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Context & Objectives

Low Density Parity Check (LDPC) Decoders

Applications: Wired, Wireless communication, Storage...
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Message passing LDPC decoder 

Passed messages 

2 types of LDPC decoding algorithms:

Soft information algorithms : Sum-Product, Min-Sum..., powerful error correction capacity but high
complexity.

Hard-decision algorithms : Bit Flipping (BF), Gradient Descent Bit Flipping (GDBF), Gallager-B, etc. low
complexity, usually weak in error correction.

Towards a new type of decoder : low complexity + noise perturbation⇔ powerful error correction,
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Context and Objectives

A new noisy decoding framework

In [VARSHNEY 2011], [VASIC 2007], [YAZDI 2013], authors focused on trying to compensate faulty hardware effects, by
making the iterative decoders robust and fault-tolerant,

Inspired by the robustness of iterative decoders, a new direction of research has been identified:

Additionnal noise could help error correction instead of being an enemy

the Additional noise could come from the circuit design, or through deliberate noise injection.

Injected Noise to break the attraction of Trapping Sets (TS)

Failures of iterative decoders are mainly due to TS : fixed points or loopy attractors,

Not only can it help in the error floor, but also in the waterfall,

[VARSHNEY 2011] L. VARSHNEY, “PERFORMANCE OF LDPC CODES UNDER FAULTY ITERATIVE DECODING”, IEEE Trans. on Info. Theory, 2011

[VASIC 2007] B. VASIC ET AL., “AN INFORMATION THEORETICAL FRAMEWORK FOR ANALYSIS AND DESIGN OF NANOSCALE FAULT-TOLERANT MEMORIES

BASED ON LDPC CODES”, IEEE Trans. on Circuits and Systems I, 2007

[YAZDI 2013] S. YAZDI ET AL., “GALLAGER-B DECODER ON NOISY HARDWARE”, IEEE Trans. on Commun., 2013
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Very simple decoder + Noise ⇔ Powerful Decoder

Injected Noise in the decoder can help to combat the channel errors

First demonstration of this phenomenon on the Gradient-Descent Bit-Flipping decoder:

Probabilistic Gradient Descent Bit-Flipping (PGDBF) for the BSC, [RASHEED 2014]

Noisy Gradient Descent Bit-Flipping (NGDBF) for the BI-AWGN, [SUNDARARAJAN 2014]

Could be generalized to other hard-decision decoders (Gal-B for example), [IVANIS 2015]

Issues raised about noise injection

Where ? VNU ? CNU ? Memories ? Only localized computing units ?

When ? From the first iteration ? After a given number of iterations ? When a decoding failure is detected ?

How ? Which Noise model ? Values of the parameters ? Hardware realization ?

[RASHEED 2014] O. RASHEED ET AL., “FAULT-TOLERANT PROBABILISTIC GRADIENT-DESCENT BIT FLIPPING DECODER”, IEEE Communications Letters,

2014

[SUNDARARAJAN 2014] SUNDARARAJAN ET AL., “NOISY GRADIENT DESCENT BIT-FLIP DECODING FOR LDPC CODES”, IEEE Transactions on

Communications, 2014

[IVANIS 2015] P. IVANIS ET AL., “MUDRI: A FAULT-TOLERANT DECODING ALGORITHM”, ICC, 2015
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Gradient Descent Bit-Flipping Decoder

Concept of Gradient Descent Bit Flipping (GDBF) Algorithm [Wadayama 2010]

Iterative propagation of binary information between 2 groups of processing units:

1 Check Nodes Units (CNU): compute parity check equations (XOR operations),

c(l)
m =

⊕
vn∈N (cm)

v(l)
n

2 Variable Nodes Units (VNU): the VN value is flipped if the number of violated CN neighbors is too large.

Requires the computation of an Energy/Inversion Function in order to select the bit-flips.

Energy function for the BSC channel (high energy = low reliability)

E(l)
vn

= L(yn)(l) +

∑
cm∈N (vn)

c(l)
m L(yn)(l) = yn ⊕ v(l)

n

Energy function for the AWGN channel (low energy = low reliability)

E(l)
vn

= L(yn)(l) + w
∑

cm∈N (vn)

(1− 2 c(l)
m ) L(yn)(l) = (1− 2 v(l)

n ) log

(
prob(yn|vn = 0)

prob(yn|vn = 1)

)
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Flipping Sets

Flipping sets contain indices of bits to be flipped

F (l)
BSC =

{
n ∈ {1,N} ; E (l)

vn = b(l)
}

[BSC]

F (l)
AWGN =

{
n ∈ {1,N} ; E (l)

vn ≤ θ
}

[AWGN]

b(l) = max
1≤n≤N

(E (l)
vn ) is the maximum energy (BSC), and θ is a pre-determined threshold.

