
A Novel Architecture for Scalable, High throughput,
Multi-standard LDPC Decoder

Abstract—This paper presents a a novel bottom up parallel
approach for implementing high throughput , scalable multi-
standard, layered LDPC decoding architecture. Proposed solution
includes three elements of novelty i.e. 1) A parallel Min Sum
check node based on ”Tree way” approach 2) Channel Memory
organization scheme at block level to support parallel access for
proposed check node 3) Flexibility in terms of supporting multiple
codes, block lengths, code rates and parallelisms to realize fully
scalable LDPC decoding architecture. The proposed decoder IP
supports different LDPC codes adopted in WiMAX (802.16e) and
WiFi (802.11n). Synthesis results are based on 130−nm Standard
Cell ASIC technology.

Index Terms—Low Density Parity Check codes, Min Sum, Lay-
ered Decoding, Tree way approach, Flexible architectures

I. INTRODUCTION

Present research in the field of Forward Error Correction
(FEC) is aimed at finding the best possible error correcting
codes which could allow high throughput decoding with ef-
ficient VLSI implementation meeting area, power and speed
constraints. Low Density Parity Check (LDPC) Codes [1],
a class of linear block codes have gained huge attention in
wireless communication domain. Near Shannon limit error cor-
recting capabilities, low error floor, affordable complexity and
intrinsic parallelism make LDPC codes an eligible candidate
for a number of wireless standards [2]. LDPC codes have been
proposed as an optional channel coding scheme for upcoming
WiMax 802.16e [3] and WiFi 802.11n [4] standards. However,
VLSI implementation of LDPC decoders is a challenging task.
Initial designs [5] reported severe layout congestion problems
due to pseudo-random message exchange between the com-
puting kernels. But structured LDPC codes greatly simplified
the interconnect complexity [6]. Code-decoder co-design is the
most suitable approach to ease the implementation. This leads
to adoption of architecture-aware (AA) LDPC codes by almost
all upcoming standards.

Traditional parallel architectures provide maximum through-
put but result in huge complexity [5], partially (block-level) par-
allel have sufficient throughput and affordable complexity but
limited to specific structured codes only [7]–[10], while fully
serial architectures have minimum complexity and throughput.
State of the art mainly relies on multiprocessor implementations
to achieve flexible, high throughput iterative decoding. In [9],
a highly flexible LDPC decoder able to process all specified
codes has been proposed, but it consisted of serial check
node and interconnection network, which limits the achievable
throughput to large extent.

Realizing high throughput decoders e.g. for wireless back-
bone networks (supporting data rates up to few hundred Mbps)

either asks for massive parallelism or increasing the clock
frequency which results in significant area and power over-
head. However, incorporating parallelism at check node level
is still not fully explored and can bring significant increase in
throughput with affordable complexity. In this regard, the key
contributions to this work i.e. a novel ”Tree-way” approach
for parallel Min Sum check node is presented in its generic
form supporting check node degrees up to d c = 32, which
is sufficient to cover a large number of LDPC codes. Starting
from ”Tree way” parallel check node, a bottom up approach
for complete decoder implementation is proposed. A modular
channel memory design technique at block and sub-block level
is presented which supports parallel access for proposed ”Tree-
way” check node and allows flexibility in terms of codes, rates,
block lengths and parallelisms. The proposed architecture is
exploited to design a fully scalable LDPC decoder for WiMax
and WiFi standards.

II. BASICS OF LDPC DECODING

A binary LDPC code is represented by a sparse parity
check matrix H with dimensions M × N such that each
element hmn ε {0, 1}. N is the total length of code word
and M is the number of parity bits. Each row H i(1 ≤ i ≤
M) introduces one parity check constraint on input data vector
x = {x1, x2, · · · , xn} i.e.

