
Reconfigurable MPSoCs for On-Demand Computing

Linfeng Ye Jean-Philippe Diguet, Guy Gogniat
Lab-STICC, CNRS - Université Européenne de Bretagne/UBS, Lorient, France

linfeng.ye@univ-ubs.fr

Abstract – This paper presents a new approach in the domain of reconfigurable architectures. The objective is to automatically
adapt a multiprocessor architecture according to application requirements. It is based on a generic model of architecture and
a configuration management flow. Our method is illustrated with an instance of bi-processor architecture model (XPSoC-V2)
implementing a MP3 decoder.

1 Introduction

Reconfigurable computing is not a new idea if we refer to
Esrin paper in 1963 [1], where the main argument is al-
ready given: “obtaining a more effective architecture by
means of specialization”. Many multiprocessor and config-
urable machines have already been developed in the 90’s,
like ARMEN[2] for instance that was based on transput-
ers, DSP and FPGAs. Obviously, things have changed
with the integration progress on a single chip providing
fast communication capabilities that were the main limit
of previous attempts.

If we look back again in the past Von Neumann and
al. brought the concept of instruction stream in the 40’s,
then Harvard architecture has been proposed in order to
parallelize both streams. Finally, in the 60’s the concept
of the cache memory has been introduced to speed up
stream outputs. A configuration stream as specified in
Fig.1 can now be considered as the third kind of stream in
the context of reconfigurable architectures. Logically, this
new stream that can go by data and instruction must be
speed up with a cache hierarchy considering voluminous
files but moderate update frequencies.

Compilation

Instruction
Stream

Configuration
Stream

Data Stream Data
Processing

Instruction
Processing

Configuration
Processing

Data Stream

Control Signal

HW Component

Fig. 1: Compute Processing in R-MPSoC

However, an efficient access to configuration files is not
enough, some important issues remain, namely a program-
ing model oriented towards reconfigurable architectures

and the configuration decision. In this paper, we address
the first point assuming we have an optimized configura-
tion cache hierarchy.

Our methodology targets mass market applications in
the domain of embedded systems (e.g. Mobile Internet
Device) based on standard functions for which flexible
hardware accelerators may be designed and dynamically
uploaded according to application needs. In this paper, we
present a methodology for the management of R-MPSoC,
focusing especially on modeling aspects and mechanism
of configuration processing. Our approach is a general
Server-Manager-Worker model (or Configuration-Instruction-
Data Processing) based on a XPSoC (X-Processor System-
on-Chip) architecture, where:

• XServer: proceeds reconfiguration stream requests
or initiates reconfiguration stream download

• XWorker: dedicated slave processor executing a sin-
gle task for which it is specialized

• XManager: multi-tasks, observes the system, con-
trols XWorkers and decides XWorker configurations
at runtime

To achieve this goal, there are some problems to be solved:
1. Modeling of configurable architectures
2. Configuration mechanism and protocol
3. Decision policy based on constraints, user requests

and availability of configurations
4. Cache policy for configuration processing
Today we have mainly addressed points 1 and 2 and

simple solutions have been used for others points. Our
models have been instantiated on a Xilinx FPGA provid-
ing dynamically reconfiguration capabilities.

The rest of the paper is organized into three sections.
Section 2 compares this work to literature. In section 3,
we provide a description of our R-MPSoC system model
and the associated mechanism and protocol of the recon-
figuration processing. In section 4 we present our configu-
ration processing dataflow and in section 5 we describe our
case study and implementation of XPSoC-V2. Finally, we
draw some conclusions and perspectives.

2 Related Work

A lot of successful researches have been done in the domain
of reconfigurable embedded systems, most of them are fo-
cused on architecture design. Two specific aspects are
related to our concerns, the first one is the configuration
management. In [3] is presented an embedded Linux as a
platform for the management of dynamic reconfiguration
of systems-on-chip, authors show how partial reconfigura-
tion are achieved with a single line of Linux shell script.
Angermeier et al. [4] use dynamic partial reconfiguration
to implement Erlangen Slot Machine (ESM) architecture,
which is to accelerate the application development as well
as the research in the area of partially reconfigurable hard-
ware. The advantage of the ESM platform is its unique
slot based architecture, which allows the slots to be used
and reconfigured independently of each other. Eustache
et al. [5] present a safe and efficient solution to man-
age asynchronous configurations of dynamically reconfig-
urable systems-on-chip. Bomel et al. present a networked
lightweight and partially reconfigurable platform assisted
by a remote bitstreams server and in [6] is detailed a par-
tial bitstream ultra-fast downloading process through a
standard Ethernet network, with a sustained rate of 80
Mbits/s over Ethernet 100 Mbit/s.

