
ANR-15-CE25-0006-01 (NAND)

Deliverable D1.1

Noisy Density Evolution for NAND
Decoders

Franklin Cochachin
David Declercq
Lounis Kessal

Emmanuel Boutillon

Abstract

In this deliverable we will present the density evolution (DE) framework to analyze noisy message
passing decoders in the asymptotical limit of the codeword length. The concept of DE is a classical
tool that is used to study the performance of LDPC code ensembles, and predict the waterfall of the
considered decoders. In this deliverable, we use DE to compare different decoder structures on the
same LDPC ensemble, and we generalize the study to noisy decoders which use symmetric and memo-
ryless error models. The noise models could have any characteristic in terms of transition probability,
and we show a simple example to validate the noisy-DE approach.

The update rules of noiseless and noisy decoders will be derived, with a focus on Min-Sum-Based
decoders which have small message alphabets constructed from 3 and 4 quantization bits, and for
regular LDPC code ensembles with dv = 3 and dv = 4.

For the simple error model considered, we analyze the noisy decoder performance and show that the
DE noisy-thresholds results are better than the noiseless versions of the same decoder. The injected
noise is then beneficial to the convergence of the decoders in the waterfall region.

As a conclusion, the results of this work can serve as general tools to analyze the quantized noisy
Min-Sum decoders within the NAND project. More elaborate error models and generalizations of

the DE thresholds for the BI-AWGN will be studied in future works.

November 2016

Contents

1 Generalities on LDPC codes 3
1.1 Representations of LDPC codes . 3

1.1.1 Matrix Representation . 3
1.1.2 Graphical Representation . 4

1.2 Classification of LDPC codes . 4
1.2.1 Regular LDPC codes . 4
1.2.2 Irregular LDPC codes . 5
1.2.3 Quasi-cyclic LDPC codes . 7

1.3 File Format for LDPC Codes . 8
1.3.1 Alist format . 8
1.3.2 Quasi-cyclic format . 8

2 Binary LDPC decoders 10
2.1 Definitions . 10
2.2 Message-Passing decoding algorithms . 11

2.2.1 Hard-decision MP decoders . 13
2.2.2 Soft-decision MP decoders . 15

2.3 Conclusions . 18

3 Quantized Min-Sum Decoders and Density Evolution 20
3.1 Channel Value Quantization . 20

3.1.1 Quantization for the Binary Symmetric Channel 20
3.1.2 Quantization for the Binary-Input Additive White Gaussian Noise channel . . 20

3.2 Quantized Min-Sum-Based Decoders . 22
3.2.1 Notations . 22
3.2.2 Update Rules . 23
3.2.3 Look-up Table Representation of Quantized Min-Sum 23

3.3 Density Evolution for Quantized Min-Sum-Based decoders 25
3.3.1 General Principle of Density Evolution . 25
3.3.2 Density Evolution Recursion . 25

3.4 Asymptotic Bit Error Probability . 27
3.5 Density Evolution threshold . 27

4 Noise Models and Noisy Density Evolution 30
4.1 Noise Models in Quantized Decoders . 30

4.1.1 Constraints on the Noise Models . 30
4.1.2 A simple Noise Model . 31

4.2 Noisy Quantized Min-Sum-Based Decoders . 32
4.3 Noisy Density Evolution . 33
4.4 Bit Error Probability . 34

1

5 Asymptotic Analysis of the Noisy Quantized Min-Sum Decoder over the BSC 36
5.1 Case Study . 36
5.2 Noisy Thresholds of the MS over the BSC . 36
5.3 Asymptotic Bit Error Probability of Noisy MS over the BSC 39
5.4 Finite Length FER of the Noisy MS over the BSC . 40

6 Conclusions of this Deliverable 42

Bibliography 43

2

Chapter 1

Generalities on LDPC codes

In a communication system, a transmitter sends information through a noisy channel to one or more
receivers. The channel adds random noise and corrupts the information, and the receiver has the
purpose to retrieve the information with the least possible loss. In order to protect the information
against the channel noise, the transmitter adds redundancy to the information such that the receiver
can detect and correct the errors. Such process is called error correcting coding and decoding.

In the coding process, an error-correcting code converts a sequence of K information bits into a
longer sequence of N bits using a coding function which defines how to build the N −K redundancy
bits. Examples of coding processes include convolutional codes, block turbo-codes, LDPC codes, al-
gebraïc codes, etc.

In convolutional codes, the coding function uses individually each bit of the sequence of K bits
to build the redundancy bits, through a discrete linear filter. The classical algorithms used for the
decoding are the BCJR algorithm and the Viterbi algorithm.

In block codes the encoding is made by block of bits, and in this case the sequence of K bits is
used altogether to build the redundancy bits, through a binary generator matrix.

Nowadays, the most popular error-correcting codes are LDPC codes [1–3] and the turbo-codes,
because they have a high performance and practical decoding algorithms. LDPC codes are used for
communications standards like DVB-S2 [4], DVB-S2X [5], IEEE 802.3an, etc. Turbo codes are also
used for communications standards like LTE, DVB-RCS, WiMAX (IEEE 802.16), etc.

In this deliverable, we will only study LDPC codes and their associated decoders.

1.1 Representations of LDPC codes
LDPC codes can be represented either with a matrix representation or with a graphical representation
[3, 6–8].

1.1.1 Matrix Representation
An LDPC code is a linear block code defined by a sparse parity-check matrix H = [hij] of M rows by
N columns. Each column in H is associated with a bit in the codeword while each row is associated
with a parity-check equation. The following matrix is an example of a binary parity-check matrix:

3

H =



1 0 0 0 0 1 1 0 0 0 0 1
0 1 0 1 0 0 0 1 0 1 0 0
0 0 1 0 1 0 0 0 1 0 1 0
0 1 0 1 0 0 0 0 1 0 1 0
0 0 1 0 1 0 1 0 0 0 0 1
1 0 0 0 0 1 0 1 0 1 0 0
0 0 1 0 1 0 0 1 0 1 0 0
1 0 0 0 0 1 0 0 1 0 1 0
0 1 0 1 0 0 1 0 0 0 0 1


(1.1)

Let further x denote a codeword which can be represented as a vector x = (x̂1, ..., x̂N) ∈ {0, 1}N .
The matrix H is used to check the parity of the codeword bits, i.e. HxT = 0. For example, using
the matrix presented in (1.1), a parity-check equation is given by x̂1 ⊕ x̂6 ⊕ x̂7 ⊕ x̂12 = 0, where ⊕
represents the modulo-two sum.

Let dH be the density of H defined as the number of non-zero elements in H divided by the matrix
size. For LDPC codes, the amount of non-zero elements in H is very small compared to the amount
of 0’s, and dH converges to zero when N increases to infinity [3, 9].

1.1.2 Graphical Representation
LDPC codes can also be represented by a Tanner graph [6]. A Tanner graph is a bipartite graph whose
nodes are divided into two disjoint sets. One set is made of variable-nodes (VN) and the other set
by check-nodes (CN). In the graph, only check-nodes are connected to variable-nodes and vice versa,
other types of connection are not allowed. Furthermore, a variable-node is typically represented with
a circle, while a check-node is represented with a square.

The Tanner graph and H are closely related. The VN in the graph correspond to the columns of
H and the CN correspond to the rows of H, with an edge connecting CN i to VN j exists if and only
if hij 6= 0.

1.2 Classification of LDPC codes
LDPC codes are classified according to their structural properties as regular or irregular LDPC codes.
Additionally, the LDPC codes can also be classified as non-structured LDPC codes and structured
LDPC codes. Non-structured LDPC codes do not exhibit a specific structure, while in structured
LDPC codes, H is generated with algebraic equations, or contrained by specific topological proper-
ties. Usually, those constraints are introduced in order to help the decoder to have a low cost hardware
implementation. One could further categorize the structured LDPC codes in three types: (i) quasi-
cyclic LDPC codes, (ii) convolutional LDPC codes, and (iii) algebraic constructions of LDPC codes.

1.2.1 Regular LDPC codes
A (dv, dc)-regular LDPC code has all its variable-nodes with the same degree and all its check-nodes
of a fixed degree. This means that the number of edges incident to each variable-node is constant,
denoted by dv (variable node degree), and the number of edges incident to each check-node is also
constant, denoted by dc (check node degree). In the corresponding sparse parity-check matrix, dv is
the amount of non-zero elements per column, and dc is the amount of non-zero elements per row.

For a regular LDPC code, the density of H is equal to dH = dv/M = dc/N . For example, the
matrix in (1.1) has dv = 3, dc = 4 and dH = 1/3.

Let E denote the number of edges in the Tanner graph, or equivalently E is the amount of non-
zero elements in H. For a regular LDPC code we have E = dv N = dcM . The code rate R can

4

be calculated as R = K/N ≥ N−M
N [3], and if the rows of H are linearly independent, we can write

R = 1− (dv/dc), which is usually defined as the design rate [10].

In figure 1.1, we show a bipartite graph which is related to the sparse parity-check matrix presented
in equation (1.1).

V N1 V N2 V N3 V N4 V N5 V N6 V N7 V N8 V N9 V N10 V N11 V N12

CN1 CN2 CN3 CN4 CN5 CN6 CN7 CN8 CN9

Figure 1.1: A Tanner graph for a (3, 4)-regular LDPC code of length 12. There are 12 VN, 9 CN, and
36 edges.

An LDPC code is uniquely defined by the choice of a parity-check matrix H, but for the theoretical
analysis of LDPC codes, we need to introduce the concept of code ensembles.

Definition 1.2.1. An ensemble or family CN (dv, dc) of LDPC codes is composed of all the Tanner
graphs with N VNs and regular degrees dv and dc, generated from all the possible permutations π of
the edges [8, 10–13]. π is a permutation of size E.

1.2.2 Irregular LDPC codes
For irregular LDPC codes [12], not all variable-nodes and/or check-nodes have the same degree, i.e.
in H, the amount of non-zero elements in at least one row (and/or one column) is different from the
amount of non-zero elements from the other rows (and/or columns).

Let λ(x) denote the edge-wise VN degree distribution. Let ρ(x) denote the edge-wise CN degree
distribution. Similarly, let λ̃(x) denote the node-wise VN degree distribution, and let ρ̃(x) denote the
node-wise CN degree distribution. Those polynomials are expressed the following way:

λ(x) =
dvmax∑
i=2

λix
i−1,

ρ(x) =
dcmax∑
j=2

ρjx
j−1,

where λi ∈ [0,1] denotes the proportion of edges connected to variable-nodes of degree i, and ρj ∈
[0,1] denotes the proportion of edges connected to check-nodes of degree j.

λ̃(x) =
dvmax∑
i=2

λ̃ix
i−1,

ρ̃(x) =
dcmax∑
j=2

ρ̃jx
j−1,

where λ̃i ∈ [0,1] denotes the proportion of variable-nodes of degree i, and ρ̃j ∈ [0,1] denotes the
proportion of check-nodes of degree j.

5

As for the case of regular LDPC codes, E denotes the number of edges in the Tanner graph.
Considering H, the amount of non-zero elements in columns of degree i is calculated as Eλi or iλ̃iN .
Similarly, the amount of non-zero elements in rows of degree j is given by Eρj or jρ̃jM . Then, it is
easy to obtain

E = iλ̃iN

λi
= jρ̃jM

ρj

The relationship between λi and λ̃i is given by

λ̃(x) =
dvmax∑
i=2

λiE

iN
xi−1,

Similarly, the relationship between ρj and ρ̃j is

ρ̃(x) =
dcmax∑
j=2

ρjE

jM
xj−1,

The design rate R(λ, ρ)

The design rate can be computed as R(λ, ρ) = N−M
N [11].

We can calculate the number of variable-nodes as

E

∫ 1

0
λ(x)dx.

Similarly, the number of check-nodes is equal to

E

∫ 1

0
ρ(x)dx.

Using λ(x) we have

∫ 1

0
λ(x)dx =

∫ 1

0

dvmax∑
i=2

λix
i−1 =

dvmax∑
i=2

λi
i
,

And using ρ(x) we get

∫ 1

0
ρ(x)dx =

∫ 1

0

dcmax∑
j=2

ρjx
j−1 =

dcmax∑
j=2

ρj
j
,

Therefore R(λ, ρ) can also be computed as

R(λ, ρ) = 1−
∫ 1

0 ρ(x)dx∫ 1
0 λ(x)dx

,

or equivalently

R(λ, ρ) = 1−

dcmax∑
j=2

ρj

j

dvmax∑
i=2

λi

i

.

6

In figure 1.2, we show a Tanner graph for an irregular LDPC code. For example, for this graph
we have λ(x) = 2

3x + 1
3x

2, ρ(x) = 1
2x

2 + 2
9x

3 + 5
18x

4, λ̃(x) = 3
4x + 1

4x
2, ρ̃(x) = 3

5x
2 + 1

5x
3 + 1

5x
4

and R(λ, ρ) = 3
8 .

V N1 V N2 V N3 V N4 V N5 V N6 V N7 V N8

CN1 CN2 CN3 CN4 CN5

Figure 1.2: A Tanner graph for an irregular LDPC code of length 8. There are 9 VN, 5 CN, and 18
edges.

