Quelques aspects de la réalisation matérielle d'un décodeur *LDPC*

François VERDIER David DECLERCQ Jean-Marc Philippe

« Equipes Traitement des Images et du Signal » ETIS

UMR CNRS 8051

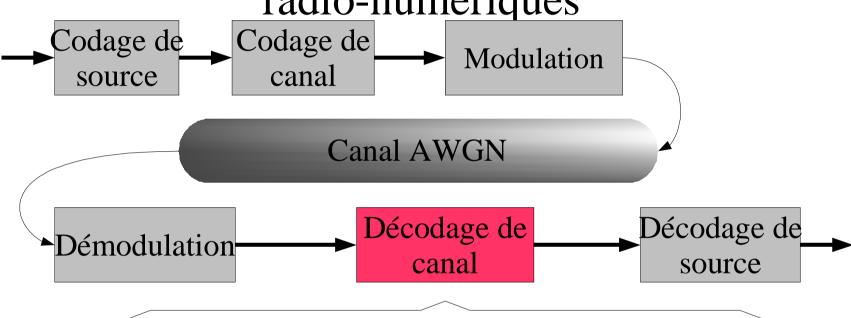
http://www.etis.ensea.fr

F. Verdier

Quelques aspects de la réalisation matérielle d'un décodeur *LDPC*

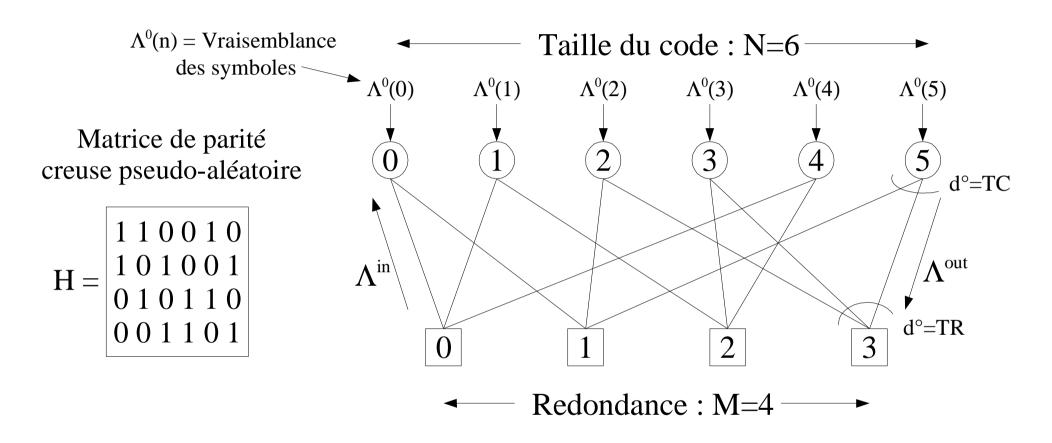
- 1.Les codes *LDPC*
- 2. La classe des codes congruents réguliers
- 3. Architecture et parallélisation du décodeur
- 4. Conséquences du calcul en précision finie

1. Les codes *LDPC* dans les transmissions radio-numériques



- Codes « blocs » à vérification de parité de grande taille (10⁴ à 10⁶)
- Canaux fortement bruités (RSB = qq dB)
- Débits importants (> Msymb./sec.)
- Rendements variables

