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Email: david.gnaedig@turboconcept.com
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This paper proposes a new approach to designing low-complexity high-speed turbo codes for very low frame error rate appli-
cations. The key idea is to adapt and optimize the technique of multiple turbo codes to obtain the required frame error rate
combined with a family of turbo codes, called multiple slice turbo codes (MSTCs), which allows high throughput at low hardware
complexity. The proposed coding scheme is based on a versatile three-dimensional multiple slice turbo code (3D-MSTC) using
duobinary trellises. Simple deterministic interleavers are used for the sake of hardware simplicity. A new heuristic optimization
method of the interleavers is described, leading to excellent performance. Moreover, by a novel asymmetric puncturing pattern,
we show that convergence can be traded off against minimum distance (i.e., error floor) in order to adapt the performance of
the 3D-MSTC to the requirement of the application. Based on this asymmetry of the puncturing pattern, two new adapted iter-
ative decoding structures are proposed. Their performance and associated decoder complexities are compared to an 8-state and
a 16-state duobinary 2D-MSTC. For a 4 kb information frame, the 8-state trellis 3D-MSTC proposed achieves a throughput of
100 Mbps for an estimated area of 2.9 mm2 in a 0.13µm technology. The simulation results show that the FER is below 10−6 at
SNR of 1.45 dB, which represents a gain of more than 0.5 dB over an 8-state 2D-MSTC. The union bound gives an error floor that
appears at FER below 10−8. The performance of the proposed 3D-MSTC for low FERs outperforms the performance of a 16-state
2D-MSTC with 20% less complexity.
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1. INTRODUCTION

Turbo codes [1] are known to be very close to the Shan-
non limit. They are often constructed as a parallel concate-
nation of binary or duobinary [2] 8-state or 16-state recur-
sive systematic convolutional codes. Turbo codes with 8-state
trellises have a fast convergence at low signal-to-noise ratios
(SNRs) but an error floor appears at high SNRs due to the

This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

weak minimum distance of these codes. For interactive, low-
latency applications such as video conferencing requiring a
very low frame error rate, an automatic repeat request (ARQ)
system combined with a turbo code [3] cannot be used. Since
this kind of application requires low latency, the block size
cannot exceed few thousand bits. At constant block size, for
very low frame error rate applications, several alternatives
can be used. First, the more efficient 16-state trellis encoder
can replace the 8-state trellis encoder at a cost of a dou-
ble hardware complexity [4]. These encoders have the same
waterfall region but the error floor region is considerably
lowered due to the higher minimum distance. The second
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alternative is to use a serial concatenation with an outer code,
for example, either a Reed Solomon code [5] or a BCH code
[6]. To achieve very good performance with these concatena-
tions, a very large interleaver is needed to uniformly spread
the errors at the output of the turbo decoder. The use of such
an interleaver results in a long latency that is not acceptable
for interactive services. Moreover, these serial concatenations
decrease spectral efficiency.

The third alternative is to use multiple turbo codes. mul-
tiple turbo codes were introduced in [7] by adding a third
dimension to the two-dimensional turbo code using re-
duced state trellises. It was shown in [8] that an increase of
50% of the minimum distance can be obtained by adding a
third dimension to the turbo code. Using an 8-state trellis,
this parallel code construction results in an equivalent or a
higher minimum distance than for 16-state two-dimensional
turbo codes. Other work on the constituent codes of three-
dimensional turbo codes has been done by analyzing their
convergence properties using extrinsic information trans-
fer analysis [9], but these analyses do not handle the prob-
lem of designing good three-dimensional interleavers. Most
of the designs of multiple turbo codes use random or S-
random interleavers [7, 10], which are not efficient for scal-
able hardware implementation. Indeed, these types of in-
terleavers are implemented in hardware as a table contain-
ing the interleaved address of all the symbols of the frame.
Since practical applications generally require versatility, that
is, several frame lengths and code rates, the storage of all
the possible interleavers can represent a huge amount of
memory.

In this paper, we generalize the multiple slice turbo codes
(MSTCs) presented in [11] to the three-dimensional case.
The idea is to propose a new and more efficient coding so-
lution for high throughput, low hardware complexity, very
low frame error rate applications. The use of MSTCs guar-
antees a parallel decoding architecture thanks to the way
they are constructed. The careful design of a deterministic
three-dimensional interleaver leads to a very simple address
generation scheme and a high minimum distance for the
code.

The paper is divided into five sections. In Section 2,
multiple slice turbo codes are described, together with the
interleaver construction. In Section 3, the design of three-
dimensional MSTCs and of the interleavers is addressed.
Then new decoding structures for three-dimensional codes
are introduced in Section 4. Finally, the performance of the
2D-MSTC and 3D-MSTC is summarized in Section 5 and
their complexities are compared in Section 6.

2. MULTIPLE SLICE TURBO CODES

The idea of multiple slice turbo codes (MSTC) was proposed
by Gnaedig et al. [11]. The same idea has been mentioned
independently in [12]. The aim of MSTCs is to increase by
a factor P (the number of slices) the decoding parallelism of
the turbo decoder without memory duplication. The princi-
ple of MSTCs is based on the following two properties.

