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Abstract

This paper presents the mathematical framework involved in the determination of an

upper bound of the maximum spread value of a D-dimensional Turbo-Code of frame size N.

This bound is named Sphere Bound (SB). It is obtained using some simple properties of

Euclidian space (sphere packing in a finite volume). The SB obtained for dimension 2 is equal

to N.2  . This result has already been conjectured. For dimension 3, we prove that the SB

cannot be reached, but can be closely approached (at least up to 95 %). For dimensions 4, 5

and 6, the construction of particular interleavers shows that SB can be approached up to

80%. Moreover, from the SB calculation, an estimate of the minimum Hamming weight of the

weight-two input sequence is derived.
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1.  Introduction

When designing two-dimensional turbo-codes [1], [2], [3] the quality of the interleaver is a key

component that has a great impact on the performance of the code. It is well known that the

performance of an interleaver is degraded by the presence of short cycles [4], [5]. Short cycles

increase the correlation between the extrinsic information under an iterative decoding algorithm.

Moreover, for turbo-codes, short cycles may lead to low weight codewords. The simplest short

cycle is the primary cycle. A primary cycle occurs when two bits that are initially close to each

other in the natural order, remain close after the interleaving. In order to take into account the

primary short cycles, the notion of “spread” was introduced in [5] to design S-random interleavers.

This spread has been redefined by Crozier et al. in [6]. These authors produced an interleaver

achieving a spread of N.2 , where N is the size of the frame.

In this paper, we give an upper bound, named Sphere Bound (SB) of the maximum spread for a

D-dimensional multiple turbo-code. The proof is based on very simple properties of sphere packing,

using the 1l -norm. As a side result, we show that the SB, for the 2-dimensional code, is N.2 .

Note that the mathematical framework presented in this paper has been inspired to the authors by

their work on the optimization of 3-D interleavers [7].

The paper is divided into four sections. The SB is first derived in section 2. Then, section 3

describes construction of optimized regular interleavers to prove that the SB can be closely

approached. Finally, section 4 derives the asymptotic behavior of the Hamming weight of the

weight-two input sequences of a turbo-code.
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2. Upper bound of the maximum spread

After a brief review of the definition of  the spread in the context of turbo-code design, the

method used for the derivation of an upper bound on the maximum spread for D-dimensional

multiple turbo-codes is explained.

2.1. Definition of spread

The concept of spread to design the so-called "S-random" interleavers was introduced in [5] for

non-tail-biting codes. The spread definition was modified in [6] and was also extended to the case

of tail-biting codes (although this is not stated explicitly). In this paper, the spread definition used in

[6] is  explicitly stated for tail-biting codes and is extended to account for a variable number of

dimensions. Let N denote the length of the information block of the code. In order to simplify the

notation, the block length will not be mentioned when there is no ambiguity on its value. Let Π

denote the permutation function that associates an index Π(k), in the interleaved order, to an index k

in the natural order.

Definition 1: In the 2-dimensional case, the spread between two symbols k1 and k2 is defined as

NN kkkkkkS )()(),( 2121212 Π−Π+−= , where Nba −  is equal to ( )baNba −−− ,min .

This definition can be easily generalized to the D-dimensional case by defining the D-

dimensional vector ))()...,(),(()( 110 kkkk D−ΠΠΠ=Φ  associated to the symbols k. The vector

)(kΦ  represents the indices of the symbol k in the D interleaved dimensions. For the non-

interleaved order (dimension 0), Id=Π 0 , where Id stands for the Identity function. Let Z be the

set of integers and let { }1,...,0 −== NNE ZZ , be the ring of integer numbers modulo N. By

definition, we have Ek ∈  and DEk ∈Φ )( .
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Definition 2: In the D-dimensional case, the spread ),( 21 kkS D  between two symbols 1k  and 2k

is defined as an application from EE ×  into R+:

∑
−

=

Π−Π=
1

0
2121 )()(),(

D

i
NiiD kkkkS (1)

Definition 3: The spread SD of a D-dimensional interleaver )...,,( 110 −ΠΠΠ=Π D  is the

minimum spread between all couples of different symbols:

 { }21
2

2121 ,,),,(min kkEkkkkSS DD ≠∈= (2)

Definition 4: The maximum spread max
DS  is defined as the maximum achievable spread over the

set IΠ of all possible interleavers:

DID SS
Π∈Π

= maxmax (3)

2.2. Upper bound of the maximum spread

The sphere packing approach allows to derive an upper bound of the maximum spread max
DS . The

general idea is quite simple: for each of the N points of a given interleaver, we define a sphere of

radius r. We show that, under a given hypothesis, the maximum radius so that the spheres are

disjoint is related to the spread SD of this interleaver. The maximum spread is then given by the

maximum radius so that the sphere are all disjoint. This problem is not trivial, nevertheless,  a

volume argument can be used to bound max
DS . In fact, the total volume of the N spheres is at most

equal to the total available volume of the space, this gives us a maximum radius SB
DS  called the

sphere bound.