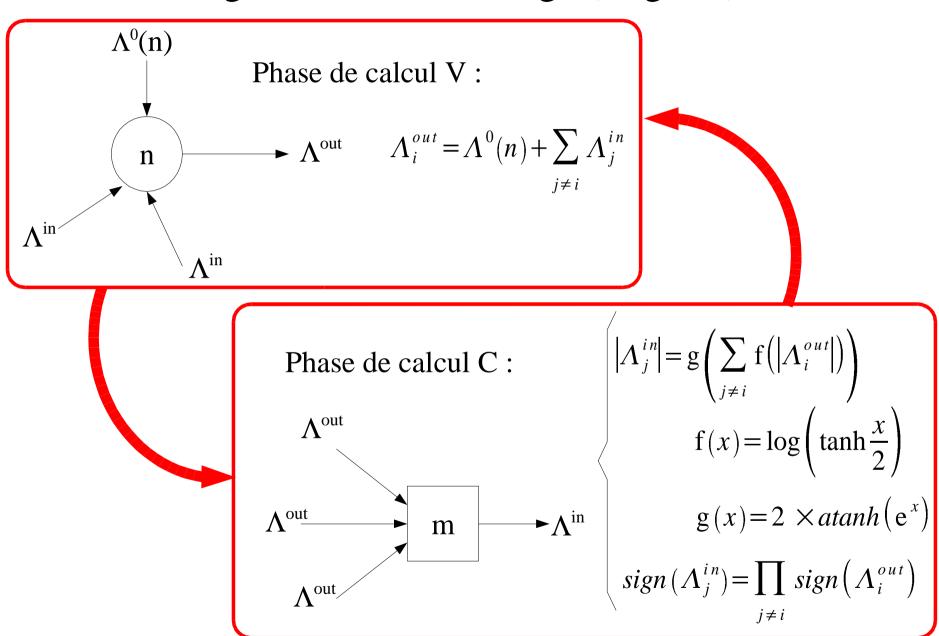
Représentation graphique d'un code LDPC



 Λ^{in} et Λ^{out} : messages échangés sur les branches

Code LDPC régulier (6,4,2,3) de rendement ½

Algorithme de décodage (Log-BP)



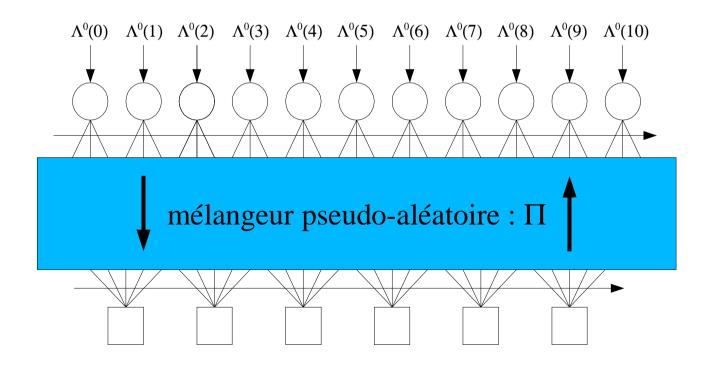
Problème d'Adéquation Algorithme / Architecture

Matrice de décodage pseudo-aléatoire \longrightarrow Codage ? Stockage ? Codes de grande taille (10^4 à 10^6) \longrightarrow Grande quantité de mémoire Taille de code variable \longrightarrow Parallélisation / scalabilité ?

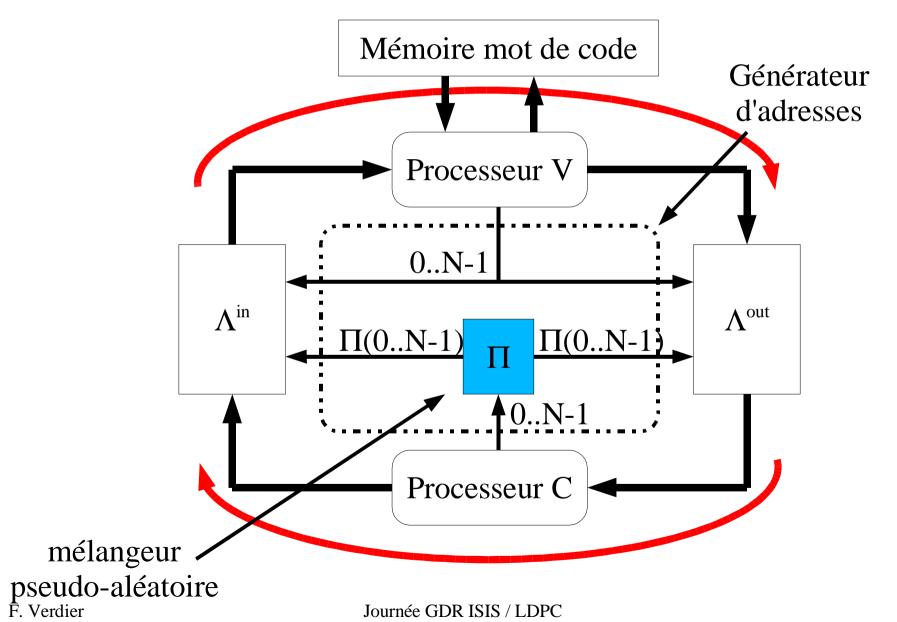
Impact architectural du code pseudo-aléatoire

Les messages Λ^{in} et Λ^{out} sont stockés en mémoire Les branches sont parcourues séquentiellement dans l'ordre naturel

Parcours des branches / parcours des adresses ?



