))
=3x2!
where(2,1,2) is the binary repetition code. With a slight
modification of the trellis diagram db., we can represent
D, » by a two section-trellis diagram (see Fig. 6(a)). It is
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based upon the Cartesian product of two binary partitioméhere
of Z[i] and6Z[:] properly embedded i€*, namely, 1 -8 02
G3=|1
1

. N\ 2 27
(21i)/2[i)) x (0Z1i)/96211). Ty TR ) and o=exp (i)

—5%0  —(1+42)6?
>The lattice E5 Is obtained as Again this congruent version afs can be represented by a

1 0 0 O three section-trellis diagram as shown in Fig. 6(c). Instead of
.= 1 ¢ 0 O Z["]LL being constructed from repeated ternary partitiorZ¢f], the
5711 0 ¢ 0 ' lattice £ 3 is based upon the Cartesian product of the three
1 ¢ ¢ ¢ following ternary partitions properly embedded @
oras (Z[51/9Z15]) x (02[3]/#0Z[5]) x (0*Zj]/$6° Z[4]).

ES = ¢QZ[L]4 + ¢(47 37 2) + (47 17 4)
VIl. COSET CODES ON CONSTELLATIONS

A congruent version o, denoted byEsg 4, with diver- MATCHED TO THE RAYLEIGH FADING CHANNEL
sity 4 on the Rayleigh fading channel is therefore

A. The Partitioning Rules
Esa = o(d*04+ 0(4,3,2) + (4,1,4)) = G4 B J

On the Gaussian channel, a coset code, with good Euclidean
where distance properties relies upon a partition of the signal set
1 9 02 3 with minimum distance at a given partition level as large as
1 -6 92 —p3 ) o possible. On the Rayleigh fading channel, the situation is very
1 8 —62 —ip? with 6 = exp ('Lg)- different in the sense that we cannot use any norm to evaluate
1 —io —62 g3 the separation between two symbols, but still it is similar in
) ) principle since we want to group signals into subsets with

Again Eg, can be represented by a four section-trelligyinimal component produdt; x - - -x z,,| as large as possible.
diagram (see Fig. 6(b)) similar to that &fs. Here as well, number field theory provides an appropriate tool
These congruent versions of the Barnes—Wall lattices ate increase the minimal component product, while keeping
based upon the Cartesian product of the following binatie constellation expansion under control. In what follows, we
partitions rather than from repeated binary partitionZjt] shall keep the notation introduced in Section IV-B. We denote
that would lead to a one-order diversity on the Rayleigh fadirgy © the number ring oveR of some finite extensiod [6]

Gy=

channel of K of degreen. The embedding o® in C" is denoted by
Z[i]/$ 2]/ 2]/ - - o ando(O) is written Ap.
0211021 /6202 We work with O rather than with its embedding for
[i1/¢021il/ #7021/ --- grouping the symbols, i.e., the elements @f into subsets

with large minimal algebraic norm. We recall that the algebraic
norm is multiplicative, that isN(zy) = N(z)N(y), hence, if

0"~ Z1i) | p¢" " Z[1) 96" 214/ - ¢ is some algebraic integer,
Besides, the trellis diagram of the congruent version is almost min |N(z)| = |[N(¢)| min |N(z)| = |N(¢)|.
identical to the trellis of its standard counterpart as described “f;g) g%

in [5].

o[ ]Situation 2 (cont.):In that casen = 3 x 2L, » > 1 Multiplication by ¢ provides an algebraic means to system-
and Ap_ and Z[j]* are congruent. It is known that cosegtically partition© and guarantee a good minimal algebraic
code construction based upon repeated ternary partitionsngfm. Hence, we study the additive groups sandwiched be-
the hexagonal lattice generatésy, Ko, Koy, and Ay in  tweenO and ¢O.
particular. Congruent versions of these lattices can be obtainedVe recall that the number ring is a freek-module of rank

in the same way as before a3 = GsEg Kiag = 7 andsoispO, therefore, anyi-module sandwiched between
GoK12, Koo = Gi1aKos, and Ass 12 = Gialay. Each of O and¢O is a freeR-module of rankn over R. Besides, if
them offers ana/2th-order diversity on the Rayleigh fading/1, - -, i iS an R-basis of O then then x n matrix A, the
channel and their code formula representations still hold. Feplumns of which arer(u,),---,o(uy), generatesio, i.e.,
example [6], the latticeE can be written as Ao = AR™ hence,puy,- -+, dun is an R-basis ofO, and a
Lo o generating matrix of\40 = o(¢O) is DyA where
E¢ = ¢Z[° +(3,1,3) = (1 ¢ o) VARl Dy = diag (01(¢)," -, on(9)).
1.0 ¢ Since O / O and Ao / Ay are isomorphic, the index of

