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Abstract—The purpose of this paper is to calculate the bit error rate
(BER) of a multiband non coherent on-off keying (OOK) demodulation.
The results fit perfectly the simulations of the system. It allows us to study
the influence of the filter and the decimation factor on the modulation
performance. Itis also possible to optimize the system, by means of other
criteria (e.g. system complexity, jammer sensitivity) thus avoiding time
consuming simulations.

Index Terms— bit error rate, non-coherent OOK demodulation,
quadratic forms, correlation, filtering, chi-square law.

|I. INTRODUCTION

IT error rate (BER) specifications are very important in

the design of digital telecommunication systems. BER
calculations for optimum receivers are common [1], [2]. Yet
if the receiver is not optimum, or if the receiver features addi-
tional filters, system simulations are often used. The major
drawback is that simulations are generally time consuming,
thus limiting the ability of the system to be optimized.
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Fig. 2. OOK Biphase Modulation
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The purpose of this paper is first to establish a theoretical ap
mathematical formula for the BER, taking into account the fil- 25 samples 25 samples 2§rfbsfmp'es
ter bank used in a telemetry non-coherentreceiver. The goal is per bit per bit p(A — S/5f)
to avoid lengthy simulations when optimizing a multiband de- G‘)—’ Filter JA—
modulator, with regard to jammer sensitivity and system com- Tp = ap + by "

plexity. The filter-characteristics influence on the BER in the
case of non-coherent OOK demodulations is studied.

The system is made of a very large number of transduc-
ers whose measurements are to be automatically and remotely
read by a radio concentrator (Fig. 1). Applications are quite
numerous in the metering business; for example extensive
breeding of cattle in south America: herd movements have to
be studied in order to optimize their feeding.

The transmitters of these various applications have commonWe begin this paper in section Il with the demodulation prin-
requirements: they should be very cheap and have a very laiples, setting up the notations and the basic equations. In sec-
power consumption. Therefore a simple modulation schenmien 1, the whole bit error rate calculation is explained. In
must be chosen. We consider in this paper an OOK modulatisection 1V, we compare the bit error rates obtained by simula-
in association with a bi-phase coding (or Manchester codingjpns and by evaluation of our mathematical expressions. Con-
each transmitter having its own frequency carrier. In that kindlusion and future work description are given in section V.
of modulation, each bit is coded by two chipi0” when the
bit is '1’, and '01’ when the bit is 0’. The chips 1’ and '0’
are often called respectivelgarkandspace(Fig. 2).
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Fig. 3. Digital signal processing model before bit decoding

Il. DEMODULATION PRINCIPLES
A. Basic Equations

We consider here a signal modulated as described above.

[Transducer #1 - Treomiter 1 5o Meesurement #1 This signal is sent through an additive white gaussian noise
| . g%{ Receiver & channel (AWGN), and is oversampled with samples per

3 1, j g> [ Demoddaor] | chip, i.e.2S per bit. The signal is then filtered by a digital FIR
l{:ﬂgﬁﬁh‘ == Measurement #N filter bank before being demodulated (Fig. 3). The influence

of decimation has also to be studied because the demodulator

Fig. 1. Telemetry System includes a filter bank based solution [3].



Letz, = a,+b, be the received sample numbewherea,

is the magnitude of the OOK signal before the AWGN channel;

thusa, = 0 for space chips and, = U > 0 for mark chips.
b, stands for the AWGN samples. Let alsé be the variance
of the AWGN.

We now focus our attention on the filtering of a bit. Let the

column vectot = (hn),,c(n, .. 1y Fepresent the filter coeffi-
cients. Let the sample, ;Ao be noted with the double index
T, Wheren € {1,...,N},i € {0,...,2Sy—1}. LetS; be the

number of samples in a filtered chip after decimation. In fact,

the convolution is done eachT in order to take into account
the decimation at the same tiniE,being the sample period:
S0A = S/S;.

