Noise-Aided Gradient Descent Bit-Flipping Decoders approaching Maximum Likelihood Decoding

D. Declercq, C. Winstead, B. Vasic, F. Ghaffari, P. Ivanis and E. Boutillon

September 7, 2016

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ―臣 ― のへで

This work has been funded in parts by the ANR NAND Project under grant n^o ANR-15-CE25-0006-01.

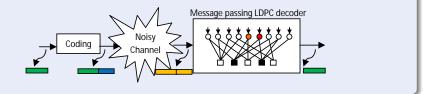
- Context and Objectives
- 2 Noise-aided Gradient Descent Bit-Flipping
- **3** Statistical Analysis of NA-GDBF decoders
- 4 State Space Analysis of NA-GDBF decoders
- 6 Decoder-Dynamic Shift for PGDBF on the BSC channel
- 6 Conclusion

Context and Objectives

- 2 Noise-aided Gradient Descent Bit-Flipping
- 3 Statistical Analysis of NA-GDBF decoders
- Output: State Space Analysis of NA-GDBF decoders
- B Decoder-Dynamic Shift for PGDBF on the BSC channel
- 6 Conclusion

Low Density Parity Check (LDPC) Decoders

Applications: Wired, Wireless communication, Storage...



2 types of LDPC decoding algorithms:

- Soft information algorithms : Sum-Product, Min-Sum..., powerful error correction capacity but high complexity.
- Hard-decision algorithms : Bit Flipping (BF), Gradient Descent Bit Flipping (GDBF), Gallager-B, etc. low complexity, usually weak in error correction.
- Towards a new type of decoder : low complexity + noise perturbation ⇔ powerful error correction,

A new noisy decoding framework

- In [VARSHNEY 2011], [VASIC 2007], [YAZDI 2013], authors focused on trying to compensate faulty hardware effects, by
 making the iterative decoders robust and fault-tolerant,
- Inspired by the robustness of iterative decoders, a new direction of research has been identified:

Additionnal noise could help error correction instead of being an enemy

the Additional noise could come from the circuit design, or through deliberate noise injection.

Injected Noise to break the attraction of Trapping Sets (TS)

- Failures of iterative decoders are mainly due to TS : fixed points or loopy attractors,
- Not only can it help in the error floor, but also in the waterfall,

[VARSHNEY 2011] L. VARSHNEY, "PERFORMANCE OF LDPC CODES UNDER FAULTY ITERATIVE DECODING", IEEE Trans. on Info. Theory, 2011 [VASIC 2007] B. VASIC ET AL., "AN INFORMATION THEORETICAL FRAMEWORK FOR ANALYSIS AND DESIGN OF NANOSCALE FAULT-TOLERANT MEMORIES BASED ON LDPC CODES", IEEE Trans. on Circuits and Systems I, 2007 [VAZDI 2013] S. VAZDI ET AL., "GALLAGER-B DECODER ON NOISY HARDWARE", IEEE Trans. on Commun., 2013

Injected Noise in the decoder can help to combat the channel errors

• First demonstration of this phenomenon on the Gradient-Descent Bit-Flipping decoder:

- Probabilistic Gradient Descent Bit-Flipping (PGDBF) for the BSC,
- Noisy Gradient Descent Bit-Flipping (NGDBF) for the BI-AWGN,
- Could be generalized to other hard-decision decoders (Gal-B for example),

[RASHEED 2014] [SUNDARARAJAN 2014] [IVANIS 2015]

Issues raised about noise injection

- Where ? VNU ? CNU ? Memories ? Only localized computing units ?
- When ? From the first iteration ? After a given number of iterations ? When a decoding failure is detected ?
- How ? Which Noise model ? Values of the parameters ? Hardware realization ?

