

### INTRODUCTION

In DVB-S2, the demodulation is done in four steps which are successively : time synchronization followed by frequency synchronization, phase correction and the generation of the Log Likelihood Ratio (LLR) of the transmitted bits [1]. In [2], we presented a synchronization method using polar coordinates. In this paper, we present the extension of the polar representation to the LLR generation of 8-PSK modulation. The exact computation of the LLR is given by:

$$L^{i}(b) = \log \frac{\sum_{c \in C_{i}^{0}} e^{-\frac{(c-y)^{2}}{2\sigma^{2}}}}{\sum_{c \in C_{i}^{1}} e^{-\frac{(c-y)^{2}}{2\sigma^{2}}}}$$

where  $C_i^{\circ}$  (respectively  $C_i^{\circ}$ ) is the subset of the points of the constellation so that the *i*th bit,  $i \in [0, 1, 1]$ 2 is equal to  $b_i = 0$  (respectively,  $b_i = 1$ ), y is the received point from the channel and  $\sigma^2$  is the variance of the noise. We propose to approximate (1) in the polar domain by using the module  $\rho$  and the phase  $\theta$  of the received point.

Figure 1 presents the steps of the quantification From an y received, an optimal L' is process. computed from its exact and quantified polar coordinates. We propose to compute an approximate LLR (L) from quantified polar coordinates.



Figure 1 : The 3 steps of the quantifization process

## A Polar-Based demapper of 8PSK demodulation for DVB-S2 systems Anthony Barré<sup>1</sup>, Emmanuel Boutillon<sup>1</sup>, Neysser Blas<sup>2</sup>, Daniel Diaz<sup>2</sup> <sup>1</sup>Université Européenne de Bretagne, UBS, Lab-STICC CNRS UMR 6285// <sup>2</sup>INICTEL-UNI, San Borja, Lima, Peru

(1)

# **MATERIALS AND METHODS**

#### **APPROXIMATION OF LLR COMPUTATION**

Figure 2 shows the quantified value of  $L_{i=0,1,2}^{i}(y_{q})$  on 5 bits computed in figure 1. It has a very regular periodic triangular shape that can be easily interpolated. We can see that it can be approximated by a piecewise linear function. To avoid the direct computation of the LLRs, we propose to compute it with :

### $\widetilde{L}^{i} = s_{i}(\overline{\theta}) \min((\overline{\rho} \min(h_{i}(\overline{\theta}), 30)\alpha_{i}) + 0.5, 15)$

Where  $s_i(\theta)$  is a function that defines the sign of the LLR,  $h_i(\overline{\theta})$  performs translation and/or symmetry on  $\theta$  and  $\alpha_i$  is a scaling factor that depends on the LDPC code rate. Figure 3 shows the steps of the quantization process to compute  $\widetilde{L}^{\circ}$ . The same architecture will be conceived to compute  $\widetilde{L}^{\circ}$  and  $\widetilde{L}^{\circ}$ . Since  $\alpha_0 = \alpha_1$ , only one multiplier is required to obtain  $\overline{\rho}\alpha_0$  and  $\overline{\rho}\alpha_1$ . We also know that  $s_i(\theta) = \pm 1$ , then no multiplier is required for this step. To calculate L for a whole symbol, 5 multipliers should be implemented.



Figure 2 : Quantization of LLR for  $\rho = 1$  as a function of  $\theta$ 

### CONCLUSIONS

This paper proposes a different approach of two aspects of demapping an 8PSK modulation for DVB-S2 standard. The first one is about using polar coordinates. The preceding step of synchronization can be done in that system of coordinates [2], we thereby save a CORDIC [3] (COordinate Rotation Digital Computer) changing computation. The second aspect concerns the approximation of the LLR using a geometric approach. This method is very simple to implement and allows us to obtain a better reliability than the-state-of-the-art methods. We can go further by extending the proposed method to the 16-APSK modulation.



Figure 3 : Architecture of computation of  $\tilde{L}_0$ 

#### **SIMULATION RESULTS**

Figure 4 shows the BER as a function of the SNR for a 2/3 and a 3/4 LDPC code rate (short frames N = 16200bits). The performance is only reduced by 0.02 dB compared to the optimal LLR computation. Table 1 shows that compared to state of art's methods, the proposed linear approximation offers an interesting compromise between the simplicity and the performances.



Figure 4 : Error rate as a function of the signal to noise ration for LDPC rate 2/3 and 3/4



Table 1 : Number of multipliers required to implement different methods of approximation and Mean Square Error (MSE) between approximated LLR and exact quantified LLR.

### REFERENCES

[1] ETSI EN 302 307, v. 1.1.2 Digital Video Broadcasting (DVB); Second generation framing structure, channel coding and modulation systems for broadcasting, interactive services, news gathering and other broadband satellite applications, June 2006. [2] E. Boutillon; P. Kim; C. Roland; D.-G. Oh, *Efficient Multiplierless Architecture* for Frame Synchronization in DVB-S2 Standard, SISP 2011, Oct. 2011, Beirut [3] J. E. Volder, "The CORDIC Trigonometric Computing Technique", IRE Transactions on Electronic Computers, Sept. 1959. [4] Jang Woong Park; Myung Hoon Sunwoo; Pan Soo Kim; Dae-Ig Chang, Low Complexity Soft-Decision Demapper for High Order Modulation of DVB-S2 system SoC Design Conference, ISOCC '08. International, vol 02, p. II- 37 - II-40, 2008. [5] Michael K. Cheng; Dariush Divsalar; Stephanie Duy, Structured Low-Density Parity-Check Codes with Bandwidth Efficient Modulation, Proc. SPIE 7349, Wireless Sensing and Processing IV, Orlando, April 13 2009.

| Max [4] | Re-injection of I and | Proposed |
|---------|-----------------------|----------|
|         | Q [5]                 |          |
| 10      | Λ                     | F        |
| 10      | 4                     | 5        |
| 0.94    | 1.54                  | 0.89     |