The second point is the architecture modeling required
by our approach. In [7] is described a model of reconfig-
urable architecture based on SystemC and Python script
for the evaluation of different scheduling policies regarding
reconfiguration. The main component is the configuration
manager that can access to a list of configurable functions
to be placed on eFPGA independent modules. This work
is interesting but not directly connected to implementa-
tion, more over it doesn’t fit with our architecture model
based on reconfigurable processors and the necessity to
have configuration ID.

3 R-MPSoC Modeling

To describe our approach, we need to define the elements
that constitute our model of an embedded R-MPSoC. Fig.2
shows how this model is progressively specialized in order
to provide a given reconfigurable architecture. We start
from a meta-model (M01) of the architecture composed
of a manager processor controlling some slave processors
with a given number of co-processors, and various other
components such as shared memories, IP and peripherals.
Then an instance of the model (M11) is specified by the
designer, in this case it is made of one manager processor
and two slave processors, each SP can then be dynamically
configured by means of two coprocessors.

A R-MPSoC is composed of three types of binary data
and processing: Data, Instruction and Configuration streams
and associated processing, with the following definitions:

• Data stream: data to be processed by Xmanager

Architecture Meta‐Model M0 
MP  SP1 

C 
11 

… 

IP1 

C  
1n 

SPk 

C 
k1 

… 
C  
kn 

IPq … Pxx  M1  Mr … 

Architecture Meta‐Model M0 Architecture Meta‐Model (M01) 

Architecture Meta‐Model M0 Architecture Meta‐Model M0 Architecture Model (M11) 

MP  SP1 

C  
11 

Eth  M1  M2 

C  
12 

SP2 

C  
21 

C  
22 

DDR  USB 

O
FFLIN

E 
O
N
LIN

E 

Configured Model  

MP  SP1 

F  
a 

Eth  M1  M2 

F 
b 

SP2 

F 
b 

F 
c 

DDR  USB 

Co‐Processor 
Cached DB 

Process X D  Process X D  Process X D 

Config. Manager 
(Master Process) 

R‐MPSoC 
M11 Status 

Mapping & 
Configura.on Decisions 

ApplicaNon with Standard 
FuncNon Descriptor (D) 

Offline         Specializa.on 

Online specializa.on   

Network 
ConfiguraNon 

Server 

Fig. 2: Global model view where MP: Master Processor,
SP: Slave processor, C: Reconfigurable co-processor and
F: standard function implemented with C

(mainly control), Xworker or IP (mainly dataflow)

• Instruction stream: sequence of processor (Xman-
ager, Xworker, IPs) instructions (software)

• Configuration stream: sequence of hardware con-
figuration data (e.g. FPGA bitstream)

• Data processing: is any process used to compute
a data stream.

• Instruction processing: is any process, that con-
verts instruction into hardware control signals.

• Configuration processing: is any process, that
configures data path, there are two types configura-
tion processing: static configuration processing and
dynamic configuration processing.

• Function descriptor: meta-data (unique function
ID: FID) added to process code, by sofware design-
ers, in order to provide Xmanager with information
about process functions that can benefit from Hard-
ware implementation to obtain significant speed-up,
typically these functions are called in loop nests (e.g.
DCT)

• XManager is a GPP interfacing the whole R-MPSoC
system with remote server and devices, it is mainly
responsible for the coordination of the system, soft-
ware and input/output management, generally speak-
ing it will be in charge of data processing, which
doesn’t require any specific hardware.

• XWorker is a single task processor specialized to
execute a given process with coprocessors implement-
ing function specified with FID.

4 Configuration processing

Our R-MPSoC has two kinds of subsystems: XManager
and XWorkers, the first one is a GPP configuring and
controlling the second ones. We’ve adopted an approach
comparable to the Legal Representative detailled in [5] or
ghost processes in BORPH [8]. Namely, the granularity
of a XWorker job is a Xmanager Linux process that is
pending for XWorker results when such a configuration
has been decided. Typically XWorker jobs can be MP3
Encoding or Decodering, MPEG decoding. Linux is the
manager OS and new services and configuration manager
is progressively added to the global model in order to im-
plement the reconfiguration flow, a simple R-MPSoC (bi-
processor, single task) reconfiguration flow is described in
Fig.3.

