
Probability-driven simulated annealing for

optimizing digital FIR filters

E. Boutillon, C. Roland, and M. Sevaux

Université Européenne de Bretagne
UBS - LESTER - Centre de Recherche
F-56321 Lorient – France
marc.sevaux@univ-ubs.fr

Summary. In this paper, we propose to mimic some well-known methods of control
theory to automatically fix the parameters of a multi-objective Simulated Annealing
(SA) method. Our objective is to allow a decision maker to efficiently use advanced
operation research techniques without a deep knowledge of this domain. Classical
SA controls the probability of acceptance using an a priori temperature scheduling5

(Temperature Driven SA, or TD-SA). In this paper, we simply propose to control
the temperature using an a priori probability of acceptance scheduling (Probability
Driven SA, or PD-SA). As an example, we present an application of signal processing
and particularly the design of digital Finite Impulse Response (FIR) filters for very
high speed applications. The optimization process of a FIR filter generally trades-10

off two metrics. The first metric is the quality of its spectral response (measured
as a distance between the ideal filter and the real one). The second metric is the
hardware cost of the filter. Thus, a Pareto-based approach obtained by a multi-
objective simulated annealing is well suited for the decision maker. In this context,
TD-SA and PD-SA method are compared. They show no significant differences in15

terms of performance. But, while TD-SA requires numerous attempts to set an
efficient temperature scheduling, PD-SA leads directly to a good solution.

Keywords: filter design, FIR, simulated annealing, multiobjective optimiza-

tion, temperature regulation, feedback loop.

1 Introduction20

Implementing a Simulated Annealing (SA) algorithm is quite an easy task and
should be done in a few hours. But tuning the parameters for having good
and interesting results is much more difficult. Most of the time, based on a
set of instances (sometimes with known results), the parameters, one by one,
are changed and set to their best values. Of course, interaction between the25

different parameters complicates the task.

2 Boutillon et al.

What motivates this work is to let a decision maker (who often is not a
specialist in optimization, and even less in tuning SA parameters) use the
solver with a minimum number of comprehensive parameters. To achieve this
goal, we try to translate the classical SA parameters to what could be easily30

understood by the decision maker: a probability function and a number of
iterations (a total running time).

In this paper, we consider that the temperature is controlled by a feedback
loop. The feedback is given by the difference between the estimated proba-
bility of acceptance at a given iteration number and the desire probability of35

acceptance at this moment. This technique is applied on a signal processing
problem: the joint optimization (i.e. multiobjective function) of the perfor-
mance of a numerical Finite Impulse Response (FIR) filter and its related
hardware complexity. Related work is presented in [4]. Note that the FIR
filter is one of the key tools of the signal processing domain. The domain40

of application of FIR filter is thus very large (radar, sonar, communication,
sysmography, ...).

The rest of the paper is divided in five sections. Section 2 describes the
problem of FIR filter design and the relative metrics associated to the FIR fil-
ter performances and its hardware cost. Section 3 proposes a literature review45

of known works in the same area, followed by the proposed approach in sec-
tion 4. Numerical experiments are conducted in section 5 before a conclusion
in the last section.

2 The digital FIR filter problem design

This section presents the problem of digital FIR filter design for a high speed50

dedicated architecture. After recalling the definition of a FIR filter, the classi-
cal design flow is given. Then, an alternative method is proposed and the cost
function of performances and complexity are presented. General information
can be found in [8, 12,13].

2.1 Definition of a FIR filter55

A FIR filter is a common tool in signal processing. The input signal of a FIR
filter is a numerical series (typically, the samples of a captor) x(n) indexed
by an integer n. Generally, the signal of interest is corrupted by noise or
other non significant signals. The FIR filter processes the input signal x(n)
and generates a filtered output signal y(n) that rejects part of the jamming60

signal and noise. A FIR filter of order N is characterized by its finite impulse
response (FIR) of length N given by H = (h(0), h(1), ..., h(N − 1) 1. The
output y(n) at time n of the filter H is given by the equation:

y(n) =

N−1∑

k=0

h(k)x(n − k) (1)

PD-SA for FIR filter design 3

This operation is noted y(n) = h(n) ∗ x(n), where ∗ stands for convolution.
The coefficients H of the filter are invariant over time and identical to the65

impulse response of the filter (see Figure 1-a).