Let [ [1,0 −= NF  be the flat torus of the real numbers modulo N and let 1
~d  be the application

from DD FF ×  to  R+  which is defined as:
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∑
−

=

−=×∈∀
1

0
1 ),(

~
,,

D

i
Nii

DD yxYXdFFYX (4)

One can note that 1
~d  is a distance over DF . Indeed, ( )2, DFYX ∈∀  ),(~),(~

11 XYdYXd = ,

( )2, DFYX ∈∀ , YXYXd =⇔= 0),(~
1 and ( )3,, DFZYX ∈∀ , ),(~),(~),(~

111 ZYdYXdZXd +≤ .

The proof of these properties is straightforward.

By definition of 1
~d , the spread SD is also a distance over EE ×  and

))(),((
~

),( 21121 kkdkkS D ΦΦ= .

Let us define d1, the distance derived from the 1l -norm, as 1

1

0
1 ),( YXyxYXd

D

i
ii −=−= ∑

−

=

.

Lemma 1: Let X and Y be two elements of RD. If 2/),(1 NYXd ≤ , then ),(),(~
11 YXdYXd = .

Proof: If 2/),(1 NYXd ≤ , then for all { }1,...,0 −∈ Di , 2/Nyx ii ≤−  and thus,

( ) iiiiii yxyxNyx −=−−− ,min  

Thus, the distance 1
~d  behaves locally as the distance 1d . Considering  the sphere )

~
,,( 1drADΣ

with respect to the distance 1
~d , the center A and the radius 2Nr ≤  in a D-dimensional space RD

and applying the lemma 1, we obtain:

{ }rBAdFBdrA D
D <∈=Σ ),()

~
,,( 11 (5)

Hypothesis 1: The value of r is below of equal to N/2 ( 2Nr ≤ ).

According to hypothesis 1, the two distances 1
~d  and 1d  are equivalent. The notation of the

sphere )
~

,,( 1drADΣ  is then simplified to ),( rADΣ . Note that this sphere is a square in dimension 2

and a regular octahedron in dimension 3, as shown in [8].
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Figure 1: Representation of the sphere  ),( rADΣ :
(a) a square in dimension 2,  (b) an octahedron in dimension 3.

Lemma 2: Let SD  be the spread of an interleaver Π. Then:

∅=ΦΣ∩ΦΣ⇒≠∈∀ )2),(()2),((,, 2121
2

21 DDDD SkSkkkEkk (6)

Proof: If the intersection between the two spheres is not empty, there is a point X that verifies

2/)),((~
11 DSXkd <Φ  and 2/))(,(~

21 DSkXd <Φ .

Since ))(,(~)),((~))(),((~
2111211 kXdXkdkkd Φ+Φ≤ΦΦ , then DSkkd <ΦΦ ))(),((~

211 which is in

contradiction with the definition 3 of the spread of an interleaver 

From the lemma 2, we deduce that the sum of the volume of the N spheres ( ) EkDD Sk ∈ΦΣ 2/),(  is

less or equal to the total space volume DN . The value SB
DS , called the SB, leading to equality, is

thus an upper bound of max
DS .

2.3. The 2-dimensional case

From the lemma 2, the maximum spread value max
2S  of a 2-dimensional interleaver can be

bounded by the SB SBS2 . In fact, if SBS2 /2 is less or equal to N/2 (hypothesis 1), the area of the

sphere )2/,( 22
SBSAΣ  is ( ) 2/

2
2
SBS . Thus the SB leads to the following relation:



8

 ( ) NSNSN SBSB ⋅=⇒=⋅ 22/ 2
22

2 (7)

The hypothesis NS SB ≤2  is valid if 2≥N . This is verified in all practical applications.

This result has already been mentioned [6] and this bound can be reached with deterministic

interleavers (see section 3).

2.4. Generalization to the D-dimensional case.

The above method can be generalized for the D-dimensional case. We define the asymptotic

behavior of the spread after defining the volume of the sphere of radius r.