Solution proposée :



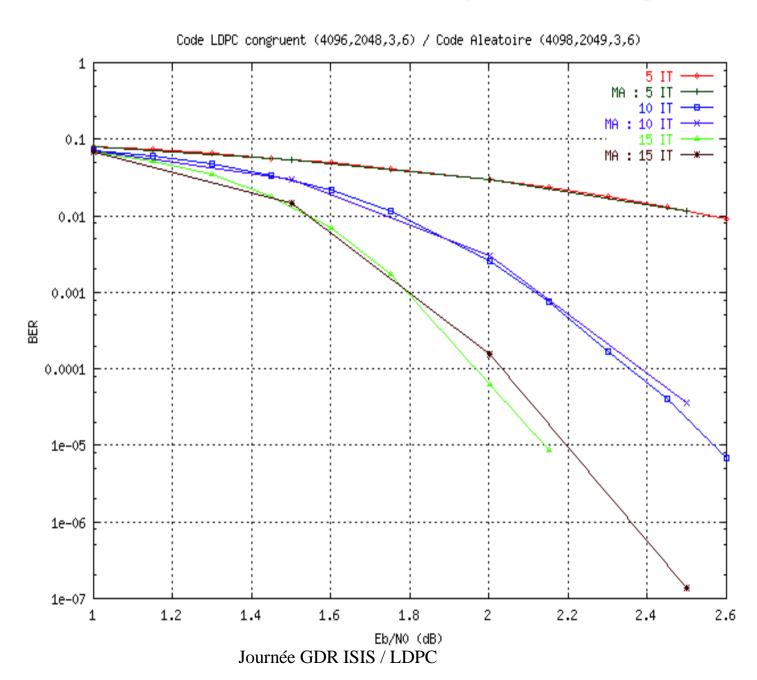
19/12/2002

2. Une classe de codes facilement implantables : les codes congruents

- Le caractère pseudo-aléatoire de la matrice de décodage est incompatible avec un stockage ou un calcul simple des adresses des messages
- → Adresses calculées par un générateur congruent et récursif [Prabhakar2002]
 - → Pas de stockage de la matrice
 - → Paramétrage simple du générateur congruent

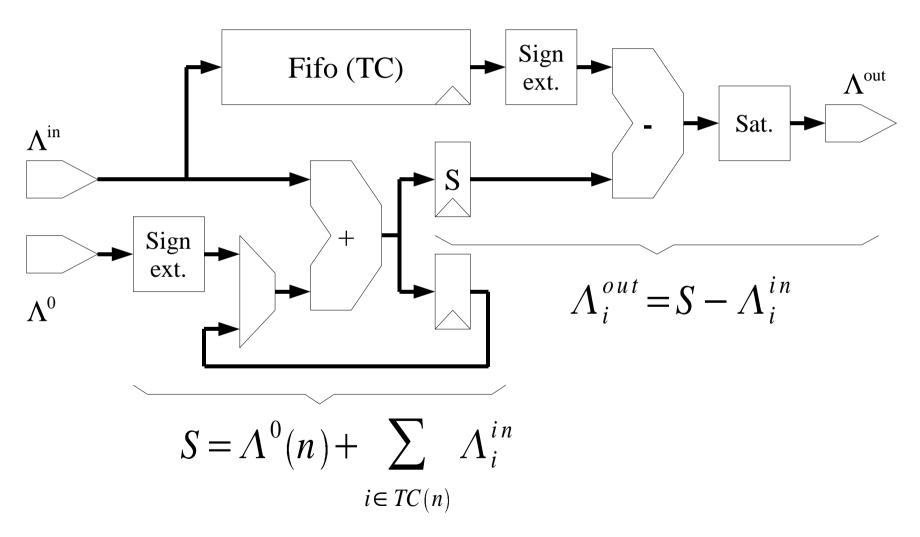
$$\Pi_{n+1} = (a \times \Pi_n + b) mod(N_b)$$

Performances des codes congruents réguliers :