XManager

Global
ReConfiguration

Start

Need
Reconfigure

XManager
Instruction
Processing

XManager
Data

Processing

 End
of Loop

End

 Dynamic Partial
 Reconfiguration

Calculate Next
Configuration

No

Yes

Possible?

Get Next
Configuration

(Cache strategy)

XManager (PM)
Setup

HW (C11, C12...)
Reconfiguration

XWorker
Ready?

SW (p11, p12...)
Installation

HW Stage Set
and Initialization

SW Stage Set

XManager
Main Process

Update
Configuration

Inventory

Yes

No

Yes No

XWorker

Start

 Reconfigure

End
of Loop

Send "Ready"
and Wait

End

 SW
Installed?

No

Yes

No

Yes

Yes No

No

Yes

XWorker
Instruction
Processing

XWorker
Data

Processing

M0

M1

M2

M3

M4

M5

M6

M8

M9

D0

D1

D2

D3

D4

D5D6

D7

W0

W1

W2 W3

W4

W5

W6

W7

XWorker
Finish?

Yes
No

M7

Fig. 3: R-MPSoC system flow chart

The R-MPSoC system automatically loads first hard-
ware architecture (configuration) from non-volatile mem-
ory (e.g. Flash) after the power-on, and then loads boot
binaries for XManager (e.g. Operating System) and for
XWorker (e.g. boot application waiting for new config-
uration). XManager launches the main process, which is
responsible for managing all the tasks and dynamic recon-
figuration module. If no specific configuration is obtained
or required, XManager performs a regular instruction pro-

cessing. If XManager determines a new configuration:
computes allocated resources and XWorker positions ac-
cording to the status of the system and the configuration
repository, in order to find out the most suitable configura-
tion. XManager downloads the next configuration stream
to memory and updates the cache (global server, local
server, hard disk, memory, etc) according to the strategy
(Temporal Locality, Spatial Locality, Least recently used,
Most recently used, etc). XManager can perform hard-
ware reconfiguration when it receives a ”READY” signal
from XWorker, then XManager performs software installa-
tion for new configuration by writing the new application
in a local memory and sends a reset signal to XWorker.
Finally XWorker boots on the previously implemented ap-
plication. XManager updates the configuration repository
and relaunches the task by using a new configuration.

If XManager cannot find a configuration more suitable
than the current configuration, it controls one XServer to
execute the process (it is goes to M5 in Fig.3). Then
XManager informs XWorker, which is concerned, about
the upcoming reconfiguration, and then starts XWorker.
After finishing all the missions, the system goes into hi-
bernation or shutdowns.

5 Case study and Implementation

5.1 XPSoC-V2 hardware architecture

XPSoC-V2 (see Fig.4) is the name of the second instance
of our R-MPSoC model developed within the framework
discussed above. It targets audio processing applications
such as MP3 encoder/decoder, OGG encoder/decoder and
VoIP softphone. It is based on a bi-processor model in-
cluding one XManager and one XWorker with two recon-
figurable coprocessors. It also implements an Ethernet
controller, an UART, a DDR SDRAM controller, a Com-
pact Flash controller, a HW Mutex component, a shared
memory and a HWICAP controller.

The XManager uses the Microblaze softcore from Xil-
inx and acts as a GPP, the XWorker uses the Microblaze
softcore with two coprocessors reconfigurables and acts as
a configurable DSP (Digital Signal Processor). The de-
sign of coprocessors is strongly dependent on the applica-
tion and the available resources on the reconfigurable part.
The Mutex component is used as a peripheral to coordi-
nate CPUs (XManager, XWorkers) safe accesses to shared
peripherals or memories. Coprocessors are connected to
the XWorker by FSL (Fast Simplex Link) and accelerator
critical functions, the Xilinx BusMacros are used to realize
a direct communication between XWorker and coproces-
sor modules, providing fixed communication channels that
help to keep the signal integrity during hardware recon-
figuration.