Theorem 1: the volume V(D, r) of the sphere of radius r with respect to the distance d1 in a D-

dimensional space is given by:

 
!
)2(),(

D
rrDV

D
= . (8)

Proof: This property is true for D = 1 and D = 2. In these cases, the volume reduces to the length

2r and the area 2r2, respectively. Assume that the property is true for dimension D, then

),1( rDV + can be computed as:

∫∫∫ +
=

−
=−=−=+

+

−

r
DDD

rr

r
D
rdu

D
urduurDVduurDVrDV

0

1

0
)!1(

)2(
!

)(22),(2),(),1( (9)

and thus, the property is also true for dimension D+1 

Then, the sphere packing approach in the D-dimensional case leads to:

( ) D
DSB

DSB
D N

D
S

NSDVN =⋅=⋅
!

)2/,( (10)

Assuming NS SB
D ≤  (hypothesis 1) and using equation (10), the SB is derived as:

[ ] DDSB
D DNS

1)1( !⋅= − (11)
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Hence, an upper bound of the maximum spread max
DS in the D-dimensional case is given by:

[ ] DD
D DNS

1)1(max !⋅≤ − (12)

According to hypothesis 1, equation (11) is valid if NS SB
D ≤ , i.e. !DN ≥ . Conversely, if

!DN < , the hypothesis 1 is not valid. In that case, the volume of the sphere (8) is not correct, since

the distance 1
~
d  and d1 are different for the values of r above N/2 (see figure 2 for the two-

dimensional case). Nevertheless, for NSN SB
D 2≤< , the expression of the SB can be derived using

the appropriate expression of the volume of )
~

,,( 1drADΣ  for a radius NrN ≤<2/ . This volume is

equal to the volume of ),,( 1drADΣ , minus D times the volume of ),2/,( 1dNrAD −Σ , i.e.

)!1(
)2(2

!
)2(),(2

−
−

−=⇒<≤
D

Nr
D
rrDVNrN

DDD

(13)

N

a) b)

r

N

rA A

2/),,(2 NrrA ≤Σ NrNrA ≤<Σ 2/),,(2

Figure 2: Sphere )
~

,,( 1drADΣ  in a 2-dimensional space in the case a) 2/Nr ≤
and  b) NrN ≤<2/

Similarly, the expressions of SB
DS  for SB

DS >2N can also be derived.

Figure 3 shows the behavior of the SB for different dimensions and block length.
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Figure 3: SB values for D-dimensional interleaver of size N

The upper bound SB
DS  of the maximum spread max

DS has been derived above. The SB gives an

upper bound of the maximum spread, but there is no indication on how tight SB
DS  approaches

max
DS .

3. Comparison between maximum spread and SB

In this section, we study how tight is the SB for D = 2 up to D = 6 dimensional cases.

Definition 4: The sphere packing density is defined as SB
DD SS /max .

The maximum spread max
DS  is equal to the upper bound SB

DS  if, and only if, the sphere packing

density is equal to 1.
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3.1. The 2-dimensional case

In two dimensions, the SB is equal to N2 . This SB can be achieved with deterministic

interleavers. For example, if ²2nN= , where n is a positive integer, the maximum spread is

nS 2max
2 = . This spread is obtained using simply the interleaver defined as Π1(k) = (2n-1)⋅k mod N

[6]. Figure 4 shows an example of interleaver with n = 2 and N = 8, i.e., an interleaver of equation

Π1(k) = 3k mod 8. Hence, in the two-dimensional case, the upper bound on the maximum spread is

the maximum achievable spread and NSS SB 22
max
2 == . In this case, the sphere packing density is

equal to 1.

0 1 2 3 4 5 6 7 0
0

1

2

3

4

5

6

7

kk =Π )(0

8mod3)(1 kk =Π

Total area of N2=64

0

)2,(2 =Σ rA
8)2(2 ==rV

Figure 4: Spread in the 2-dimensional case for N  = 8, 42
max
2 == SBSS .

3.2. The 3 dimensional case

In the 3-dimensional case, the Russian mathematician Fedorov [8] proved that there are only 5

regular or semi-regular polyhedrons able to fill the space without empty spaces. Similarly, The
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octahedron cannot fill the space without empty spaces. Hence, in the 3-dimensional space, SBS3  is

not achievable.

In the next sub-section, we explain the construction of some deterministic interleavers to

approach the upper bounds and to derive a lower bound of the maximum spread for the 3-

dimensional case. The SB is also approached for the higher dimensions.

3.3. Construction of high spread interleavers

In order to give a lower bound of the maximum spread, we optimize deterministic interleavers to

approach the SB. The D permutations )(kiΠ  of the permutation vector ))()...,(),(( 110 kkk D−ΠΠΠ

are based on regular interleavers defined by (14):

Nkk ii mod)( ⋅=Π α , i = 0, 1, ... , D-1, (14)

where iα  and N are relatively prime, 10 =α , and the parameters ),....,,( 110 −Dααα  are all distinct.