Graphical representation of flipping sets
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Noisy Flipping Sets

PGDBF : random variable ε(l)
n ∼ U[0,1] main parameter p0

F̃ (l)
PGDBF =

{
n ∈ F (l)

BSC ; ε
(l)
n < p0

}
[PGDBF]

NGDBF : random variable ε(l)
n ∼ N (0, σp) main parameter σp

F̃ (l)
NGDBF

{
n ∈ [1,N] ; E (l)

vn ≤ θ + ε
(l)
n

}
[NGDBF]

Graphical representation of noisy flipping sets
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Unified presentation of GDBF and Noisy GDBF
decoders

GDBF and NA-GDBF Algorithms : [iteration l]

[Step 1] Compute CNs values
c(l)

m , ∀m = 1, . . . ,M,

[Step 2] Compute Energy functions at VNs
E (l)

vn , ∀n = 1, . . . ,N

[Step 3] Compute the flipping sets
F (l)

BSC or F (l)
AWGN for the deterministic GDBF

F (l)
PGDBF or F (l)

NGDBF for the noise-aided GDBF

[Step 4] Bit flipping

∀n ∈ F (l) v (l+1)
n = v (l)

n

∀n /∈ F (l) v (l+1)
n = v (l)

n
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Complexity and Performance of Noise Injection

Deterministic GDBF and MS versus Probabilistic
GDBF

Regular quasi-cyclic LDPC code
(dv , dc) = (3, 6), N = 1296 bits,

Noise-aided simple decoders can approach
performance of powerful decoders with a very

small hardware overhead (' 5%)
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BF, 300 Iterations
GDBF, 300 Iterations
PGDBF, 300 Iterations
MS, 100 Iterations

dv3R050N1296 Area and Throughput θ Comparison

Code length AREA fmax Nc FER = 1e − 5 α = 0.02

(µm2) (MHz) Itave θ (Gbit/s) Itave θ (Gbit/s)

GDBF 1296 87810 222 1 2.00 (@α = 0.005) 144.00 2.95 (FER = 3e−4) 97.63

PGDBF 1296 92645 232 1 3.50 (@α = 0.012) 86.11 2.88 (FER = 5e−6) 104.65

Min-Sum 1296 950000 111 6 1.94 (@α = 0.025) 12.36 1.15 (FER = 1e−7) 20.85
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Statistical Analysis in the Waterfall : PGDBF

Analyze and quantify the amount of noise that should be introduced

Objective : optimize the amount of noise that maximizes the coding gains

Through Monte-Carlo simulations in the waterfall and the error-floor.

Binary Symmetric Channel - Waterfall Region - Tanner Code (M = 93,N = 155)
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Conclusion 1:
for the first decoding iterations random
noise does not help,

Conclusion 2:
a wide range of p0 ∈ [0.5; 0.9] values
achieve the same coding gain.
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Statistical Analysis in the Error Floor : PGDBF

Errors located on Trapping Sets

In the error floor region, the dominant uncorrectable error configurations are concentrated on Trapping Sets

Trapping Sets TS(a, b) are defined as a small set of a VNs for which the neighboring CNs contains exactly b odd degree
CNs

TS(5, 3) is the smallest trapping set for regular dv = 3 LDPC codes with girth g = 8.

Smallest Error Events not correctable by the GDBF

weight-3 error patterns which does not satisfy 5 parity-checks,

weight-4 error patterns which does not satisfy 10 parity-checks,
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Statistical Analysis in the Error Floor : PGDBF

Frame error rate with fixed input errors

for each Monte-Carlo round, only the random noise ε(l)
n differ, the channel errors are kept the same.
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3 bits error pattern
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4 bits error pattern

Conclusion 1: the random noise is useful in the first iterations,

Conclusion 2: the same wide range of p0 ∈ [0.5; 0.9] values achieve the maximum coding gain.
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Statistical Analysis in the Error Floor : NGDBF

Errors located on Trapping Sets

Step 1 : apply a bias on the channel samples associated with a TS,

Step 2 : select only frames for which the GDBF fails on the selected TS,

Step 3 : restart decoding of the same frame with the NGDBF,

Step 4 : compute the residual FER on the selected frames.

TS(5, 3) on the Tanner (155, 64) code

Decoder Noise σ
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Conclusion : the choice of optimum σp is narrower
than for the PGDBF.
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Trapping sets of noiseless GDBF decoders

Assumptions/Definitions

We analyze errors located on a trapping set that is isolated from the rest of the graph,

Shortest example for dv = 3, g = 8 LDPC codes: the TS(5, 3) trapping set,

Definition of a TS state : S = (v1, v2, v3, v4, v5)2

Examples : correct state S0 = (0, 0, 0, 0, 0)2 - error state S21 = (1, 0, 1, 0, 1)2.