(i) In each encoding dimension, the information frame
of the N m-binary symbols is divided into P blocks
(called “slices”) of M symbols, where N =M·P. Then,
each slice is encoded independently by a convolutional
recursive systematic convolution (CRSC) code. Finally,
puncturing is applied to generate the desired code rate.

(ii) The permutation Πi between the natural order of the
information frame and the interleaved order of the ith
dimension has a particular structure avoiding memory
conflicts when a parallel architecture with P decoders
is used.

The resulting MSTC is represented by the triplet (N ,M,P).
After describing the construction of the interleaver, we

will recall some simple rules for building efficient two-
dimensional MSTCs (2D-MSTCs). Then, we will general-
ize these rules to the three-dimensional case (3D-MSTC).
Note that all the results given in this paper are obtained with
duobinary turbo codes [2]. The same results can also be used
for classical turbo codes.

2.1. Multiple slice interleaver construction

The interleaver is designed jointly with the memory orga-
nization to allow parallel decoding of the P slices. In other
words, at each symbol cycle k, the interleaver structure allows
the P decoders to read and write the P necessary data sym-
bols from the P memory banks MB0, MB1, . . . , MBP−1 with-
out conflict. Since only one read can be made at any given
time from a single-port memory, in order to access P data
symbols in parallel, P memory banks are necessary.

The interleaver design is based on the one proposed
in [13]: The interleaver structure presented in Figure 1 is
mapped onto a hardware decoding architecture allowing a
parallel decoding process.

The frame is first stored in the natural order in P mem-
ory banks, that is, the symbol with index j is stored in the
memory bank � j/M� at the address j mod M.

When considering the encoding (or decoding) of the ith
dimension of the turbo code, the encoding (decoding) pro-
cess is performed on independent consecutive blocks of M
symbols of the permuted frame: the symbol with index k is
used in slice r = �k/M� at temporal index t = k mod M.
Note that k = M · r + t, where r ∈ {0, . . . ,P − 1} and
t ∈ {0, . . . ,M − 1}. For the symbol with index k of the inter-
leaved order, the permutation Πi associates a corresponding
symbol in the natural order with index Πi(k) = Πi(t, r). To
avoid memory conflict, the interleaver function is split into
two levels: a spatial permutation Πi

S(t, r) and a temporal per-
mutation Πi

T(t, r), as defined in the following:

Πi(k) = Πi(t, r) = Πi
S(t, r) ·M + Πi

T(t, r). (1)

The symbol with index k in the interleaved order is read
from memory bank Πi

S(t, s) at address Πi
T(t, r). When coding

(or decoding) the noninterleaved dimension (or dimension
0), the frame is processed in the natural order. The spatial
and temporal permutations are then simply replaced by iden-
tity functions (Π0

S(t, r) = r and Π0
T(t, r) = t).
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Figure 1: Interleaver structure for the (N ,M,P) code.
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Figure 2: A basic example of an (18, 6, 3) code with ΠT(t) = {1, 4, 3, 2, 5, 0} and A(t mod 3) = {0, 2, 1}.

The spatial permutation allows the P data read-out to be
transferred to the P decoders performing the max-log-MAP
algorithm [14] (called the SISO algorithm). They are called
SISO in Figure 1. Decoder r receives the data from memory
bank Πi

S(t, s) at time t. For all fixed t, the function Πi
S(t, r) is

then a bijection between the decoder index r ∈ {0, . . . ,P−1}
and the memory banks {0, . . . ,P − 1}. To simplify the design,
the shuffle network ΠS of Figure 1 is made with a simple bar-
rel shifter, that is, for any given time t, Πi

S(t, r) is a rotation of
amplitude Ai(t). Furthermore, to maximize the shuffling be-
tween dimensions, we constrain function Πi

S(t, r) such that
every P consecutive symbols of any slice come from P dis-
tinct memory banks. Thus, for a given r, the function Πi

S(t, r)
is bijective and P-periodic. This means that for a given r, the
function Πi

S(t, r) is a bijection between the temporal index
t ∈ {0, . . . ,P− 1} and the set {0, . . . ,P− 1} of memory bank

indices. Moreover, Πi
S(t, r) should also be P-periodic in the

variable t, that is, Πi
S(t, r) = Πi

S(t + P, r). The amplitude of
the rotation Ai(t) is then a P-periodic function and the spa-
tial permutation is given by

Πi
S(t, s) = (Ai(t mod P) + s

)
mod P. (2)

2.2. A simple example of an interleaver

We construct a simple (N ,M,P) = (18, 6, 3) 2D-MSTC to
clarify the interleaver construction. Let the temporal per-
mutation be ΠT(t) = {1, 4, 3, 2, 5, 0} (i.e., ΠT(0) = 1,
ΠT(1) = 4, . . .) and let the spatial permutation be a circu-
lar shift of amplitude A(t mod 3), that is, the slice of index
r is associated with the memory bank of index ΠS(t, r) =
(A(t mod 3) + r) mod 3, with A(t mod 3) = {0, 2, 1}. The
spatial permutation is then bijective and 3-periodic.
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(a) (b) (c)

Figure 3: Primary and secondary cycles: (a) noncycle, (b) primary
cycle, and (c) secondary cycle.