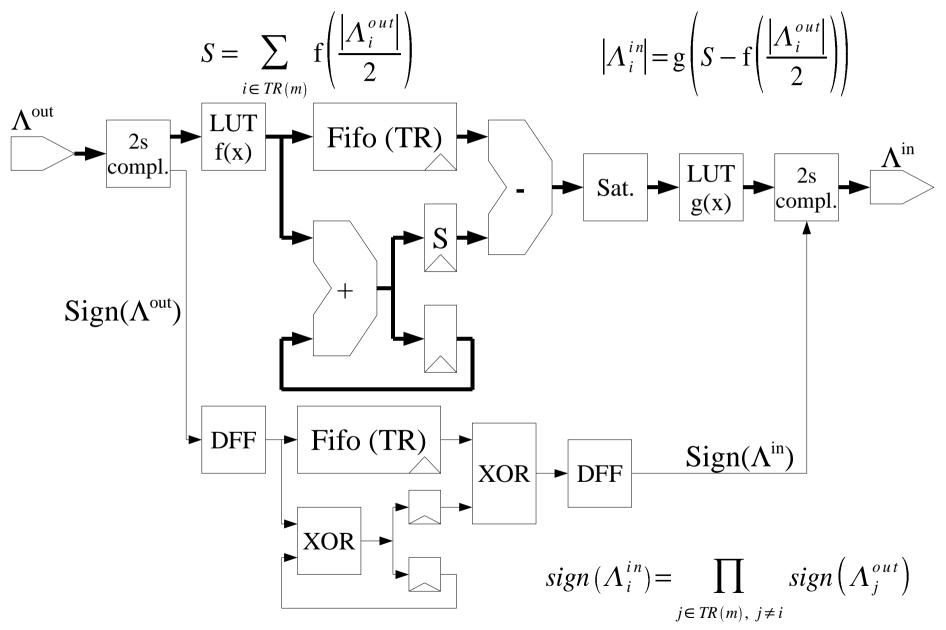
3. Architecture du décodeur

3.1) Implantation pipeline du processeur V



F. Verdier

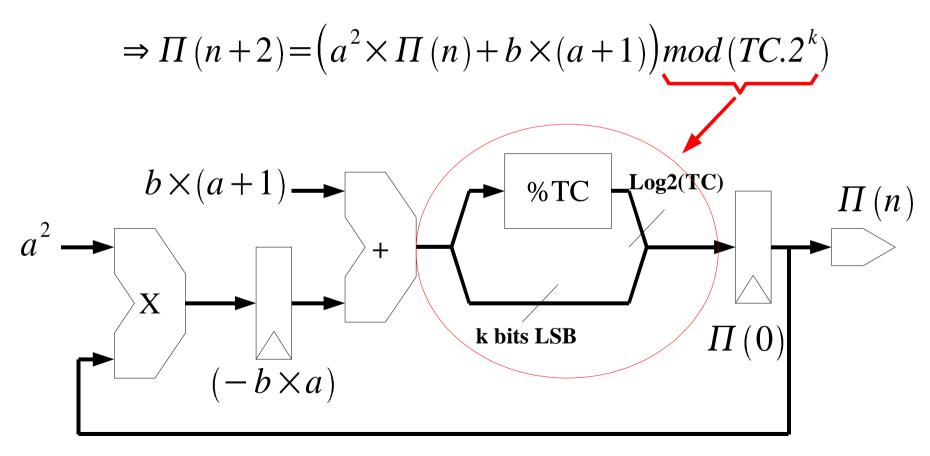
3.2) Implantation pipeline du processeur C



3.3) Implantation du générateur congruent

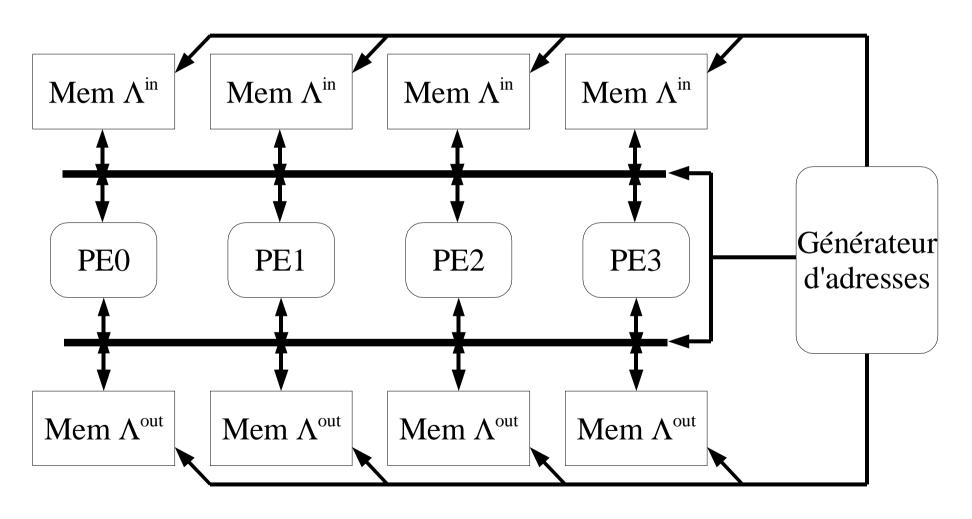
Implantation pipeline du générateur pseudo-aléatoire récursif :