The transposition of a matriz/ will be denoted byM'.
Using the notations:

A; (@13 ani--an,) (1)
B;i = (b1 bpi-bny) (2
H = (hy "hn"'hl)l (3)

with X; = A; + B;, we obtain:
A(l) = (Al"'ASf) 5 A(Q) = (ASf+1"'AQSf) (4)

B" = (Bi---Bs,) , B® = (Bs;41-:-Bss,) (5)
XM = 40 4 @) X2 = 4 4 B®) (6)

where index") et(?) denote respectively the first and the sec

ond chip of the bit.

The filtering over the first and the second chip is the matri;, probability density functions (PDFs)

product:
y (1) X' = (yl"'yi"'ySf)l (7)
y(2) X'y = (Z/Sf+1"'yi"'y25f)l (8)
with Yi = XZIH (9)

The matricesA(®) should take into account the neighbour-

Chip 1 = mark
(Sy =38)

Chip 2 = space

T ol
[l

BIT=0

Fig. 4. Bi-phase non coherent bit decoding

chip could be balanced so as to favour the reliable samples
thereby increasing the performance. Equation (10) becomes:

Sy 25,
owit= > | >o. (11)
i=1 i=S;+1

If the bit is ’0’, swapping indexes gives the same equation.
Fig. 4 shows how to decode a bit.

SinceY®) | k € {1,2} is a linear combination of gaus-
it has also a gaus-
sian PDF.

Let Y(*) have a mean valug®) = E(Y*)) and a covari-
ance matrix” = Cov(Y®)',Y(®). We have:

(k) —

E(Y ) = E(X(k)’H)
E(A®'H + B®' H) = AW 1,

12)
(13)

7

since By is a random matrix wherea$;, and H are not.

ing chips over a size as large as the filter, for obtaining an aGYe have also:
curate model of the signal to be filtered. It is important to note
that one has to average the calculated BER of each possibility V'
of the chip configuration around a bit. Obviously, the higher
the filter order is, the higher the number of neighbouring chip

Cov(y ™', y () (14)
E (v - By ®)y (v - Bv(™))) (15)

. ; ,
configurations are. = EHB®BW'H) = (1) 1<i<S, (16)
1<j<Ss
B. Non Coherent Demodulation N N
The sign of the difference between the sum of the chip sam- wherev; ; = Z Z B b E (b ibn. ) (17)
ples should be studied. Thus a detection of the bit equdl to’ m=1n=1
occurs when: ] )
with £/ (bm,ibn,j) = 0,if bmﬂ' 75 bn’j (18)
YOAYD S y@AY®) (10) = 02, if bpy=bn,;  (19)
whereA = diag (a1, -, as,) is the filtering matrix used for andby,; = by,; whenm —n = (j —i)A  (20)

the bit decoding. In this paper, the case whéare= Is, is SoV is a Sy x Sy squared Toeplitz matrix becausg; is
studied. In the future work, mentioned in SectionA/should only function of (j — ¢); moreover it is symmetrical because
be set to its optimum value, depending on the filein order  v; ; = v; ;. Finally, it is identical fory’ ") andY () because it
to match the filtered signal. In other words, the sum over eaadnly depends on the noise and the filter.



I1l. BIT ERRORRATE CALCULATION The error probability per bit is given by:
A. Quadratic Form Diagonalization

1 2 _

The bit error rate is the probability to obtain: Pr (G (Y( )) <G (Y( ))) -
S

Pr(Q<0)=Pr (YYD -y®'y® <o) (21) Pr (Z 5 (U + b(l)j)Q <
j=1

So the probability density function (PDF) af(®'y(1) — s,
()’ - 2

Y2y (2 should be calculated. The filtering introduces cor Z A (U(2)j n b(2)j) (30)

relation between samples making the calculation of (21) not

trivial. Quadratic form diagonalizations (well described in [4])

have to be performed taking into account the correlation fagghich can be written with shorter notations, assuming that:

