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Abstract—

Recently a theory of a compact, canonical representation
for arithmetic expressions, called Taylor Ezpansion Diagram
(TED) [1] [2], has been proposed. This representation, based
on a novel, non-binary decomposition principle, raises a level
of design abstraction from bits to bit vectors and words, thus
facilitating the verification of behavioral and RTL specifica-
tions of arithmetic designs.

This paper presents the first practical results of using
TED in the context of high-level design representation and
verification. It discusses the use of TED for equivalence
checking of behavioral and RTL designs and comments on
its limitations. It also demonstrates the application of TEDs
to verification of designs on algorithmic level and comments
on their potential use in high level synthesis.

I. INTRODUCTION

The increase in size and functional complexity of digi-
tal designs necessitates the development of robust, auto-
mated verification tools at higher (behavioral or register-
transfer) levels of abstraction. Binary decision diagrams
(BDDs) [3] [4], binary moment diagrams (*BMDs), [5], and
their derivatives (K*¥*BMDs) [6], play an important role as
canonical representations of Boolean and arithmetic func-
tions and have significantly contributed to the success of
verification tools. However, the application of these rep-
resentations to designs with significant word-level compu-
tations, commonly encountered in high-level design spec-
ifications, is limited as these representations require that
word-level operators be represented in terms of bits. This
results in an unnecessarily large number of binary variables
that need to be processed. Furthermore, high-level design
descriptions typically contain word-level arithmetic com-
putations interspersed with Boolean logic. Contemporary
canonical representations cannot efficiently represent alge-
braic computations with symbolic operands while simulta-
neously modeling their interaction with Boolean logic.

This deficiency of contemporary canonical representa-
tions in representing algebraic, word-level computations
motivated us to derive a new representation, called Taylor
Ezpansion Diagram (TED) [1] [2] [7]. TED can efficiently
extract word-level variables as abstract symbols, while si-
multaneously modeling algebraic-Boolean interface. The
TED representation is based on a different, non-binary de-
composition principle than those employed by the decision
or binary moment diagrams; it uses Taylor series expansion
instead.

The paper is organized as follows. In Section II, a brief
overview of TED formalism is given. Section III presents
the first results of using TED for RTL verification. Section

IV describes the application of TED for verification at a
higher level of design abstraction, i.e., algorithm verifica-
tion. It also comments on a potential application of TED
to high level synthesis. Section V contains final conclusions
and comments on future work.

II. TED REPRESENTATION

First, we briefly review the theory of TED and illustrate
its construction. Let f(z,y,...) be a real, differentiable
function corresponding to an algebraic expression F'. Using
Taylor series expansion w.r.to variable z at an initial point,
o = 0, the function can be represented as:

f@,y,..)=flz=0)+zf'(x =0)+ %azzf”(x =0)+....

where f'(z), f"(z), etc, are the successive derivatives of f
w.r.to x. For a large class of expressions typically encoun-
tered in RTL and high level designs (polynomials, etc),
the terms of the expansion, f(x = 0) and the successive
derivatives of f evaluated at zy = 0, do not depend on =z,
but depend on the remaining variables in the support of
f- The expressions corresponding to those terms are then
decomposed with respect to the remaining variables, one
at a time.

The resulting decomposition is stored as a directed
acyclic graph whose nodes represent the terms of the ex-
pansion. The number of children at each node depends on
the order of the polynomial expression (w.r.t its decompos-
ing variable) rooted at that node. Analogous to BDDs and
*BMDs, the resulting graph is reduced and normalized, al-
though the reduction and normalization rules are governed
by different principles. The resulting reduced, ordered, nor-
malized Taylor Expansion Diagram is canonical for a fixed
variable ordering.
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Fig. 1. Decomposition node in TED

Figure 1 shows one-level decomposition of function
f(z,y,...) at variable z. The nodes f(x =0,y,...), f'(x =



0,y,...), etc, represent functions that depend only on the
remaining variables: y, etc.

We shall refer to the k-th derivative of a function rooted
at node v with variable x as a k-child of v: f(z=0) is a
0-child, f'(x=0) is a 1-child, f"”(x=0) is a 2-child, etc. We
shall also refer to the corresponding arcs as 0-edge (dot-
ted), I-edge (solid), 2-edge (double), etc. Furthermore, the
graph edges are assigned weights, computed directly from
the coeflicient of Taylor expansion.

Figure 2 shows the construction of the TED for a sim-
ple algebraic expression, F = (A + B)(A + 2C) = A? +
AB + 2AC + 2BC. Let the ordering of variables be
A,B,C. The decomposition is performed first with re-
spect to variable A. The terms of the Taylor expansion
are: F(A=0,B,C) =2BC, F'(A=0,B,C) = B+2C,
and 3 - F"(A = 0,B,C) = 1. This decomposition is de-
picted in Figure 2(a). Next the Taylor expansion is applied
to the resulting non-trivial terms F(0), F'(0) with respect
to variable B, shown in Figure 2(b), and subsequently with
respect to variable C. The resulting diagram is depicted
in Figure 2(c). Note the multiplicative weights assigned to
the edges (default weight is 1).