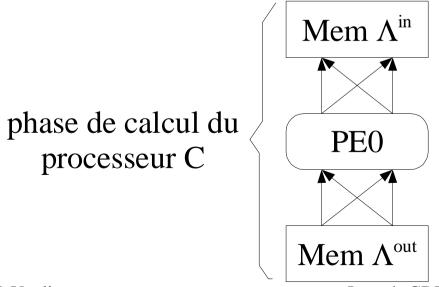
$$\Pi(n+1) = (a \times \Pi(n) + b) mod(N_b)$$
 Impossible en 1 cycle à 100Mhz!



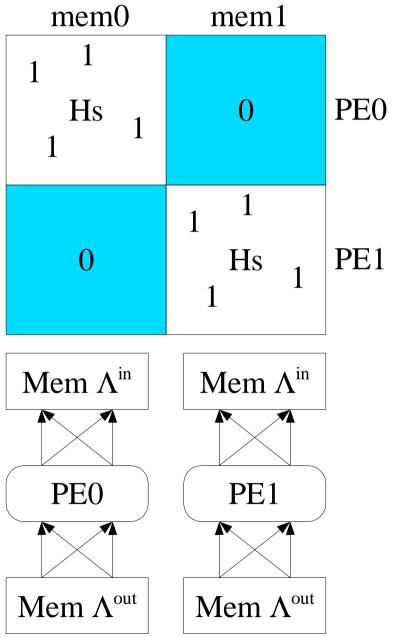
Parallélisation du décodage

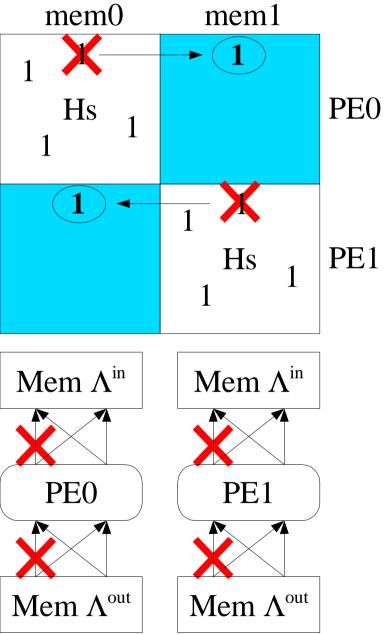
Processeurs parallèles synchrones + 2 réseaux de routage