[RASHEED 2014] O. RASHEED ET AL., "FAULT-TOLERANT PROBABILISTIC GRADIENT-DESCENT BIT FLIPPING DECODER", IEEE Communications Letters, 2014

[SUNDARARAJAN 2014] SUNDARARAJAN ET AL., "NOISY GRADIENT DESCENT BIT-FLIP DECODING FOR LDPC CODES", IEEE Transactions on Communications, 2014

[IVANIS 2015] P. IVANIS ET AL., "MUDRI: A FAULT-TOLERANT DECODING ALGORITHM", ICC, 2015

Context and Objectives

2 Noise-aided Gradient Descent Bit-Flipping

- 3 Statistical Analysis of NA-GDBF decoders
- Output: State Space Analysis of NA-GDBF decoders
- Decoder-Dynamic Shift for PGDBF on the BSC channel
- 6 Conclusion

Concept of Gradient Descent Bit Flipping (GDBF) Algorithm [Wadayama 2010]

Iterative propagation of binary information between 2 groups of processing units:

Check Nodes Units (CNU): compute parity check equations (XOR operations),

$$c_m^{(l)} = \bigoplus_{v_n \in \mathcal{N}(c_m)} v_n^{(l)}$$

2 Variable Nodes Units (VNU): the VN value is flipped if the number of violated CN neighbors is too large.

Requires the computation of an Energy/Inversion Function in order to select the bit-flips.

Energy function for the BSC channel (high energy = low reliability)

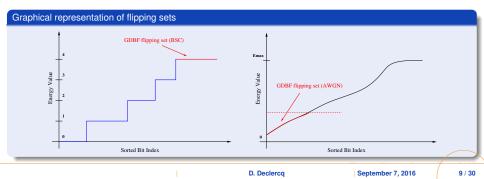
$$E_{v_n}^{(l)} = L(y_n)^{(l)} + \sum_{c_m \in \mathcal{N}(v_n)} c_m^{(l)}$$

$$L(y_n)^{(l)} = y_n \oplus v_n^{(l)}$$

Energy function for the AWGN channel (low energy = low reliability)

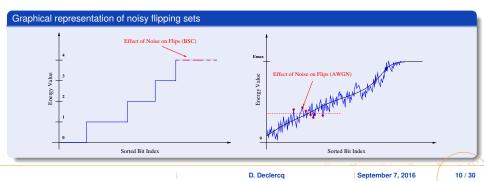
$$E_{v_n}^{(l)} = L(y_n)^{(l)} + w \sum_{c_m \in \mathcal{N}(v_n)} (1 - 2c_m^{(l)}) \qquad L(y_n)^{(l)} = (1 - 2v_n^{(l)}) \log\left(\frac{prob(y_n|v_n = 0)}{prob(y_n|v_n = 1)}\right)$$

•
$$b^{(l)} = \max_{1 \le n \le N} (E_{v_n}^{(l)})$$
 is the maximum energy (BSC), and θ is a pre-determined threshold.



PGDBF : random variable $\epsilon_n^{(l)} \sim \mathcal{U}_{[0,1]}$	main parameter p_0
$\widetilde{\mathcal{F}}_{PGDBF}^{(l)} = \left\{ n \in \mathcal{F}_{BSC}^{(l)} ; \epsilon_n^{(l)} < ight.$	ρ ₀ } [PGDBF]

NGDBF : random variable $\epsilon_n^{(l)} \sim \mathcal{N}(0,\sigma_{\mathcal{P}})$	main parameter σ_p
$\widetilde{\mathcal{F}}_{NGDBF}^{(l)}\left\{ n\in\left[1,N ight] ;E_{v_{n}}^{\left(l ight) }\leq$	$\theta + \epsilon_n^{(l)} \}$ [NGDBF]



GDBF and NA-GDBF Algorithms : [iteration /]

[Step 1] Compute CNs values

 $c_m^{(l)}, \forall m = 1, \ldots, M,$

[Step 2] Compute Energy functions at VNs $E_{N=1}^{(l)}, \forall n = 1, ..., N$

[Step 3] Compute the flipping sets

 $\begin{array}{l} \mathcal{F}_{\text{BSC}}^{(l)} \text{ or } \mathcal{F}_{\text{AWGN}}^{(l)} \text{ for the deterministic GDBF} \\ \mathcal{F}_{\text{PGDBF}}^{(l)} \text{ or } \mathcal{F}_{\text{NGDBF}}^{(l)} \text{ for the noise-aided GDBF} \end{array}$