1.2.3 Quasi-cyclic LDPC codes
Among all types of LDPC codes that we have mentioned, we describe only quasi-cyclic (QC) LDPC
codes in details, because these are the codes that will be used in the NAND project.

A QC-LDPC code is characterized by its parity-check matrix which is organized in small square
sub-matrices which are either the all-zero matrix or circulant permutation matrices [14, 15]. Let P i
denote the L×L permutation matrix which shifts the identity matrix I to the left by i times 0 ≤ i < L.
We consider that P∞ denotes the zero matrix, and P 0 is equal to I. For example P 1 is given by

P 1 =



0 0 0 . . . 0 0 1
1 0 0 . . . 0 0 0
0 1 0 . . . 0 0 0
...

...
...

. . .
...

0 0 0 . . . 1 0 0
0 0 0 . . . 0 1 0


Using circulant permutation matrices, H can be built as follows

H =


P a11 P a12 . . . P a1(n−1) P a1n

P a21 P a22 . . . P a2(n−1) P a2n

...
...

. . .
...

...
P am1 P am2 . . . P am(n−1) P amn

 (1.2)

Where H has M = mL rows and N = nL columns, and aij ∈ {0, 1, ..., L− 1,∞}.

A QC-LDPC code may be regular or irregular depending on the choice of aij ’s of H in (1.2). When
aij 6= ∞, a QC-LDPC code is a (M/L,N/L)-regular LDPC code. For example, the matrix in (1.1)
represents a QC-LDPC code which can be conveniently written as follows:

H =



1 0 0 0 0 1 1 0 0 0 0 1
0 1 0 1 0 0 0 1 0 1 0 0
0 0 1 0 1 0 0 0 1 0 1 0
0 1 0 1 0 0 0 0 1 0 1 0
0 0 1 0 1 0 1 0 0 0 0 1
1 0 0 0 0 1 0 1 0 1 0 0
0 0 1 0 1 0 0 1 0 1 0 0
1 0 0 0 0 1 0 0 1 0 1 0
0 1 0 1 0 0 1 0 0 0 0 1


=

 P 0 P 1 P 0 P 1

P 2 P 0 P 1 P 2

P 1 P 2 P 2 P 0



7

Where M = 9, N = 12, and L = 3. Some values of aij are a11 = 0, a12 = 1 and a32 = 2.

Remark. The QC-LDPC codes presented in this section are a special case of type-I protograph codes
[16], in which the graph expansion is constrained to be quasi-cyclic. For type-II protographs, one square
sub-matrix could contain two or more circulants.

1.3 File Format for LDPC Codes
In this section, we present two file formats that will be used to store the parity-check matrices of
LDPC codes. The firts one is called Alist [17] and the other one stores only the exponents of the
quasi-cyclic form of (1.2).

1.3.1 Alist format
A file in Alist format for a (dv, dc)-regular LDPC code contains in its 1st row the dimension of H, in
its 2nd row both values dv and dc, in its 3rd and 4th rows the degrees of the N variable-nodes and
the M check-nodes, respectively. Then the next rows indicate the positions of the non-zero elements
in each row of H.

For example, considering the matrix in (1.1), a file in Alist format for a (3, 4)-regular LDPC code
is shown in Table 1.1. In this file we have M = 9 and N = 12, then dv = 3 and dc = 4, then the
degrees of the 12 VNs and the 9 CNs. Then the position of non-zero elements in the 1st row of H,
i.e. 0, 5, 6, and 11; then the position of non-zero elements in the 2nd row of H, i.e. 1, 3, 7, and 9;
and so on.

%==
9 12
3 4

3 3 3 3 3 3 3 3 3 3 3 3
4 4 4 4 4 4 4 4 4

0 5 6 11
1 3 7 9
2 4 8 10
1 3 8 10
2 4 6 11
0 5 7 9
2 4 7 9
0 5 8 10
1 3 6 11
%==

Table 1.1: Alist format for the LDPC code of equation (1.1)

1.3.2 Quasi-cyclic format
The quasi-cyclic format consists in storing the exponents of the matrix P in equation (1.2), with the
following format.

8

M N L
ν11 ν12 ν13 . . . ν1(n−1) ν1n
ν21 ν22 ν13 . . . ν2(n−1) ν2n
...

...
...

. . .
...

...
νm1 νm2 νm3 . . . νm(n−1) νmn

Where νij = −1 if aij =∞, νij = aij otherwise (see section 1.2.3).

For example, the Table 1.2 shows a quasi-cyclic format for the matrix presented in (1.1). The file
contains in its 1st row M = 9, N = 12, and L = 3; in its 2nd row ν11 = 0, ν12 = 1, ν13 = 0, and
ν14 = 1; in its 3rd row ν21 = 2, ν22 = 0, ν23 = 1, and ν24 = 2; and in its 4th row ν31 = 1, ν32 = 2,
ν33 = 2, and ν34 = 0.

%==
9 12 3

0 1 0 1
2 0 1 2
1 2 2 0
%==

Table 1.2: Quasi-cyclic format for the LDPC code of equation (1.1)

9

Chapter 2

Binary LDPC decoders

In this chapter, we first introduce the notations and terminologies related to binary LDPC decoders
that we use throughout this deliverable. Then we briefly review a number of important message-
passing decoding algorithms.

2.1 Definitions
In figure 2.1, we depict a simple communication system. We assume that the source produces a
vector s = (s1, s2, ..., sK). The encoder adds redundancy to s in order to obtain an encoded vector
x = (x1, x2, ..., xN), which is a codeword, and which is mapped by e.g. a binary phase-shift keying
(BPSK) modulation, to obtain w = (w1, w2, ..., wN). After w is sent through the noisy channel.
Based on the channel outputs y = (y1, y2, ..., yN), the decoder produces the vector x̂ = (x̂1, x̂2, ..., x̂N)
which is an estimation of x. To check if x̂ is a valid codeword, we verify that the syndrome vector is
all-zero, i.e. Hx̂T = 0, where H is the sparse parity-check matrix.

Source Encoder Modulator Channel Decoder
K
s

N
x

N
w

N
y

N

x̂

Figure 2.1: A simple communication system

We denote the channel output alphabet by Ay, while the channel input alphabet is denoted Ax.
For binary LDPC decoders we have y ∈ ANy , s ∈ {0, 1}K , x ∈ {0, 1}N and x̂ ∈ {0, 1}N .

The channel output alphabet depends on the channel model. We consider in this deliverable two
models of binary memoryless channels: the first one, the Binary Symmetric Channel (BSC); and the
second one, the Binary-Input Additive White Gaussian Noise (BI-AWGN) channel [18,19].

Binary Symmetric Channel
In the BSC, a bit transmitted xn ∈ {0, 1} is flipped to yn with probability ε, referred to as the error
probability or crossover probability of the channel, hence yn ∈ Ay = {0, 1}.

The BSC satisfies the following symmetry condition

p(yn = ξ | xn = 0) = p(yn = −ξ | xn = 1) ξ ∈ {0, 1} (2.1)

Where p(y | x) is the likelihood (channel transition probability).

10

Binary-Input Additive White Gaussian Noise channel
The BI-AWGN channel is modeled by yn = (1 − 2xn) + zn, where 1 − 2xn ∈ {+1,−1}, and zn is a
sequence of independent and identically distributed (i.i.d.) random variables with probability density
function given by the normal (or Gaussian) distribution.

pBIAWGN (zn) = 1√
2πσ

e−(zn)2/2σ2
(2.2)

Where σ2 is the noise variance.

Similarly to the BSC, the BI-AWGN channel satisfies the following symmetry condition

p(yn = ξ | xn = 0) = p(yn = −ξ | xn = 1), ξ ∈ Ay (2.3)

Where p(y | x) defines the likelihood distribution.

Log-Likelihood Ratio
A log-likelihood ratio (LLR) form for the bit xn with probability p(xn) is defined by

L(xn) = log
(
p(xn = 0)
p(xn = 1)

)
. (2.4)

Where p(xn = 0) + p(xn = 1) = 1. If p(xn = 0) > p(xn = 1) then L(xn) is positive; if the
inequality es reversed, then L(xn) is negative. Therefore, the sign of L(xn) indicates the value of the
bit xn (xn = (1−sign(L(xn)))/2), and |L(xn)| give us a measure of its reliability. We consider that
the notation log denotes the logarithm with base e in the rest of the text.

The channel output can be also expressed in a LLR form as follows

L(yn) = log
(
Pr(yn | xn = 0)
Pr(yn | xn = 1)

)
. (2.5)

In the case of the BSC, we get

L(yn) = (1− 2yn)log
(

1− ε
ε

)
, (2.6)

and for the BI-AWGN channel with noise variance σ2, we have

L(yn) = 2
σ2 yn. (2.7)

2.2 Message-Passing decoding algorithms
Message-Passing (MP) decoding algorithms are iterative algorithms that use a Tanner graph to pass
messages along the edges, these algorithms compute new messages at each new iteration. Considering
any VN v and any CN c, messages passed on the edge {v, c}, either from VN to CN, or vice versa,
are computed as a function of all incoming messages, except the message passed on the edge {v, c}.

Here we present the notations used to describe different algorithms. We consider that the message
alphabet is M. Let ` ∈ N, denote the number of iterations. Let m(`)

v→c ∈ M, denotes the message
sent from VN v to CN c in the `th iteration. Let m(`)

c→v ∈ M, denotes the message sent from CN c
to VN v in the `th iteration. Let γ = (γ1, γ2, ..., γN) denote the a posteriori probability, where γn is

11

associated to a VN vn, n = 1, 2, ..., N , note that often γn ∈M but it is a loss of generalisation. Also,
let V(vn) denote the set of neighbors of a VN vn in a Tanner graph, and let V(cm) denote the set of
neighbors of a CN cm in a Tanner graph, these neighborhood definitions are required to explain MP
decoding algorithms.

Fig. 2.2 depicts a Tanner graph fragment, showing the flow of messages in MP decoding algo-
rithms. From this figure we have V(vn) = {cm, c1, c2, c3} and V(cm) = {vn, v1, v2, v3}. At iteration
zero m(0)

vn→cm = L(yn) because all the messages inside the Tanner graph are initialized to zero. At
each iteration m(`+1)

vn→cm , m(`)
cm→vn and γn are computed, and an estimation of the bit transmitted xn

is obtained from γn.

c2

c1

vn

c3

cm v2

v1

v3

m
(`)
cm→vn

m
(`+1)
vn→cm

m
(`)
c1→vn

m
(`)
v1→cm

γn γ̂n

V(vn)\{cm} V(cm)\{vn}

Figure 2.2: A Tanner graph fragment

In MP decoding algorithms, a VN vn sends its message to its neighbors V(vn). Similarly a CN cm
sends its message to its neighbors V(cm). In each iteration, the VN update (VNU) and CN update
(CNU) compute outgoing messages from all incoming message.

In this deliverable, the messages will be described in the log-likelihood ratio (LLR) domain. The
sign of a message represents the hard-decidion value of the VN it is connected to, and the absolute
value of the message represents its reliability. As a consequence, the message alphabetM has to be
symmetric around O. For exampleM = R for a continuous alphabet andM = {−Nq, . . . , 0, . . . ,+Nq}
for a discrete alphabet. The LLR from the channel L(yn) is usually referred to as the intrinsic mes-
sage for the VN vn. The exchanged messages in the decoder are usually referred to as extrinsic
messages. For a successful decoding, the measure of the reliability of extrinsic messages becomes
more and more reliable at each new iteration.

We now define update functions for the VNU and the CNU. Let Ψv : Ax ×M(dv−1) →M denote
the function used for the update at a variable-node v of degree dv. Let Ψc :M(dc−1) →M denote the
function used for the update at a check-node c of degree dc. We can write Ψv : Ax →M in the 0th
iteration. Let bv ∈ {±1}. The functions Ψv and Ψc satisfy the following symmetry conditions [10].

Ψc

({
bvm

(`)
v→cm

}
v∈V(cm)\{vn}

)
= Ψc

({
m(`)
v→cm

}
v∈V(cm)\{vn}

) ∏
v∈V(cm)\{vn}

bv

 (2.8)

Ψv

(
−L(yn),

{
−m(`)

c→vn

}
c∈V(vn)\{cm}

)
= −Ψv

(
L(yn),

{
m

(`)
c→vn

}
c∈V(vn)\{cm}

)
, ` ≥ 1

Ψv (−L(yn)) = −Ψv (L(yn)) , ` = 0
(2.9)

We now describe the main steps of MP decoding algorithms:

1. [Initialization] the LLR L(yn) is computed for each VN vn. Then, variable-to-check messages
m

(`)
vn→cm are initialized by L(yn) at the 0th iteration.

12

2. [IterationLoop] Each decoding iteration consists of the following steps:

(a) [CNU] a check-node computes the outgoing message based on all the incoming messages
except the one received from the outgoing message.

m
(`)
cm→vn = Ψc

({
m

(`)
v→cm

}
v∈V(cm)\{vn}

)
.