The interleaver is illustrated in Figure 2, which shows
the permutations for the 6 temporal indices t = 0(2.a),
t = 1(2.b), t = 2(2.c), t = 3(2.d), t = 4(2.d), and t = 5(2.c).
The 18 symbols in the natural order are separated into 3 slices
of 6 symbols corresponding to the first dimension. In the sec-
ond dimension, at temporal index t, symbols ΠT(t) are se-
lected from the 3 slices of the first dimension, and then per-
muted by the spatial permutation ΠS(t, r). For example, at
temporal index t = 1(b), symbols at index ΠT(1) = 4 are
selected. Then, they are shifted to the left with an amplitude
A(1 mod 3) = 2. Thus, symbols 4 from slices 0, 1, and 2 of
the first dimension go to slices 1, 2, and 0 of the second di-
mension, respectively.

2.3. Optimization of a two-dimensional interleaver

Optimization of an interleaver Π aims to fulfill two per-
formance criteria: first, a good minimum distance for the
asymptotic performance of the code at high signal-to-noise
ratios (SNRs); second, fast convergence, that is, to obtain
most of the coding gain performance in few decoding iter-
ations at low SNRs. The convergence is influenced by the
correlation between the extrinsic information, caused by the
presence of short cycles in the interleaver. The cycles that are
more likely to occur are primary and secondary cycles, as de-
picted in Figure 3. When these cycles correspond to combi-
nations of low input-weight patterns leading to low weight
codewords in the RSC constituent codes, they are called pri-
mary and secondary error patterns (PEPs and SEPs).

In [11, 15], the influence of the temporal and spatial per-
mutations on these error patterns has been studied, using the
following:

ΠT(t) = α · t mod M, (3)

ΠS(t, s) = A(t mod P) + s mod P, (4)

where α and M are mutually prime, and A(t mod P) is a bi-
jection between {0, . . . ,P − 1} and {0, . . . ,P − 1}. Equation
(4) for the spatial permutation is a circular shift of amplitude
A(t mod P), which can be easily implemented in hardware.

In order to characterize primary cycles and PEPs, other
authors have introduced spread [16, 17, 18] and used the
spread definition to improve the interleaver gain. In [11],
an appropriate definition of spread is used taking into ac-
count the slicing of the constituent code. The spread between
two symbols is defined as S(k1, k2) = |k1 − k2|M + |Π(k1) −
Π(k2)|M , where |a− b|C is equal to min(|a− b|,C− |a− b|)
if �a/C� = �b/C� (this condition implies that the symbols

a and b belong to the same slice when C = M), and is
equal to infinity otherwise. The overall minimum spread is
then defined as S = mink1,k2 [S(k1, k2)]. Low weight PEPs
are eliminated with high spread. Since the spatial permuta-
tion is P-periodic and bijective, two symbols separated by
less than P symbols in the interleaved order are not in the
same slice in the natural order. Their spread is then infi-
nite. Using the definition of spread, the optimal parameter
α maximizes the spread of the symbols separated by exactly
P symbols.

Since the weight of the SEPs does not increase with high
spread, we choose the spatial permutation in order to maxi-
mize the weight of these patterns. This weight is maximized
for irregular spatial permutations. For a regular spatial per-
mutation (e.g., A(t) = a · t + b mod P, where a and P are
relatively prime and b > 0) many SEPs with low Hamming
weight are obtained [11]. To characterize the irregularity of a
permutation, dispersion was introduced in [17]. In [15], an
appropriate definition of dispersion is proposed to charac-
terize the irregularity of the spatial permutation. First, for a
couple t1, t2 ∈ {0, . . . ,P−1}2, a displacement vectorDv(t1, t2)
of the spatial permutation is defined as Dv(t1, t2) = (∆t,∆A),
where ∆t = |t1 − t2|M and ∆A = |A(t1) − A(t2)|P . Let
D = {t1, t2 ∈ {0, . . . ,P − 1}2,Dv(t1, t2)} be the set of dis-
placement vectors. The dispersion is then defined as the car-
dinality of D, that is, the number of different couples. It can
be observed that the number of low weight SEPs decreases
with high dispersion. This simple property is explained in de-
tail in [15]. Some other criteria about the choice of the spatial
permutation are also given in [15].

