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Abstract—The purpose of this paper is to calculate the bit error rate
(BER) of a multiband non coherent on-off keying (OOK) demodulation.
The results fit perfectly the simulations of the system. It allows us to study
the influence of the filter and the decimation factor on the modulation
performance. It is also possible to optimize the system, by means of other
criteria (e.g. system complexity, jammer sensitivity) thus avoiding time
consuming simulations.

Index Terms— bit error rate, non-coherent OOK demodulation,
quadratic forms, correlation, filtering, chi-square law.

I. I NTRODUCTION

BIT error rate (BER) specifications are very important in
the design of digital telecommunication systems. BER

calculations for optimum receivers are common [1], [2]. Yet
if the receiver is not optimum, or if the receiver features addi-
tional filters, system simulations are often used. The major
drawback is that simulations are generally time consuming,
thus limiting the ability of the system to be optimized.

The purpose of this paper is first to establish a theoretical
mathematical formula for the BER, taking into account the fil-
ter bank used in a telemetry non-coherent receiver. The goal is
to avoid lengthy simulations when optimizing a multiband de-
modulator, with regard to jammer sensitivity and system com-
plexity. The filter-characteristics influence on the BER in the
case of non-coherent OOK demodulations is studied.

The system is made of a very large number of transduc-
ers whose measurements are to be automatically and remotely
read by a radio concentrator (Fig. 1). Applications are quite
numerous in the metering business; for example extensive
breeding of cattle in south America: herd movements have to
be studied in order to optimize their feeding.

The transmitters of these various applications have common
requirements: they should be very cheap and have a very low
power consumption. Therefore a simple modulation scheme
must be chosen. We consider in this paper an OOK modulation
in association with a bi-phase coding (or Manchester coding),
each transmitter having its own frequency carrier. In that kind
of modulation, each bit is coded by two chips: ’10’ when the
bit is ’1’, and ’01’ when the bit is ’0’. The chips ’1’ and ’0’
are often called respectivelymarkandspace(Fig. 2).
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Fig. 1. Telemetry System
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Fig. 2. OOK Biphase Modulation
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Fig. 3. Digital signal processing model before bit decoding

We begin this paper in section II with the demodulation prin-
ciples, setting up the notations and the basic equations. In sec-
tion III, the whole bit error rate calculation is explained. In
section IV, we compare the bit error rates obtained by simula-
tions and by evaluation of our mathematical expressions. Con-
clusion and future work description are given in section V.

II. D EMODULATION PRINCIPLES

A. Basic Equations

We consider here a signal modulated as described above.
This signal is sent through an additive white gaussian noise
channel (AWGN), and is oversampled withS samples per
chip, i.e.2S per bit. The signal is then filtered by a digital FIR
filter bank before being demodulated (Fig. 3). The influence
of decimation has also to be studied because the demodulator
includes a filter bank based solution [3].



Letxp = ap+bp be the received sample numberp, whereap
is the magnitude of the OOK signal before the AWGN channel;
thusap = 0 for space chips andap = U > 0 for mark chips.
bp stands for the AWGN samples. Let also�2 be the variance
of the AWGN.

We now focus our attention on the filtering of a bit. Let the
column vectorH = (hn)n2fN;:::;1g represent the filter coeffi-
cients. Let the samplexn+i� be noted with the double index
xn;i, wheren 2 f1; :::; Ng, i 2 f0; :::; 2Sf�1g. LetSf be the
number of samples in a filtered chip after decimation. In fact,
the convolution is done each�T in order to take into account
the decimation at the same time,T being the sample period:
so� = S=Sf .

The transposition of a matrixM will be denoted byM 0.
Using the notations:

Ai = (a1;i � � � an;i � � � aN;i)
0 (1)

Bi = (b1;i � � � bn;i � � � bN;i)
0 (2)

H = (hN � � �hn � � �h1)
0 (3)

with Xi = Ai +Bi, we obtain:

A(1) =
�
A1 � � �ASf

�
; A(2) =

�
ASf+1 � � �A2Sf

�
(4)

B(1) =
�
B1 � � �BSf

�
; B(2) =

�
BSf+1 � � �B2Sf

�
(5)

X(1) = A(1) +B(1) ; X(2) = A(2) +B(2) (6)

where index(1) et (2) denote respectively the first and the sec-
ond chip of the bit.