(A+B)(A+2C) = A% + AB + 2AC + 2BC
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Fig. 2. TED construction for (A + B)(A + 2C)

Conversely, the function corresponding to the TED in
Figure 2 can be derived as follows. Every path from the
root node to a non-zero vertex corresponds to a non-zero
term in the expression. Traversing the 2-edge from root
node A to the terminal node 1 leads to the term: A2 -
1 = A2, Similarly, following the path of 1-edges from A
to B to 1, corresponds to A - B -1 = AB. Finally, the
paths leading to terminal 2 give A- B°-C -2 = 2AC and
AY.B.C-2=2BC. All the terms are then added, giving
the expression F' = A%2 + AB + 2AC + 2BC.

Figure 3 shows an example of TED representation for
X?, where X is encoded as an n-bit (here 3-bit) vector,
ie, X = Z?;()l 2iz;. Sometimes such a decomposition of
algebraic variables into bits is needed, if the individual bits
appear explicitly in the design. In general, the complexity

of TED for X* is linear in the number of bits for a fixed
value of k, regardless of the degree k.

X2= (8x3+4x2+2x1+x0)°

Fig. 3. TED representation for X2 encoded in 3 bits

Complex expressions can be composed from the simpler
ones using composition rules described in [2]. The compo-
sition of two TEDs is similar to that of BDD’s APPLY op-
erator in the sense that it is a recursive process. Starting
from the roots of the two TEDs, the TED of the result for a
given operation is constructed by recursively constructing
all the non-zero terms of the two functions, and combining
them to form the diagram for the new function.

In [2] and [7] we described in detail how high-level RTL
computations can be represented as polynomials of finite
degree and how TEDs can be constructed for various RTL
designs using ADD and MULT composition operations. We
shall now present the first experimental results using TED
representation.

I1I. IMPLEMENTATION AND EXPERIMENTAL RESULTS

Taylor Expansion Diagrams have been implemented as
a software library package integrated within an RTL vali-
dation and verification framework of VIS [8] [7]. The data
structure stores the graph as an interconnection of nodes
and edges and provides capabilities to perform all possible
operations on TEDs, such as: ADD, SUB, MULT, MULTI-
PLEX, REDUCE, NORMALIZE, EQUIVALENCE_VERIFY, etc.
It takes as input a behavioral or RTL description of the
design in Verilog format. A parser analyzes the design to
identify both word-level (algebraic) and Boolean variables.
Starting from the primary inputs, TEDs are constructed
for all intermediate signals using the TED operators until
the TEDs for the primary outputs are generated. Anal-
ogous to BDDs and *BMDs, the TED package generates
graph structure in a reduced and canonical form and stores
it in a look-up table implemented as a unique table.

Using the TED package we performed a number of ex-
periments to analyze the power of TED representations.
We now present the first set of results of this prototype
tool for a number of practical applications.

A. RTL Verification

During the process of high-level/architectural synthesis,
the HDL description often proceeds through a series of
high-level transformations. For example, RTL computa-
tion AC' + BC can be transformed into an equivalent one,



(A + B)C, which better utilizes the hardware resources.
TEDs can be used to verify the correctness of such trans-
formations by proving equivalence of the above expressions,
regardless of the word size of the algebraic variables. We
performed numerous experiments to verify the equivalence
of purely algebraic expressions. Results indicate that both
time and memory usage required by TEDs to perform such
a verification are orders of magnitude smaller as compared
to both BDDs and *BMDs.

An important feature of TEDs is their capability to
represent designs containing both algebraic operators and
Boolean logic. This is illustrated in Figure 4, where the two
functionally equivalent designs differ in the organization of
the computation performed. The TED representation can
be used to prove their equivalence. First, the arithmetic
variables A and B are partially expanded into arithmetic
(Ani, Ao, Bri,Bi,) and bit-level (ag,by) variables. The
TEDs are then built for arithmetic operators from their
components. The TEDs for the Boolean logic s; and ss
as a function of ay, by are then constructed, and composed
with the corresponding arithmetic functions to create the
final representations for the outputs.

Fig. 4. Equivalence check for two RTL designs using TED. The
TEDs for the two designs are isomorphic

We used a generic design (F'2) of Figure 4 and performed
experiments to verify the equivalence of functions F'1 and
F2. In order to observe the power of TEDs in the presence
of an algebraic-Boolean interface, the size of the algebraic
signals A, B was kept constant at 32 bits, and the word
size of the comparator, or the equivalent Boolean logic, was
varied. As the size of Boolean logic in the design increases,
the number of bits extracted from A, B also increase (the
figure shows it for single bits). Table I lists our preliminary
results obtained with TED for this design and compares
them to those of *BMDs. We observed that as the size of
Boolean logic increases, TED behavior converges to that of
*BMDs.