The criteria of spread and dispersion maximization in-
crease the weight of PEPs and SEPs and improve the conver-
gence of the code. But, with increasing frame size, the study
of PEPs and SEPs alone is not sufficient to obtain efficient in-
terleavers. Indeed, more complex error patterns appear, pe-
nalizing the minimum distance. In practice, the analysis and
the thorough counting of these new patterns are too complex
to be performed. Thus, to increase the minimum distance of
the code, four coefficients β(i)i=0,...,3, multiple of 4, are added
to the temporal permutation:

ΠT(t) = α · t + β(t mod 4) mod M. (5)

The minimum distance is evaluated using the error im-
pulse method proposed by Berrou et al. [19], which gives a
good approximation of the minimum distance. Its results can
be used to compute the union bound of the code.

3. THREE-DIMENSIONAL MULTIPLE
SLICE TURBO CODES

In order to lower the error floor of the two-dimensional 8-
state MSTC, a third dimension is introduced into the code.
The goal is to increase the weight of the low weight error pat-
terns of the 2D-MSTC, while maintaining good convergence
at low SNRs. The interleaver of the third dimension has the
same structure as the interleaver of 2.1 in order to allow the
parallel decoding of the slices in each of the three dimensions.
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Figure 4: Three-dimensional multiple slice turbo code structure.

3.1. 3D slice turbo code construction

The generalization of the 2D slice turbo code to a 3D slice
turbo code is straightforward (see Figure 4). Like for the sec-
ond dimension, the third dimension is also sliced and its as-
sociated interleaver Π2 has the same structure as that of Π1:

Π2(k) = Π2(t, r) = Π2
S(t, r) ·M + Π2

T(t, r). (6)

The generation of the addresses in the third dimension is
simple and, due to the construction of Π2, the architecture
of Figure 1 can also compute the third dimension interleaver,
with a degree P of parallelism, with negligible extra hardware
(only interleaver parameters need to be stored).

Since the first initial paper on turbo codes in 1993 [1],
much work has been done on efficient design methodolo-
gies for obtaining good 2D interleavers [16, 20, 21]. There
are several papers dealing with multidimensional turbocodes
[7, 9, 22, 23] but, unfortunately, very few papers consider
the complex problem of the construction of good 3D inter-
leavers. The 3D interleaver designs presented in [7, 10, 24]
are based on random and S-random interleavers. Note that
dithered relative prime (DRP) interleavers introduced by
Crozier and Guinand in [25] have been used in [26] to de-
sign low-complexity multiple turbo codes. Moreover, none
of these papers deals with the construction of good inter-
leavers for duobinary codes. We have restricted our efforts to
obtaining a class of couples (Π1,Π2) for 3D-MSTC verifying
the following three properties.

(1) A 3D interleaver (Id,Π1,Π2) is said to be a “good”
3D interleaver if the three 2D interleavers defined by
(Id,Π1), (Id,Π2), (Π1,Π2) = (Id,Π1−1 ◦ Π2) are “not
weak,” that is, the spreads for the temporal permuta-
tions and the dispersions for the spatial permutations
are optimized by using the 2D interleaver construction
developed in Section 2.3.

(2) There is a maximum global spreading of the message
symbols over the slices, that is, the maximum number
S3 of common symbols between 3 distinct slices should
be minimized.1

1The minimal value of S3 is �M/P2�. When P2 dividesM, the appropriate
choice of temporal permutation leads to S3 =M/P2.

Table 1: Puncturing patterns P1, P2, and P3 of different periods.

h h = 1 h = 3 h = 4 h = 8 h = 16

P1 1 011 0111 01111111 01111111111111111

P2 1 101 1101 11110111 11111111011111111

P3 0 110 0101 10001000 10000000100000000

(3) There is a regular intersymbol permutation ((A,B) be-
comes (B,A)): in the second dimension, all even in-
dices are permuted; in the third dimension, all odd in-
dices are permuted.

Note that these three conditions are an a priori choice,
based on the authors intuition and on their work on 2D in-
terleavers. Simulation results show that they effectively lead
to efficient 3D turbo codes. Since the constituent codes are
duobinary codes of rate 2/3, the overall rate of the turbo
code without puncturing is 2/5. Puncturing is applied on
the parity bits and on the systematic bits to generate the de-
sired code rate. It will be shown, however, in the sequel that
the puncturing strategy has a dramatic influence on perfor-
mance. Moreover, the interleaver optimization process can
use the properties of the puncturing strategy, as will be seen
in the next section.

3.2. Puncturing

With irregular spatial rotations, the influence of puncturing
on the performance of the rate 1/2 three-dimensional mul-
tiple slice turbo code has been studied. For a duobinary 3D-
MSTC, every incoming symbol (2 bits) generates three parity
bits y1, y2, y3. Thus, to obtain a rate 1/2, one third of the par-
ity bits has to be punctured. We define the puncturing pat-
terns P1, P2, and P3 of parity bits y1, y2, y3 as a stream of
bit of periodicity h, where a “1” means that the parity bit is
transmitted and a “0” means that the parity bit is discarded.
In our test, the puncturing is uniformly distributed among
the different symbols, that is, one and only one parity bit is
discarded for each information symbol.