0 5 10 15 20 25 30 35
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

Time

M
ag

ni
tu

de

a) Finite impulse response: h(k)

0 0.1 0.2 0.3 0.4 0.5
−120

−115

−110

−105

−100

−95

−90

Frequency

P
ow

er
 S

pe
ct

ru
m

 M
ag

ni
tu

de
 (

dB
)

b) Filter power spectrum: H(f)

Fig. 1. Representation of a FIR filter

In signal processing theory, filters are characterized by their frequency
response. The frequency response H(f) is obtained with the Fourier Transform
(FT) of the finite impulse response (see Figure 1-b). In the sequels, the phase
response will not be considered and we only get focused on the amplitude70

response (i.e. |H(f)|) of the FIR filter (the majority of FIR application in
signal processing).

2.2 The problem of FIR filter synthesis

The classical process of FIR synthesis is divided in 3 steps: first, the ideal filter
is defined according to the spectral characteristic of the signal and the target75

of the application. In general, this filter has cliff transition and this results in
an infinite impulse response. In order to obtain an implementable filter, the
filter constraints are relaxed and the template of an acceptable filter is defined.
For example, a template of band-pass filter is defined by several parameters:
the bounds of the passband frequencies (fi1, fi2), the absolute value of the80

maximum gain in the passband frequencies, the size of the transition bands
(f1, fi1 and f2, fi2) and the rejection factor in the rejection band. V a2 (resp.
V a3) is the maximum (resp. minimum) level for the passband. V a1 is the
maximum level for the rejection band (see Figure 2).

Given a template, the generation of H can be obtained by several methods:85

the Hamming method, the Hanning method, the Remez method, the Kaiser
method and the window method to cite some of the most popular1 [8].

All those methods provide real values of H. The next step is then to
represent the real value in a fix precision format for the implementation. This
task can be tricky because quantization impacts on both performance and90

1 These methods are all available in Matlab.

4 Boutillon et al.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
−40

−35

−30

−25

−20

−15

−10

−5

0

5

frequency

M
ag

ni
tu

de
 (

dB
)

Rejection band

Transition band

Pass band

Rejection Factor

Va1

Va2

Va3

f1 fi1 fi2 f2

Fig. 2. Template of a FIR filter

hardware complexity. Some papers work research an optimal design of FIR
with only one constraint. The effort is concentrated on the quantization of
the filter coefficients to obtain Hq, the quantized impulse response (the value
of Hq are then integer). In the general case, the authors have one objective:
how to limit the degradation of the frequency performance between the real95

and the quantized FIR filter.

2.3 Proposed FIR designs

In this paper, we propose to proceed in a different way than the straightfor-
ward method defined above. The idea is to start from a classical method to
generate H, then quantize H to obtain Hinit

q and then, directly optimize Hinit
q100

by considering jointly the performance and the complexity of the filter. This
approach is quite new and few recent papers proposed to perform FIR design
in a similar way [2,7,10,11,14]. Note that except for [14], all those papers are
single objective optimization methods, and the bi-objective proposal concerns
different criteria using genetic algorithms.

105

Those techniques require two types of metrics: a measure of the perfor-
mance of the filter and a measure of the hardware complexity of the filter.
Since the details of FIR design problem is out of the scope of the paper, the
next two sections describe briefly the algorithm that will be used to compute
those two metrics.110

2.4 Performance measures

The cost function C between the template G(f) and the actual filter Hq(f)
defines the “quality” of the design. Ideally, when C(Hq, G) = 0, then Hq(f)

PD-SA for FIR filter design 5

is inside the template for all frequencies of the application. In the following,
we will consider that, for a given frequency f , if H(f) is inside the template,115

then C(Hq(f), G(f)) = 0, otherwise, C(Hq(f), G(f)) is equal to a weighted
distance of the actual response Hq(f) and the closest limit of the template for
the frequency f .