(b) [VNU] a variable-node computes the outgoing message from the channel observation and
from all the incoming messages except the one which receives the outgoing message.

m
(`+1)
vn→cm = Ψv

(
L(yn),

{
m

(`)
c→vn

}
c∈V(vn)\{cm}

)
.

(c) [APP− update] (a posteriori probability update) the a posteriori probability is com-
puted from the channel observation and from all the incoming messages.

γn = Ψv

(
L(yn),

{
m

(`)
c→vn

}
c∈V(vn)

)
(d) [hard decision] makes an estimation of the bits transmitted from the a posteriori proba-

bility.
x̂n = (1− sign (γn)) /2

(e) [syndrome check] verifies that the syndrome vector is all-zero in order to check if x̂ is a
valid codeword.
Hx̂T = 0.

The decoding stops when either [x̂n]n=1,...,N is a codeword or a maximum number of iteration is
reached.

In binary LDPC decoders, the MP decoding can be performed either (i) using one bit to represent
messages (hard-decision MP decoders) or (ii) using more than one bit to represent messages (soft-
decision MP decoders). We present in the next sections the most common examples of such decoders.

2.2.1 Hard-decision MP decoders
Hard-decision MP decoders use just one bit to represent the messages propagated in the Tanner graph,
i.e. m

(`)
v→c and m

(`)
c→v ∈ {+1,−1} (which is equivalent to {0, 1}). Hard-decision decoders are more

interesting for the BSC channel than for the AWGN channel, and we restrict in this section the pre-
sentation of the decoders to the BSC.

Gallager-B decoder

The Gallager-B algorithm is a MP decoding algorithm [18, 19] with binary alphabetM = {+1,−1}.
The Gallager-B decoder is described by Algorithm 1. At the initialization step, the LLR from the
BSC channel is equal to L(yn) = 1− 2yn ∈M, and m(0)

vn→cm = L(yn) at iteration ` = 0.

In each decoding iteration, the CNU computes the check-to-variable messages m(`)
cm→vn as the

parity (in ±1 format) of the incoming messages m(`)
v→cm , where v ∈ V(cm)\{vn}:

m(`)
cm→vn

= Ψc

({
m(`)
v→cm

}
v∈V(cm)\{vn}

)
=

∏
v∈V(cm)\{vn}

m(`)
v→cm

(2.10)

The VNU computes the variable-to-check messages m(`+1)
vn→cm by comparing the sum of L(yn) and

13

Input: [yn]n=1,...,N ∈ {0, 1}N ,
Output: [x̂n]n=1,...,N ∈ {0, 1}N ,
Initialization

for all {vn}n=1,...,N do
L(yn) = 1− 2yn;

for all {vn}n=1,...,N and cm ∈ V(vn) do
m

(0)
vn→cm = L(yn);

Iteration Loop
for all {cm}m=1,...,M and vn ∈ V(cm) do /*CN-update*/
m

(`)
cm→vn =

∏
v∈V(cm)\{vn}

m(`)
v→cm

;

for all {vn}n=1,...,N and cm ∈ V(vn) do /*VN-update*/
svc = L(yn) +

∑
c∈V(vn)\{cm}

m(`)
c→vn

m
(`+1)
vn→cm =

{
L(yn), if |svc| < t

sign(svc), otherwise;
for all {vn}n=1,...,N do /*APP-update*/
sn = L(yn) +

∑
c∈V(vn)

m(`)
c→vn

γn =
{
L(yn), if sn = 0

sign(sn), otherwise;
for all {vn}n=1,...,N do /*hard decision*/
x̂n = (1− γn)/2;

if [x̂n]n=1,...,N is a codeword then
exit the iteration loop;

End Iteration Loop
Algorithm 1: Gallager-B decoder

the incoming messages m(`)
c→vn to a pre-determined threshold t:

svc = L(yn) +
∑

c∈V(vn)\{cm}

m(`)
c→vn

m(`+1)
vn→cm

=
{

L(yn), if |svc| < t
sign(svc), otherwise;

(2.11)

The a posteriori probability γn is calculated from the sign of sn which is the sum of L(yn)
and all incoming messages m(`)

c→vn , where c ∈ V(vn). If sn = 0 then γn = L(yn). The hard de-
cision [x̂n]n=1,...,N ∈ {0, 1}N is defined as the binary equivalent of [γn]n=1,...,N ∈ {+1,−1}N , i.e.
x̂n = (1 − γn)/2. The decoder stops if either [x̂n]n=1,...,N is a codeword or a maximum number of
iteration is reached.

To improve the performance of the Gallager-B decoder, the threshold t can be optimized, could
take different values at each iteration, and may vary from a VNU to another. However, the value of
t is most of the time considered as constant. Two examples of Gallager-B decoders are given in the
next subsections, and we can refer to [18,19] for more details.

Gallager-A decoder

The Gallager-A decoder can be seen as a particular case of the Gallager-B decoder. In the Gallager-A
decoder, the threshold t is equal to deg(vn)− 2, where deg(vn) is the degree of the variable-node vn.
Note that for regular LDPC codes, t is a constant value.

14

Majority-Voting decoder

The Majority-Voting decoder can be obtained from the Gallager-B decoder. In this case the threshold
t is equal to 1. Hence, the update rule at a variable-node is given by

m(`+1)
vn→cm

= Ψv

(
L(yn),

{
m(`)
c→vn

}
c∈V(vn)\{cm}

)
=
{

L(yn), if svc = 0
sign(svc), otherwise;

If svc is equal to zero, m(`+1)
vn→cm is equal to L(yn); otherwise, m(`+1)

vn→cm is the sign of svc.

Gallager-B decoder with extended alphabet (erasure decoder)

The message alphabet for Gallager-B with extended alphabet isM = {−1, 0, 1}. The value 0 is added
to the alphabet to deal with the ties in the VNU update of the Gallager-B and propagate 0 instead
of the likelihood in such case. This decoder is also named erasure decoder. Strictly speaking this
decoder is not a hard decision decoder, and a least two bits of precision must be used in the hardware
implementation. Algorithm 2 presents the details of the erasure decoder.

... same as Gallager-B decoder
Iteration Loop

... same as Gallager-B decoder
for all {vn}n=1,...,N and cm ∈ V(vn) do /*VN-update*/

m
(`+1)
vn→cm = sign

L(yn) +
∑

c∈V(vn)\{cm}

m(`)
c→vn

;

... same as Gallager-B decoder
End Iteration Loop

Algorithm 2: Erasure decoder

Some authors have proposed to improve the performance of the erasure decoder by weighting
differently the channel value and the extrinsic contribution. Refer to [18,19] for more details.

2.2.2 Soft-decision MP decoders
Soft-decision MP decoders use more than one bit to represent messages in the Tanner graph. These
decoders propagate more information than hard-decision decoders, and they usually work in the LLR
domain using real valued message, i.e. m(`)

v→c and m(`)
c→v ∈ R. The performance of soft-decision MP

decoders is much better than the performance of the hard-decision MP decoders, but their hardware
implementation is more complex. The sum-product algorithm, the Min-Sum (MS) algorithm are some
examples of algorithms used for soft-decision MP decoders.

Belief Propagation decoder

One important kind of message-passing decoding algorithm is the sum-product algorithm [20], also
called Belief-Propagation (BP) algorithm. This algorithm is commonly used in different applications
like artificial intelligence, information theory, etc.

For the BP decoder presented in this section, we consider that the message alphabet is continuous,
i.e. M = R, and the channel output is discrete or continuous. For the BSC, the channel likelihood

is given by L(yn) = (1 − 2yn) log
(

1− ε
ε

)
, and for the BI-AWGN channel, the LLR is equal to

L(yn) = 2 yn
σ2 .

The update rule at a variable-node is given by

15

m(`+1)
vn→cm

= Ψv

(
L(yn),

{
m(`)
c→vn

}
c∈V(vn)\{cm}

)
= L(yn) +

∑
c∈V(vn)\{cm}

m(`)
c→vn

(2.12)

And the update rule at a check-node is given by

m(`)
cm→vn

= Ψc

({
m(`)
v→cm

}
v∈V(cm)\{vn}

)
= log


1 +

∏
v∈V(cm)\{vn}

tanh m
(`)
v→cm

2

1−
∏

v∈V(cm)\{vn}

tanh m
(`)
v→cm

2

 (2.13)

Considering the function

Φ(x) = log
(
tanhx2

)
= log

(
1 + e−x

1− e−x

)
,∀x > 0,

equation (2.13) can be rewritten as:

Ψc

({
m(`)
v→cm

}
v∈V(cm)\{vn}

)
=

 ∏
v∈V(cm)\{vn}

sign
(
m(`)
v→cm

) .Φ

 ∑
v∈V(cm)\{vn}

Φ
(∣∣∣m(`)

v→cm

∣∣∣)


(2.14)

The BP decoder is quite tedious to implement because of the function Φ used to compute check-
to-variable messages. Algorithm 3 describes the BP decoder.

Input: [yn]n=1,...,N ∈ ANy ,
Output: [x̂n]n=1,...,N ∈ {0, 1}N ,
Initialization

for all {vn}n=1,...,N do

L(yn) = log
(
Pr(yn | xn = 0)
Pr(yn | xn = 1)

)
;

for all {vn}n=1,...,N and cm ∈ V(vn) do
m

(0)
vn→cm = L(yn);

Iteration Loop
for all {cm}m=1,...,M and vn ∈ V(cm) do /*CN-update*/

m
(`)
cm→vn =

 ∏
v∈V(cm)\{vn}

sign
(
m(`)
v→cm

) .Φ

 ∑
v∈V(cm)\{vn}

Φ
(∣∣∣m(`)

v→cm

∣∣∣)
;

for all {vn}n=1,...,N and cm ∈ V(vn) do /*VN-update*/
m

(`+1)
vn→cm = L(yn) +

∑
c∈V(vn)\{cm}

m(`)
c→vn

;

for all {vn}n=1,...,N do /*APP-update*/
γn = L(yn) +

∑
c∈V(vn)

m(`)
c→vn

;

for all {vn}n=1,...,N do /*hard decision*/
x̂n = (1− sign (γn)) /2;

if [x̂n]n=1,...,N is a codeword then
exit the iteration loop;

End Iteration Loop
Algorithm 3: Belief-Propagation (BP) decoder

16

Min-Sum decoder

The Min-Sum (MS) decoder is derived from the BP decoder. The MS decoder reduces the computa-
tional complexity at the CNU and is less sensitive than BP decoder to message quantization effects.

In the MS decoder, the update rule for the VNU is the same as the BP decoder, equation (2.12).
To obtain the update rule at the CNU, the following relation is used

Φ (Φ(a) + Φ(b)) ≤ min(a, b), ∀a > 0 and b > 0 (2.15)

Using this relation, one could replace the CNU of the BP (2.14) by:

Ψc

({
m(`)
v→cm

}
v∈V(cm)\{vn}

)
=

 ∏
v∈V(cm)\{vn}

sign
(
m(`)
v→cm

) .

(
min

v∈V(cm)\{vn}

(∣∣∣m(`)
v→cm

∣∣∣)) (2.16)

Algorithm 4 describes the MS decoder [19].

Input: [yn]n=1,...,N ∈ ANy ,
Output: [x̂n]n=1,...,N ∈ {0, 1}N ,
Initialization

for all {vn}n=1,...,N do

L(yn) = log
(
Pr(yn | xn = 0)
Pr(yn | xn = 1)

)
;

for all {vn}n=1,...,N and cm ∈ V(vn) do
m

(0)
vn→cm = L(yn);

Iteration Loop
for all {cm}m=1,...,M and vn ∈ V(cm) do /*CN-update*/

m
(`)
cm→vn =

 ∏
v∈V(cm)\{vn}

sign
(
m(`)
v→cm

) .

(
min

v∈V(cm)\{vn}

(∣∣∣m(`)
v→cm

∣∣∣));
for all {vn}n=1,...,N and cm ∈ V(vn) do /*VN-update*/
m

(`+1)
vn→cm = L(yn) +

∑
c∈V(vn)\{cm}

m(`)
c→vn

;

for all {vn}n=1,...,N do /*APP-update*/
γn = L(yn) +

∑
c∈V(vn)

m(`)
c→vn

;

for all {vn}n=1,...,N do /*hard decision*/
x̂n = (1− sign (γn)) /2;

if [x̂n]n=1,...,N is a codeword then
exit the iteration loop;

End Iteration Loop
Algorithm 4: Min-Sum (MS) decoder

Min-Sum-based decoders

There are several Min-Sum-based decoders proposed in the literature which have been proposed to
improve the performance of the MS decoder. We introduce briefly three of them.

(i) The Normalized-Min-Sum (NMS) decoder: in this decoder a factor λ ∈]0, 1[is used to weight
the messages at the output of the CN update. Since the relation (2.15) leads to a systematic over-
estimation of the amplitude of the CNU output message, it makes sense to shrink it with λ ∈]0, 1[.
λ could be fixed to a constant value, or vary according to the check-node degree. This factor can be
optimized by Monte-Carlo simulation, or using density evolution analysis. Algorithm 5 describes the
difference with the MS decoder presented in algorithm 4.