=1

tors bgt\_/v_een filtered samples. o for1 < j < Sy, the indexed variable refers to the first
Definitions of quadratic forms:Let the random vec- chip
1 — n = . .
tor ' = (¥3,---,Ys,)" have the mean valup'™ = o for Sy < j < 28y, the indexed variable refers to the
BE(Y™) = (-, ns,) and the positive definite covariance  second chip:
matrixV = E (Y — p@M)(y® — pM)) = Cov (YD).
The quadratic form in the random variablgs - - -, Ys, asso- 25;
ciated with anS; x S; symetric matrix is defined as: Pr(Q < 0) (Z A (U; + bj) 0) . (3D
r (Y<1>) —yW'ay®, (22)
with:
We will now focus our attention on the particular case where
V is positive definite { > 0). (/\j)1<j<zsf = (A1, Asy, = ALL,, = Asy)
E_quation (21) is the difference between two quadratic forms (At,---,As,) being theS; eigenvalues o’
defined by: .
U; : central normal random variable
!
G(y(k)) —vy® y(k), ke {1,2} (23) (b1,"',b2n)' _ (b§1),---,b(slf),b?),---,bgf))’
A A _1 o
in the particular case whefe = I, . So: 08, 00 g ) = PV a0
(k)) — (k)
¢ (Y ) =T (Y )‘Qzlsf' (24) B. Bit Error Rate Evaluation

The problem is now solved by evaluating the PDF(pf
which is a linear combination of non centdgf laws (31). The
non centralt’? laws are assumed to be independent, which is

not exactly true betweet; 1<i<S, andU; Sp1<j<28;

In fact independence does exist inside each chip, but not be-
tween different chips.

Two evaluations have been considered, both of them de-
scribed by J.P. Imhof [5]: the first one is based on an approx-

Normalisation: Let Z(*) = V=3 (Y (®) — (k) E(Z(})) =
0 and Cov(Z®) = Is,. Then (23) becomes:

a (yu«)) _ (Zw) + V*%u(’f))lv (Zw) n V*%,ﬁk))
(25)
Diagonalization: Let P be the orthogonal matrix which di-
agonalized/, i.e.:

P'V P = diag (>\1, .. .7>\Sf) , PP’ = Is, (26) imation of the law of() and the second one is a numerical
inversion of the characteristic function @f
LetU™ = p'Z" with E(U®)) = 0and Cov(U¥)) = 1,,, 1) X2 Distribution Approximation of): Let the distribu-
and letb® = pvauk) = (pk), ... p*) ) Then (25) tion of @ be approximated by that eft'? (h,0) + b, wheree,
becomes: h etb are chosen so that the two distributions have the same
, first three moments. We have then:
G (Y(’“)) - (U(k) + b(k)) PVP (U(k) + b(k))(27)
s, ) Pr(Q < 0) ~ Pr(X? (h,0) < y) (32)
- Z Aj (U(k)i + b(k)i) @8)  \where:
j=1
o 3 2S¢
Thus, If h=" y=—c \/7+h ¢ = Z/\ 14ib%). (33)
Y® ~ Ng, (i, V), V>0, (29) s

Equation (23) can be expressed as a linear combination of  In the case wher€) < 0 andes < 0 the distribution of
dependenmon central chi-square laws — denot&d laws —  —( should be approximated aft (—Q > 0) should be eval-
with one degree of freedom. uated.



2) Numerlcal Integratlon Technlquewlth the apprOXIma_ i _ Filtered Non Cohe‘renl Demodulation —‘ Reference Graph
tion that the2S; elements of the sum (31) are independent, the

characteristic function aof) is given by [5]: w0k 1
25¢ 2
. _1 L b\t
= 1-2 3 = 4
o0 = JL0 -2 e (H i mg) N |

We have ([6], [7])

BER

1 1 [T sinf(u J
Pr(Q<0):———/ ()du (35) *
2 7/, up(u)
with: .
10 | 4
2S¢ :
_ 2 2 2\ — Fil(eredssamples/biﬁ Theorelica\ :
bu) = 3 Y arctan(Au) + b °Au(l+\,7u?) (36) e sampestt et (1 Ao \
r=1 * Filtered 8 i i -‘ : \
2Sf 2 -30 -25 -20 -15 -10 -5
1 1 (b /\ u) SNR (dB)
— 2, 2\1 rAr
plu) = H (1+ A\"u”)* exp 271 2 (37)
r=1 ( +ArTu )
o ) ) Fig. 5. Reference BER
The functionup(u) increases monotonically towardoo.
Therefore numerical integration can be carried out over a finite Fillered Non Coherent Demodulation - Influence of
range.