PO in O is |detDy| = |N(¢)| if R = Z and it is
|det Dy|? = |N(¢)]? if R = Z[i] or R = Z[j]. For
example, if[N(¢)| = 2 and R = Z then the partition is
E673 = O'((/)Og + (3, 1,3)) = (G3Fs two way.

where¢p = 14 2j = iv/3 € Z[j] andC = (3,1,3) is the
ternary repetition code. Hencéjs 5 arises as
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Fig. 5. Bit-error rate on the Rayleigh fading channel (spectral efficiepcy: 2). (a) Z2-type constellations.
Finally, let I be some index set. An additive group sandeuclidean distance cannot be related. Nonetheless, when

wiched betweer®! and¢O?! can be represented by means ofhosen inR, Ao ando(¢©) are congruent and we have
the code formula

: 2 2 : 2
=|¢|* x : 9
min lzll2 = [¢]" x min ||z ©)
M=C+ ¢OI z7#0 z7#0

whereC' is a subgroup of@/¢0), i.e., a code ove® /¢O. B. The Coding Gain on the Rayleigh Fading Channel
Nevertheless, all the sets obtained in this way are not necesThe coding gain is determined by the coder and the subset
sarily R-modules. partitioning. A simple expression for the gain has been ob-

As far as its effect on the Euclidean distance is concernddined on the Gaussian channel [5] and we look for a similar
the multiplication by ¢ € O in a number field is not expression on the Rayleigh channel in this section. For this
easily analyzed in general because the algebraic norm andphepose, we define the following three parameters:
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Fig. 5. (Continued.)Bit-error rate on the Rayleigh fading channel (spectral efficiemcy: 2). (b) Z*-type constellations.

¢ The partitioning gain: are nonparallel, they differ on at leagt; (C) positions.
2/n Hence
gp = |N(P)[7". (10) 1

p((@r) = W) < ovrane
¢ The diversity gain: (KNG )= (©)

At high SNR, we recall that the pairwise error proba-  Where
bility simplifies as given in (2) No = iy N(z).
ac;éO
plz —>y) < H K|37z H K|$z For the uncoded constellation ,
T FET;
plew) = W) S oy
because the coordinates of two different channel symbols .
picked in Ao are all distinct. Hence, ify, - - -, , and BesidesN, = 1, therefore, the gain is
Y, -, Y, are two symbol sequences then aNdg (€)1 L/7
1 p gD(C) Z |:(I([)(7n():| — KdH(C)_l' (11)
p(@) = @) < 1 e — ) N ,
z 2y, Observe that the minimal algebraic norm may not be
increased when an incorrect path is selected, but the
The Hamming weight ot € (O/¢O)! is the cardinality diversity order is certainly increased.
of the support ofe. We denote byd;(C) the minimal » The expansion factor:
Hamming distance of the cod€. The diversity gain For brevity, we restrict ourselves to the case of con-

arises from the fact that when an incorrect path is selected, volutional codes for whichh = Z. The expansion factor
the number of erroneous symbols is equal or greater is defined by [5] as

than the minimal Hamming distance of the code, whereas on 12/nv
in the uncoded case, there may be a single erroneous ef = ‘M (12)
symbol only. In other words, i1, - -, 2, andy, ,---,y, det (Ao,
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O Z[i] $8Z[i]

Z[i] 0 Z[i]

@)

022[i] 00ZL 0% Z[]

0%03Z[i]

(b)

00 Z[/]

OZLj 08°Z(/]
Mj]

(©
Fig. 6. Trellis diagram of (a)D4,2, (b) Ex 4, and (c)Es 3.

whereA? is the input latticepy = 1 if R=Z andv = 2

if R = Z[i] or R = Z[j]. The number
det (AY)
det (Aoﬂ,)

is the index ofA° in the lattice Ao ;..
The fundamental coding gain is

_ min (gp, gn(C))
Cf ’