Hi.x
T = 0mod 2

The complete H matrix can best be described by a Tanner graph
[11], a graphical representation of the associations between
code bits and parity checks. Each row of this H matrix corre-
sponds to a Check Node (CN) while each column corresponds
to a Variable Node (VN) in Tanner graph. An (N, K) LDPC
code is mapped on Tanner Graph such that there are N Variable
(or bit) Nodes (VNs) and M = N − K Check Nodes (CNs).
An edge eji on the Tanner Graph connects a V Nj with CNi

only if the corresponding element h ij is a ’1’ in H. An LDPC
code is called regular if the node degree (i.e. the number of
incoming edges) is constant for all nodes, otherwise irregular.
Irregular LDPC codes have better communication performance
than regular LDPC codes.

LDPC decoding is done using well known Belief Prop-
agation (BP), Sum Product (SP) or Message Passing (MP)
algorithms [12], in an iterative way which involves bilateral
exchange of Log-Likelihood Ratio (LLR) messages between
VNs and CNs. The aim of BP algorithm is to compute the a-
posteriori probability (APP) that a given bit in the transmitted



codeword c = [c0, c1, · · · , cN−1] equals 1, given the received
word y = [y0, y1, · · · , yN−1].

The Min Sum (MS) Algorithm is an area efficient, sub
optimal approximation to the SPA. It is also an iterative, soft
decoding algorithm. Let αn

ij represents the message sent from
variable node V Nj to check node CNi in nth iteration, βn

ij

represents the message sent from check node CN i to variable
node V Nj in nth iteration, M(j) = {i : Hij = 1} i.e.
set of parity checks in which variable node V Nj participates,
N (i) = {j : Hij = 1} i.e. set of variable nodes that
participate in parity check i, M(j)\i : the set M(j) with check
i excluded, N (i)\j : the set N (i) with variable j excluded.
The conventional Min-Sum algorithm formulation is described
as follows

1) Initialization
For j ε {1, · · · , N}

α0
i,j = ln

P (V Nj = 0|yj)
P (V Nj = 1|yj) =

2yj
σ2

(1)

where yj is received data bit at position j and σ2 is the
variance of channel noise. Practically, α0

i,j = yj

2) Horizontal Scan (Check Node Update Rule)
For all check nodes CNi , i ε {1, · · · ,M} do

βn
i,j =

∏
j′εN (i)\j

sign(αn−1
i,j′ ) min

j′ ε N (i)\j
{|αn−1

i,j′ |} (2)

3) Vertical Scan (Variable Node Update Rule)
For all Variable nodes V Nj , j ε {1, · · · , N} do

αn
i,j = α0

i,j +
∑

i′εM(j)\i
βn
i′,j (3)

4) Decoding
For each bit, compute its posteriori LLR

αn
j = α0

j +
∑

i′εM(j)

βn
i′,j (4)

Estimated codeword is Ĉ = (ĉ1, ĉ2, · · · , ĉN ) where
element ĉj is calculated as

ĉj =

⎧⎨
⎩
0 if αn

j > 0

1 elsewhere
(5)

If H(Ĉ)T = 0 then stop and output Ĉ as decoded codeword.
Modifying the Variable node update rule (3) as

αn
i,j = αn

j − βn
i,j (6)

We can merge horizontal and vertical scans in to a single hori-
zontal scan where the check node messages βn

i,j are computed

from α
(n−1)
j and β

(n−1)
i,j . This technique is called ”Layered De-

coding” [13], or ”Turbo Decoding Message Passing (TDMP)”
[14]. Formally, the algorithm for layered decoding Min Sum
can be described as

1) Initialization : β0
i,j = 0

2) Horizontal Scan (Check Node Update Rule) :

αn
j = α0

j

βn
i,j = sgn{βn

i,j} × |βn
i,j | (7)

sgn{βn
i,j} =

∏
j′εN (i)\j

sgn{α(n−1)
j − β

(n−1)
i′j } (8)

|βn
i,j | = min

j′εN (i)\j
|α(n−1)

j − β
(n−1)
i,j′ | (9)

αn
j = αn

j + βn
i,j (10)

3) Decoding : ĉnj = 0, if αn
j > 0 , ĉnj = 1 otherwise

Layered decoding is based on the principle of using interme-
diate results directly in the next sub-iteration so that updated
information is available to check node. This results in 50% de-
crease in number of iterations to meet a certain BER (equivalent
to 2x increase in throughput) and significant memory savings as
compared to standard two phase message passing.