17

... same as MS decoder
Iteration Loop

for all {cm}m=1,...,M and vn ∈ V(cm) do /*CN-update*/

m
(`)
cm→vn = λ.

 ∏
v∈V(cm)\{vn}

sign
(
m(`)
v→cm

) .

(
min

v∈V(cm)\{vn}

(∣∣∣m(`)
v→cm

∣∣∣));
... same as MS decoder
End Iteration Loop

Algorithm 5: Normalized-Min-Sum (NMS) decoder

(ii) The Offset-Min-Sum (OMS) decoder: a variant of the NMS is proposed by using an offset
λ > 0 to diminish the message amplitude at the output of the CNU. As in the NMS decoder, the
offset λ has the objective of compensating the over-estimation of the MS outputs. λ can be a constant
value, or vary according to the check-node degree, and can be optimized by Monte-Carlo simulation,
or using density evolution analysis.

... same as MS decoder
Iteration Loop

for all {cm}m=1,...,M and vn ∈ V(cm) do /*CN-update*/

m
(`)
cm→vn =

 ∏
v∈V(cm)\{vn}

sign
(
m(`)
v→cm

) .max
{(

min
v∈V(cm)\{vn}

(∣∣∣m(`)
v→cm

∣∣∣))− λ, 0};
... same as MS decoder
End Iteration Loop

Algorithm 6: Offset-Min-Sum (OMS) decoder

(iii) The Self-Corrected Min-Sum (SCMS) decoder: this decoder modifies the VNU of the MS
decoder, and uses a 1-bit extra memory to store the sign of the previous variable-to-check message,
i.e sign(m(`)

vn→cm). The current variable-to-check message m(`+1)
vn→cm is updated according to Algorithm

7. This algorithm helps the decoder to detect oscillating behaviors in the decoder and propagates an
erasure to break the oscillation [19].

... same as MS decoder
Iteration Loop

... same as MS decoder
for all {vn}n=1,...,N and cm ∈ V(vn) do /*VN-update*/
m

(`+1)
vn→cm = L(yn) +

∑
c∈V(vn)\{cm}

m(`)
c→vn

;

if sign
(
m

(`+1)
vn→cm

)
6= sign

(
m

(`)
vn→cm

)
and m

(`+1)
vn→cm 6= 0

m
(`+1)
vn→cm = 0;

end if
... same as MS decoder
End Iteration Loop

Algorithm 7: Self-Corrected Min-Sum (SCMS) decoder

2.3 Conclusions
In this chapter we have presented a variety of Message-Passing decoding algorithms which some of
them can be implemented with small hardware resources, whereas other do not. Hard-decision MP
decoders have a low cost of hardware implementation because the message alphabet only needs one
bit, but the performance of these decoders is less good than for soft-decision MP decoders. Hard
decision decoders can be used in systems which do not require high decoding performance.

Soft-decision MP decoders have the message alphabet equal to the real numbers, for these rea-

18

son, these decoders are more complex to be implemented in hardware. The BP decoder has high
computational complexity due to the function Φ, but has high decoding performance. In the class of
soft-decision MP decoders, the Min-Sum decoder and Min-Sum-based decoders have lower computa-
tional complexity than the BP decoder, with a slight, sometimes negligible, performance loss.

For soft-decision MP decoders, in order to make a hardware implementation, the message alphabet
and the channel output alphabet have to be discrete and finite.

We present in the next chapter the Min-Sum-based decoders using quantized messages, and de-
scribe the density evolution tools used to analyze them.

19

Chapter 3

Quantized Min-Sum Decoders and
Density Evolution

This chapter is dedicated to the presentation of the main theoretical tool that is used to analyze the
performance of LDPC codes and decoders, called Density Evolution (DE). The concept of DE is to
track the evolution of the probability mass function of the messages during the iterations of LDPC
decoders. Although DE has been introduced as a theoretical approach, it turns out to be a very
efficient tool to predict the performance of LDPC decoders in the waterfall region. This is especially
true when the DE can follow the exact density of the messages (under the independance assumption),
which is the case of quantized decoders, when the message alphabet is small enough.

From now on, and throughout the rest of the deliverable, we assume that the message alphabet is
finite, composed of Ns = 2Nq + 1 states, with Nq = 2(q−1) − 1. The message alphabet is denoted by
M = {−Nq,−(Nq − 1), ...,−1, 0,+1, ...,+(Nq − 1),+Nq}, i.e. the messages are quantized on q bits.

3.1 Channel Value Quantization
3.1.1 Quantization for the Binary Symmetric Channel
According to Chapter 2, for the BSC we have L(yn) = (1 − 2yn)log((1 − ε)/ε) ∈ R, with yn ∈ Ay =
{0, 1}. For a given BSC probability ε, the decoder input alphabet is composed of two values in
Ax = [+|L(yn)|,−|L(yn)|]. Figure 3.1 shows the LLR L(yn) as a function of the cross-over probability
ε, we can see that L(yn) is a real number.

As we deal with quantized decoders with message alphabet M, we can consider without loss
of generality that Ax ⊆ M. In the sequel, we denote by C the channel value which is a positive
integer, and consider that |L(yn)| is mapped to C. As a result, the decoder input alphabet becomes
Ax = {+C,−C}, with C ∈ {+1,+2, ...,+Nq}. In other words yn = 0 is mapped to +C and yn = 1 is
mapped to −C. The value of C can be seen as an extra degree of freedom in the decoder definition.
For example, a MS decoder with C = 1 and a MS decoder with C = 2 are interpreted as two different
decoders. C can be optimized in order to improve the decoder performance.

3.1.2 Quantization for the Binary-Input Additive White Gaussian Noise
channel

According to Chapter 2, for the BI-AWGN channel we have L(yn) = 2 yn/σ2, with yn ∈ Ay = R.
In the initialization step, variable-to-check messages are initialized by integer numbers in quantized
decoders, hence, L(yn) has to be quantized on θ bits.

We denote by Q : R→ Z, the quantizer, defined by:

20

0 0.2 0.4 0.6 0.8 1
−5

−4

−3

−2

−1

0

1

2

3

4

5

L
(y

n
=

0)

Cross-over probability (ǫ)

LLR for the BSC

0 0.2 0.4 0.6 0.8 1
−5

0

5

L
(y

n
=

1)

log((1− ǫ)/ǫ)
−log((1− ǫ)/ǫ)

Figure 3.1: L(yn) for the BSC.

Q (L(yn)) =
⌊
L(yn)2(θ−1) − 1

α
+ 0.5

⌋
, L(yn) ∈ R (3.1)

where the notation b.c depicts the floor function, θ denotes the numbers of bits used to quantize
L(yn).

The decoder input alphabet is Ax = Z because Q (L(yn)) is an integer. The parameter α in equa-
tion (3.1) is a factor used to enlarge or decrease the standard deviation of quantized values. Figure
3.2 shows the f (Q(L(yn))) as a function of Q (L(yn)), the quantized values presented in figure 3.2a
were obtained considering θ = 4, σ = 0.8, and α = 2; whereas θ = 4, σ = 0.8, and α = 8 were used to
compute the quantized values shown in figure 3.2b.

We can see that if α is large, most of the quantized values are close to zero, see figure 3.2b. On the
other hand, for a small value of α, the quantized values are spread along a wider interval, see figure 3.2a.

Similar to C for the BSC channel, α represents a degree of freedom in the decoder definition that
can be analyzed and optimized for quantized decoders on the BI-AWGN channel.

−40 −30 −20 −10 0 10 20 30 40
0

0.01

0.02

0.03

0.04

0.05

0.06

P
D
F

:
f
(Q

(L
(y

n
))
)

Q (L(yn))

σ = 0.8, θ = 4, and α = 2
σ = 0.8, θ = 4, and α = 2
µq = +10.9, and σq = 8.7
µq = −10.9, and σq = 8.7

(a) α = 2

−10 −8 −6 −4 −2 0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25

P
D
F

:
f
(Q

(L
(y

n
))
)

Q (L(yn))

σ = 0.8, θ = 4, and α = 8
σ = 0.8, θ = 4, and α = 8
µq = +2.7, and σq = 2.2
µq = −2.7, and σq = 2.2

(b) α = 8

Figure 3.2: PDF of quantized values using θ = 4 and σ = 0.8

21

Saturation
We denote by SM : Z→M, the saturation, defined by:

SM(β) =

 −Nq if β < −Nq
β if β ∈M

+Nq if β > +Nq
(3.2)

Assumptions for the AWGN channel
We consider that Ax ⊆M. This assumption is a loss of generalization, but generalizations toM⊆ Ax
could be derived easily from the analysis presented in this chapter.

To obtain quantized values belonging toM for the BI-AWGN channel, L(yn) has to be quantized
and saturated, i.e. SM (Q (L(yn))). Distributions of quantized and saturated values presented in fig-
ure 3.3 are obtained from the quantized values shown in figure 3.2, doing the saturation with Nq = 15.
Note that if α is too small, most of quantized values are saturated to Nq.

−40 −30 −20 −10 0 10 20 30 40
0

0.01

0.02

0.03

0.04

0.05

0.06

P
D
F

:
f
(S

M
(Q

(L
(y

n
))
))

SM(Q (L(yn)))

σ = 0.8, θ = 4, Nq = 15, and α = 2
σ = 0.8, θ = 4, Nq = 15, and α = 2
µq = +10.9, and σq = 8.7
µq = −10.9, and σq = 8.7

(a) α = 2, Nq = 15

−10 −8 −6 −4 −2 0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25

P
D
F

:
f
(S

M
(Q

(L
(y

n
))
))

SM(Q (L(yn)))

σ = 0.8, θ = 4, Nq = 15, and α = 8
σ = 0.8, θ = 4, Nq = 15, and α = 8
µq = +2.7, and σq = 2.2
µq = −2.7, and σq = 2.2

(b) α = 8, Nq = 15

Figure 3.3: Quantization with saturation of L(yn) using q = 5, θ = 4, and σ = 0.8.

3.2 Quantized Min-Sum-Based Decoders
3.2.1 Notations
We keep the notations presented in Chapter 2, i.e. ` ∈ N denotes the number of iterations, m(`)

v→c ∈M
denotes the message sent from VN v to CN c in the `th iteration, m(`)

c→v ∈ M denotes the message
sent from CN c to VN v in the `th iteration. Also, V(vn) is the set of neighbors of a VN vn in a
Tanner graph, and V(cm) is the set of neighbors of a CN cm in a Tanner graph.

Following the definitions of the VNU and CNU presented in Chapter 2, in this section we present the
discrete update functions for quantized Min-Sum-Based decoders. Ψv : Ax ×M(dv−1) →M denotes
the discrete function used for the update at a variable-node v of degree dv, and Ψc :M(dc−1) →M
denotes the discrete function used for the update at a check-node c of degree dc. The functions Ψv

and Ψc also satisfy the symmetry conditions presented in equations (2.8) and (2.9), respectively.

22

We also consider that γ = (γ1, γ2, ..., γN) denote the a posteriori probability, where γn ∈ M
is associated to a VN vn. Also, L = (L(y1), L(y2), ..., L(yN)) denote the likelihood vector. The
likelihoods are computed as explained in the previous sections, i.e. L(yn) = ±C for the BSC, and
L(yn) = SM (Q (L(yn))) for the BI-AWGN channel.

3.2.2 Update Rules
Two quantized decoders are considered, a quantized Min-Sum decoder and a quantized offset Min-Sum
decoder with offset value λ ∈ {1, ..., (Nq − 2)}. The update rule at a check-node (CNU) is the same
for the MS and the OMS decoders, and is given by

m
(`)
cm→vn = Ψc

({
m

(`)
v→cm

}
v∈V(cm)\{vn}

)
=

 ∏
v∈V(cm)\{vn}

sign
(
m(`)
v→cm

) .

(
min

v∈V(cm)\{vn}

(∣∣∣m(`)
v→cm

∣∣∣)) . (3.3)

As for the update rules at a variable-node (VNU), we can use the same expression for both MS
and OMS decoders, since OMS with offset value λ = 0 becomes the MS decoder. The VNU expression
is given by:

m(`+1)
vn→cm

= Ψv

(
L(yn),

{
m(`)
c→vn

}
c∈V(vn)\{cm}

)
= SM

Λ

L(yn) +
∑

c∈V(vn)\{cm}

m(`)
c→vn

 . (3.4)

Where the function Λ(svc) is defined by

Λ (svc) =
{

min (svc + λ, 0) ,if svc < 0
max (svc − λ, 0) ,if svc ≥ 0

(3.5)

and

svc = L(yn) +
∑

c∈V(vn)\{cm}

m(`)
c→vn

. (3.6)

The a posteriori probability (APP) update at a variable-node is given by

γn = SM

L(yn) +
∑

c∈V(vn)

m(`)
c→vn

 = SM
(
svc +m(`)

cm→vn

)
. (3.7)

And the decision on the estimated bits x̂n is taken according to the sign of γn.