The filtering over the first and the second chip is the matrix
product:

Y (1) = X(1)0H =
�
y1 � � � yi � � � ySf

�0
(7)

Y (2) = X(2)0H =
�
ySf+1 � � � yi � � � y2Sf

�0
(8)

with : yi = Xi
0H: (9)

The matricesA(k) should take into account the neighbour-
ing chips over a size as large as the filter, for obtaining an ac-
curate model of the signal to be filtered. It is important to note
that one has to average the calculated BER of each possibility
of the chip configuration around a bit. Obviously, the higher
the filter order is, the higher the number of neighbouring chip
configurations are.

B. Non Coherent Demodulation

The sign of the difference between the sum of the chip sam-
ples should be studied. Thus a detection of the bit equal to ’1’
occurs when:

Y (1)0�Y (1) > Y (2)0�Y (2); (10)

where� = diag
�
�1; � � � ; �Sf

�
is the filtering matrix used for

the bit decoding. In this paper, the case where� = ISf is
studied. In the future work, mentioned in Section V,� should
be set to its optimum value, depending on the filterH in order
to match the filtered signal. In other words, the sum over each

-
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Fig. 4. Bi-phase non coherent bit decoding

chip could be balanced so as to favour the reliable samples
thereby increasing the performance. Equation (10) becomes:0

@ SfX
i=1

yi
2 �

2SfX
i=Sf+1

yi
2

1
A > 0: (11)

If the bit is ’0’, swapping indexes gives the same equation.
Fig. 4 shows how to decode a bit.

SinceY (k); k 2 f1; 2g is a linear combination of gaus-
sian probability density functions (PDFs), it has also a gaus-
sian PDF.

Let Y (k) have a mean value�(k) = E(Y (k)) and a covari-
ance matrixV = Cov(Y (k)0; Y (k)). We have:

�(k) = E(Y (k)) = E(X(k)0H) (12)

= E(A(k) 0H +B(k)0H) = A(k)0H; (13)

sinceB(k) is a random matrix whereasA(k) andH are not.
We have also:

V = Cov(Y (k)0; Y (k)) (14)

= E
�
(Y (k) �E(Y (k)))0(Y (k) �E(Y (k)))

�
(15)

= E(H 0B(k)B(k)0H) = (�i;j) 1<i<Sf

1<j<Sf

(16)

where�i;j =
NX

m=1

NX
n=1

hmhnE(bm;ibn;j) (17)

with E (bm;ibn;j) = 0 , if bm;i 6= bn;j (18)

= �2 , if bm;i = bn;j (19)

andbm;i = bn;j when m� n = (j � i)� (20)

So V is a Sf � Sf squared Toeplitz matrix because�i;j is
only function of(j � i); moreover it is symmetrical because
�i;j = �j;i. Finally, it is identical forY (1) andY (2) because it
only depends on the noise and the filter.



III. B IT ERROR RATE CALCULATION

A. Quadratic Form Diagonalization

The bit error rate is the probability to obtain:

Pr (Q < 0)
4
= Pr

�
Y (1)0Y (1) � Y (2)0Y (2) < 0

�
: (21)

So the probability density function (PDF) ofY (1)0Y (1) �

Y (2)0Y (2) should be calculated. The filtering introduces cor-
relation between samples making the calculation of (21) not
trivial. Quadratic form diagonalizations (well described in [4])
have to be performed taking into account the correlation fac-
tors between filtered samples.

Definitions of quadratic forms:Let the random vec-
tor Y (1) = (Y1; � � � ; YSf )

0 have the mean value�(1) =

E(Y (1)) = (�1; � � � ; �Sf )
0 and the positive definite covariance

matrixV = E
�
(Y (1) � �(1))(Y (1) � �(1))0

�
= Cov

�
Y (1)

�
.

The quadratic form in the random variablesY1; � � � ; YSf asso-
ciated with anSf � Sf symetric matrix
 is defined as:

�
�
Y (1)

�
= Y (1)0
Y (1): (22)

We will now focus our attention on the particular case where
V is positive definite (V > 0).