III. CHECK NODE PARALLELISM : A TREE-WAY

APPROACH

Close examination of check node operation described in
previous section reveals a fact that in Min Sum decoding, out
of all LLRs of a CN only two magnitudes are of interest i.e.
minimum and the second minimum. The state of the art for
Min Sum decoding of LDPC for many applications consists
of serial check nodes incorporating on the fly calculation of
running minimum, second minimum and sign product [15]. The
interconnection network is also serial providing one input to
all check nodes in each clock cycle. However, decreasing the
check node and interconnection network latencies is mandatory
to realize high throughput LDPC decoders.

Incorporation of parallel processing inside the check node is
a key contribution of this work whereby a novel ”Tree-way”
check node receives all variable to check node messages in
parallel and writes back the updated extrinsic information si-
multaneously to all connected variable nodes. This significantly
decreases the number of clock cycles required for check node
update and helps in achieving high throughput with smaller
parallelism. Figure 1a is a particular example of this scheme for
dc = 8. Each VN i.e. (I1, I2, · · · , I8) is represented as a leaf
node and tree is traversed performing min calculation at branch
nodes until all VN extrinsic values are derived at the root nodes
(e1, e2, · · · , e8). One of the key contribution of this paper is
that for a parallel check node architecture we generalize the tree
network connectivity and the data flow for any value of d c up to
32 and present a fairly simple control mechanism for it. For the
sake of architecture uniformity odd dc values are considered as
their even counterpart with extra VN intrinsic value initialized
at +∞ (i.e d′c = dc if dc is even; else d′c = dc + 1). Figure
1b shows the different stages of VN extrinsic calculation for
proposed ”Tree-Way” scheme (magnitude only).
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Fig. 1. Proposed Tree way scheme for Parallel Check Node

Direct VN Comparison (DVC) stage : As seen in Fig. 1b,
for dc = 8, the intrinsic values (I1, I2, · · · , I8) are fed parallel
to 4 CS (compare select) units. For all values of dc there is
only one direct comparison stage. The outputs of DVC and each
subsequent stage are passed on to next stage through a local
shuffling network known as ACS network as well as are stored
in switch matrix (SM) memory for use in later stages.

Multiple Shuffled Comparison (MSC) Stage : The shuffle
network implements a circular shifting permutation. The rota-
tional shift depends on dc and the sub stage of the shuffled
comparison stage. There are multiple shuffled stages depending
on dc and equal to Ncc, where Ncc is the required number
of clock cycles for check node update. For different values of
dc Table I provides the information on Ncc values and shift
associated with each shuffled stage.

TABLE I
CLOCK CYCLE REQUIREMENT AND SHIFT PERMUTATION

dc Ncc Permutation dc Ncc Permutation
5,6 4 1 19,20 7 1,2,4,8
7,8 5 1,2 21,22 7 1,2,4,8
9,10 5 1,2 23,24 8 1,2,4,8,10
11,12 6 1,2,4 25,26 7 1,2,4,8
13,14 6 1,2,4 27,28 8 1,2,4,8,12
15,16 7 1,2,4,6 29,30 8 1,2,4,8,12
17,18 6 1,2,4 31,32 9 1,2,4,8,12,14

As can be seen from Fig. 1b, the input to the shuffle network
is either the output from the immediate previous stage or output
of a much earlier stage stored in the SM memories. Irrespective
of the input source of the shuffle network, the shift associated
with a stage is fixed.

Extrinsic Calculation (EC) Stage : The last two stages
for any value of dc are extrinsic calculation stage. As seen in
figure 1b input to these stages is the output from the last MSC
stage and the shifted VN intrinsic values. This shift is circular

over dc and equal to 1 and 2 for EC stage 1 and 2 respectively.