Limitations: For designs containing Boolean signals or
bit-vectors derived from internal word-level signals, alge-
braic variables corresponding to those word-level signals
have to be decomposed into smaller bit vectors or single
bits; at this point the power of abstraction of TEDs is lost.
One should also keep in mind that TEDs are applicable to
functions that are continuous and have finite Taylor series
expansion. Therefore functions such as k%, and algebraic

TABLE I
Size oF TED vS. BOOLEAN LOGIC

bits *BMD | TED | Norm. TED
(k) Size CPU Size CPU Size CPU
4 4620 107s 783 24s 194 44s

8 15K 87s 5174 13s 998 T4s
12 19K 93s 5112 12.9s 999 92s
16 23.9K 249s 22.3K 94s 4454 104s
18 - >12 hrs 67.9K 22min 12.8K 29mins
20 - >12 hrs - >12 hrs - >12 hrs

expressions involving min, maz and absolute values cannot
be represented by TEDs.

B. System-level Verification

We performed experiments to evaluate the power of TED
representation to represent large, system-level designs, such
as an n X n array of processing elements (PEs), shown in
Figure 5 (a). The design is part of a low power design
of a motion estimation architecture. The original design
has been simplified to accommodate the limitation of the
TED representation: computations |A — B| were replaced
by A — B since TED cannot efficiently deal with compu-
tation of absolute values. Similarly, the word-wide com-
parators were removed as they would need to be modeled
by Boolean logic. Each processing element can be pro-
grammed to perform different types of computations, such
as those shown in Figure 5 (b) and (c).
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Fig. 5. An n X n array of processing elements.

Taylor Expansion Diagrams were used to represent the
final expression corresponding to both types of computa-
tions performed by the array. For each computation, the
PE takes as input two 8-bit numbers A and B and com-
putes either A — B or A2 — B2. Tables II and III show the
results of experiments when configuring each PE to com-
pute A; — Bj and A} — B3, respectively. The size of the
n X n array varied for n = 4 to n = 16. The results for
non-normalized and normalized TEDs are compared with
those for *BMDs. We were unable to construct the BDDs
for any size n of the array.



TABLE II
PE COMPUTATION: (A; — Bj).

Array size *BMD | TED | Norm. TED
(n xn) Size | CPU | Size | CPU | Size | CPU
4x 4 66 3.1s 11 1s 10 1s
6X 6 98 3.4s 15 1.5s 14 1.5s
8x 8 130 3.5s 19 1.5s 18 2s
16x16 258 9s 35 2s 34 3.8s

From Table II it is clear that while we were able to con-
struct both *BMDs and TEDs for all the designs, the num-
ber of nodes required for TEDs is much smaller. Since the
computations performed by the array are only add and sub-
tract, *BMDs are able to represent them linearly. However,
when the PE is configured to compute A7 — B?, and the
size of the array is increased from 4 x 4 to 16 x 16, *BMDs
are unable to represent the final computation in computer

memory. The results for this experiments are given in Ta-
ble III.

TABLE III
PE COMPUTATION: (A7 — BY).

Array size *BMD | TED | Norm. TED
(n x n) Size CPU | Size | CPU | Size | CPU
4x 123 3s 11 1.2s 10 1.2s
8x 8 6842 112s 19 1.5s 18 1.6s
16x 16 out of mem - 35 7s 34 8.8s

IV. HIGH LEVEL VERIFICATION AND SYNTHESIS

As shown earlier, TED provides a simple canonical way
to express abstract algebraic expressions. Thus two ques-
tions arise: First, can TED be used to verify the equiva-
lence of two mathematical expressions representing designs
on algorithmic level? Second, can TED can be used for high
level synthesis, similarly to the way BDDs are used for RTL

synthesis? The remainder of this section addresses these is-
sues.

A. Verifying Equivalence of Algorithmic Specifications

Recently, we have observed the power of Taylor Expan-
sion Diagrams to represent and verify designs on higher
levels of abstraction, namely at the algorithm level. Many
arithmetic computations present in DSP algorithms involve
manipulation of polynomials, which can efficiently be repre-
sented with TEDs. This suggests applicability of TEDs to
algorithm verification, verification of error correction codes,
cryptography, etc.