IV. RESULTS 107

A comparison between the theoretical BER and the simu-
lated transmission BER, which gives very good results, is pre-
sented in the first part of this section. With this new reliable
tools, the influence of all the parameters governing the trans-.
mission can be easily determined, thus allowing the optimiza- * o
tion of a given system. The main parameters which have beer
StUdIed are: — 4 samples/bit (Theoretical)

« Decimation factor - zi .

« Number of filter coefficients o Fiered (1024 samplesibiy \

* 4 samples/bit (simulated)
8 "

« Type of filter design r e :

« Offset between decimated and non-decimated signal 2 : ‘ ‘

The second and third part of this section will present the in- SNR (@)

fluence of two of them. The default value of the transmission

parameters used are listed below: Fig. 6. Decimation Factor Influence
o 2S; = 1024 samples per bit

« low pass filter withV = 512 coefficients

« decimation factor\ = 128 B. Influence of the Decimation Factor
The bit error rates are shown in this paper as a function of Fig. 6 shows the influence of the decimation factor. As ex-
the signal to noise ratios (SNRs), defined as: pected, the higher the decimation factor is, the worse the per-
2 formance is.
SNR = 257" (38) We can observe that for the low SNRs, filtering decreases

the BER. But for the high SNRs, filtering increases the BER.
In fact, filtering has two opposite effects on the non coherent

A. Reference Results demodulation:

Fig. 5 shows the BER obtained with the default parameters. ® filtering smoothes the signal, and thus decreases the con-
Both filtered and non filtered transmission BER are shown. trast between mark and space. This effect tends to in-
For the filtered case, both methods appear: the approximate crease the BER.
one (I1I-B.1) and the numerical one (I1-B.2). Our numerical * filtering reduces the noise band, increasing the SNR and
model is very satisfactory since it fits the simulated BER and ~ thus decreasing the BER.
is much faster to compute than the simulations. Although the
approximate model differs slightly from the simulation, it is ) .
ygtpa good approximation anc?re?/nains quite useful for rougﬂ' Influence of the Filter Design
optimizations since it is faster to calculate than the numerical With given filter specifications, the choice of a digital filter
integration (Tab. I). The filtering process seems to decrease ttype is often based on its number of coefficients and their dy-
BER; this point is discussed in the next section. namic. But these different types of filter designs (Remez or

U ando being defined in II-A.



TABLE |

CALCULATION TIME RANGE COMPARISON

Evaluation method]| Simulation | Numerical integration XZapprozimation

Time range: 8 hours ~ 20 seconds ~ 5 seconds

Note: Work has been performed using MATLAB on a 1GHz Pentium Il based personal computer

featuring 512 Mb RAM and running under Microsoft Windows 2000. Simulations have been

computed ovet0® bits.

Filtered Non Coherent Demodulation - Influence Of The Filter Type (512 Coefficients)

(2]
(3]

— Remez (Theoretical)
— Firls i

— Kaiser

* Remez (Simulated)
* Firls "

* Kaiser

T L L \
-30 -25 -20 -15 -10 -5
SNR (dB)

Fig. 7. Filter Design Influence

Kaiser design for example) do not have the same influence on
the BER.

Fig. 7 shows three BERs obtained with three different filter
designs respecting the same frequency specifications; we can
clearly see that the BER argument can make the difference in
the choice of a design technique.

V. CONCLUSION

In this paper, we have proposed a mathematical expression
for the bit error rate in the case of a multiband OOK non co-
herent demodulation. The OOK modulation is very common
in instrumentation and measurement where the costs and the
consumption are very important constraints. This method is
based on a theoretical study using linear combinations of chi-
square laws. The expression obtained is the exact bit error
rate of the transmission and takes into account each parameter
of the transmission, including the digital filtering parameters.
The BER obtained fits perfectly the simulations results. This
method is very fast compared to simulations of the system. Its
major advantage is that optimization of the transmission pa-
rameters is much easier to perform in terms of bit error rate.

The present work will be extended to the more general case
where the filter has complex coefficients, and the influence of
a shift between the signal and the filter bandpass will be anal-
ized. We may also consider the use of a match filter before
decoding, so as to favour the reliable samples thereby increas-
ing the performance.
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