In practice, the cost function of the template is given by the summation
of C(Hq(fk), G(fk)), fk = k/Nfft for f = 0 · · ·Nfft − 1. The Nfft value of120

Hq(fk) are obtained by a Fast Fourier Transform of Hq on Nfft points. The
details on the computation of the distance is provided in Algorithm 1.

Algorithm 1: Template cost function

initialization step:1

fix parameters cost function (N , Nfft, V a1, V a2 and V a3)2

fix band-limited and stop-band frequencies (f1, f2, fi1 and fi2) // (see3

Figure 2 for some of these parameters)

find a new solution hi with SA algorithm4

calculate: H = log|fft(hi)|5

d1 = d2 = d3 = d4 = 06

i = 17

repeat8

if H(i) > V a1 then9

d1 = d1 + (H(i)− V a1)
α

10

endif11

i = i+112

until i < f113

repeat14

if H(i) > V a2 then15

d2 = d2 + (H(i)− V a2)
α

16

endif17

if i > fi1 and i < fi2 and H(i) < V a3 then18

d3 = d3 + (V a3 −H(i))α
19

endif20

i = i+121

until i < f222

repeat23

if H(i) > V a1 then24

d4 = d4 + (H(i)− V a1)
α

25

endif26

i = i+127

until i < fft size/228

d = d1 + d2 + d3 + d429

6 Boutillon et al.

2.5 Hardware complexity of a filter Hq(z)

In this paper, we assume that the hardware is dedicated to the filter and that
the input rate of the filter is equal to the clock frequency of the hardware. In125

other words, an output sample is computed every clock cycle. The architecture
requires N hardware multipliers, each one dedicated to a specific multiplica-
tion with a fix constant (i.e. hq(k) for the kth multiplier). The architecture of
the FIR filter is presented Figure 3.

h (1)qh (0)q h (2)q h (N−2)q qh (N−1)

Final adder

x(n−2)x(n−1) x(n−N+1)x(n−N+2)

y(n)

x(n)
−1 z−1 z−1z

Fig. 3. Architecture of a FIR filter

Roughly speaking, the complexity of the architecture is composed of three130

terms, the first cost is related to the register required to store the N previous
received input samples (x(n− k))k=0,...,N−1, the second term is the total cost
of the N multipliers and the last term is the cost of the final adder to sum
the N partial results (hq(k)xn−k)k=0,...,N−1. The first and third terms can
be assumed independent of the implementation (it is a constant cost). The135

second term depends on the implementation choice and on the value of the
coefficient hq(k)k=0,...,N−1 (variable term). This third term alone will be used
as a metric for the hardware complexity of the design. The hardware cost
depends on the binary representation of the coefficients. The exact formula-
tion of the hardware cost is out of the scope of then paper but is non-linear.140

To give a brief idea, a multiplication by 31, 32, 33 has a complexity of 5, 1,
and 2 respectively, i.e. the number of non-zero elements in the binary repre-
sentation. Using the Canonical Signed Digit representation (a more efficient
representation of number, where, for example, 31 is coded as 32 − 1 [7]), the
hardware cost function can be computed by Algorithm 2.

145

In the following sections, we consider the cost function Ccsd, defined as
Ccsd =

∑N−1
k=0 Ccsd

hq(k), where Ccsd
hq(k) is the number of non zero value of the co-

efficient hq(k) in the CSD representation. This number is given by Algorithm
2 where C is the CSD decomposition of x and Ccsd

x the number of non-zero
values of C.150

PD-SA for FIR filter design 7

Algorithm 2: Complexity (CSD decomposition of hq)

initialization step:1

Ccsd = 02

Nb = 12 // Number of bits for quantization3

for i = 1 to length(hq) do4

c = 05

x = |hq(i)|6

for k = Nb-1 to 1 (step -1) do7

M = 2k−1
8

if x > M/2 then9

x = M − x10

c = c + 111

endif12

endfor13

Ccsd = Ccsd + c14

endfor15

return Ccsd
16

3 Description of the proposed approach

The method itself is rather simple. Everything is based on the multiobjective
simulated annealing scheme where the temperature is controlled by a feedback
loop.

3.1 Multiobjective optimization by Temperature Driven Simulated155

Annealing (TD-SA)

We briefly recall in this section the multiobjective optimization framework
using a simulated annealing algorithm.