As we can see, the is not much difference with the decoders presented in chapter 2, except that
the messages belong to a discrete alphabet, and then the update rules require a saturation function
SM.

3.2.3 Look-up Table Representation of Quantized Min-Sum
For quantized decoders, it is sometimes convenient to use a look-up table (LUT) or Boolean map
representation, to illustrate more clearly their behaviors. This will be for example helpful for the
interpretation of noisy MS decoders.

Let us take the example of a decoder quantized on q = 3 bits, with Nq = 3, and C = +1, and the
simplest case of VNU and CNU with connexion degrees dv = 3 and dc = 3, as depicted on figures 3.4a
and 3.4. The message alphabet isM = {−3,−2,−1, 0,+1,+2,+3} and Ax = {+1,−1}.

23

c1 vn c2

c3

m
(`)
c1→vn m

(`)
c2→vn

m
(`+1)
vn→c3

γn
γ̂n

(a) Variable-node vn and its neighbors
V(vn) = {c1, c2, c3}

v1 cm v2

v3

m
(`)
v1→cm m

(`)
v2→cm

m
(`)
cm→v3

(b) Check-node cm and its neighbors
V(cm) = {v1, v2, v3}

Figure 3.4: The VN vn and the CN cm used to obtain the LUT representations for the functions Ψv

and Ψc.

m
(`)
v2→cm \ m

(`)
v1→cm −3 −2 −1 0 +1 +2 +3

−3 +3 +2 +1 0 −1 −2 −3
−2 +2 +2 +1 0 −1 −2 −2
−1 +1 +1 +1 0 −1 −1 −1
0 0 0 0 0 0 0 0

+1 −1 −1 −1 0 +1 +1 +1
+2 −2 −2 −1 0 +1 +2 +2
+3 −3 −2 −1 0 +1 +2 +3

Table 3.1: LUT representation of Ψc(m(`)
v1→cm ,m

(`)
v2→cm).

Table 3.1 shows the LUT representation of the discrete function Ψc (equation (3.3)), for a CN cm
connected to three variable-nodes v1, v2, and v3. The output message v3 is computed from v1 and v2
according to m(`)

cm→v3 = Ψc(m(`)
v1→cm ,m

(`)
v2→cm) ∈M.

Table 3.2 shows the LUT representation of the discrete function Ψv (equations (3.4)), for a VN
vn connected to three check-nodes c1, c2, and c3. The LUT outputs are computed using m(`+1)

vn→c3 =
Ψv(L(yn),m(`)

c1→vn ,m
(`)
c2→vn) ∈M.

L(yn) +1 −1
m

(`)
c2→vn\m

(`)
c1→vn −3 −2 −1 0 +1 +2 +3 −3 −2 −1 0 +1 +2 +3

−3 −3 −3 −3 −2 −1 0 +1 −3 −3 −3 −3 −3 −2 −1
−2 −3 −3 −2 −1 0 +1 +2 −3 −3 −3 −3 −2 −1 0
−1 −3 −2 −1 0 +1 +2 +3 −3 −3 −3 −2 −1 0 +1
0 −2 −1 0 +1 +2 +3 +3 −3 −3 −2 −1 0 +1 +2

+1 −1 0 +1 +2 +3 +3 +3 −3 −2 −1 0 +1 +2 +3
+2 0 +1 +2 +3 +3 +3 +3 −2 −1 0 +1 +2 +3 +3
+3 +1 +2 +3 +3 +3 +3 +3 −1 0 +1 +2 +3 +3 +3

Table 3.2: LUT representation of Ψv(L(yn),m(`)
c1→vn ,m

(`)
c2→vn).

The LUT representation is convenient only for small values of dv and for the BSC channel. For
dv > 3 or the BI-AWGN channel, the LUTs are multidimensional.

24

3.3 Density Evolution for Quantized Min-Sum-Based decoders
3.3.1 General Principle of Density Evolution
Density evolution (DE) is a tool which describes the asymptotic behavior of an iterative MP decoder
as a dynamical system, and follows the probability mass function (PMF) of the messages in the Tanner
graph along the iterations. With DE, one can predict if an ensemble of LDPC codes, parametrized
by its degree distributions, decoded with a given MP decoder, converges to zero error probability
in the limit of infinite block length. This property gives rise to the definition of a density evolution
threshold [10, 21,22].

The DE threshold δ is expressed as a crossover probability (δ = ε∗) for the BSC or as a standard
deviation (δ = σ∗) for the BI-AWGN channel, with the objective of separating two regions of channel
noise parameters. The first region composed of values smaller than δ corresponds to when the DE
converges to the zero error probability fixed point. The second region composed of values greater than
δ corresponds to when the DE does not converge. In this later case, the DE converges to a fixed point
which does not represent the zero error probability. Then the DE threshold can be considered as a
point of discontinuity between these two regions.

The value of the threshold δ is then an indicator of whether the couple “LDPC ensemble + MP
decoder" is good or not. In particular, the DE threshold can be used to compare different systems and
decide which ones are the best, in terms of error correction. The most common utilization of DE in
the literature is to compare different LDPC codes ensembles using the BP decoder [16]. It is used for
example to optimize the degree distributions of irregular LDPC codes, or to design protograph LDPC
ensembles with good thresholds. Another less common utilization of DE is to fix the LDPC ensemble
(to the same parameters dv, dc for example), and compare the thresholds of different decoders. This
can be used for example to optimize the offset value in OMS decoders, or in the case of the NAND
project to analyze and optimize the injected noise within the noisy MP decoders.

3.3.2 Density Evolution Recursion
In this section, we describe how to implement DE using the discrete update functions, equations (3.3)
and (3.4).

Let p(`)
ctov(k), k ∈M denote the PMF of check-to-variable messages in the `th iteration. Similarly,

let p(`)
vtoc(k), k ∈ M denote the PMF of variable-to-check messages in the `th iteration. Also, let

p
(0)
vtoc(k), k ∈ Ax, be the initial PMF of messages sent at ` = 0.

The assumption of infinite block length is useful such that the PMF evolution does not depend
on the iteration number. The infinite block length allows to consider that the messages incom-
ing a CNU or a VNU are independant, which is a necessary condition to ensure that the function
p

(`+1)
vtoc = function

(
p

(`)
vtoc

)
is the same for all iterations `. In DE, we need also to consider that the

all-zero codeword is sent over the channel.

Initialization
DE is initialized with the PMF of the channel as follows.

For the BSC with crossover probability ε:

p
(0)
vtoc(k) =

 1− ε, if k = C
ε, if k = −C
0, otherwise

(3.8)

For the BI-AWGN channel with noise variance σ2

25

p
(0)
vtoc(k) =

 F (k + 0.5) if k = −Nq
F (k + 0.5)− F ((k − 1) + 0.5) if −Nq < k < +Nq
F (∞)− F ((k − 1) + 0.5) if k = +Nq

(3.9)

where F (k) is given by [21,23,24]:

F (k) = 1√
2πσn

∫ k

−∞
e−(t−µn)2/2σ2

ndt (3.10)

with σn = 2/σ and µn = 2/σ2.

DE update for CNU
To compute the PMF of the output of a check-node of degree dc, we can decompose the check-node
into elementary check-nodes. An elementary check-node has only three edges, and its output PMF is
computed with only two incoming messages which have the same PMF, because of the independance
assumption. The PMF update for an elementary CN is expressed as

p
(`)
ctov(k) =

∑
(i,j):Ψc(i,j)=k

p
(`)
vtoc(i) p

(`)
vtoc(j), ∀k ∈M (3.11)

This equation is used dc − 2 times in order to compute the PMF of the output of a check-node of
degree dc.

We can note that for a check-node of degree dc > 3, the computational complexity of the di-
rect PMF update would be (M)dc−1, while its implementation using elementary CN updates is
(dc−2)(M)2. This represents a huge complexity reduction, and a large values of dc is not a limitation
to the practical computation of DE.

DE update for VNU
We compute the PMF of the output of a variable-node of degree dv, using the following relations: For
the BSC

p
(`+1)
vtoc (k) =

∑
(i1,...,idv−1):Ψv(i1,...,idv−1,−C)=k

p
(`)
ctov(i1) ... p(`)

ctov(idv−1) p(0)
vtoc(−C)+

∑
(i1,...,idv−1):Ψv(i1,...,idv−1,+C)=k

p
(`)
ctov(i1) ... p(`)

ctov(idv−1) p(0)
vtoc(+C), ∀k ∈M

(3.12)

For the BI-AWGN channel

p
(`+1)
vtoc (k) =

∑
(i1,...,idv−1,t):Ψv(i1,...,idv−1,t)=k

p
(`)
ctov(i1) ... p(`)

ctov(idv−1) p(0)
vtoc(t), ∀k ∈M (3.13)

For the VNU, we cannot rely on the decomposition in elementary variable-node updates, because
Ψv cannot be factorized into a sequence of elementary operation. The complexity of DE implementa-
tion grows then rapidly with increasing dv, and becomes a bottleneck of the DE analysis, especially
for irregular LDPC codes. A solution that is usually proposed in the litterature is then to make use of
the Gaussian approximation of DE, also known as the EXIT charts analysis of MP decoders [16]. We
will not address the Gaussian approximation of DE in this deliverable, and will limit the illustration
of our analysis to regular codes with dv leq4.

26

DE recursion
By combining equations (3.10) and (3.12) for the BSC, or (3.11) and (3.13) for the BI-AWGN, one
gets the so called DE recursion, which expresses the evolution of the CtoV messages PMF from one
iteration to another. This recursion is then computed iteratively to obtain p+∞

vtoc, or p
Lmax
vtoc with Lmax

sufficiently large in a practical implementation. It can be shown that when the iteration number grows
to infinity, the PMF should converge to a dirac mass at +∞ to characterize a zero error probability [8].
For the case of a quantized MP decoder, the convergence is translated to a dirac mass at the saturation
value +Nq. In other words, if the PMF converges to

pLmax
vtoc (Lmax) = 0 ∀k ∈ {−Nq, . . . , 0, . . . ,+Nq − 1}
pLmax
vtoc (Lmax) = 1 k = +Nq

(3.14)

Then sucessful decoding is declared.

3.4 Asymptotic Bit Error Probability
The asymptotic bit error probability can be deduced from the PMF of the APPs, which is obtained
from the DE equations. Let p(`)

app(k), k ∈ M denote the PMF of the APP at the end of the `th
iteration. To compute p(`)

app for the BSC we use

p(`)
app(k) =

∑
(i1,...,idv):Ψv(i1,...,idv ,−C)=k

p
(`)
ctov(i1) ... p(`)

ctov(idv
) p(0)

vtoc(−C)+

∑
(i1,...,idv):Ψv(i1,...,idv ,+C)=k

p
(`)
ctov(i1) ... p(`)

ctov(idv
) p(0)

vtoc(+C), ∀k ∈M

and for the BI-AWGN channel we use

p(`)
app(k) =

∑
(i1,...,idv ,t):Ψv(i1,...,idv ,t)=k

p
(`)
ctov(i1) ... p(`)

ctov(idv) p(0)
vtoc(t), ∀k ∈M

Let p(`)
e denote the bit error probability at iteration `. Assuming the transmission of the all-zero

codeword, we have

p(`)
e = 1

2p
(`)
app(0) +

−1∑
i=−Nq

p(`)
app(i) (3.15)

The evolution of p(`)
e with the iterations characterizes whether the MP decoder converges or diverges

in the asymptotic limit of the codeword length. When the number of iterations ` goes to infinity, we
obtain the asymptotic error probability p(∞)

e , and when p(+∞)
e = 0, the decoder converges to a zero

error probability and successful decoding is declared. Note that this condition is weaker than condition
(3.14) presented in the previous section, but because of the properties of the functions Ψv and Ψc,
both conditions are equivalent if Lmax = +∞. We use the condition on the bit error probability to
define the DE threshold, presented in the next section.

3.5 Density Evolution threshold
The DE threshold δ is defined as the point of discontinuity between these two regions: the region of
channel noise (ε, σ) > δ in which the DE recursion does not converge to a zero error probability, and
the region of channel noise (ε, σ) < δ for which the DE recursion converges to a zero error probability
(see equation (3.15)) in less than Lmax iterations of the DE recursion. The most efficient way to com-
pute the DE threshold is to perform a dichotomic search and stop when the bisection search interval
size is lower than some precision, e.g. prec = 10−7. The procedure is described in the algorithm below.

27

A slight modification of the DE estimation procedure is to set a small target bit error probability
η instead of targetting a zero error probability, to declare that the DE recursion converged. If η is
small enough, e.g. η = 10−6, it does not change the threshold estimation for noiseless decoder. Having
η > 0 is however necessary for noisy decoders, as will be explained in the next section.

In the rest of the deliverable, we consider that the notation δ denotes the DE threshold for both
the BSC or the BI-AWGN channel, and the interpretation will depend on the context. We describe
the main steps to compute the DE threshold for the BSC channel, the DE threshold for the BI-AWGN
can be easily deduced.

1. [Initialization] Initialize interval limits [δ1, δ2] with δ1 < δ2, such that DE succeeds for α = δ1
and fails for α = δ2. Further define δm = (δ1 + δ2)/2.