Table 1 gives different puncturing patterns for h =
1, 3, 4, 8, and 16. The case h = 1 corresponds, in fact, to
a standard 2D code. The case h = 3 is a regular three-
dimensional code with uniform protection for the three di-
mensions. For h = 4, 8, 16 (h a power of 2), P1 is con-
structed with a “0” in first position, “1” elsewhere, P2 is con-
structed with a “0” in the h/2 − 1 position, “1” elsewhere,
and finally P3 is constructed with a “1” in the first and the
h/2 position and “0” elsewhere. This construction guaran-
tees that a single parity bit is punctured for every incoming
symbol.

The performance of different puncturing patterns of pe-
riod h = 1, 3, 4, 8, 16, 32, and 64 is given in Figure 5 for a
duobinary 8-state MSTC with parameters (2056, 256, 8). The
decoding is a floating point max-log-MAP algorithm [14],
with 10 decoding iterations. The iterative decoding method
used by the decoder is the extended serial decoding structure
proposed in [27]. More details on this method are given in
Section 4.
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Figure 5: Performance of (2048, 256, 8) duobinary 8-state codes with different puncturing patterns with QPSK modulation on an AWGN
channel.

The regular 3D code (h = 3) has no error floor due to
its very high minimum distance: the impulsive estimation
method [19] gives a minimum distance greater than 50. The
drawback is a convergence loss of 0.5 dB at a bit error rate
of 10−4 compared to the 2D code (h = 1). This loss of con-
vergence has already been noted in the literature for binary
turbo codes [8]. It can be explained by the fact that for every
information symbol, the information relative to this symbol
is spread over three trellises, instead of two for a 2D code.
Hence, the waterfall region of the 3D code is at a consider-
ably higher SNR than that of the 2D code.

As shown in [28], a high minimum distance is not needed
to achieve a target FER of 10−7. Indeed, for a 4 kb frame, the
matched Hamming distance (MHD) is around 35. To reduce
the minimum distance of the 3D code and to improve its
convergence, we tend towards a 2D code by puncturing the
third dimension more and more, while the first two dimen-
sions are evenly and far more protected. The 3D codes with
increasing puncturing period h given in Table 1 tend towards
the 2D code: convergence at lower SNR and lower minimum
distance. The 3D code is thus designed to trade off the loss
of convergence with a minimum distance close to the MHD.
The 3D code with puncturing period h = 64 has a conver-
gence loss of less than 0.1 dB, but an error floor appears. The
code of puncturing period h = 32 seems to have a reduced
convergence loss and a high minimum distance.

The asymmetry in the protection of the three dimensions
will be used in the decoder to reduce its complexity and im-
prove its performance. Moreover, the optimal interleaver de-
sign depends on the puncturing patterns of the three dimen-
sions. Thus, the interleaver optimization process has been re-
defined in order to take into account the asymmetric punc-
turing of the code: the first interleaver is chosen to obtain a

DEC 1 DEC 2 DEC 3 DEC 1

Figure 6: Extended serial decoding structure.

good 2D-MSTC with the two highly protected dimensions.
Then, the parameters of the second interleaver, that is, the
third dimension, are selected in order to maximize the mini-
mum distance of the code. The minimal distance is evaluated
using the error impulse method [19]. This optimization pro-
cess in two steps converges easily to an optimal solution and
leads to an estimated minimum distance of 34, given by the
error impulse method.

4. DECODING STRUCTURE

After describing the classical extended serial method [27],
we study the impact of the scaling factors used to scale the
extrinsic information during the decoding process [29]. We
will show that an appropriate choice of scaling factor can in-
crease performance while reducing decoding complexity (hy-
brid extended serial method). Then, we propose a subopti-
mal decoding method (partial serial method and hybrid par-
tial serial method) that allows the third dimension to be de-
coded with a classical two-dimensional turbo decoder thanks
to negligible additional hardware. Performance of the differ-
ent coding schemes is also given.

4.1. Extended serial structure

The extended serial (ES) decoding structure is depicted in
Figure 6. The three-dimensions are decoded sequentially,
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Figure 7: BER and FER comparison between the conventional ES structures and the hybrid HES structures for (2048, 256, 8) duobinary
turbo codes of rate 1/2 over an AWGN channel with the max-log-MAP algorithm (10 full iterations) and h = 32.

DEC 1 DEC 3 DEC 2 DEC 3 DEC 1

(a)

Empty E1 E1+E3 E2 E2+E3 E1Extrinsic
memory

(b)

Figure 8: Partial serial decoding structure and extrinsic memory content (E1, E2, and E3 correspond to extrinsic information produced by
dimension 1, 2, and 3, respectively).

and each dimension receives information from the other two
dimensions. This structure is repeated periodically with a pe-
riod of 3.

With the ES architecture, each decoder uses the extrinsic
information from the other two decoders, and therefore at
least two extrinsic data per symbol must be stored. Thus the
extrinsic memory is doubled.