When m objectives fi, i ∈ [1,m] are simultaneously considered for min-
imization, we need to define the concept of Pareto dominance. Instead of160

giving an absolute value for a solution, a partial order is defined based on
dominance. A solution is said to dominate another solution when it is bet-
ter on one objective, and not worse on the other objectives. Thus a solu-
tion x dominates a solution y if and only if ∃i ∈ [1,m] : fi(x) < fi(y) and
∀j ∈ [1,m], j 6= i : fj(x) ≤ fj(y). A solution is said to be non-dominated if no165

solution can be found that dominates it.
The definition of the dominance relation gives rise to the definition of the

Pareto optimal set, also called the set of non-dominated solutions. This set
contains all solutions that balance the objectives in a unique and optimal way.
The aim of multi-objective optimization is to induce this entire set. Picking170

a single solution from this set is then an a posteriori judgement, which can
be done in terms of concrete solutions with concrete trade-offs, rather than

8 Boutillon et al.

in terms of possible weightings of objectives. The question for multiobjective
optimization is now how to find this Pareto optimal set.

We recall here that our objective is not to design the best possible mul-175

tiobjective algorithm for solving the filter design problem but to propose an
easy implementable solution.

Based on previous asumptions, we use the work of Nam and Park [9]
and the multiobjective algorithm will be based on simulated annealing. The
literature on this topic is important. A good introduction on evolutionary180

algorithms for multiobjective optimization can be found in [3, 5].

Algorithm 3: Basic multiobjective simulated annealing

initialization step:1

find an initial solution x2

fix an annealing schedule T3

set initial temperature T = T04

repeat5

neighborhood search:6

find a solution x′ ∈ N (x)7

if x does not dominates x′ then8

x′ ← x9

else10

determine ∆C (the variation of the cost function)11

draw p ∼ U(0, 1)12

if e−∆C/T > p then13

x′ ← x14

endif15

endif16

update temperature T according to T17

until stopping criterion satisfied18

Algorithm 3 presents a basic multiobjective simulated annealing frame-
work. In the initialization step, as in all neighborhood search metaheuristics,
an initial solution should be provided. Fixing the annealing schedule (Alg 3,
line 3) and setting the initial temperature (Alg 3, line 4) are two empiric tasks185

that partially motivate the work presented in this paper. For general expla-
nations on standard settings, we refer the reader to the original paper [9]

The general loop (Alg 3, lines 5-18), as in all metaheuristic algorithms,
does not differ much from a single objective simulated annealing. First a
neighbor solution x′ of current solution x is randomly generated. In single190

objective optimization, if the new solution x′ is better than x, it is accepted
as the new current solution. In the multiobjective case, it is accepted if x′ is
not dominated by x (Alg 3, line 8), which means if it is not worse than the
current solution.

PD-SA for FIR filter design 9

Now, when x′ is dominated by x, as in the classical simulated annealing195

algorithm, x′ can become the new current solution (in order to escape local
optima) under a probability condition. In [9], the authors call it probability

transition and expose six different criteria. We use the random cost criterion.
∆C (Alg 3, line 11) is computed by Equation 2.

∆C =

m∑

j=1

βj(fj(x
′) − fj(x)) (2)

where βj is a random variable with uniform probability distribution. Accep-200

tance probability is given by the so-called Boltzmann’s equation (see [1] for
more information).

At the end of the loop iteration, the temperature is updated according to
the cooling schedule. Classical cooling schedules refer to geometric evolution
of the temperature Tk = αkT0, where Tk is the temperature at iteration k, α205

is the cooling rate (0 < α < 1) and T0 the initial temperature.

3.2 Parameter reduction in SA – from TD-SA to PD-SA

In the description of the TD-SA (Algorithm 3), the following parameters have
to be set by the decision maker or by the end-user of the solver :

• the initial solution x210

• the annealing schedule T
• the initial temperature T0

• the stopping conditions

The initial solution x can be generated randomly or provided by the decision
maker (from previous runs of the solver, or from experience). If the annealing215

schedule follows the description of the geometric evolution of the previous
section, parameter α should be provided, as well as the initial temperature T0

and the stopping conditions of the algorithm.
The stopping conditions are easy to set. Usually, a running time is wished

by the decision maker and is converted into a maximum number of iterations.220

But the initial temperature T0 and the cooling rate α requires several attempts
for a good setting. Moreover, this setting should be done again when the set
of instances changes.