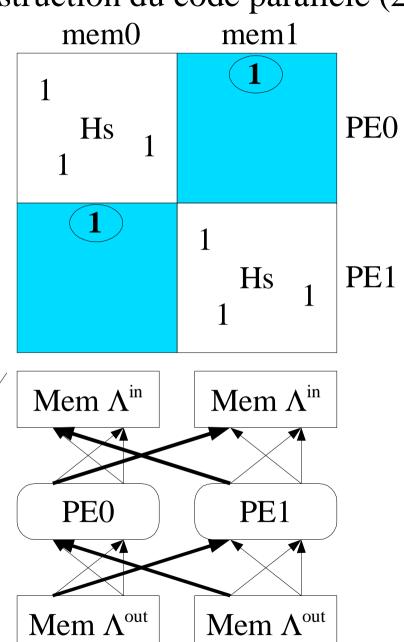




F. Verdier





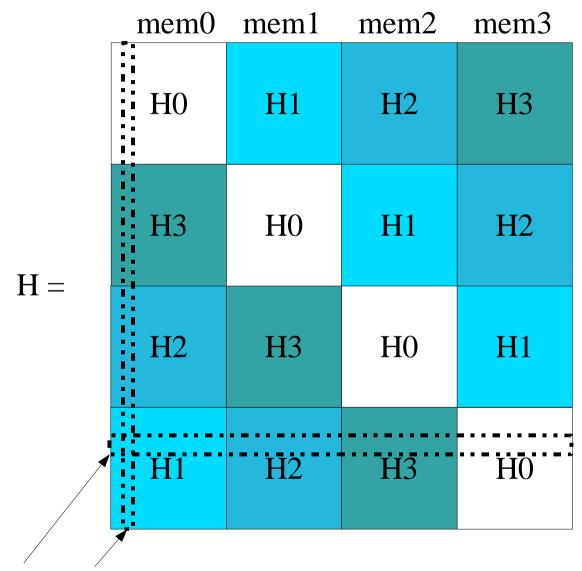


F. Verdier

Création des branches

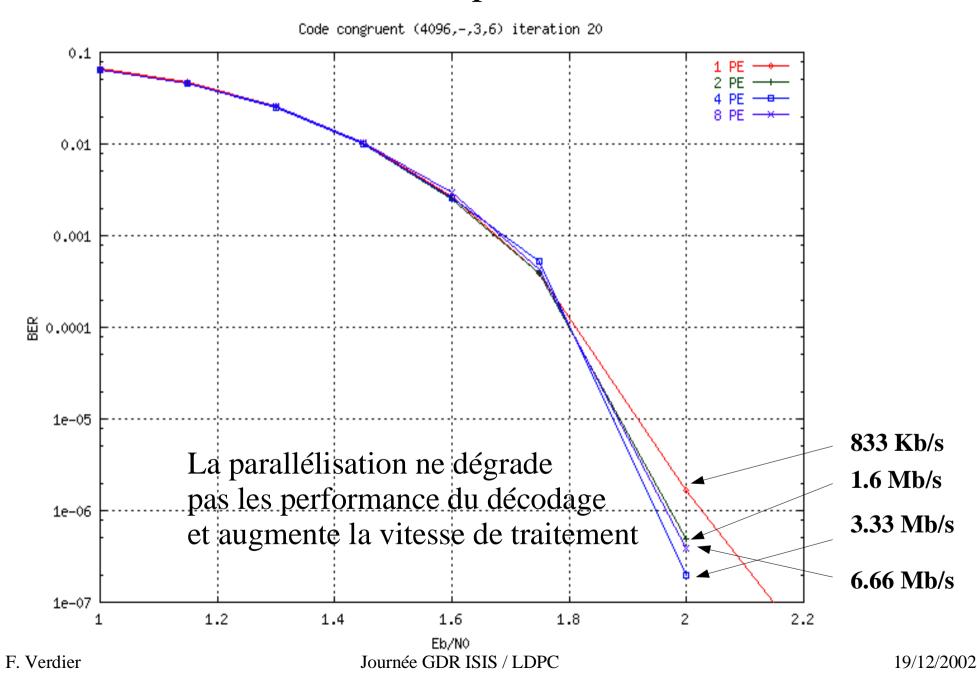
inter-partitions

Journée GDR ISIS / LDPC



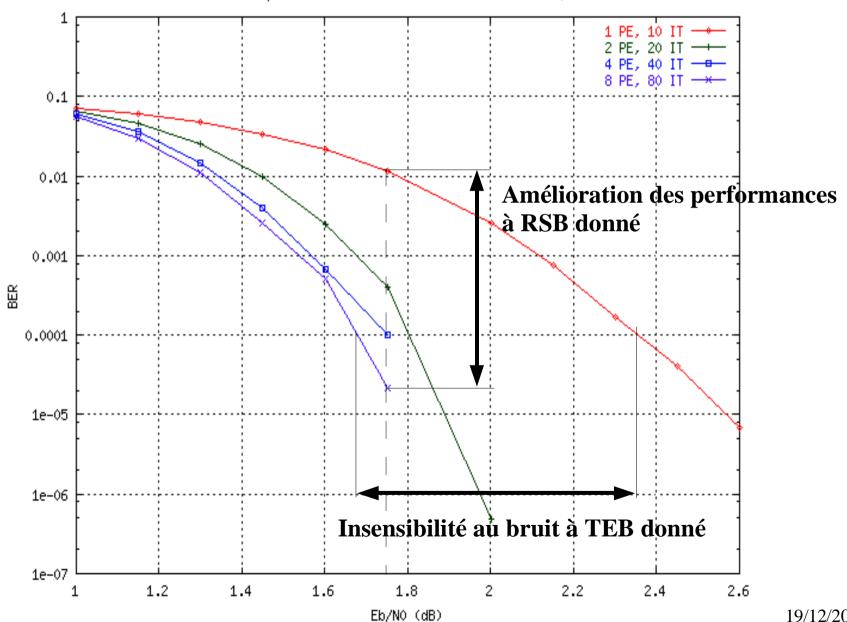
Le code reste régulier

Effets de la parallélisation



Effets de la parallélisation

Effet de la parallelisation a debit constant (615 us / 100 Mhz)