Equation (21) is the difference between two quadratic forms
defined by:

G
�
Y (k)

�
= Y (k)0Y (k); k 2 f1; 2g (23)

in the particular case where
 = ISf . So:

G
�
Y (k)

�
= �

�
Y (k)

����

=ISf

: (24)

Normalisation:LetZ(k) = V �
1

2 (Y (k)��(k)),E(Z(k)) =
0 and Cov

�
Z(k)

�
= ISf . Then (23) becomes:

G
�
Y (k)

�
=
�
Z(k) + V �

1

2�(k)
�0
V
�
Z(k) + V �

1

2�(k)
�
(25)

Diagonalization:Let P be the orthogonal matrix which di-
agonalizesV , i.e.:

P 0V P = diag
�
�1; � � � ; �Sf

�
; PP 0 = ISf (26)

LetU (k) = P 0Z(k) with E(U (k)) = 0 and Cov
�
U (k)

�
= In,

and letb(k) = P 0V
1

2�(k) = (b(k)1; � � � ; b
(k)

n)
0. Then (25)

becomes:

G
�
Y (k)

�
=

�
U (k) + b(k)

�0
P 0V P

�
U (k) + b(k)

�
(27)

=

SfX
j=1

�j

�
U (k)

j + b(k)j

�2
(28)

Thus, if:

Y (k) � NSf (�
(k); V ); V > 0; (29)

Equation (23) can be expressed as a linear combination ofin-
dependentnon central chi-square laws — denotedX 2 laws —
with one degree of freedom.

The error probability per bit is given by:

Pr
�
G
�
Y (1)

�
< G

�
Y (2)

��
=

Pr

0
@ SfX

j=1

�j

�
U (1)

j + b(1)j

�2
<

SfX
j=1

�j

�
U (2)

j + b(2)j

�21A (30)

which can be written with shorter notations, assuming that:
� for 1 � j � Sf , the indexed variable refers to the first

chip
� for Sf+1 � j � 2Sf , the indexed variable refers to the

second chip:

Pr (Q < 0) = Pr

0
@2SfX

j=1

�j(Uj + bj)
2
< 0

1
A; (31)

with:

(�j)1<j<2Sf = (�1; � � � ; �Sf ;��1; � � � ;��Sf )

(�1; � � � ; �Sf ) being theSf eigenvalues ofV

Uj : central normal random variable

(b1; � � � ; b2n)
0 = (b

(1)
1 ; � � � ; b

(1)
Sf
; b
(2)
1 ; � � � ; b

(2)
Sf

)0

(b(k)1; � � � ; b
(k)

Sf ) = P 0V �
1

2�(k):

B. Bit Error Rate Evaluation

The problem is now solved by evaluating the PDF ofQ
which is a linear combination of non centralX 2 laws (31). The
non centralX 2 laws are assumed to be independent, which is
not exactly true betweenUi 1�i�Sf

andUj
Sf+1�j�2Sf

.

In fact independence does exist inside each chip, but not be-
tween different chips.

Two evaluations have been considered, both of them de-
scribed by J.P. Imhof [5]: the first one is based on an approx-
imation of the law ofQ and the second one is a numerical
inversion of the characteristic function ofQ.

1) X 2 Distribution Approximation ofQ: Let the distribu-
tion ofQ be approximated by that ofcX 2 (h; 0) + b, wherec,
h et b are chosen so that the two distributions have the same
first three moments. We have then:

Pr (Q < 0) ' Pr (X 2 (h; 0) < y) (32)

where:

h =
c2
3

c32
; y = �c1

r
h

c2
+h; ci =

2SfX
j=1

�j
i
�
1 + ibj

2
�
: (33)

In the case whereQ < 0 and c3 < 0 the distribution of
�Q should be approximated andPr (�Q > 0) should be eval-
uated.