To avoid this, we propose to replace the annealing schedule by a function
representing at each iteration the probability of accepting a non-improving225

move. This new method will be called Probability-Driven Simulated Annealing
(PD-SA).

Figure 4 draws such a simple potential function. In a solver with a graphical
user interface, the function could be chosen from a library. In our case, we
use p(x) = P0 × (1 − 5/ItMax)x as a sample function. P0 is the probability230

of accepting a non-improving solution at the beginning of the search. P0 and
ItMax are incorporated into the library (in Figure 4, P0 = 0.3, and ItMax =

10 Boutillon et al.

100). Note that the value of P0 = 0.3 can be fixed for once, thus, the only
parameter of the system simply becomes ItMax.

0

0.15

0.30

0 25 50 75 100

P0

ItMax

p(x)

it.

Fig. 4. A potential probability function

A decision maker is able to fully understand the purpose of this function235

and its two parameters. In order not to change the simulated annealing al-
gorithm, we will transform the current probability (the one at the current
iteration) into a temperature for the SA algorithm (see next section). For the
classical SA algorithm, T0 can be reversely computed from P0 with the first
non-improving move of the algorithm (P0 = e−∆C/T0 ⇔ T0 = −∆C/ln(P0)).240

3.3 Controlling the temperature parameter in PD-SA

With the probability scheme proposed in the previous section, the major ques-
tion coming is “why keeping a temperature-based system if we know in ad-
vance the probability for accepting non-improving moves?”. First, removing
the temperature will remove a degree of freedom in the SA approach, second,245

removing the temperature will change the SA scheme and will need partial
re-writing of the program. Instead, we will use a feedback loop as in automatic
control to keep a temperature as close as possible of the desired temperature
(i.e., of the probability value provided by the probability function).

In a classical TD-SA scheme, each time a new generated solution has an250

objective function value worse than the current solution (i.e. a cost function
C > 0), this degrading solution is accepted if the value of e−∆C/T is greater
than an uniform random value between 0 and 1. The event of accepting a
degrading solution as exactly a probability of p̃ = e−∆C/T to occur.

In the new PD-SA approach, we keep the same process to accept or not a255

degrading solution. The main difference is that, instead of cooling blindly the
temperature in a deterministic way (T (i+1) = α ·T (i)), we try to control the
temperature Tc so that p̃(i) = e−∆C/Tc equals exactly p(i) the desire proba-
bility of acceptance at iteration number i. Thus, each time a non-improving
solution is generated, 3 cases can occur:

260

PD-SA for FIR filter design 11

1. p̃(i) > p(i), than the probability of acceptance is too high and Tc should
be decreased.

2. p̃(i) = p(i), than the probability of acceptance is good and Tc is correct.
3. p̃(i) < p(i), than the probability of acceptance is too low and Tc should

be increased.265

To perform such an update, the temperature is adjusted using a feedback
loop as:

Tc = Tc + Tcǫ(p(i) − p̃(i)) (3)

where ǫ is a parameter of the feedback loop that weights the correction factor
(ǫ is set to 1 in our simulation).

One can note that this feedback loop is similar to the Proportional Integral270

(PI) corrector [6] if we consider Tc in the log domain. In fact:

log(Tc) = log(Tc) + log(1 + ǫ(p(i) − p̃(i)) (4)

and thus:
log(Tc) ≈ log(Tc) + ǫ(p(i) − p̃(i)) (5)

The PI corrector is well known in automatic control system to be a very
robust corrector, with no bias and generally stable for a large range of values
of ǫ. Performing this kind of feedback loop in unusual in metaheuristics but275

its efficiency has been proved in automatic control systems since a very long
time.