The spread is computed for combinations of the parameters ),....,,( 110 −Dααα  for dimensions 2 up

to 6. The maximum achievable spread that has been calculated is reported in Tables 1 to 5

respectively. The search is exhaustive for dimensions 2, 3 and 4. For dimensions 5 and 6, for

reducing the number of D-tuple to be checked and, thus, to keep a reasonable computational time,

we constrain the sum of the integers 1..0)( −= Diiα  to be around the SB value.

N
0α 1α Effective

spread (E)
Sphere

Bound (B)
Ratio E/B

1000 1 173 44 44 100.00 %
2000 1 257 62 63 98.41 %
3000 1 893 76 77 98.70 %
4000 1 371 88 89 98,88 %

Table 1: 2-dimensional case (exhaustive search)
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For the 2-dimensional case (section 3.1), the optimal value is 1α  = 12 −N  = 2n-1 when ²2nN=

(n integer). One can note, from table 2, that the value 1α  =  12 −N  does not necessarily give the

optimal value of the spread. For example, for N  = 1000, the value of  1α = 43 gives a spread of  34.

This value has to be compared to the spread of 44 obtained with 1α = 173.

N
0α 1α 2α Effective

spread (E)
Sphere

Bound (B)
Ratio E/B

1000 1 197 477 166 181 91.71 %
2000 1 13 259 273 288 94.79 %
3000 1 109 937 359 377 95.23 %
4000 1 161 411 426 457 93.22 %

Table 2: 3-dimensional case (exhaustive search)

N
0α 1α 2α 3α Effective

spread (E)
Sphere

Bound (B)
Ratio E/B

1000 1 51 159 173 346 393 88.04 %
2000 1 193 231 639 588 661 88.96 %
3000 1 53 251 587 770 897 85.84 %
4000 1 81 431 479 992 1113 89.13 %

Table 3: 4-dimensional case (exhaustive search)

N
0α 1α 2α 3α 4α Effective

spread (E)
Sphere

Bound (B)
Ratio E/B

1000 1 43 99 117 403 537 654 82.11 %
2000 1 63 267 351 361 1043 1139 91.57 %
3000 1 59 163 599 743 1300 1575 82.54 %
4000 1 31 101 447 1393 1653 1983 83.36 %

Table 4: 5-dimensional case (heuristic search)

N
0α 1α 2α 3α 4α 5α Effective

spread (E)
Sphere

Bound (B)
Ratio E/B

1000 1 21 71 107 167 567 768 946 81.18 %
2000 1 9 133 207 309 1027 1342 1686 79.59 %
3000 1 71 157 463 679 1027 1920 2364 81.22 %
4000 1 21 99 171 887 1761 2432 3004 80.96 %

Table 5: 6-dimensional case (heuristic search)
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Tables 1 to 5 show that the SB can be reached with deterministic permutations (14) for dimension

2. It can be approached at least up to 95 %, 89 %, 91 % and 81 % for dimension 3, 4, 5 and 6,

respectively. In section 3.2, we have proved that the SB cannot be reached in three dimensions. We

conjectured that, for dimensions 4, 5 and 6 and higher, the SB cannot be reached.

4. Estimation of the minimum Hamming weight of the weight-two input sequence

As stated in the introduction, short cycles should be avoided for the construction of a good

interleaver. The interleaver should have a reasonably high spread for avoiding problems of

correlation and potential low Hamming weight codewords related to weight-two input sequences.

In section 3, we showed that, for a fixed block length N, the spread increases with the number of

dimensions. On the other hand, to keep a constant coding rate, the puncturing of each dimension

also increases with the number of dimensions. Thus the question arises as to how the minimum

Hamming weight 2
minw  of a weight-two input sequence behaves as the number of dimensions.

For a rapid estimation of 2
minw , we make the following two new hypotheses:

Hypothesis 2: For a given number of dimensions D and a code of size N, there exists an

interleaver Π that has a spread SΠ equal to the sphere bound SBS .

Hypothesis 3: There exists a couple of points ),( 21 kk  such that Π= SkkS ),( 21  and, in each

dimension i  = 0..D-1, the weight-two input sequence ))(),(( 21 kk ii ΠΠ  that feeds the encoder of

the ith dimension, generates a number of non-zero redundancy bits proportional to the length

Nii kk )(),( 21 ΠΠ .