Fig. 4: XPSoC-V2 hardware architecture

5.2 XPSoC-V2 software architecture

XPSoC-V2 software splits into three parts (see Fig.5):
Applications with meta-data, Xmanager middleware im-
plementing the configuration manager process and ser-
vices and XWorker middleware in charge of XManager
/ XWorkers communications and synchronization.

Fig. 5: XPSoC-V2 software architecture

5.3 Implementation results

The XPSoC-V2 architecture implements one XManager
and one XWorker on a Xilinx ML410 FPGA. Place and
route results leads to an area occupation of 32% for logic
block slices, 23% for RAM blocks and 13% for DSP. The
XManager runs a petalinux [9] operating system, and the
granularity of task is the process level. In other words,
the XWorker can run an application (e.g. MP3 decode)
as a standalone program. Two types of coprocessors have
been generated for the first test : an IMDCT coprocessor
and a MUL16 coprocessor. The IMDCT coprocessor im-
plements a 18x36 IMDCT (Inverse Modified Discrete Co-
sine Transform), and the MUL16 coprocessor implements
a long long multiply and shift by 16.

The result of this simple demonstration is shown in 1:

6 Conclusion

We defend the idea that future embedded systems can be
dynamically built with standard configuration to be down-
loaded through a cache-based network connection. Con-
sequently we now have to developed architecture models

Tab. 1: Mp3 decoding on XPSoC-V2
SW HW-MUL16 HW-IMDCT

Slice utilization 0 161/ 25280 482/25280

DSP utilization 0 4/128 4/128

LUT utilization 0 86/50560 521/50560

Time execution(s) 307.2 232.9 167.7

and methodologies adapted to this new design perspec-
tive. This paper describes a general approach of recon-
figurable multi-processors embedded systems based on a
generic modeling and an associated configuration process-
ing flow. We prove our solution with a bi-processor recon-
figurable system running PetaLinux on XILINX ML410
board. This is the first step and some work remains to
be done. Current research task are focusing on the cache
strategy, the configuration decision policy and the formal-
ization of the configuration library.

References

[1] G.Estrin, B.Bussell, R.Turn, and J.Bibb, “Parallel process-
ing in a restructurable computer system,” IEEE Transac-
tions on Electronic Computers, no. 6, pp. 747–755, Dec.
1963.

[2] J. Champeau and et al., “Flexible parallel fpga-based ar-
chitectures with armen,” in Proc. Twenty-Seventh Hawaii
Internation Conference on System Sciences Vol. I: Archi-
tecture, vol. 1, 4–7 Jan. 1994, pp. 105–113.

[3] J. A. N. W. Williams, “Embedded linux as a platform
for dynamically self-reconfiguring systems-on-chip,” in The
Int. Conf. on Engineering of Reconfigurable Systems and
Algorithms (ERSA), Las Vegas, USA, 2004.

[4] J. Angermeier and et al., “Spp1148 booth: Fine grain re-
configurable architectures,” in Proc. International Confer-
ence on Field Programmable Logic and Applications FPL
2008, 8–10 Sept. 2008, pp. 348–348.

[5] Y. Eustache and J.-P. Diguet, “Reconguration manage-
ment in the context of rtos-based hw/sw embedded sys-
tems,” EURASIP Journal on Embedded Systems, vol. 2008,
2008.

[6] P. Bomel, J. Crenne, L. Ye, J.-P. Diguet, and G. Gogniat,
“Ultra-fast downloading of partial bitstreams through eth-
ernet,” 2009.

[7] G. Beltrame, L. Fossati, and D. Sciuto, “High-level mod-
eling and exploration of reconfigurable mpsocs,” in Proc.
NASA/ESA Conf. on Adaptive Hardware and Systems
AHS ’08, 22–25 June 2008, pp. 330–337.

[8] H. K.-H. So and R. W. Brodersen, “Improving usabil-
ity of fpga-based reconfigurable computers through oper-
ating system support,” in Proc. International Conference
on Field Programmable Logic and Applications FPL ’06,
28–30 Aug. 2006, pp. 1–6.

[9] Petalinux http://developer.petalogix.com/.

	Introduction
	Related Work
	R-MPSoC Modeling
	Configuration processing
	Case study and Implementation
	XPSoC-V2 hardware architecture
	XPSoC-V2 software architecture
	Implementation results

	Conclusion