4.2. Optimization of the decoding structure

Since the three-dimensional code is asymmetric and the third
dimension is weak, during the first iterations, the reliability
of the extrinsic information of the third dimension is low. In
other words, during the first decoding iterations, the compu-
tation of the third dimension is useless and can thus be dis-
carded. Moreover, for a max-log-MAP algorithm, to avoid
performance degradation, extrinsic information is usually
scaled by an SNR-independent scaling factor [29]. This scal-
ing factor increases along the iterations.

By simulation, two different sets of scaling factors were
jointly optimized, one for the first two equally protected di-
mensions and one for the weaker third dimension. For the
third dimension, typically, the scaling factor is 0 for the first
iterations (the third dimension is not decoded in practice)
then it grows from 0.2 to 1 during the last iterations.

Thus, during the first iterations, the turbo decoder iter-
ates only between the first two more protected dimensions
(conventional two-dimensional serial structure S). Then,
during the last iterations, an ES structure is used. This new
structure will be called the hybrid extended serial (HES)
structure.

Figure 7 compares the performance of the conventional
nonoptimized ES structure with the performance of the op-
timized hybrid HES structure for 10 decoding iterations. For
the hybrid structure, the third dimension is not decoded dur-
ing the first 5 iterations. Then its scaling factor grows from
0.2 to 1 during the 5 last iterations. For the ES structure, the
same scaling factor growing from 0.7 to 1 is used for the three
dimensions. The simulation results show that the optimized
structure slightly improves the performance for less compu-
tational complexity and negligible additional hardware. Un-
like the classical structure, the optimized structure takes into
account this unequal protection to improve decoding perfor-
mance.

4.3. Partial serial structure

The ES decoder requires an additional extrinsic memory in
order to store the extrinsic information from the last two
decoding iterations. This extra memory leads to additional



Design of Three-Dimensional Multiple Slice Turbo Codes 815

1

0.1

0.01

0.001

0.0001

1e − 05

1e − 06

1e − 07

1e − 08

1e − 09
0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

Eb/N0

B
E

R

2D-MSTC 8S
3D-MSTC HPS
3D-MSTC PS

(a)

1

0.1

0.01

0.001

0.0001

1e − 05

1e − 06

1e − 07
0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

Eb/N0

FE
R

2D-MSTC 8S
3D-MSTC HPS
3D-MSTC PS

(b)

Figure 9: BER and FER comparison between the conventional PS structures and the hybrid HPS structures for (2048, 256, 8) duobinary
turbo codes of rate 1/2 over an AWGN channel with the max-log-MAP algorithm (10 full iterations) and h = 32.

complexity compared to the 2D-MSTC. In order to adapt
the 2D-MSTC decoder to the case of 3D-MSTC, with no sig-
nificant additional hardware, a new serial decoding, called
partial serial (PS) decoding structure, is introduced. This de-
coding structure is given in Figure 8, and its period is 4:
during one period, dimensions 1 and 2 are decoded once,
while dimension 3 is decoded twice. This structure is said
to be “partial” because the third dimension only benefits
from the extrinsic information of a single dimension: di-
mension 1 or dimension 2. Dimension 1 (or dimension 2)
benefits from the extrinsic information of both dimension
2 (dimension 1, respectively) and dimension 3. These two
data are added in a single memory, which will be read by
the second dimension (first dimension, respectively). Hence,
this structure only requires one extrinsic value per symbol
to be stored. This structure reduces the memory require-
ments but increases the computational complexity. Com-
pared to the ES structure, it is suboptimal, because the third
dimension benefits from one dimension directly, and from
the other indirectly. In terms of complexity, each decoding
iteration of the partial serial (PS) method requires 4 subiter-
ations.

Like for the HES structure, the same two sets of scaling
factors are used with the PS structure leading to the hybrid
partial serial (HPS) structure. As shown in Figure 9, the con-
clusions are the same as for the comparison between the ES
and HES structures: performance improvements for the hy-
brid structure with less complexity.

5. PERFORMANCE

The performance of the proposed 3D-MSTC with h = 32
is compared to the performance of the 2D 8-state MSTC

and 2D 16-state MSTC. All the codes presented in this sec-
tion have a length of 4096 bits constructed with 8 slices of
256 duobinary symbols in every code dimension. They are
compared through Monte Carlo simulations over an AWGN
channel using a floating point max-log-MAP algorithm. Two
comparisons are made at a constant decoder throughput
and delay. First, the asymptotic performance of the different
coding schemes is compared. For this comparison at con-
stant throughput, the computational complexity of one de-
coder increases as the number of required subiterations in-
creases. Then, in order to obtain a fair comparison, the per-
formance is compared for the same computational complex-
ity.

5.1. Asymptotic performance of the codes

Simulation results show that, for the MSTC codes used
here, 10 iterations are sufficient to obtain most of the error-
correction capabilities of the codes. In fact, additional iter-
ations can only increase the SNR for a given BER than less
than 0.1 dB. 2D-MSTCs with 8-state and 16-state trellises are
compared in Figure 10 with 3D-MSTCs, for both HES and
HPS decoding structures.