4. Conséquences du calcul en précision finie...

Conséquences du Codage en Précision Finie

David Declercq[†] & Francois Verdier[†]
ETIS ENSEA/UCP/CNRS-8051
6, avenue du Ponceau 95000 Cergy-Pontoise
declercq@ensea.fr

[†] Dans le cadre de l'action JemSTIC CNRS

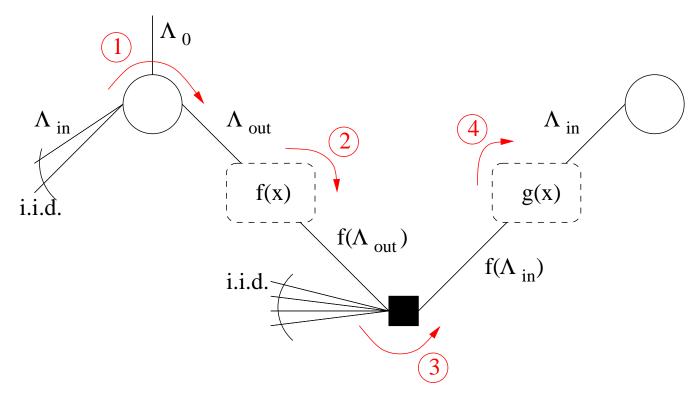
Conséquences du Codage en Précision Finie

Problèmes posés :

- □ Quantification des messages.
- □ Quantification des LUT.
 - ⇒ Peut-on prévoir l'effet sur les performances du code.
 - dégradation des performances,
 - apparition d'un plancher de convergence.

Outil statistique : évolution de la densité de probabilité des messages au cours des itérations.

Evolution de Densité



$$f(x) = \log \tanh\left(\frac{|x|}{2}\right)$$
 $g(x) = 2 \tanh^{-1} \exp(x)$

Hypothèses de travail

DYN : nombre de bits codant la partie entière

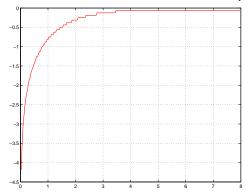
PREC : nombre de bits codant la partie fractionnaire

$$\{\Lambda_0(\omega),\Lambda_{in}(\omega),\Lambda_{out}(\omega)\}$$

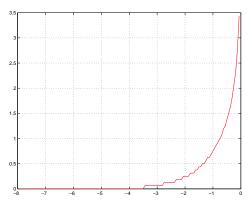
 \Rightarrow V.A. discrètes à support dans $\left[-DYN + \frac{1}{2^{PREC}} : \frac{1}{2^{PREC}} : DYN - \frac{1}{2^{PREC}}\right]$ $\left\{f\left(\Lambda_{in}(\omega)\right), f\left(\Lambda_{out}(\omega)\right)\right\}$

 \Rightarrow V.A. discrètes à support dans $\left[-DYN + \frac{1}{2^{PREC}}: \frac{1}{2^{PREC}}:0\right]$

Fonction $f(x) = \log \tanh\left(\frac{|x|}{2}\right)$



Fonction $g(x) = 2 \tanh^{-1} \exp(x)$



EVOLUTION DES DENSITÉS POUR 1 ITÉRATION

$$\boxed{1} \ \Lambda_{out} = \Lambda_0 + 2 \Lambda_{in}$$

$$\Rightarrow p\left(\Lambda_{out}\right) = p\left(\Lambda_{0}\right) * p\left(\Lambda_{in}\right) * p\left(\Lambda_{in}\right)$$