IV. TREE WAY PROCESSING ELEMENT ARCHITECTURE

Figure 2a shows the generic data path architecture for ”Tree-
way” processing element (magnitude). The αn are the incoming
LLR values, while βn are the updated outgoing LLRs values
where (n = 1, 2, · · · , dc) and dc is the check node degree. The
first block i.e. Input Reg Bank consists of dc parallel registers
to store αn values which are input to the DVC and EC(1,2)
stages. The next stage is the Input Mux Stage which consists of
N = dc/2 multiplexer units. Each unit Mi consists of a mux2
and mux5. For compare select unit CSi : i = 1, 2, · · · , N ,
mux2 selects the first input (among αn (n : n + 1 mod
2 = 0) and FBD[i]) while mux5 selects the second input
(among αn (n : n mod 2 = 0), FBP[i], intrinsic information
contained in vectors EC [j], EC 2[j] and infinity). The output
of each compare select unit is stored in its corresponding SM
memory. There are dc/2 memories and size of each memory
is equal to number of stages (or Ncc) which depends on dc.
For retrieval of outputs stored in SM memory from previous
stages, a simple mechanism is formulated. Output values at
each stage are assigned a binary label e.g. label 10 represents
DVC stage output, while labels 100 and 1000 represent first two
MSC stage outputs and so on. For a given stage, the address
to be accessed in SM memory depends on dc value and can
be derived using a relatively simple control based on binary
representation of the value dc − 2. For example for dc = 16,
corresponding binary representation of d c − 2 = 1110 i.e.
1000 + 100 + 10, thus address for memory access during the
shuffle stage corresponds to values at labels of 100 and 10. The
inputs to ACS network come either directly from CS unit, or
from SM memory i.e the output of much earlier stage. ACS
network is implemented to allow for all possible permutations
for a particular degree as given in Table I. A dc/2× dc/2 Barrel
shifter supports the implementation of all possible permutations
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Fig. 2. Tree Way Check Node PE : Generalized Data Path

for a degree dc. To process an Irregular LDPC code with
multiple check node degrees, the check node is synthesized
for maximum dc supporting all CN degrees for that code less
than and equal to maximum. For example, WiMax 1/2 rate
LDPC has minimum and maximum dc of 5 and 7 respectively.
So the proposed ”Tree-way” check node is synthesized for
dc = 8, supporting multiple trees for dc = 5 and dc = 7.
During EC 1 and EC 2 the inputs to CS1 change with degree.
Thus the blocks Mux EC1 and Mux EC2 consist of pipelined
multiplexers to route proper inputs to CS1. A, B, EC 1, EC 2,
FBD, FBP, E1, E2, X and Y are intermediate signal vectors that
show connectivity between different stages of data path. Data
path reuse is a distinguishing feature of proposed ”Tree-way”
processing element, which is not only capable of achieving high
clock frequency but also results in considerably small area on
chip. The sign product tree is based on the property that product
of all sign bits except the sign bit si is the exclusive or of all
sign bits(including the sign bit si) with the sign bit si. Figure
2b shows the tree way implementation of flexible sign product
block. The intermediate multiplexers are used to select proper
inputs to support variable dc as in case of irregular LDPC codes.

V. PROPOSED LAYERED DECODING ”TREE-WAY” CHECK

NODE ARCHITECUTE

Layered decoding [16] is compatible with the parallelization
of architecture with a limitation that in order to achieve collision
free decoding, the parity check matrix is divided in groups such
that in each group the maximum column weight must be equal
to one [6]. Key idea behind layered decoding is that there is
no processing inside variable node. It just acts as a Channel
Memory unit to store the soft output estimate of previous sub-
iteration. A layered data path architecture has been reported in
[10] . The check node is serial with latency equal to dc and con-
sists of a FIFO, message ram and Check node Functional Unit
(CFU). To ensure correct information input to CFU, the corre-