[Step 4] Bit flipping

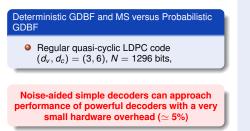
 $\begin{array}{ll} \forall n \in \mathcal{F}^{(l)} & v_n^{(l+1)} = \overline{v_n^{(l)}} \\ \forall n \notin \mathcal{F}^{(l)} & v_n^{(l+1)} = v_n^{(l)} \end{array}$

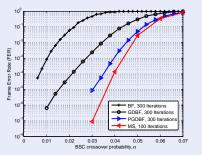
State Space

DDS-PGDBF

Conclusion

Complexity and Performance of Noise Injection





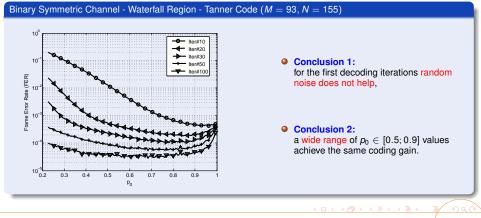
	dv3R050N1296			Area and Throughput $ heta$ Comparison			ı	
	Code length	AREA	f _{max}	Nc	<i>FER</i> = 1 <i>e</i> - 5		$\alpha = 0.02$	
		(µm ²)	(MHz)		It _{ave}	θ (Gbit/s)	It _{ave}	θ (Gbit/s)
GDBF	1296	87810	222	1	2.00 (@ α = 0.005)	144.00	$2.95 (FER = 3e^{-4})$	97.63
PGDBF	1296	92645	232	1	3.50 (@ α = 0.012)	86.11	$2.88 (FER = 5e^{-6})$	104.65
Min-Sum	1296	950000	111	6	1.94 (@α = 0.025)	12.36	$1.15 (FER = 1e^{-7})$	20.85

- Context and Objectives
- 2 Noise-aided Gradient Descent Bit-Flipping
- **3** Statistical Analysis of NA-GDBF decoders
- Output: State Space Analysis of NA-GDBF decoders
- Decoder-Dynamic Shift for PGDBF on the BSC channel
- 6 Conclusion

Statistical Analysis in the Waterfall : PGDBF

Analyze and quantify the amount of noise that should be introduced

- Objective : optimize the amount of noise that maximizes the coding gains
- Through Monte-Carlo simulations in the waterfall and the error-floor.

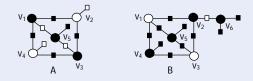


Errors located on Trapping Sets

- In the error floor region, the dominant uncorrectable error configurations are concentrated on Trapping Sets
- Trapping Sets TS(a, b) are defined as a small set of a VNs for which the neighboring CNs contains exactly b odd degree CNs
- TS(5, 3) is the smallest trapping set for regular $d_V = 3$ LDPC codes with girth g = 8.

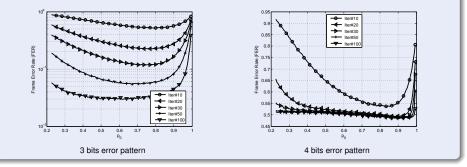
Smallest Error Events not correctable by the GDBF

- weight-3 error patterns which does not satisfy 5 parity-checks,
- weight-4 error patterns which does not satisfy 10 parity-checks,



Frame error rate with fixed input errors

• for each Monte-Carlo round, only the random noise $\epsilon_n^{(l)}$ differ, the channel errors are kept the same.

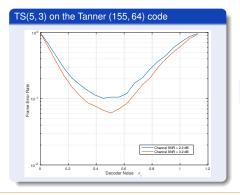


Conclusion 1: the random noise is useful in the first iterations,
 Conclusion 2: the same wide range of p₀ ∈ [0.5; 0.9] values achieve the maximum coding gain.

Statistical Analysis in the Error Floor : NGDBF

Errors located on Trapping Sets

- Step 1 : apply a bias on the channel samples associated with a TS,
- Step 2 : select only frames for which the GDBF fails on the selected TS,
- Step 3 : restart decoding of the same frame with the NGDBF,
- Step 4 : compute the residual FER on the selected frames.