It should be noted that the hypothesis 2 is optimistic (see section 3) while the hypothesis 3 is

pessimistic. In fact, as shown in [2], if the ith encoder is a systematic recursive convolutional code

(SRCC) of memory size m with a primitive feedback polynomial, then the weight-two input
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sequence ))(),(( 21 kk ii ΠΠ  is a Return To Zero sequence (RTZ) if and only if the distance between

)( 1kiΠ  and )( 2kiΠ  is a multiple of 12 −m . By definition ))(),(( 21 kk ii ΠΠ  is a RTZ sequence if

the first non-zero bit in the )( 1kiΠ th position makes the encoder diverge from the all zero path and

the second non-zero bit in the )( 2kiΠ th position makes the encoder reconverge towards the all zero

path. In this case the number ),( 21 kkwi of 1's generated by the ith encoder is given by:

bkkPkkw
Niidi +Π−Π⋅= )()(),( 2121 (15)

where 
12

2 1

−
=

−

m

m

dP  is the density of non-zero parity bits generated during a period of the

SRCC encoder and the parameter b is an offset generated by the arrival of the two non-zero bit

values at positions )( 1kiΠ and )( 2kiΠ  in the encoder. The value b can be either 0, 1 or 2 according

to the generator polynomials. For example, for the SRCC with m  = 3 and polynomial generators of

(15)octal for the feedback and (13)octal for the redundancy, Pd is equal to  4/7 and b is equal to 2. The

number of 1's generated by a weight-two input sequence of length 7l is then equal to 2+4l, for this

SRCC encoder. Note that if the length of the weight-two input sequence is not a multiple of l, then

the number of non-zero redundant bits is approximately NPd ⋅  for a tail-biting code, which is much

larger than ),( 21 kkwi . In the sequels, we assume that, in all dimension, the encoders have a

primitive feedback polynomial.

Hypothesis 3 assumes that, for all dimensions  i  = 0..D-1, 
Nii kk )()( 21 Π−Π  is a multiple of the

ith encoder periodicity, which is clearly the worst case (the lowest possible weight).

Let us assume that all dimensions are equally punctured to achieve a code rate r. The rate of a

non-punctured systematic multiple turbo code of dimension D is )1(1 +D . To achieve the code rate

r, a fraction ( ) ( )( )rrD −⋅= 11λ  of the parity bits needs to be kept after puncturing. Thus,
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according to hypothesis 3, in dimension i, the weight-two input sequence ))(),(( 21 kk ii ΠΠ  of

length 
Nii kk )()( 21 Π−Π  produces, on average, λΠ−Π⋅+ ))()(( 21 Niid kkPb  parity bits. With

hypotheses 2 and 3, the average minimum Hamming weight ][ 2
minwE of a codeword generated by

the weight-two input sequence ),( 21 kk is approximated by:

∑
−

=
Π−Π⋅++≈

1

0
21

2
min ))()((2][

D

i
Niid kkPbwE λ (16)

The first term of (16) represents the Hamming weight of the two non-zero systematic bits.

Equation (16) can be rewritten as:









⋅+

−
+≈

D
kkS

Pb
r

rwE d
),(12][ 212

min (17)

Thus, according to hypothesis 2:

 









⋅+

−
+≈

−

D
DNPb

r
rwE

DD

d

/1)1(
2
min

]![12][ (18)

Equation (18) shows that the estimation of ][ 2
minwE  increases as the dimension D of the multiple

turbo code increases. Figure 5 gives the estimation of ][ 2
minwE  for various block lengths N and

several dimensions D, for a rate r  = 1/2 turbo-code with (15,13)oct RSCC encoders (i.e. b = 2 and

7/4=dP ). For a frame size of 1000 bits, ][ 2
minwE  is equal to 16, 38 and 60 for D = 2, 3 or 4,

respectively. Note however that, in the general case, the minimum Hamming distance of a code is

generated by more complex error sequences rather than by simple weight-two input sequences.
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Figure 5: Estimation of ][ 2
minwE  for various block lengths N with a multiple turbo-code of rate 1/2.

5. Conclusion

This paper shows that the maximum spread value of a D-dimensional turbo code with tail-biting

constituent codes is upper bounded by [ ] DD DN
1)1( !⋅− . The upper bound called the sphere bound is

obtained using very simple properties of Euclidian space. It has been shown that this upper bound

can be achieved in the two dimensional case, but not in the three dimensional case. For higher

dimensions, the question is still open. Nevertheless, the construction of deterministic interleavers

shows that the upper bound can be approached up to 92%, 88%, 91% and 80 % for D = 3, 4, 5 and 6

dimensional turbo codes, respectively. From the upper bound, it is also shown that the minimum

Hamming weight of weight-two input sequences increases with the number of dimensions D for a

given frame size N.
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