In order to check the capability of TED to verify algo-
rithmic specifications, we selected a non trivial example
from the DSP world, namely the computation based on
FFT. Using TED as canonical representation, we proved
the equivalence between the following computations: 1)
FFT, followed by product computation and inverse FFT
(IFFT) operations of the result, and 2) the temporal con-
volution on the same input vector. These computations
are illustrated in Figures 6 and 7. The computation flow

in Figure 6(a) first performs FFT operation on two vectors
of real numbers, A(7) and B(7); it then computes the prod-
uct of the results (producing complex numbers FAB(7));
and finally computes the inverse FFT operation, IFFT(i).
Figure 6(b) shows the TED graph, automatically generated
by the package, for one of the intermediate results, the real
part of FAB2. Figure 6(c) shows the TED graph for one
of the outputs, the real part of IFFTO.
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Fig. 6. FFT computation: a) Block diagram; b) TED for real part
of FAB2; ¢) TED for real part of IFFT0

The computation shown in Figure 7 performs convolu-
tion operation directly in the time domain, producing a
vector of real numbers, C(4) "l A(k) - B(i — k).
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Fig. 7. Convolution computation: a) Block diagram; b) TED for real
part of C0, isomorphic with I FFT0

Using current version of our software we were able to
prove the equivalence of the two algorithms shown in the
figures. That is, the TED graphs for IFFT (i) and C(7)



are isomorphic for all values of 7 in the input vectors. The
TED graph shown in Figure 7 represents function C'(0) =
4{A(0)B(0) + A(1)B(3) + A(2)B(2) + A(3)B(1)}, which is
identical to that of IFFT(0).

Notice that FFT transforms a vector of real numbers
(A;, B;) into a vector of complex numbers (FAB;). This
does not pose any problems for the TED representation
that works equally well over the complex domain. The real
and imaginary parts of the result of a computation can be
stored as separate, properly labeled outputs. In fact, it can
be easily shown that TED diagrams can represent polyno-
mial function over an arbitrary Field. The only modifica-
tion required is that the weights on the edges are no longer
real or integer numbers, but elements of the field, and that
the composition (multiplication and addition) is performed
with the respective operator of the field.

As an example, consider the Galois Field GF(8) defined
by the polynomial root P[X] = X® + X + 1. Let a° de-
note the primitive element of GF(8). Consider a poly-
nomial Q[XY] = (a*X + a?Y)(a*X + a'Y). It can be
shown that the TED of Q[XY] is isomorphic to the TED
of R[IXY] = a®X? + a®Y? which proves the equivalence of
the two expression over GF(8).

B. Application to High Level Synthesis

We have recently observed that TED can also be em-
ployed in architectural synthesis. In this application, the
canonical structure of the TED can serve as a common
representation of a generic, infinite precision computation,
where all symbolic variables have infinite word width. Sev-
eral architectural solutions (data flows) can be derived from
such a representation. In practice, they will differ accord-
ing to some metric, such as hardware cost of operators and
“noise” due to a finite precision (finite number of operand
bits), etc. This point is illustrated in Figure 8. The two
solutions differ in cost, complexity and the computation
noise; each multiplication introduces a truncation error,
while the addition result can be kept exact by adding a

single carry-out bit.

(A+B)C

A C B C A B

Fo= (a8

Fig. 8. Application of TED to high level synthesis

F1=AC +BC

Another potential application of TED would use the
canonical structure of the TED graph to find common
factors in large expressions. Consider for example the
following expressions: F' = ab + ac + bc + ad + bd and

G = ab + ae + be + ad + bd, where proper factorization
is needed to efficiently represent the computation. Here,
the optimal factorization F' = (a + b)(c + d) + ab, and
G = (a+b)(e+d) + ab, would result in only four additions
and three multiplications for each function. This problem
is similar to that of BDD-based logic synthesis that rely on
structural BDD decomposition, employed for example by
the BDS system [9].

V. CONCLUSIONS AND FUTURE WORK

Based on our initial experience, TED seems to be a
promising representation for RTL and algorithmic level ver-
ification. It also hold some promise for high level synthe-
sis. Compared to classical high level synthesis, TED offers
an opportunity to simplify, factorize and decompose the
mathematical expression according to a given pattern, to
be efficiently implemented in hardware.

A number of open issues remain to be solved in order to
make TED a successful high level verification and/or syn-
thesis tool. One of them is finding an ordering of variables
that will minimize the size of the diagram. While good
ordering algorithms exist for BDDs in terms of Boolean
variables, these techniques will have to be reevaluated in
the presence of algebraic and binary variables of TED.

Another aspect of TEDs that deserves future research
is their use in symbolic simulation. Current methods use
BDDs or textual equations to accumulate symbolic expres-
sions in the course of symbolic simulation. However, the
use of BDDs to store practical traces is limited by their ex-
ponential size, while textual equations are neither canon-
ical nor reducible. TEDs provide a compact and canoni-
cal representation for symbolic computations representing
polynomial functions. Thus, the use of TEDs for symbolic
simulation appears to be promising.
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