The FER results show that the 2D codes converge faster
(0.1 dB) than the 3D code in the waterfall region. However,
the union bound curves (denoted by UB) show that the error
floor of the 3D code (minimum distance of 34) is slightly
lower than of the 16-state code (minimum distance 32) at
high SNRs. Compared to the HES decoding structure, the
HPS decoding structure has a loss of less than 0.1 dB over the
whole range of SNRs.

For the asymptotic performance of the codes, the compu-
tational complexity of one decoder increases as the number
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Figure 10: BER and FER of (2048, 256, 8) duobinary turbo codes of rate 1/2 over an AWGN channel with the max-log-MAP algorithm
(asymptotic performance for 10 decoding iterations).

of required subiterations increases. Hence, to achieve a con-
stant decoding throughput and delay, the corresponding de-
coder complexity increases as the number of required subit-
erations increases. This complexity comparison is analyzed
in Section 6.2.

5.2. Comparison at constant computational
complexity

It is obvious that the computational complexity for one de-
coding iteration differs between the different codes. In or-
der to make a fair comparison, simulation results are given at
constant computational complexity, that is, the same num-
ber of subiterations (decoding one dimension of the code).
Thus, the decoding delay is the same for the different codes.
The complexity of a 16-state trellis is assumed to be twice the
complexity of an 8-state trellis. Figure 11 compares the per-
formance for a total J of 20 subiterations of an 8-state trellis.
It can been seen that, at constant complexity, HES is more
efficient than the 2D 16-state MSTC over the whole range
of SNRs. Moreover, HES becomes much more efficient than
2D 8-state MSTC for an FER below 10−4. In addition, at a
target FER of 10−6, it achieves a gain of more than 0.5 dB
over the 2D 8-state code. The 3D-MSTC code with HPS de-
coding structure shows an “error floor” at high SNRs, and
therefore this decoding structure does not seem to be ap-
propriate for this frame size and computational complex-
ity.

When designing turbo codes, it is necessary to trade off
complexity and performance. Thus, before drawing conclu-
sions about the superiority of one over another, a compar-
ison of the complexity of the different decoding schemes is
required.

6. COMPLEXITY COMPARISON

The performance comparison of Section 5.2 pointed out that
for a given computational complexity, the 3D-MSTC with
HES decoding structure outperforms both 2D 8-state and
16-state codes at an FER below 10−4. In terms of area, the
memories of the different solutions have also to be taken into
account. A generic model of area is developed in this sec-
tion. This model is used to compare the different codes (of
Section 5.1) with 10 full decoding iterations for their asymp-
totic performance.

6.1. Complexity modeling

A simple hardware complexity model is given to compare the
area of the different coding schemes described in this paper.
This model assumes an ASIC implementation in a 0.13µm
technology with a clock frequency F. It only takes into ac-
count the computational complexity, that is, the number P
of SISOs working in parallel, and the memory area required
by the turbo decoder. Moreover, there is an additional key
assumption: the decoding latency of a codeword is equal
to, or below, the time required to receive a new codeword
(the frame duration). Thus, a parallel decoder architecture
[11, 15, 30] is needed to perform the required number of it-
erations during the frame duration.

Since the codes are duobinary, a SISO decoder working
at a frequency F can achieve a throughput of 2F Mbps [11].
Let J be the total number of subiterations decoded during the
turbo decoding process and let D (in Mbps) be the through-
put of the code. During one frame duration, every SISO de-
coder can decode 2 · F/D slices. The real-time constraint
implies that the SISO decoders can decode J subiterations
within the reception of one frame, that is, P ≥ J ·D/(2 · F).
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Figure 11: BER and FER of (2048, 256, 8) duobinary turbo codes of rate 1/2 over an AWGN channel with the max-log-MAP algorithm
(constant computational complexity J = 20 subiterations).

The memories required for the decoding process are
composed of the intrinsic memory, which contains the out-
put of the channel, the extrinsic memory of the current de-
coded frame, and an additional buffer to store the next frame
while decoding the current one. The number of extrinsic
memories ηE is equal to 2 for extended serial structures, 1
otherwise. The equation representing the estimation model
is given in

ATD =
⌈
J · D

2 · F
⌉
· ASISO(s) + ηEMemE(k) + 2 ·MemI(k),

(7)

where k is the number of information bits and where �x� =
�x� + 1 and �·� denotes the integral part function. The areas
ASISO(s) of an s-state SISO decoder are given by RTL syn-
thesis in a 0.13µm technology. The SISO algorithm used to
compute its area is a sliding window algorithm. The areas
obtained are 0.3 and 0.6mm2 for 8-state and 16-state SISO
decoders, respectively.

6.2. Comparison

Table 2 gives the values for ηE and J for the different simu-
lated codes presented in Section 5.1. Note that the areas of
memories are also obtained by VHDL synthesis.