sponding edge messages are immediately subtracted from the
message RAM and result is passed to CFU. After processing,
the same locations in the message RAMs are updated by newly
calculated extrinsic messages. The output of CFU is added to
corresponding input passed by a FIFO. Thus the correct a-
posteriori information is passed back to channel memory which
always holds the updated VN information. This serial Check
Node architecture is de-coupled such that the CFU is replaced
by our proposed parallel ”Tree-way” processing element. As
shown in Fig. 3, single message RAM of k × dc words used in
serial architecture has been replaced by dc number of message
RAMs each consisting of k words, where k is the number of sub
iterations in which a variable node is accessed. The architecture
shown is generalized and can be implemented for any value of
dc.
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VI. BLOCK LEVEL MEMORY ORGANIZATION

As discussed earlier, the state of the art for min sum decoding
of LDPC consists of serial check node. The interconnection
network is also serial providing one out of dc inputs to all P
check nodes per clock cycle, where P is called parallelism.
Therefore, dc clock cycles are required before all incoming
messages are received by P check nodes in a sub-iteration. To
fully exploit the inherent advantage of proposed check node, a
fully parallel network is desired which could move d c messages
to all P check nodes with minimum number of clock cycles.

Up coming wireless standards adopt structured LDPC codes
which solve the interconnect, memory overhead and scalability
problems associated with LDPC decoders. The HBASE matrix
defined as [14] :

HBASE =

⎡
⎢⎢⎢⎢⎣

Π0,0 Π0,1 . . . Π0,N

Π1,0 Π1,1 . . . Π1,N

...
...

...
...

ΠM,0 ΠM,1 . . . ΠM,N

⎤
⎥⎥⎥⎥⎦

is associated to a parity check matrix H. It has Mb block rows
and Nb block columns. The HBASE is expanded, in order to
generate H matrix, by replacing each of its entries Π i,j with
a Z-by-Z permutation matrix known as circulant, where Z is
the expansion factor. The circulant can be formed by cyclically
shifting right the Z-by-Z identity matrix. The amount of shift
is equal to the value of Πi,j . The code word length is equal
to Nb × Z and code rate is (Nb − Mb)/Nb. In this work
a technique is also presented to design memory organization
supporting parallel access for proposed ”Tree-way” check node.
The objective is to break a single memory bank in to a number
of parallel memory banks and assign circulants to them such
that data dependencies between circulants accessed in the same
sub-iteration are minimum. This technique can be described as
follows.

To provide parallel access up to arbitrary dc, the channel
memory consists of of dc memory banks with each bank
containing Nb/dc circulants. Proceed as follows

1) For i = 1 to Nb repeat

2) Select a column Ci and highlight all rows corresponding
to non negative entries of column Ci

3) Check all other columns in highlighted rows. Columns
which have negative entries in all highlighted rows of C i

are data independent from Ci and are not accessed in the
same sub-iteration whenCi is accessed and can be placed
in same memory bank with Ci.

In this way data dependencies between all circulants are
noted down in an iterative manner. The Nb circulants are stored
in dc memory banks. Each bank contains P single port mem-
ories with (Z/P ) × (Nb/dc) words each. For verification, this
technique is applied on 1/2 rate HBASE matrices of 802.16e
WiMax and 802.11n WiFi. Table II shows specifications for
WiMax and WiFi LDPC codes whereWr andWc the maximum
row and column weight of HBASE for a particular code rate.

TABLE II
HBASE PARAMETERS FOR WIMAX AND WIFI LDPC CODES.

Code Rate 1/2 2/3 3/4 5/6
HBASE matrix 12× 24 8× 24 6× 24 4× 24
(WiMax / WiFi)

Mb 12 8 6 4
(WiMax / WiFi)

Wr - Wc
WiMax 7− 6 11− 6 15− 6 20− 4
WiFi 8− 12 11− 8 15− 6 22− 4

Test Case 1 : 802.16n WiMax Rate 1
2 Code: For 1/2

rate WiMax LDPC case, Wr = 7 therefore, the proposed
”Tree-way” check node must be synthesized for d c = 8.
According to proposed technique, one of the possible memory
organizations for 1/2 rate WiMax LDPC is shown in Fig. 4a
where the total LLR memory is partitioned into 8 parallel banks
namely A,B,C,D,E,F,G and H. Each bank is further divided
into 24/8 = 3 sub banks, to store three circulants C1,C2 and
C3. Each bank consists of P single port memories where P
is parallelism. Size of each single port memory is (Z/P ) × 3
words.