2) Numerical Integration Technique:With the approxima-
tion that the2Sf elements of the sum (31) are independent, the
characteristic function ofQ is given by [5]:

�(t) =

2SfY
k=1

(1� 2i�kt)
� 1

2 exp

�
i
bk
2�kt

1� 2i�kt

�
(34)

We have ([6], [7])

Pr (Q < 0) =
1

2
�

1

�

Z +1

0

sin �(u)

u�(u)
du (35)

with:

�(u) =
1

2

2SfX
r=1

arctan(�ru) + br
2�ru(1 + �r

2u2)
�1

(36)

�(u) =

2SfY
r=1

(1 + �r
2u2)

1

4 exp

 
1

2

(br�ru)
2

(1 + �r
2u2)

!
(37)

The functionu�(u) increases monotonically toward+1.
Therefore numerical integration can be carried out over a finite
range.

IV. RESULTS

A comparison between the theoretical BER and the simu-
lated transmission BER, which gives very good results, is pre-
sented in the first part of this section. With this new reliable
tools, the influence of all the parameters governing the trans-
mission can be easily determined, thus allowing the optimiza-
tion of a given system. The main parameters which have been
studied are:
� Decimation factor
� Number of filter coefficients
� Type of filter design
� Offset between decimated and non-decimated signal

The second and third part of this section will present the in-
fluence of two of them. The default value of the transmission
parameters used are listed below:
� 2Sf = 1024 samples per bit
� low pass filter withN = 512 coefficients
� decimation factor� = 128

The bit error rates are shown in this paper as a function of
the signal to noise ratios (SNRs), defined as:

SNR =
U2

2�2
; (38)

U and� being defined in II-A.

A. Reference Results

Fig. 5 shows the BER obtained with the default parameters.
Both filtered and non filtered transmission BER are shown.
For the filtered case, both methods appear: the approximate
one (III-B.1) and the numerical one (III-B.2). Our numerical
model is very satisfactory since it fits the simulated BER and
is much faster to compute than the simulations. Although the
approximate model differs slightly from the simulation, it is
yet a good approximation and remains quite useful for rough
optimizations since it is faster to calculate than the numerical
integration (Tab. I). The filtering process seems to decrease the
BER; this point is discussed in the next section.
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B. Influence of the Decimation Factor

Fig. 6 shows the influence of the decimation factor. As ex-
pected, the higher the decimation factor is, the worse the per-
formance is.

We can observe that for the low SNRs, filtering decreases
the BER. But for the high SNRs, filtering increases the BER.
In fact, filtering has two opposite effects on the non coherent
demodulation:
� filtering smoothes the signal, and thus decreases the con-

trast between mark and space. This effect tends to in-
crease the BER.

� filtering reduces the noise band, increasing the SNR and
thus decreasing the BER.

C. Influence of the Filter Design

With given filter specifications, the choice of a digital filter
type is often based on its number of coefficients and their dy-
namic. But these different types of filter designs (Remez or



TABLE I
CALCULATION TIME RANGE COMPARISON

Evaluation method: Simulation Numerical integration X 2approximation
Time range: 8 hours ' 20 seconds ' 5 seconds

Note: Work has been performed using MATLAB on a 1GHz Pentium III based personal computer

featuring 512 Mb RAM and running under Microsoft Windows 2000. Simulations have been

computed over105 bits.
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Kaiser design for example) do not have the same influence on
the BER.

Fig. 7 shows three BERs obtained with three different filter
designs respecting the same frequency specifications; we can
clearly see that the BER argument can make the difference in
the choice of a design technique.

V. CONCLUSION

In this paper, we have proposed a mathematical expression
for the bit error rate in the case of a multiband OOK non co-
herent demodulation. The OOK modulation is very common
in instrumentation and measurement where the costs and the
consumption are very important constraints. This method is
based on a theoretical study using linear combinations of chi-
square laws. The expression obtained is the exact bit error
rate of the transmission and takes into account each parameter
of the transmission, including the digital filtering parameters.
The BER obtained fits perfectly the simulations results. This
method is very fast compared to simulations of the system. Its
major advantage is that optimization of the transmission pa-
rameters is much easier to perform in terms of bit error rate.

The present work will be extended to the more general case
where the filter has complex coefficients, and the influence of
a shift between the signal and the filter bandpass will be anal-
ized. We may also consider the use of a match filter before
decoding, so as to favour the reliable samples thereby increas-
ing the performance.
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