The values given in Table 2 show that the 3D 8-state de-
coders can outperform the 2D 16-state decoder in terms of
complexity. Indeed, the size and the number of memories
are the same for the HPS decoding structure, whereas the
complexity of all SISOs is 30% higher for the 2D 16-state
code. The HES decoding structure is 60% less complex in
terms of SISO complexity, but the number of memories is
doubled compared to the 2D 16 state code. To conclude on
the relative complexity of this latter example and to choose
between the HES and HPS decoding structure, we need to

compare the total turbo decoder area, for a given throughput
D and information frame size k. The results of this compari-
son are given in Table 2 for a 4096-bit information frame size
and D/2 · F = 0.25. To achieve a rate D/2 · F = 0.25, for a
50 Mbps turbo decoder, the SISO should achieve a through-
put of 200 Mbps. Since the SISO decoder is duobinary, the
required clock frequency is 100 MHz, which is rather conser-
vative. For a 100 Mbps turbo decoder, the clock frequency is
doubled.

Table 2 shows that for a frame size of 4 kb, the 2D 16-state
is the most complex structure. Its complexity is 75% higher
than that of the 2D 8-state code. The complexities of the HES
and HPS decoding structures are equivalent and 40% higher
than that of the 2D 8-state code.

With increasing frame size, the size of the memory to
store the extrinsic information increases. For small frame
sizes up to 5000 bits, the HES decoding structure is less com-
plex than the HPS structure. For longer block sizes, the HPS
structure becomes less complex than the HES structure. The
simulated performance of the HPS decoding structure shows
an “error floor” for small to medium frame sizes and for a
reduced number of iterations. Hence, this decoding struc-
ture may only be attractive for very long frame sizes (above
10 kb) for a number of iterations close to its asymptotic per-
formance.

6.3. Discussion

These complexity results are preliminary results, but they
show that three-dimensional turbo decoders can be effi-
ciently implemented with considerably less complexity than
the two-dimensional decoder with 16-state trellises. The ar-
chitectures of the three-dimensional decoders may be im-
proved by optimizing the tradeoff between performance and
the total number of subiterations. Moreover, the extrinsic
memories for the HES can be reduced by using scaling of the



818 EURASIP Journal on Applied Signal Processing

Table 2: Area of the code of Section 5.1. for a ratio D/2F = 0.25 and k = 4096 bits.

Code Decoding structure ηE J SISO area Memory area Total area

2D 8-state S 1 20 1.45 mm2 0.38 + 0.24 mm2 2.08 mm2

2D 16-state S 1 20 2.97 mm2 0.38 + 0.24 mm2 3.60 mm2

3D 8-state ES 2 30 2.32 mm2 0.38 + 0.49 mm2 3.19 mm2

3D 8-state PS 1 40 2.90 mm2 0.38 + 0.24 mm2 3.53 mm2

3D 8-state HES 2 25 2.03 mm2 0.38 + 0.49 mm2 2.90 mm2

3D 8-state HPS 1 30 2.32 mm2 0.38 + 0.24 mm2 2.95 mm2

extrinsic information throughout the iterations as described
in [31]. Another possible improvement to decrease the com-
plexity of the 3D-MSTC is to use another constituent code
for the third dimension. For example, a 4-state duobinary
trellis can be used to considerably reduce the hardware com-
plexity.

7. CONCLUSION

A new approach to designing low-complexity turbo codes
for very low frame error rates and high throughput appli-
cations has been proposed. The key idea is to adapt and op-
timize the technique of multiple turbo codes to obtain the
required error frame rate combined with a family of turbo
codes, called multiple slice turbo codes (MSTC), that allow
high throughput for low hardware complexity. The proposed
coding scheme is based on a versatile three-dimensional mul-
tiple slice turbo code (3D-MSTC) using 8-state duobinary
trellises. Simple deterministic interleavers have been used for
the sake of hardware simplicity. An efficient heuristic opti-
mization method of the interleavers has been described, lead-
ing to excellent performance. Moreover, by a novel asymmet-
ric puncturing pattern, we have shown that convergence can
be traded off against minimum distance (i.e., error floor)
in order to adapt the performance of the 3D-MSTC to the
requirement of the application. With the asymmetry of the
puncturing pattern, it has been shown that the decoding of
the third dimension (i.e., the most punctured) should be
idled during the first decoding iterations. Two new adapted
iterative decoding structures HES and PES have been pro-
posed. Their performance and associated decoder complex-
ities have been compared to 8-state and 16-state duobinary
2D-MSTC. For frame sizes up to 5000 bits, the HES de-
coding structure achieves lower frame error rates for less
complexity than the HPS decoding structure. For a frame
size of 4 kb, it has been shown that compared to a two-
dimensional turbo code with 8-state trellises, the 3D-MSTC
with HES decoding structure achieves a coding gain of more
than 0.5 dB at a frame error rate of 10−6, at the cost of a
complexity increase of 50%. In addition, compared to a two-
dimensional turbo code with 16-state trellises, the proposed
asymmetric scheme achieves a better tradeoff performance
against complexity. Future work will study the generalization
of these promising results to other code rates and other frame
sizes.
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