A trapping set for the GDBF decoder : oscillating behavior between S21 and S26.
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State space of the PGDBF decoder

Some observations starting with error state S21 = (1, 0, 1, 0, 1)2

Deterministic GDBF oscillates indefinitely between S21 and S26,

Only 20 out of the 32 possible states are achievable

S0 is one of the achievable states,

State space of the PGDBF on the TS(5,3)
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PGDBF probability of escaping a TS

Optimization of the parameter p0

The shortest path between the error and the correct state is : S21 → S16 → S0,

This is the only path with 2 transitions, its probability of occurence is p3
0(1− p0)2,

Optimization strategy : maximize the probability of the shortest path→ p0 = 0.6

State space of the PGDBF on the TS(5,3)
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NGDBF probability of escaping a TS

Assumptions/Definitions

All 32 states are achievable,

let S and S′ be two consecutive states, and T (S,S′) the indices of bits in which S and S′ differ,

Under the isolation assumption, only the state nodes (v1, v2, v3, v4, v5) have negative LLRs,

Transition Probabilities

The transition probabilities between states S and S′

Λ(S,S′) =
∏

n∈T (S,S′)

F (Evn , θ, σp)
∏

n 6∈T (S,S′)

(1− F (Evn , θ, σp)),

with

F (Evn , θ, σp) =
1

√
2πσp

∫ θ−Evn

−∞

e
− x2

2 σ2
p dx,

using Λ(S,S′) and the Perron-Frobenius theorem, we can compute the probability of escaping a TS, at
each iteration.
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NGDBF probability of escaping a TS

Probability of TS error for the NGDBF
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Optimization of σp

Trade-off between convergence speed and TS correction probability,

Optimization of σp depends on how the TS are effectively isolated, and on the required latency.
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Advantage of modifying the PGDBF threshold

PGDBF with maximum threshold E (l)
vn = b(l) : oscillation
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Decoder-Dynamic Shift PGDBF

Instead of decreasing the threshold randomly, we let the threshold variations follow the dynamics of the decoder,

Our proposed modification is to use the value of the maximum energy at the previous iteration b(l−1).

DDS-PGDBF : [iteration l]

[Step 1] Compute CNs values
c(l)

m , ∀m = 1, . . . ,M,

[Step 2] Compute energy values at VNs
E(l)

vn
, ∀n = 1, . . . ,N,

[Step 3] Compute the modified flipping set with threshold value from the previous iteration

F̃(l)
DDS-PGDBF

=
{

n ∈ {1,N} ; E(l)
vn
≥ b(l−1) and ε(l)

n < p0

}
[Step 4] Bit flipping

∀n ∈ F̃(l)
DDS-PGDBF

v(l+1)
n = v(l)

n

∀n /∈ F̃(l)
DDS-PGDBF

v(l+1)
n = v(l)

n

[Step 5] Update energy values at VNs
E(l)

vn
= E(l)

vn
− yn ⊕ v(l)

n + yn ⊕ v(l+1)
n .

[Step 6] Compute new maximum energy
b(l) = max

1≤n≤N
(E(l)

vn
)

~
&%
'$

| D. Declercq | September 7, 2016 26 / 30



Introduction NA-GDBF Statistics State Space DDS-PGDBF Conclusion

Decoding Dynamics

Behavior of the DDS-PGDBF decoder

We plot the state space of the average binary entropy for the VN values,

Errors are mainly located on a collection of uncorrectable TS,

Using the previous threshold allows big jumps in the state space of the decoder,

PGDBF decoder (p0 = 0.6)
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Performance of DDS-PGDBF

With a very large number of iterations, DDS-PGDBF approaches MLD
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Conclusion

Noise-Aided Iterative Decoders

Injected Noise turn weak decoders into powerful decoders,

Extra hardware complexity is negligible,

The coding gains come at the cost of a larger number of iterations.

Optimization of Noise Statistics

for the PGDBF on the BSC and for the NGDBF on the AWGN channel,

using Monte-Carlo simulations and a semi-analytical analysis on isolated TS,

the NGDBF gains require a precise optimization of σp .

PGDBF Decoders with Dynamic Shifts

we proposed a modified PGDBF algorithm, with low complexity, and the ability to escape strong TS
attraction,

the DDS-PGDBF greatly improves the PGDBF performance, and approaches MLD using a very large
number of iterations.
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