Depending upon the structure of Hb matrix, it is not guaran-
teed that all such data conflicts would be removed. Circulants
C1 and C2 in Bank D have data conflicts in sub-iterations
2 and 3, also the circulants C1 and C2 have data conflicts
in sub-iterations 9 and 10. So in total, there is penalty of 4
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clock cycles per iteration which is quite tolerable. This scheme
can be further improved by a so called irregular memory
scheme in which banks A,B,...,H are different in length and
each bank stores maximum independent circulants. The over
all LLR memory size (in bytes) remains the same, only length
of memory bank that changes. The advantage of such a scheme
is that all data dependencies are removed thus increasing the
throughput. Irregular memory organization for WiMax rate 1/2
is shown in Fig. 4b. The irregular memory access scheme in Fig.
6 shows all data conflicts between the circulants within same
memory bank have been removed, which significantly increases
the throughput.

A B C D E F G H
1 C3 C1 C4 C1 C1 C2 1 0
2 C3 C4 C2 C1 C2 C2 C1 1 0
3 C2 C3 C3 C1 C2 C2 C1 1 0
4 C4 C3 C3 C1 C1 C2 1 0
5 C1 C4 C3 C2 C1 C2 1 0
6 C1 C1 C2 C3 C2 C2 C1 1 0
7 C2 C4 C2 C1 C1 C2 1 0
8 C3 C2 C2 C1 C1 C2 1 0
9 C4 C2 C3 C3 C2 C2 C1 1 0

10 C4 C1 C3 C2 C2 C1 1 0
11 C2 C1 C1 C2 C1 C2 1 0
12 C4 C1 C2 C2 C2 C1 1 0

Sub 
iter. #

Circulants Accessed
Clock 
Cycles

Memory 
Conflict 
Penalty

Memory Banks

Fig. 6. WiMax Rate 1/2, Access Scheme for Irregular Memory Organization

Test Case 2 : 802.11n WiFi Rate 1/2 Code: As shown
in Table II, for 1/2 rate WiFi LDPC code Wr = 8 so the
same approach can be applied. The check node is synthesized
for dc = 8, the channel memory is divided in to 8 banks.
However, the structure of HBASE results in larger number of
data conflicts between the circulants therefore, the irregular
memory organization results in fewer access penalties. Ap-
plying the proposed technique on this HBASE , one possible
memory organization with access scheme is shown in Fig. 5.
As observed, four clock cycles are wasted per iteration for this
case, which is quite affordable as compared to serial approach.

1 1 9 17 25
2 2 10 18 26
3 3 11 19 27
4 4 12 20 28
5 5 13 21 29
6 6 14 22 30
7 7 15 23 31
8 8 16 24 32

Mem 
Addres

VNs Stored

Fig. 7. Z = 32 circulation angle 18, proposed memory

VII. SUB BLOCK LEVEL MEMORY ORGANIZATION TO

ACHIEVE SCALABILITY

A full mode architecture for WiMax and WiFi applications
must support

• 6 code rates for WiMax and 4 code rates for WiFi.
• 19 expansion factors (24-96) for WiMax and 3 expansion

factors (27-81) for WiFi.
• 19 codeword sizes (576-2304) for WiMax and 3 codeword

sizes (648-1944) for WiFi.
• Arbitrary values of parallelism (P) to achieve variable

throughput.