One can note an advantage of this type of feedback control compared to
the classical cooling temperature scheme. In fact, if the local solution is a local
minima and if the current temperature is too low, then the SA algorithm is280

trapped in this local minima until the end of the SA process. On the contrary,
with the feedback loop, in such a situation, the temperature will increase in a
geometrical way so that, at one moment, it will escape this local minima and
restart a worthwhile research process.

Numerical experiments will show the difference between PD-SA and TD-285

SA.

4 Numerical experiments

This section presents the comparison between TD-SA and PD-SA. The pa-
rameters of the SA algorithms are first presented (coding, neighborhood and
initial solution). Then computational results are presented and discussed.

290

4.1 Coding, neighborhood and initial solution

A solution is represented by 33 integer values (stored in an array, s[i], i =
1, . . . , 33). Each value belongs to the range [−1023,+1023], corresponding

12 Boutillon et al.

to the physical size of the component (a power of 2). These values are the
coefficients of the filter i.e., the impulse response of the filter. To obtain the295

frequency response of the filter, it is necessary to use a FFT. The impulse
response is symmetric so the values in the array are also symmetric (s[i] =
s[33 − i + 1]) and the sum of coefficients should be constant (the square root
of the energy remains the same along the search).

The neighborhood is defined so that we respect the constraints on the300

encoding. To move from one solution to a neighbor, one of the coefficients is
either increased by one or two or decreased. The symmetric value is changed
accordingly. To keep the constant sum property, another symmetric pair of
coefficients is inversely modified.

An initial solution for the proposed method is obtained from classical305

design filters, e.g. Hanning window multiply iFFT of ideal filter. This solution
is usually blindly used by practitioners for designing filters. By doing so, we
ensure the designer to have at least a feasible and “classical” solution.

4.2 Computational results

Numerical experiments have been conducted in order to assert that the pro-310

posed method is at least as good as a classical simulated annealing algorithm.
To do so, several figures are presented and commented below.

Even if the general purpose of the algorithm is to reduce the number of
parameters, some of them are necessary. First, the number of coefficients of
the filter –sometimes considered as a meta-parameter– is left to the decision315

maker. For the experiments, we set it to the most commonly used value, i.e.

33 coefficients (e.g. like for a standard FIR1 function). Second, the size of
the FFT is usually set to 2048 values. Then, several parameters presented in
the cost function (see parameters V a1, V a2, V a3 in Algorithm 1) and in the
design of the template (see parameters f1, f2, fi1, fi2 in Figure 2) have to be320

chosen by the decision maker. In figure 2, some of them depend on the final
application. We propose in the future to develop a graphical user interface
that will help the designer to set these parameters. When it is not explicitly
mentioned, the maximum number of iterations is 50 000 corresponding to a
reasonable amount of time (5 minutes).

325

For all the experiments, we try to compare the execution of the standard
simulated annealing algorithm and the version with automatic temperature
setting. On one hand, simulation operates with an initial temperature T0, and
on the other hand, the parameter used at the beginning of the search is P0,
the initial probability of accepting non-improving moves. As an example, we330

auto-magically set T0 = 30 and arbitrarily set P0 = 0.3.
First we compare the influence of the maximum number of iterations.

Figure 5 compares the Pareto solutions of the two approaches obtained after
different maximum number of iterations. These Pareto solutions are the best
solutions over 250 different runs for each approach.

335

PD-SA for FIR filter design 13

In these figures, Pareto solutions are presented for the two solution tech-
niques, TD-SA and PD-SA when T0 = 30. The initial solution blindly used
by decision makers is also noted as “Initial”.

Figure 5 shows just 3 particular cases of the Pareto sets obtained with
the TD-SA and the proposed PD-SA. It did not give any insight of which340

technique is more efficient. In order to obtain an objective comparison between
the two methods, we perform a series of “match racing” between TD-SA and
PD-SA. Each match racing starts from the same initial condition and process
the same number of iteration. Once the two Pareto function are obtained,
they are merge to create a new Pareto function. Let NPD−SA (respectively345

NTD−SA) be the number of point of the PD-SA Pareto curve (respectively
TD-SA Pareto curve) that are not dominated by a point of the TD-SA Pareto
curve (respectively TD-SA Pareto curve). Then the result of the match racing
is given by:

Q =
NPD−SA

NPD−SA + NTD−SA
(6)

Thus Q is a number between 0 and 1. Q = 0 means that TD-SA dominates350

PD-SA, Q = 1 means that PD-SA dominates TD-SA. Note also that is the
Pareto curve of PD-SA and TD-SA are identical, then NPD−SA = NTD−SA

and thus Q = 0.5. We perform each time 250 match racing to obtain an
estimation of the expectation of E[Q] and the standard deviation σQ of Q. The
values of E[Q] are obtain with an marginal error of ± σE [Q] =

σQ√
250

= 0.025355

for T0 = 30 and 0.01 for T0 = 1. Table 1 gives the results of the match
racing for 5000, 10000 and 25000 iterations. Tests have been conducted for
two different values of the initial temperature T0 (30 or 1) in TD-SA. It appears
clearly that tunning correctly the temperature can lead to better results in
TD-SA than in PD-SA. As already mentioned, an end-user has to manually360

tune the temperature and this might be long and difficult.

Iterations 5 000 10 000 25 000

T0 = 30

Average 0.60 0.65 0.63
St.Dev. 0.40 0.37 0.36

T0 = 1

Average 0.33 0.34 0.33
St.Dev. 0.13 0.13 0.12

Table 1. Dominance ratio (Q) of PD-SA over TD-SA

To be sure that the produced Pareto solutions are of good quality in terms
of distance to template, we plot the initial solution and some Pareto solutions
represented as power spectrum. Hence it is possible to draw the template on
the same figure. In Figure 6 dashed lines represent these solutions whereas365

14 Boutillon et al.

55 60 65 70 75 80 85 90 95 100 105
200

400

600

800

1000

1200

1400

1600

1800

2000
 itmax = 5000

Complexity

D
is

ta
nc

e
to

 te
m

pl
at

e

Initial
TD−SA
PD−SA

55 60 65 70 75 80 85 90 95 100 105
0

200

400

600

800

1000

1200

1400

1600

1800

2000
 itmax = 10000

Complexity

D
is

ta
nc

e
to

 te
m

pl
at

e

Initial
TD−SA
PD−SA

50 60 70 80 90 100 110
0

200

400

600

800

1000

1200

1400

1600

1800

2000
 itmax = 25000

Complexity

D
is

ta
nc

e
to

 te
m

pl
at

e

Initial
TD−SA
PD−SA

Fig. 5. Solutions after 5 000 it. (up), 10 000 it. (middle) and 25 000 it. (bottom)

PD-SA for FIR filter design 15

the solid line corresponds to the initial solution. It is clear in the figure that
the Pareto solutions are largely better than the initial solution, especially the
part of the response of the filter outside the transition band is much smaller
for all Pareto solutions represented here.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
−40

−35

−30

−25

−20

−15

−10

−5

0

5

frequency

M
ag

ni
tu

de
 (

dB
)

Power Spectrum

Initial

Pareto

Fig. 6. Power spectrum

We now compare the resolution of the TD-SA approach and the new PD-370

SA method (see Figure 7) after 50 000 iterations. Note that the constraints
for the template have been tightened. For this figure, it is clear that none of
the approaches is better than the other. But from the decision maker point of
view, the PD-SA gives the same results without the parameter setting phase
(to find the best values of the parameters needed in the TD-SA, more than375

10 different attempts were necessary).
To show how the feedback loop influences the temperature, we draw in Fig-

ure 8 the theoretical temperature and the temperature computed afterwards
in PD-SA. Since the practical temperature is computed not at every iteration,
it results a stepwise curve that oscillate around the theoretical temperature.

380

5 Conclusion

In this paper, we have presented an alternative approach for the design of a
digital FIR filter minimizing two objectives, namely the distance to a template
and the complexity of the filter. We have to mentioned here that, to our best
knowledge, it is the first time that these two objectives are dealt simultane-385

ously in a approximate Pareto-based approach using simulated annealing.