2. [while |δ2 − δ1| > prec]

(a) [PerformDE]
i. [InitializeDE] DE is initialized with the equation (3.8) and ε = δm.
ii. [IterationLoop]

A. [ComputePMF] apply recursively the sequence of two equations (3.11) and (3.12)
for Lmax iterations,

B. [BreakIteration] The iteration loop breaks when either the p(`)
e ≤ η or Lmax is

reached.
(b) [DE succeeds] if p(`)

e ≤ η, the DE has converged and we update δ1 = δm, δ2 = δ2 and
δm = (δ1 + δ2)/2.

(c) [DE fails] if p(Lmax)
e > η, the DE has not converged, and we update δ1 = δ1, δ2 = δm and

δm = (δ1 + δ2)/2.
(d) [Tolerance Compute the size of the interval |δ2−δ1| and stops the procedure if it is smaller

than the threshold tolerance (e.g. 10−7)

3. [Threshold] δ = δm is the DE threshold.

We further define p(`)
th the bit error probability at the `th decoding iteration when the DE threshold

is used in p(0)
vtoc = δ to initialize the DE.

We show on figures 3.5a and 3.5b two examples of the use of DE thresholds to compare different
decoding algorithms. We plot the DE threshold of Min-Sum-Based decoders on the BSC channel,
as a function of the channel value C. As can be seen the optimization of the channel value yields
important gains foe all algorithms. We can note also that the use of an offset is beneficial for the
4-bits MS while it is not for the 3-bits MS.

28

1 1.5 2 2.5 3
0

0.02

0.04

0.06

0.08

Channel value C

D
E

t
h
r
e
s
h
o
ld

Noiseless decoders, (3,6)−regular LDPC

Noiseless MS (3-bit)
Noiseless OMS (3-bit), λ = 1

(a) 3 bits of quantization.

1 2 3 4 5 6 7
0

0.02

0.04

0.06

0.08

0.1

Channel value C

D
E

t
h
r
e
s
h
o
ld

Noiseless decoders, (3,6)−regular LDPC

Noiseless MS (4-bit)
Noiseless OMS (4-bit), λ = 1

(b) 4 bits of quantization.

Figure 3.5: DE thresholds of MS and OMS, as a function of the channel value C.

29

Chapter 4

Noise Models and Noisy Density
Evolution

4.1 Noise Models in Quantized Decoders
In this deliverable, we will present the concept of noisy decoders, defined as decoders that incorporate
a certain amount of random perturbation, due to hardware or circuit impreciseness, or to deliberate
injected noise. This extra random noise has to be differentiated from the channel noise, which the
decoder is supposed to combat. We still call noise the effect of those random perturbations, but will
differentiate it from the channel’s when the context is not clear enough.

We only consider the case of quantized decoders. To implement a noisy decoder, the more classical
model is to perturb the noiseless decoder with a random noise applied at the output of the VNU, of the
VNU, or both. We further assume that the random noise does not change the message alphabet, i.e.
noisy messages belong toM. Let m̃(`)

v→c ∈M denote the noisy message obtained after corrupting the
noiseless message m(`)

v→c ∈ M, and m̃(`)
c→v ∈ M denotes the noisy message obtained after corrupting

the noiseless message m(`)
c→v ∈M.

To siplify the notations in this section, we use the notation m(`) to denote any of the check-to-
variable messages m(`)

c→v or any variable-to-check messages m(`)
v→c.

4.1.1 Constraints on the Noise Models
In order to be able to perform DE analysis of noisy decoders, the considered noise models have to
follow certain properties.

Memoryless
The noise models considered should be independent on the data streams processed by the decoders,
since in each iteration of the DE we assume that the messages are independant of the messages at the
previous iteration. For example, the perturbation of a message equal to m(`) = +5 should not depend
on the value of the message m(`−1).

Symmetric
The considered noise models must also satisfy a symmetry condition defined as follows:∑

β2∈M

Pr(m̃ = β2|m = β1) =
∑
−β2∈M

Pr(m̃ = −β2|m = −β1),∀β1, β2 ∈M. (4.1)

Equivalently we can write

Pr(m̃ = β2|m = β1) = Pr(m̃ = −β2|m = −β1),∀β1, β2 ∈M. (4.2)

30

Consequence on DE
Noisy decoders that use the memoryless and symmetric noise models can still be analysed with DE.
The noisy-VNU and noisy-CNU will be symmetric functions, allowing to use the all-zero codeword,
and will follow the independance assumption necessary in DE.

We are aware that noise models having those constraints are not practical and represent a loss
of generality. More complicated or more precise error models could be thought of, including data
dependance (current and/or previous), but those models cannot be used in DE analysis.

Let Υ :M→M denote the noise model, which satisfies the symmetry property (equation (4.1)),
defined by the conditional PDF Pr(m̃|m). Υ maps or changes a noiseless messages m(`) ∈ M to a
noisy message m̃(`) ∈M according to its conditional PDF Pr(m̃|m).

4.1.2 A simple Noise Model
The following noise model will be used as an example to illustrate the modifications induced in the
decoder and the changes in the DE analysis. Note that this noise model is trivial and far from being
practical, but is still interesting to derive some useful interpretations.

The noise model Υ1 maps a positive integer value or a negative integer value β ∈ M\{0} to the
largest previous or the smallest following integer value, respectively, with probability ϕ. Υ1 satisfies
the symmetry property Pr(m̃ = +β|m = +β) =Pr(m̃ = −β|m = −β),∀β ∈ M, which is a particular
case of the equation (4.2) doing β = β1 = β2. The following equation defines Υ1

m̃ = Υ1(m = β) =


β, with probability 1− ϕ, if β ∈ {+1, ...,+Nq}

β − 1, with probability ϕ, if β ∈ {+1, ...,+Nq}
β, with probability 1, if β = 0

β + 1, with probability ϕ, if β ∈ {−Nq, ...,−1}
β, with probability 1− ϕ, if β ∈ {−Nq, ...,−1}

(4.3)

Let us now asssume that we apply this noise model to the classical MS decoder after the CNU. The
proposed noise model is interesting since the corresponding noisy MS implements a decoder which is
a weighted combination of MS and OMS. We can note that when ϕ = 0, Υ1 does not perturb the
decoder, i.e. noisy messages are equal to noiseless messages and the noisy decoder is the regular MS.
When ϕ = 1, Υ1 performs the role of an offset with value of 1, and the noisy decoder becomes a
regular OMS decoder with λ = 1.

Of course, any value 0 < ϕ < 1 would correspond to a different decoder. This noise model could
then be used to determine whether a noisy MS can outperform a noiseless decoder, could it be MS or
OMS.

We depict the noise model Υ1 in Fig. 4.1. On the left of the figure, we show the mapping used
to corrupt (or add noise) to a noiseless message m in order to obtain a noisy message m̃. And on
the right, it shows the LUT representation of the noise model Υ1. In this figure, we use q = 3 bits
for message quantization. It must be noted that each input in the LUT describes the probability to
change a noiseless message into a noisy message. For example, a noiseless message m = +2 is mapped
to m̃ = +2 with probability 1− ϕ, and it is also mapped to m̃ = +1 with probability ϕ.

31

m

−3

−2

−1

0

+1

+2

+3

m̃
−3

−2

−1

0

+1

+2

+3
1
1− ϕ
ϕ

m̃ \ m −3 −2 −1 0 +1 +2 +3
−3 1− ϕ 0 0 0 0 0 0
−2 ϕ 1− ϕ 0 0 0 0 0
−1 0 ϕ 1− ϕ 0 0 0 0
0 0 0 ϕ 1 ϕ 0 0

+1 0 0 0 0 1− ϕ ϕ 0
+2 0 0 0 0 0 1− ϕ ϕ
+3 0 0 0 0 0 0 1− ϕ

Figure 4.1: LUT representation and the mapping used for the noise model Υ1.

4.2 Noisy Quantized Min-Sum-Based Decoders
To obtain the noisy version of a noiseless decoder, we corrupt the output of the functions Ψv (VNU)
and Ψc (CNU) with random noise. The notation Υpc (resp. Υpv) indicates that the noise model is
applied to the CNU (resp. the VNU) with probability ϕ = pc (resp. ϕ = pc).

Using the equation (3.3), the update rule at a check-node is given by

m(`)
cm→vn

= Ψc

({
m̃(`)
v→cm

}
v∈V(cm)\{vn}

)
. (4.4)

Then, the noise model Υpc is used to corrupt each check-to-variable message

m̃(`)
cm→vn

= Υpc

(
m(`)
cm→vn

)
. (4.5)

The update rule at a variable-node using the update function Ψv, equation (3.4), is given by

m(`+1)
vn→cm

= Ψv

(
L(yn),

{
m̃(`)
c→vn

}
c∈V(vn)\{cm}

)
. (4.6)

Then, each variable-to-check message is corrupted by the noise model Υpv

m̃(`+1)
vn→cm

= Υpv

(
m(`+1)
vn→cm

)
(4.7)

We apply recursively the sequence of four equations (4.4), (4.5), (4.6) and (4.7) to implement one
iteration in the decoding process of noisy decoders.

The APP update at a variable-node of a noisy decoder is given by

γn = SM

L(yn) +
∑

c∈V(vn)

m̃(`)
c→vn

 . (4.8)

Note that the APP calculation is performed at the VN and is assumed to be not perturbed by
a noise, i.e the APP calculation is exact. A justification of this choise is that in the NAND project,
our goal is to determine if deliberate perturbations of the noiseless decoders can improve the error
correction performance. We can then assume that some of the computing units (including but not
limited to, encoding and APP calculation) are noiseless.

32

Remark. The equations presented in this section were obtained assuming that variable-to-check and
check-to-variable messages were corrupted by Υ. When only check-to-variable messages are corrupted,
we have m̃

(`)
v→c = m

(`)
v→c, similarly, when only variable-to-check messages are corrupted, we have

m̃
(`)
c→v = m

(`)
c→v.

4.3 Noisy Density Evolution
We are interested in obtaining and comparing the DE thresholds of noisy decoders with the DE thresh-
old of noiseless decoders.

Noisy DE recursions can be easily deduced from noiseless DE recursions and the noise model de-
scription of (4.3). To deduce the noisy DE equations, let p̃(`)

ctov(k), k ∈ M denote the PMF of noisy
check-to-variable messages in the `th iteration. Similarly, let p̃(`)

vtoc(k), k ∈ M denote the PMF of
noisy variable-to-check messages in the `th iteration. We consider that the all-zero codeword is sent
over the channel.

Initialization
The initialization of DE does not change for noisy decoders, therefore, the equations (3.8) and (3.9)
are used to initialize the noisy DE for the BSC and for the BI-AWGN channel, respectively.

Noisy DE update for CNU
Similar to the noiseless DE, we make use of the decomposition of the CNU into elementary CNU. The
input of an elementary CNU is the PMF of the noisy messages going out of a noisy VNU, i.e. p̃(`)

vtoc.

p
(`)
ctov(k) =

∑
(i,j):Ψc(i,j)=k

p̃
(`)
vtoc(i) p̃

(`)
vtoc(j), ∀k ∈M (4.9)

Equation (4.9) is used recursively dc− 2 times to compute the PMF of the output of a check-node
of degree dc.

To take into account the effect of random noise on the PMF of the output messages of a check-node,
the function Ψc is corrupted by the noise model Υpc , following

p̃
(`)
ctov(k) =

∑
(i):Υpc

(
p

(`)
ctov(i)

)
=k

p
(`)
ctov(i) pΥpc (i, k), ∀k ∈M (4.10)

Where pΥpc is the transition probability of the CN noise.

Noisy DE update for VNU
Similarly to the calculation made at the variable-node for the noiseless DE, we compute the PMF of
the output of a variable-node of degree dv. The input of noisy DE for the VNU are the corrupted
PMF computed with (4.10).

For the BSC

p
(`+1)
vtoc (k) =

∑
(i1,...,idv−1):Ψv(i1,...,idv−1,−C)=k

p̃
(`)
ctov(i1) ... p̃(`)

ctov(idv−1) p(0)
vtoc(−C)+

∑
(i1,...,idv−1):Ψv(i1,...,idv−1,+C)=k

p̃
(`)
ctov(i1) ... p̃(`)

ctov(idv−1) p(0)
vtoc(+C), ∀k ∈M

(4.11)

33

For the BI-AWGN channel

p
(`+1)
vtoc (k) =

∑
(i1,...,idv−1,t):Ψv(i1,...,idv−1,t)=k

p̃
(`)
ctov(i1) ... p̃(`)

ctov(idv−1) p(0)
vtoc(t), ∀k ∈M (4.12)

Then the noise effect is added at the output of the DE for VNU.

p̃
(`+1)
vtoc (k) =

∑
(i):Υpv

(
p

(`+1)
vtoc (i)

)
=k

p
(`+1)
vtoc (i) pΥpv (i, k), ∀k ∈M (4.13)

Where pΥpv is the transition probability of the VN noise Υpv (which can be identical to the CN
probability).