$$2 f(\Lambda_{out}) = \log \tanh\left(\frac{|\Lambda_{out}|}{2}\right)$$

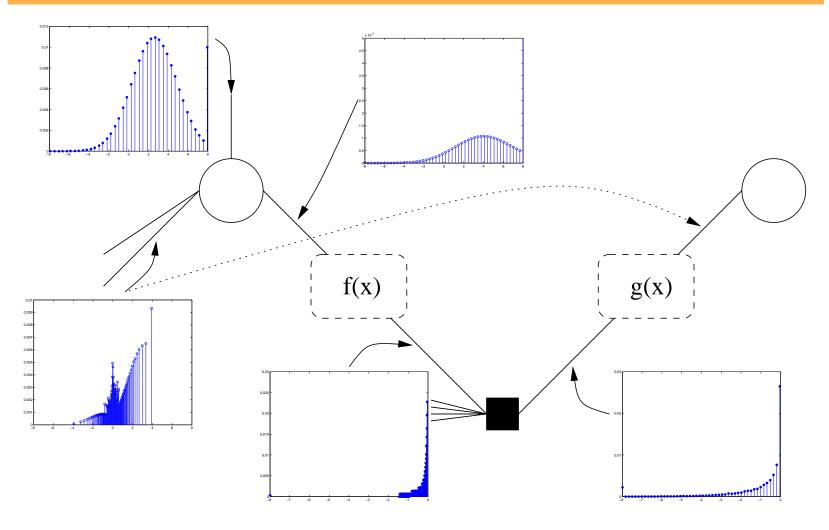
⇒ Changement de variable + quantification.

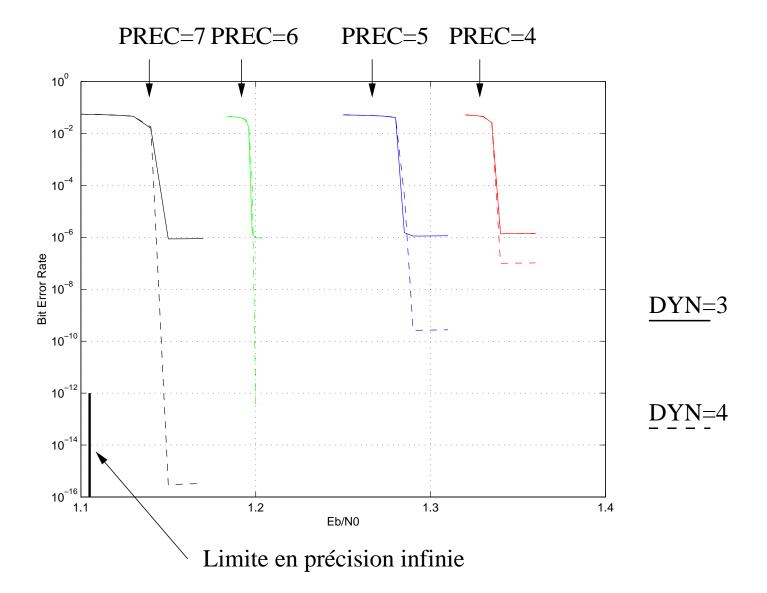
$$\Rightarrow p\left(f\left(\Lambda_{in}\right)\right) = p\left(f\left(\Lambda_{out}\right)\right)^{*5}$$

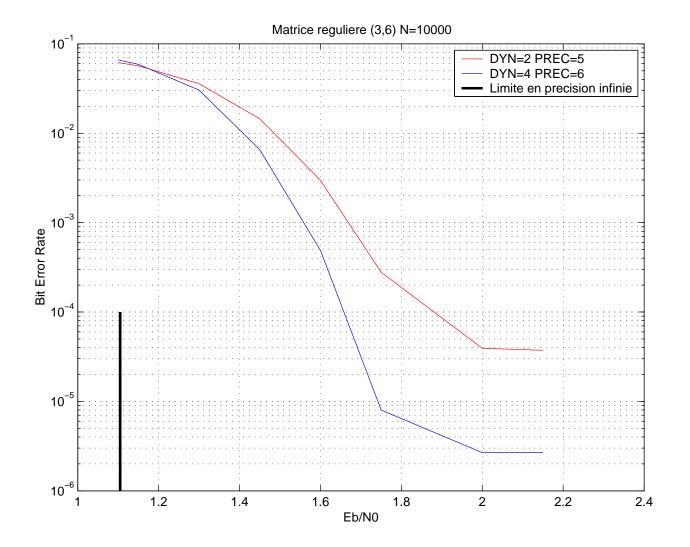
$$\boxed{4} \Lambda_{in} = 2 \tanh^{-1} \exp(f(\Lambda_{in}))$$

⇒ Changement de variable + quantification.

FORME DES DENSITÉS







CONCLUSION ET PERSPECTIVES

- (1.) Modèle de parallélisation des codes LDPC.
 - □ architecture simple et scalable,
 - □ stockage du graphe de façon congruente,
 - □ méthode de parallélisation sans dégradation de performances.
- 2.) Parallélisme pour les codes LDPC irréguliers
 - □ problèmes de stockage du graphe,
 - □ effets de la précision finie.