1 9 17 25 18 26 2 10 2 2
2 10 18 26 19 27 3 11 3 2
3 11 19 27 20 28 4 12 4 2
4 12 20 28 21 29 5 13 5 2
5 13 21 29 22 30 6 14 6 2
6 14 22 30 23 31 7 15 7 2
7 15 23 31 24 32 8 16 8 2
8 16 24 32 17 25 1 9 1 2

Memory 
Address

Right 
Rotation

Rows Processed VNs Required

Fig. 8. Verification : Sub Block Memory Organization

To support all expansion factors and parallelisms, enormous
flexibility is required for interconnection network. One solution



TABLE III
THROUGHPUT AND AREA COMPARISON OF PROPOSED AND PUBLISHED LDPC DECODER IMPLEMENTATIONS

Implementation [9] [17] [18] [10] [19] This Work
Technology (nm) 130 130 65 65 65 65 90 130 130

Code WiMax WiMax WiMax WiFi WiMax WiFi WiMax WiMax WiFi
Dec. Modes 114 19 114 12 114 12 114 114 12

Frequency(MHz) 333 83.3 400 400 400 400 400 300 300
Iterations 10-15 8 20 20 25 25 8-12 20 20

Quantization (bits) 6 8 7 7 6 6 7 7 7
Parallelism 24-96 4 27 27 24-96 27-81 2-4 13-24 27

Area [mm2] 3.834 8.29 0.5 0.5 1.337 1.023 0.679 2.764 2.744
Scaled Area [mm2] 3.834 8.29 2 2 5.345 4.092 1.30 2.764 2.744

T.P (Mbps) 83-610 60-222 27.7-237.8 34.5-257 96-399 108-337 66.67-200 56-167 116-187
TAR (Mb/s/mm2) 21.6-159 7.2-26.8 13.8-119 17-128.5 17.9-74.6 26.4-82.3 51.2-153.8 20.2-60.4 42.2-68.14

could be to make the width of each memory bank equal to
maximum expansion factor (Zmax) for a particular code and
use a fully connected (Zmax × Zmax) network able to support
all expansion factors and parallelisms less than Zmax. But this
is expensive from implementation point of view, since smaller
parallelisms yield hardware resources idle most of the time.

Scalable sub block parallel architecture requires assignment
of variable nodes in memory such that given any value of Z and
P, all P variable nodes are stored in the same memory word
irrespective of the circulant shift. This is done by scheduling
of parity equations within a sub-matrix such that given an
expansion factor Z and parallelism P be an integer factor of
Z i.e. Z mod P = 0, two consecutive variable nodes within a
same memory word are at a distance of Z/P . This is explained
by an example, suppose Z = 32, then all values of P satisfying
Z mod P = 0 are 2, 4, 8, 16 and 32. Considering P = 4,
the 32 VNs are stored in to Z/P = 8 memory locations with
P = 4 VNs in each location. Figure 7 shows a 32 × 32 sub
matrix with circulation angle 18 and proposed sub block level
memory partitioning with P = 4. This sub matrix is processed
in 8 sets of 4 parity check equations. Rows 1, 9, 17 and 25 are
processed in 1st set and require VNs 18, 26, 2 and 10 which
are stored at memory location 2 and obtained after rotating it
left by 3. For the next set of 4 parity check equations VNs 19,
27, 3 and 11 are required which are stored at memory word 3
and accessed in the same way. Verification of this scheme is
shown in Fig. 8. This scheme guarantees all P variable nodes
accessed in single clock cycle no matter where the diagonal
starts in a sub-matrix. Supporting P values that does not satisfy
Z%P = 0 constraint, requires additional words in memory
occupying redundant variable nodes resulting in some penalty
in terms of extra clock cycles.