Noisy DE recursion
The rest of the DE principle is unchanged compared to the noiseless DE of section 3.3.

Remark. The equations presented in this section were obtained assuming that variable-to-check and
check-to-variable messages were corrupted by Υ. When only check-to-variable messages are corrupted,
we have p̃(`)

vtoc = p
(`)
vtoc, similarly, when only variable-to-check messages are corrupted, we have p̃(`)

ctov =
p

(`)
ctov.
The Fig. 4.2 depicts a simple Tanner graph with a single CN, a single VN, and the PMF of noise-

less and noisy messages sent from the VN to the CN, and vice versa.

V N CN

noise

noise

p
(`)
vtoc p̃

(`)
vtoc

p
(`)
ctovp̃

(`)
ctov

p̆
(`)
e

Figure 4.2: Concept of Noisy DE calculation

4.4 Bit Error Probability
Let p̃(`)

e denote the bit error probability at iteration `, which is computed from the PMF of all incoming
messages to a VN in the `th iteration, defined by

p̃(`)
e = 1

2 p̃
(`)
app(0) +

−1∑
i=−Nq

p̃(`)
app(i) (4.14)

Where p̃(`)
app(k), k ∈ M, denotes the PMF of the APP at the end of the `th iteration for noisy

decoders, computed similarly than for the noiseless case. In the case of the BSC p̃
(`)
app(k) is computed

as

p̃(`)
app(k) =

∑
(i1,...,idv):Ψv(i1,...,idv ,−C)=k

p̃
(`)
ctov(i1)...p̃(`)

ctov(idv)p(0)
vtoc(−C)+

∑
(i1,...,idv):Ψv(i1,...,idv ,+C)=k

p̃
(`)
ctov(i1)...p̃(`)

ctov(idv)p(0)
vtoc(+C),∀k ∈M

whereas in the case of the BI-AWGN channel we have

p̃(`)
app(k) =

∑
(i1,...,idv ,t):Ψv(i1,...,idv ,t)=k

p̃
(`)
ctov(i1)...p̃(`)

ctov(idv)p(0)
vtoc(t),∀k ∈M

34

In the asymptotic limit of the code-length, p̃(`)
e) is the bit error probability of a noisy decoder at

the `th iteration.

Contrary to the noiseless case, p̃(+∞)
e is not necessarily equal to zero when the noisy DE converges

and corrects the channel noise. It depends mainly on the chosen error model and the computing units
to which it is applied.

A lower bound on the asymptotic error probability can be computed. In [22], the authors have
proposed two error models for a quantized noisy MS decoder, and confirmed that p̃(+∞)

e is bounded
away from zero.

Let p̃(lb)
e be the lower bound of the asymptotic bit error probability, we have p̃(`)

e ≥ p̃
(lb)
e > 0.

For some noise models, p̃(lb)
e has a mathematical expression that we can compute, but for other noise

models is very difficult to find it.

To solve this problem and still be able to compute noisy DE thresholds, one solution is to choose
a target residual error probability η > p̃

(lb)
e , and declare convergence of the noisy DE recursion when

p̃
(+∞)
e is less than or equal to η. With η = 0, we get the noiseless case.

35

Chapter 5

Asymptotic Analysis of the Noisy
Quantized Min-Sum Decoder over
the BSC

5.1 Case Study
For all results presented in this section, we use a (dv = 3, dc = 6)-regular ensemble of LDPC codes
and Min-Sum-Based decoders with quantization q ∈ {3, 4}. First, we present the DE threshold values
computed for noiseless and noisy quantized MS decoders. Later, we present the asymptotic bit error
probabilities for these decoders, and verify the conclusions of the theoretical analysis with finite length
frame error rate (FER) simulations.

5.2 Noisy Thresholds of the MS over the BSC
Fig. 5.1, Fig. 5.2 and Fig. 5.3 show the DE threshold as a function of C. In these figures, the solid
black curve correspond to DE thresholds of noiseless decoders, and dashed curves correspond to DE
thresholds of noisy decoders. We use the noise model Υ1 presented in section 3.1.2 to perturb the
noiseless decoders with different values of ϕ ∈ {0.01, 0.06, 0.11, 0.16, 0.21}. For the noisy threshold
computation, the DE parameters were set to Lmax = 10000 iterations and η = 10−5.

Injected noise at the VNU
The noise model Υpv

1 , which perturbs outgoing messages of the VN, is used to obtain the DE thresh-
olds shown in figure 5.1.

Figure 5.1a shows that noisy decoders exhibit better DE thresholds than noiseless decoders for
C = 1. We can also see that noisy-DE thresholds are slightly better than the noiseless-DE threshold
for C = +2 and ϕ ∈ {0.01, 0.06, 0.11, 0.16}, but noisy-DE threshold is worst than the noiseless-DE
threshold for ϕ = 0.21. In the case of C = +3 and q = 3, only the noisy-DE threshold computed for
ϕ = 0.01 is better than the noiseless-DE threshold.

In the case of 4 bits quantization, noisy decoders exhibit better DE thresholds than noiseless de-
coders for all channel values. We can note that 3-bit noisy decoders and 4-bit noisy decoders exhibit
similar DE threshold for C = +1. We also note that noisy-DE thresholds for small values of ϕ are
better than for large values of ϕ using C = +Nq.

Injected noise at the CNU
In a second experiment, we injected the noise at the output of the CNU only. Figure 5.2 shows DE
thresholds computed using the noise model Υpc

1 . In figure 5.2a, noisy decoders exhibit better DE

36

1 1.5 2 2.5 3
0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Channel value C

D
E

t
h
r
e
s
h
o
ld

Noisy MS decoder, (3,6)−regular LDPC

add Υ
pv
1 , ϕ =0.01

add Υ
pv
1 , ϕ =0.06

add Υ
pv
1 , ϕ =0.11

add Υ
pv
1 , ϕ =0.16

add Υ
pv
1 , ϕ =0.21

Noiseless MS (3-bit)

(a) DE threshold using 3 quantization bits

1 2 3 4 5 6 7
0.03

0.04

0.05

0.06

0.07

0.08

Channel value C

D
E

t
h
r
e
s
h
o
ld

Noisy MS decoder, (3,6)−regular LDPC

add Υ
pv
1 , ϕ =0.01

add Υ
pv
1 , ϕ =0.06

add Υ
pv
1 , ϕ =0.11

add Υ
pv
1 , ϕ =0.16

add Υ
pv
1 , ϕ =0.21

Noiseless MS (4-bit)

(b) DE threshold using 4 quantization bits

Figure 5.1: DE threshold as a function of C of noiseless and noisy decoders, the noise model Υ1
perturbs the VNU.

thresholds than noiseless decoders for C = 1 and C = +2, the best DE threshold was computed
for C = +3 and ϕ = 0.01. Similar to figure 5.1, we can observe that for 4 bits quantization, noisy
decoders exhibit better DE thresholds than noiseless decoders for all channel values. Using either 3
or 4 bits quantization, noisy decoders exhibit similar DE thresholds for C = +1.

Injected noise at both the VNU and the CNU
We perturbed outgoing messages of the CNU and the VNU with Υpv

1 and Υpc

1 , respectively. The
results are reported in figure 5.3. In this figure is evident that noisy-DE thresholds are in general
worse than in the case of noise ate the VNU only or at the CNU only, especially when the channel
value is large, close to the saturation value Np.

Comparison of best Thresholds
Table 5.1 shows the best DE thresholds for noiseless decoders using q = 3 and q = 4, and Table
5.2 shows some of the best thresholds for noisy decoders. Small values of ϕ give us the best DE
thresholds for 3 bits quantization, whereas a large value of ϕ give us the best DE thresholds for 4 bits
quantization. The best noisy-DE threshold was computed perturbing the check-to-variable messages
with Υ1 in the 3-bit noisy decoder. For 4-bit noisy decoders, the best noisy-DE threshold was com-
puted perturbing the variable-to-check and check-to-variable messages with Υ1. The main interesting
conclusion of this study is that there exist noisy decoders which exhibit better thresholds than their
noiseless counterparts. It is likely that this DE threshold improvement due to the injected noise will
be reflected in the waterfall region of the FER performance.

Noiseless decoder, (3, 6)-regular LDPC code, BSC
q C DE threshold δ

3 bits
+2 0.0725200764

4 bits

+6 0.0771377012

Table 5.1: Threshold values for noiseless MS decoders running these decoders for 10000 iterations.

37

1 1.5 2 2.5 3
0.03

0.04

0.05

0.06

0.07

0.08

Channel value C

D
E

t
h
r
e
s
h
o
ld

Noisy MS decoder, (3,6)−regular LDPC

add Υ
pc
1 , ϕ =0.01

add Υ
pc
1 , ϕ =0.06

add Υ
pc
1 , ϕ =0.11

add Υ
pc
1 , ϕ =0.16

add Υ
pc
1 , ϕ =0.21

Noiseless MS (3-bit)

(a) DE threshold using 3 quantization bits

1 2 3 4 5 6 7
0.03

0.04

0.05

0.06

0.07

0.08

Channel value C

D
E

t
h
r
e
s
h
o
ld

Noisy MS decoder, (3,6)−regular LDPC

add Υ
pc
1 , ϕ =0.01

add Υ
pc
1 , ϕ =0.06

add Υ
pc
1 , ϕ =0.11

add Υ
pc
1 , ϕ =0.16

add Υ
pc
1 , ϕ =0.21

Noiseless MS (4-bit)

(b) DE threshold using 4 quantization bits

Figure 5.2: DE threshold as a function of C of noiseless and noisy decoders, the noise model Υ1
perturbs the CNU.

1 1.5 2 2.5 3
0

0.02

0.04

0.06

0.08

Channel value C

D
E

t
h
r
e
s
h
o
ld

Noisy MS decoder, (3,6)−regular LDPC

add Υ
pc
1 ,Υ

pv
1 , ϕ =0.01

add Υ
pc
1 ,Υ

pv
1 , ϕ =0.06

add Υ
pc
1 ,Υ

pv
1 , ϕ =0.11

add Υ
pc
1 ,Υ

pv
1 , ϕ =0.16

add Υ
pc
1 ,Υ

pv
1 , ϕ =0.21

Noiseless MS (3-bit)

(a) DE threshold using 3 quantization bits

1 2 3 4 5 6 7
0.02

0.03

0.04

0.05

0.06

0.07

0.08

Channel value C

D
E

t
h
r
e
s
h
o
ld

Noisy MS decoder, (3,6)−regular LDPC

add Υ
pc
1 ,Υ

pv
1 , ϕ =0.01

add Υ
pc
1 ,Υ

pv
1 , ϕ =0.06

add Υ
pc
1 ,Υ

pv
1 , ϕ =0.11

add Υ
pc
1 ,Υ

pv
1 , ϕ =0.16

add Υ
pc
1 ,Υ

pv
1 , ϕ =0.21

Noiseless MS (4-bit)

(b) DE threshold using 4 quantization bits

Figure 5.3: DE threshold as a function of C of noiseless and noisy decoders, the noise model Υ1
perturbs the VN and the CN.

38

Noisy decoder, (3, 6)-regular LDPC code, BSC

q C Noise model ϕ DE threshold δ̃

3 bits
+2 Υpv

1 0.11 0.0746431052
+3 Υpc

1 0.01 0.0761452462
+2 Υpv

1 -Υpc

1 0.06 0.0737253046

4 bits
+5 Υpv

1 0.21 0.0780435741
+6 Υpc

1 0.21 0.0780683933
+5 Υpv

1 -Υpc

1 0.21 0.0783768026

Table 5.2: Best DE thresholds of noisy quantized MS decoders.

5.3 Asymptotic Bit Error Probability of Noisy MS over the
BSC

In line with results obtained in the previous section, we illustrate in this section the decoder behaviors
in terms of asymptotic bit error probability, for the MS using 3 and 4 bits quantization, C = +2 and
C = +6. We consider only the case of injected noise at the VNU. Figure 5.4 and figure 5.5 show the
bit error probabilities, p(`)

e and p̃
(`)
e , as a function of the iteration number ` for noiseless and noisy

decoders. In both figures, the solid blue, black and red curve correspond to cross-over probabilities
around the DE threshold, indicated with the dashed purple curve.

0 100 200 300 400 500 600 700 800 900 1000
0

0.05

0.1

0.15

0.2

0.25

Number of Iterations

B
it

 E
rr

o
r

P
ro

b
a
b

il
it

y

Noiseless MS decoder, (3,6)−regular LDPC

p(∞)
e = 6.293987× 10−2

p
(ℓ)
th

p(∞)
e = 0

3 bits, C = +2, ǫ1 =0.0715

3 bits, C = +2, ǫ2 =0.0725

3 bits, C = +2, ǫ3 =0.0735

3 bits, C = +2, ǫ = δ

(a) p(`)
e of the noiseless MS decoder

0 100 200 300 400 500 600 700 800 900 1000
0

0.025

0.05

0.075

0.1

0.125

0.15

0.175

0.2

Number of Iterations

B
it

 E
rr

o
r

P
ro

b
a
b

il
it

y

Noisy MS decoder, (3,6)−regular LDPC

p̆(∞)
e = 5.899087× 10−2

p̆
(ℓ)
th

p̆(∞)
e ≈ 1e−10

add Υ
pv
1 , ϕ =0.06, ǫ1 =0.0731, C = +2

add Υ
pv
1 , ϕ =0.06, ǫ2 =0.0741, C = +2

add Υ
pv
1 , ϕ =0.06, ǫ3 =0.0751, C = +2

add Υ
pv
1 , ϕ =0.06, ǫ = δ̃ = 0.0741366729

(b) p̃(`)
e of the noisy MS decoder, Υ1 perturbs the VN

with ϕ = 0.06

Figure 5.4: Bit error probability behavior of noiseless and noisy decoders around the DE threshold
using 3 quantization bits and C = +2.