It depends on the signal-to-noise ratio throygh nonetheless,
when the signal-to-noise ratio increases dgd ) > 2, then

the gain tends toward

g
YR,c0 = _p'
cr

This parameter no longer dependsdn(C'). Since we wish to

ZQ—type andZ4-type signal sets, respectively, are combined
with the lattice constellations built in Section V-B whelRe=
Z andv = 1. These two schemes display good performance on
both the fading channel and the Gaussian channel. Computer
simulations confirm our theoretical analysis.

e Example 1: A 32-CROSS signal set rotated by/8 is
combined with a64-state Ungerboeck code of ra2¢3 [15].
The partition chain with the corresponding minimum distances
and the minimum algebraic norms are shown below. This
partition corresponds to the multiplication by = /2 in

0 = Z[V2)

d2., Minimal
b=12 IN(¢p)| =2 alg. norm
0=Z¢ 2% (2%, 1 1
| |
PO (RZ?), 2 2
| |
20 2Z%), 4 4

It is optimal in the sense that® is embedded onto the
lattice U>RZ2. Therefore, the minimum Euclidean norm and
the minimum algebraic norm are multiplied by two at each
partition level. Consequently, the fundamental coding gain is
v = 3.5 (5.44 dB) on the Gaussian channel, whereas the
asymptotic gain on the Rayleigh fading channe}js.. = 4 (6
dB). Simulations results are shown in Fig. 5(a). The uncoded
16-QAM rotated by~ /8 is denoted byl6-R-QAM and the
coded 32-CROSS rotated byr/8 is referred to as a coded
32-R-CROSS.

e Example 2: The four-dimensional trellis modulation
scheme described in this subsection employ a compact set
of 29 points picked out of Z*), = U,Z*. The partition

Dy/RZ*IRD, /22"

is mapped byl/; on the partition obtained whePy o ¢ is
applied to

Z[9l/¢0/$°0/$°0

guaranteely (C) > 2 in order to reach the partitioning gain,where

we need TCM codes whose parallel transition grough 3.
If dg(C) is increased, the partitioning gain is reached with
smaller values of the signal-to-noise ratio. Hence, there is a

p=1\2+2

tradeoff between the complexity and the speed for obtaining

the partitioning gain. The gains are valid for large signal s
and do not take into account side effects due to the mappi

at the bit level.

C. Examples

In order to propose an easily implementable construction,

e.é% shown below. The minimum algebraic norm is multiplied

59 two at each partition level and the minimum Euclidean
distances are

do /25 /245 Adg /4dg /3 / - -

we look for an algebraic integet € O such thatN(¢) = 2.
Two coset codes already used on the Gaussian channel withered, is the minimum Euclidean distance 6£*);.
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d2..  Minimal
d=V2+V2 IN(p)| =2 alg. norm
(Z%)s 1 3
o |
O = Z[¢] 257 Dy, 2 1
| |
PO (RZY), 2 2
| |
P20 (RDy)4 4 4
| |
PO 22, 4 8
| |
20 2Dy 4 8 16

Hence we have partitione&* as proposed by [15], [16] in
order to build 16 subsets of typ#* with 32 points each.
Next we rotate them by applying/s. The constellation is
combined with al6-state Wei code of rate/3 and with

a 32-state Ungerboeck code of rag4. In the latter case,

the fundamental gains have the same value on the Gaussian

channel and on the Rayleigh fading channgl, = yreo =
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VIILI.

We have built lattice constellations for the fading channel in
such a way as to embrace all the good known constellations
and to suggest extensions. Coset codes combined with such
constellations are characterized in a similar way as on the
Gaussian channel in terms of geometrical parameters such as
the fundamental coding gain.

A good partition is obtained when the natural partition of the
number ring from which the constellation originates is mapped
onto a good partition with respect to the Euclidean distance.
When the partition is congruent to the partition of a binary lat-
tice, Ungerboeck’s codes or Wei's codes offer significant gain
on the Rayleigh fading channel with unchanged performance
on the Gaussian channel.

On the decoding side, two- and four-dimensional schemes
do not require highly efficient algorithms and the suboptimum
decoder proposed by Boutillon [17] has proved good enough.
However, since the achievable diversity order increases with
the dimension, the need for an efficient decoding algorithm is
obvious.

C ONCLUSION
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