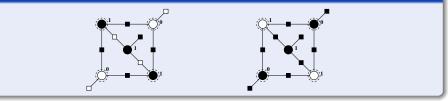
 Conclusion : the choice of optimum σ_p is narrower than for the PGDBF.

- Context and Objectives
- 2 Noise-aided Gradient Descent Bit-Flipping
- 3 Statistical Analysis of NA-GDBF decoders
- 4 State Space Analysis of NA-GDBF decoders
- B Decoder-Dynamic Shift for PGDBF on the BSC channel
- 6 Conclusion

Assumptions/Definitions

- We analyze errors located on a trapping set that is isolated from the rest of the graph,
- Shortest example for $d_v = 3$, g = 8 LDPC codes: the TS(5, 3) trapping set,
- Definition of a TS state : S = (v₁, v₂, v₃, v₄, v₅)₂
- Examples : correct state $S_0 = (0, 0, 0, 0, 0)_2$ error state $S_{21} = (1, 0, 1, 0, 1)_2$.

A trapping set for the GDBF decoder : oscillating behavior between S_{21} and S_{26} .



D. Declercq

September 7, 2016

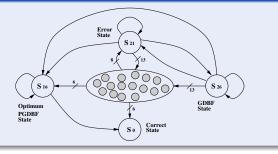
19/30

- black circles are in error,
- circled-dashed circles have maximum energy,

Some observations starting with error state $S_{21} = (1, 0, 1, 0, 1)_2$

- Deterministic GDBF oscillates indefinitely between S₂₁ and S₂₆,
- Only 20 out of the 32 possible states are achievable
- S₀ is one of the achievable states,

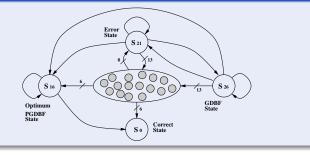
State space of the PGDBF on the TS(5,3)



Optimization of the parameter p_0

- The shortest path between the error and the correct state is : $S_{21} \rightarrow S_{16} \rightarrow S_0$,
- This is the only path with 2 transitions, its probability of occurrence is $p_0^3(1-p_0)^2$,
- Optimization strategy : maximize the probability of the shortest path $\rightarrow p_0 = 0.6$

State space of the PGDBF on the TS(5,3)



Assumptions/Definitions

- All 32 states are achievable,
- let S and S' be two consecutive states, and T(S, S') the indices of bits in which S and S' differ,
- Under the isolation assumption, only the state nodes (v₁, v₂, v₃, v₄, v₅) have negative LLRs,

Transition Probabilities

The transition probabilities between states S and S'

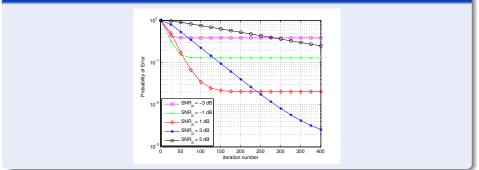
$$\Lambda(S,S') = \prod_{n \in T(S,S')} F(E_{v_n}, \theta, \sigma_p) \prod_{n \notin T(S,S')} (1 - F(E_{v_n}, \theta, \sigma_p)),$$

with

$$F(E_{\nu_n},\theta,\sigma_p)=\frac{1}{\sqrt{2\pi}\sigma_p}\int_{-\infty}^{\theta-E_{\nu_n}}e^{-\frac{x^2}{2\sigma_p^2}}dx,$$

 using Λ(S, S') and the Perron-Frobenius theorem, we can compute the probability of escaping a TS, at each iteration.

Probability of TS error for the NGDBF



Optimization of σ_p

- Trade-off between convergence speed and TS correction probability,
- Optimization of σ_p depends on how the TS are effectively isolated, and on the required latency.