VIII. IMPLEMENTATION RESULTS

This section deals with ASIC implementation of proposed
Layered LDPC decoder which features parallel ”Tree-way”
check node implementation. The VHDL IP core for proposed
decoder has been synthesized on 130−nm Standard Cell ASIC
technology using Synopsys Design View tool. The operating
frequency has been set to 300 MHz. The synthesized decoder
is a full-mode architecture, able to decode all 114 codes for
WiMax and 12 codes for WiFi. Table IV shows the throughput

TABLE IV
THROUGHPUT RESULTS OF PROPOSED DECODER IP

Throughput (TP) 300MHz, 20 Iterations

Code Rate
802.16e WiMax

Code Size Parallelism TP (Mbps)
1/2 546-2304 13-24 56 - 103
2/3 546-2304 13-24 59 - 107
3/4 546-2304 13-24 71 - 131
5/6 546-2304 13-24 91 - 167

802.11n WiFi
1/2 648-1944 27 116
2/3 648-1944 27 122
3/4 648-1944 27 135
5/6 648-1944 27 187

TABLE V
SYNTHESIS RESULTS FOR PROPOSED DECODER IP

Area @ 300MHz, 7-bit Quantization
Module Area WiMax [mm2] Area WiFi [mm2]

CNP 1.79 1.94
Memory 0.94 0.75
Network 0.03 0.05

Controller 0.004 0.004
Total 2.764 2.744

results for proposed decoder. The maximum number of 20 itera-
tions has been selected to meet a satisfactory error performance
for each code rate. The table displays the maximum achievable
throughput for both cases, starting from the smallest code size
with lowest code rate up to largest high-rate code.

Table V shows the synthesis area results for proposed de-
coder. Parallelisms of 13-24 and 27 have been selected for
WiMax and WiFi respectively to realize a full mode architec-
ture to support low to moderate throughput applications for
both standards. Both implementations show almost 50% of
total area occupied by check node logic which is reflected by
parallelism at check node level and huge flexibility to support
variable check node degrees. The proposed decoder is able to
achieve throughput well above 70 Mbps as specified by WiMax
standard [3]. However, the proposed architecture is fully com-
pliant to support higher parallelisms for applications requiring
throughputs of the order of Gbps. For example parallelism of 96
results in a throughput of 1.7 Gbps for WiMax at 15 iterations.



IX. COMPARISON WITH OTHER RELATED WORKS

Table III compares the proposed work with some already
published decoders. The Table shows for each decoder the main
characteristics: implementation technology, supported codes
and decoding modes (combination of codes length and code
rate), achieved throughput, quantization, internal parallelism
and occupied area. A parameter called throughput to area ratio
(TAR) [20] defined as TAR=Throughput/Area has also been
included in the Table to evaluate the efficiency of the designed
decoder. However comparison to other similar implementations
of LDPC code decoders is difficult because of the differences
in terms of design choices, implementation technology, finite
precision arithmetic. To simplify the comparison in Table III,
area of each decoder has been scaled up to 130 nm process with
a scaling factor of 2 and 4 respectively for 90 nm and 65 nm pro-
cesses. On the contrary clock frequency has not been scaled as
a universal conversion method between different technologies
is not available. The proposed decoder architecture achieves
sufficient throughput for both WiMAX and WiFi standards at
the cost of an occupied area which is smaller than required for
most of alternative solutions. In particular, implementations in
[9], [17] and [10] use more area than the proposed decoder;
comparable area is required for the recent, 65 nm architecture
in [18]. In [19] a significantly smaller decoder is presented, but
it only supports WiMAX codes.

X. CONCLUSION

LDPC codes have been adopted in a number of next-
generation wireless standards for forward error correction. Im-
plementing a fully flexible architecture while satisfying area,
speed and power metrics is still a challenging task. In this paper
we presented to best of our knowledge first implementation of
LDPC decoder based on bottom up parallel approach. Fully
scalable architecture for LDPC decoding based on proposed
Parallel ”Tree-Way” Check Node realization has been presented
supporting different codes of WiMAX and WiFi standards. In
addition, a comparison between the proposed and state of art
implementations is also presented. Even if state of the art low
complexity techniques have been applied however area figures
are still high when scaled to 130nm technology. The overall
cost of proposed decoder is mainly determined by cost of huge
flexibility and can be improved to a greater extent by supporting
only a limited number of codes. The proposed decoder archi-
tecture is fully compliant to support large parallelisms for high
throughput applications.
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