16 Boutillon et al.

55 60 65 70 75 80 85 90 95 100 105
200

400

600

800

1000

1200

1400

1600

1800

2000

Complexity

D
is

ta
nc

e
to

 te
m

pl
at

e

Initial
TD−SA
PD−SA

Fig. 7. Comparison of solutions

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0

10

20

30

40

50

60

70

Iterations

te
m

pe
ra

tu
re

Theoritical
Practical

Fig. 8. Comparison of the temperature evolution in PD-SA

PD-SA for FIR filter design 17

In the field of the filter design, it is of course much better to present several
solutions to the decision maker which finally can choose the most appropriate
alternative for his application.

Numerical experiments do not show any advantage in terms of perfor-390

mances to the probability-driven simulated annealing method but no clear
drawbacks either. Of course, the proposed approach contains less parameters
that have to be set and represents a progress for non-specialist people in the
field of optimization and for end-users.

Through this paper, the reader can notice that several other parameters395

need to be set, even in the new method, and are not always explicitly men-
tioned here. The reason is that a graphical user interface might help the
decision maker to set these parameters by choosing general templates from
libraries with best known values and/or experimented designer knowledge.
Several templates will be also included in the library. For example, the num-400

ber of coefficients of the filter (here set to 33) can become a “meta” parameter.
In that case, a dedicated neighborhood procedure will be designed for finding
the most adapted number of coefficients.

We believe that the proposed probability-driven simulated annealing ap-
proach can be extended with success in many other application domains and405

that this approach will help the spreading of advanced SA techniques in the
engineering community.

References

1. E.H.L. Aarts and J. Korst. Simulated Annealing and Boltzmann Machines. John
Wiley, Chichester, 1989.

410

2. L. Cen and Y. Lian. Complexity reduction of high-speed fir filters using micro-
genetic algorithm. In First International Symposium on Control, Communica-
tions and Signal Processing/, pages 419–422, 2004.

3. C. Coello. EMOO web pages. http://www.lania.mx/∼ccoello/EMOO/.
4. N. Damera-Venkata and B.L. Evans. An automated framework for multicrite-415

ria optimization of analog filter designs. IEEE Transactions on Circuits and
Systems II: Analog and Digital Signal Processing, 46(8):981–990, 1999.

5. K. Deb. Multi-Objective Optimization Using Evolutionary Algorithms. John
Wiley & sons, New York, 2001.

6. M.A. Johnson and M.H. Moradi, editors. PID Control. Springer, London, UK,420

2005.
7. S.M. Kilambi and B. Nowrouzian. A genetic algorithm employing correlative

roulette selection for optimization of FRM digital filters over CSD multiplier
coefficient space. In IEEE Asia Pacific Conference on Circuits and Systems,
2006. APCCAS 2006., pages 732–735, Dec. 2006.

425

8. Z. Mou and P. Duhamel. Fast FIR filtering : Algorithms and implementations.
Signal Processing, 13(4):377–384, 1987.

9. D. Nam and C.H. Park. Multiobjective simulated annealing: A comparative
study to evolutionary algorithms. International Journal of Fuzzy Systems,
2(2):87–97, 2000.

430

18 Boutillon et al.

10. M. Oner. A genetic algorithm for optimisation of linear phase fir filter coef-
ficients. In Conference Record of the Thirty-Second Asilomar Conference on
Signals, Systems & Computers, 1998., volume 2, pages 1397–1400, Nov. 1998.

11. J. Qiao, P. Fu, and S. Meng. A combined optimization method of finite
wordlength fir filters. In First International Conference on Innovative Com-435

puting, Information and Control, 2006. ICICIC ’06., volume 3, pages 103–106,
Aug. 2006.

12. P. Siohan and A. Benslimane. Synthèse des filtres numériques non récursifs à
phase linéaire et coefficients de longueur finie. Annales des Télécommunications,
39(7-8):307–322, 1984.

440

13. P. Siohan and A. Benslimane. Finite precision design of optimal linear phase 2-
D FIR digital filters. IEEE Transactions on Circuits and Systems, 36(1):11–22,
1989.

14. R. Thomson and T. Arslan. An evolutionary algorithm for the multi-objective
optimisation of VLSI primitive operator filters. In Proceedings of the 2002445

Congress on Evolutionary Computation, 2002. CEC ’02, volume 1, pages 37–42,
2002.