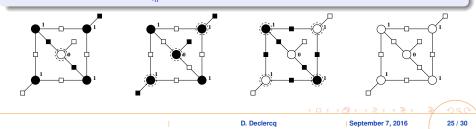
D. Declercq

September 7, 2016

- Ontext and Objectives
- 2 Noise-aided Gradient Descent Bit-Flipping
- 3 Statistical Analysis of NA-GDBF decoders
- 4 State Space Analysis of NA-GDBF decoders
- 6 Decoder-Dynamic Shift for PGDBF on the BSC channel
- 6 Conclusion

PGDBF with maximum threshold $E_{v_n}^{(l)} = b^{(l)}$: oscillation

PGDBF with decreased threshold $E_{v_n}^{(l)} \ge b^{(l)} - 1$: convergence



- Instead of decreasing the threshold randomly, we let the threshold variations follow the dynamics of the decoder,
- Our proposed modification is to use the value of the maximum energy at the previous iteration b^(l-1).

DDS-PGDBF : [iteration /]

[Step 1] Compute CNs values $c_m^{(I)}, \forall m = 1, \dots, M,$

[Step 2] Compute energy values at VNs $E_{Vn}^{(l)}, \forall n = 1, ..., N,$

[Step 3] Compute the modified flipping set with threshold value from the previous iteration $\widetilde{\mathcal{F}}_{\text{DDS-PGDBF}}^{(l)} = \left\{ n \in \{1, N\}; E_{v_n}^{(l)} \geq b^{(l-1)} \text{ and } \epsilon_n^{(l)} < \rho_0 \right\}$

[Step 4] Bit flipping

$$\begin{aligned} \forall n \in \widetilde{\mathcal{F}}_{\text{DDS-PGDBF}}^{(l)} & v_n^{(l+1)} = v_n^{(l)} \\ \forall n \notin \widetilde{\mathcal{F}}_{\text{DDS-PGDBF}}^{(l)} & v_n^{(l+1)} = v_n^{(l)} \end{aligned}$$

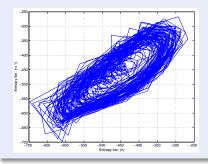
[Step 5] Update energy values at VNs $E_{v_n}^{(l)} = E_{v_n}^{(l)} - y_n \oplus v_n^{(l)} + y_n \oplus v_n^{(l+1)}.$

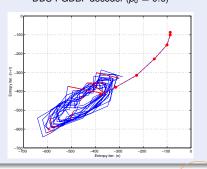
[Step 6] Compute new maximum energy $b^{(l)} = \max_{1 \le n \le N} (E_{v_n}^{(l)})$

Behavior of the DDS-PGDBF decoder

- We plot the state space of the average binary entropy for the VN values,
- Errors are mainly located on a collection of uncorrectable TS,
- Using the previous threshold allows big jumps in the state space of the decoder,

PGDBF decoder ($p_0 = 0.6$)

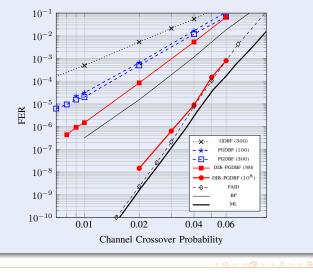




DDS-PGDBF decoder ($p_0 = 0.6$)

Performance of DDS-PGDBF

With a very large number of iterations, DDS-PGDBF approaches MLD



- Context and Objectives
- 2 Noise-aided Gradient Descent Bit-Flipping
- 3 Statistical Analysis of NA-GDBF decoders
- ④ State Space Analysis of NA-GDBF decoders
- B Decoder-Dynamic Shift for PGDBF on the BSC channel
- 6 Conclusion

Noise-Aided Iterative Decoders

- Injected Noise turn weak decoders into powerful decoders,
- Extra hardware complexity is negligible,
- The coding gains come at the cost of a larger number of iterations.

Optimization of Noise Statistics

- for the PGDBF on the BSC and for the NGDBF on the AWGN channel,
- using Monte-Carlo simulations and a semi-analytical analysis on isolated TS,
- the NGDBF gains require a precise optimization of σ_p.

PGDBF Decoders with Dynamic Shifts

- we proposed a modified PGDBF algorithm, with low complexity, and the ability to escape strong TS attraction,
- the DDS-PGDBF greatly improves the PGDBF performance, and approaches MLD using a very large number of iterations.