Let us analyze the results presented in figure 5.4. For noiseless and noisy decoders, we considered
three crossover probabilities around the DE threshold, with ε1 < ε2 < (δ, δ̃) < ε3. It can be seen that
p

(`)
e converges much faster for ε1 than for ε2 to p(∞)

e = 0, and p(`)
e converges to p(∞)

e = 6.293987×10−2

for ε3. We observe the same behaviors for the noisy decoders with p̃(`)
e . We can also note that for this

particular noise model Υ1, the asymptotic error probability for ε ≤ δ̃ is not equal to zero, which is
a common property of noisy decoders, that is p̃(∞)

th > 0. The curves for ε = δ̃ looks flat, but the DE
converges after ` = 9994 iterations.

The curves of figure 5.5 for 4 quantization bits and C = +6 yield the same observations.

39

0 100 200 300 400 500 600 700 800 900 1000
0

0.05

0.1

0.15

0.2

0.25

0.3

Number of Iterations

B
it

 E
rr

o
r

P
ro

b
a
b

il
it

y
Noiseless MS decoder, (3,6)−regular LDPC

p(∞)
e = 5.656305× 10−2

p
(ℓ)
th

p(∞)
e = 0

4 bits, C = +6, ǫ1 =0.0761

4 bits, C = +6, ǫ2 =0.0771

4 bits, C = +6, ǫ3 =0.0781

4 bits, C = +6, ǫ = δ

(a) p(`)
e of the noiseless MS decoder

0 100 200 300 400 500 600 700 800 900 1000
0

0.025

0.05

0.075

0.1

0.125

0.15

0.175

0.2

0.225

Number of Iterations

B
it

 E
rr

o
r

P
ro

b
a
b

il
it

y

Noisy MS decoder, (3,6)−regular LDPC

p̆(∞)
e = 5.409845× 10−2

p̆
(ℓ)
thp̆(∞)

e ≈ 1e−22

add Υ
pv
1 , ϕ =0.06, ǫ1 =0.0765, C = +6

add Υ
pv
1 , ϕ =0.06, ǫ2 =0.0775, C = +6

add Υ
pv
1 , ϕ =0.06, ǫ3 =0.0785, C = +6

add Υ
pv
1 , ϕ =0.06, ǫ = δ̃ = 0.0775491845

(b) p̃(`)
e of the noisy MS decoder, Υ1 perturbs the VN

with ϕ = 0.06

Figure 5.5: Bit error probability behavior of noiseless and noise decoders around the DE threshold
using 4 quantization bits and C = +6.

5.4 Finite Length FER of the Noisy MS over the BSC
In this section we present the frame error rate (FER) performance for noiseless and noisy decoders. In
order to corroborate the asymptotic results obtained in the previous section, we analyze the quantized
decoder performance over the BSC. For this purpose, we consider a (3, 6)-regular QC-LDPC code
with length N = 1296 and circulent size L = 54, and the noise model Υ1. The considered decoders
are MS with C = +1, C = +2, C = +6, and ϕ = 0.06 and ϕ = 0.21 for the noisy versions. Addi-
tionally, in order to compare the performance of noisy quantized MS decoders, we use a floating-point
Belief Propagation decoder, and a quantized offset Min-Sum decoder whose parameters are C = +10
offset=3 and 6 bits quantization.

Fig. 5.6 shows the FER performance comparisons between the BP decoder, the quantized OMS
decoder, and the noiseless quantized MS decoders as a function of cross-over probability over the
BSC. The 3-bit noiseless MS decoder achieves better FER performance than the BP decoder in the
error-floor region, but its performance is far from the FER performance of the 6-bit noiseless OMS
decoder.

Fig. 5.7 shows the FER performance comparisons between the BP decoder, the quantized OMS
decoder, and the noisy quantized MS decoders as a function of cross-over probability over the BSC.
In this figure, noisy decoders achieve slightly better FER performance results than the noiseless quan-
tized decoders in the waterfall region, as predicted by the DE threshold analysis. In particular, the
4-bit noisy MS with Υpv

1 and ϕ = 0.21 exhibits the best waterfall of all quantized decoders, and
reaches the waterfall of floating-point BP decoding. In the error-floor region, the noisy decoder which
uses Υpv

1 with ϕ = 0.06, achieve better FER performance results than the floating-point BP decoder
and is very close to the error floor performance of the 6-bit OMS decoder. A interesting conclusion
from the results presented in this figure is that a 3-bit noisy-MS decoder has the same (or very close)
error correction performance than a 6-bit OMS decoder. This is a nice conclusion in the scope of the
NAND project, since it is a first evidence that the use of injected noise could yield improvements with
respect to the trade-off implementation complexity vs. performance.

40

0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Cross-over probability (ǫ)

F
r
a
m

e
 e

r
r
o
r
 r

a
te

 (
F

E
R

)

(3,6)−regular LDPC, N = 1296

BP, float−point (noiseless)

OMS, noiseless, (6−bit), C = +10, Offset = 3

MS, noiseless, (4−bit), C = +6

MS, noiseless, (3−bit), C = +2

Figure 5.6: FER performance of noiseless MS decoders for (3, 4)-regular LDPC code.

0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Cross-over probability (ǫ)

F
r
a

m
e
 e

r
r
o

r
 r

a
te

 (
F

E
R

)

(3,6)−regular LDPC, N = 1296

BP, float-point (noiseless)
OMS, noiseless, (6-bit), C = +10,Offset = 3
MS, noiseless, (4-bit), C = +6
MS, noiseless, (3-bit), C = +2
MS, noisy, (4-bit), C = +6, add Υ

pv
1 , ϕ =0.21

MS, noisy, (4-bit), C = +6, add Υ
pv
1 , ϕ =0.06

MS, noisy, (3-bit), C = +2, add Υ
pv
1 , ϕ =0.21

MS, noisy, (3-bit), C = +2, add Υ
pv
1 , ϕ =0.06

Figure 5.7: FER performance of noiseless and noisy MS decoders for (3, 4)-regular LDPC code and
εp = 0.21.

41

Chapter 6

Conclusions of this Deliverable

In this deliverable we have presented the density evolution framework to analyze noisy message passing
decoders in the asymptotical limit of the codeword length. The concept of DE has been generalized
to noisy decoders using noise models whiwh are symmetric and memoryless, but which could take any
characteristic in terms of transition probability.

The update rules of noiseless and noisy decoders have been presented. The focus has been made on
Min-Sum-Based decoders which have small message alphabets constructed from 3 and 4 quantization
bits, and for regular LDPC code ensembles with dv = 3 and dv = 4.

We have analyzed the noisy decoder performance for a simple error model. The DE thresholds
results have shown that the effect of the injected noise could be beneficial, as we identified noisy
decoders with better noisy-DE thresholds than the noiseless ones.

As a conclusion, the results of this work can serve as general tools to analyze the quantized noisy
Min-Sum decoders within the NAND project. More elaborate error models and generalizations of the
DE thresholds for the BI-AWGN will be studied in future works.

42

Bibliography

[1] R. G. Gallager, “Low-Density Parity-Check Codes,” Cambridge, MA:, MIT Press, 1963.

[2] D. J. C. MacKay and R. M. Neal, “Near Shannon limit performance of low density parity check
codes,” IEEE Transactions on Communications, vol. Vol-62, no. 10, pp. 3385–3400, October
2014.

[3] D. J. C. MacKay, “Good Error-Correcting Codes Based on Very Sparse Matrices,” IEEE Trans-
actions on Information Theory, vol. Vol-45, no. 2, pp. 399–431, March 1999.

[4] ETSI, “ETSI EN 302 307-1 V1.4.1 (2014-07) Digital Video Broadcasting (DVB); Second gener-
ation framing structure, channel coding and modulation systems for Broadcasting, Interactive
Services, News Gathering and other broadband satellite applications; Part 1: DVB-S2,” 2014.

[5] ETSI, “ETSI EN 302 307-2 V1.1.1 (2014-10) Digital Video Broadcasting (DVB); Second gen-
eration framing structure, channel coding and modulation systems for Broadcasting, Interactive
Services, News Gathering and other broadband satellite applications; Part 2: DVB-S2 Extensions
(DVB-S2X),” 2014.

[6] M. R. Tanner, “A Recursive Approach to Low Complexity Codes,” IEEE Transactions on Infor-
mation Theory, vol. Vol-27, no. 5, pp. 533–547, September 1981.

[7] N. Wiberg, Codes and Decoding on General Graphs. PhD thesis, Linkoping Univ., Linkoping,
Sweden, 1996.

[8] T. Richardson and R. Urbanke, “Modern Coding Theory,” Cambridge University Press, pp. 70–
90, 2007.

[9] D. J. C. MacKay, “Information Theory, Inference and Learning algorithms,” Cambridge Univer-
sity Press, vol. 7, pp. 555–573, 2003.

[10] T. J. Richardson and R. L. Urbanke, “The Capacity of Low-Density Parity-Check Codes Un-
der Message-Passing Decoding,” IEEE Transactions on Information Theory, vol. Vol-47, no. 2,
pp. 599–618, February 2001.

[11] T. J. R. M. A. Shokrollahi and R. L. Urbanke, “Design of Capacity-Approaching Irregular Low-
Density Parity-Check Codes,” IEEE Transactions on Information Theory, vol. Vol-47, no. 2,
pp. 619–637, February 2001.

[12] M. G. Luby, M. Mitzenmacher, M. A. Shokrollahi, and D. A. Spielman, “Improved Low-
Density Parity-Check Codes Using Irregular Graphs,” IEEE Transactions on Information Theory,
vol. Vol-47, no. 2, pp. 585–598, February 2001.

[13] A. Bennatan and D. Burshtein, “On the Application of LDPC Codes to Arbitrary Discrete-
Memoryless Channels,” IEEE Transactions on Information Theory, vol. Vol-50, no. 3, pp. 417–
438, March 2004.

[14] S. Myung, K. Yang, and J. Kim, “Quasi-Cyclic LDPC Codes for Fast Encoding,” IEEE Trans-
actions on Information Theory, vol. Vol-51, no. 8, pp. 2894–2901, August 2005.

43

[15] M. R. Tanner, D. Sridhara, A. Sridharan, T. E. Fuja, and D. J. Costello, “LDPC block and
Convolutional Codes Based on Circulant Matrices,” IEEE Transactions on Information Theory,
vol. Vol-50, no. 12, pp. 2966–2984, December 2004.

[16] E. B. E. D. Declercq, M Fossorier, “Channel Coding: Theory, Algorithms, and Applications,”
Academic Press Library in Mobile and Wireless Communications, Elsevier, vol. ISBN: 978-0-12-
396499-1, 2014.

[17] D. J. C. MacKay, “Alist format,” [Online]. Available:.

[18] C. L. K. Ngassa, LDPC Decoders Running on Error Prone Devices: Theoretical Limits and
Practical Assessment of the Error Correction Performance. PhD thesis, Université de Cergy-
Pontoise, Cergy-Pontoise, France, 2015.

[19] V. Savin, “LDPC decoders,” pp. 1–54, October 2013.

[20] F. R. Kschischang, B. J. Frey, and H.-A. Loeliger, “Factor Graphs and the Sum-Product Algo-
rithm,” IEEE Transactions on Information Theory, vol. Vol-47, no. 2, pp. 498–519, February
2001.

[21] S.-Y. Chung, T. J. Richardson, and R. L. Urbanke, “Analysis of Sum-Decoding of Low-Density
Parity-Check Codes Using a Gaussian Approximation,” IEEE Transactions on Information The-
ory, vol. Vol-47, no. 2, pp. 657–670, February 2001.

[22] C. K. Ngassa, V. Savin, E. Dupraz, and D. Declercq, “Density evolution and functional threshold
for the noisy min-sum decoder,” IEEE Transactions on Communications, vol. Vol-63, no. 5,
pp. 1497–1509, May 2015.

[23] M. Fu, “On Gaussian Approximation for Density Evolution of Low-Density Parity-Check Codes,”
IEEE, pp. 1107–1112, 2006.

[24] G. Li, I. J. Fair, and W. A. Krzymien, “Density Evolution for Nonbinary LDPC Codes Under
Gaussian Approximation,” IEEE Transactions on Information Theory, vol. Vol-55, no. 3, pp. 997–
1015, March 2009.

44

