
A Code Compression Method to Cope with Security Hardware Overheads

Eduardo Wanderley
CEFET-RN, Brazil

wanderley@cefetrn.br

Romain Vaslin, Guy Gogniat, Jean-Philippe Diguet
LESTER, UBS, France

[vaslin,gogniat,diguet]@univ-ubs.fr

Abstract
Code Compression has been used to alleviate the

memory requirements as well as to improve
performance and/or minimize energy consumption. On
the other hand, implementing security primitives on
Embedded Systems is always costly in terms of area
and performance. In this paper we present a code
compression method, the IBC-EI (Instruction Based
Compression with Encryption and Integrity checking),
tailored to provide integrity checking and encryption to
secure processor-memory transactions. The principle
is to keep the code compressed and ciphered in the
memory, thus reducing the memory footprint and
providing more information per memory access. For
the Leon processor and a set of benchmarks from the
Mediabench and MiBench suites the habitual
overheads due to security trend to zero in comparison
to a system without security neither compression.

1. Introduction

The demand for embedded system has been
growing more and more and the mobile terminal is one
of the faces of this astonishing increase. Ubiquitous
bank transactions, for example, are now a real
requirement for this type of embedded system. Despite
of the energy consumption, performance and
miniaturization axis to drive the designs, the security
requirements play nowadays an important role in the
system conception.

Threats come from everywhere and one possibility
is probing the processor-memory traffic in order to
interfere in the execution flow and/or obtaining secret
information, like passwords or confidential data [1,2].
These board-level attacks challenge not only data
confidentiality but also data integrity.

While memory encryption can be used to ensure
confidentiality of processor-memory transactions, data
integrity requires additional information to be added to
the original data in order to verify its integrity. These
meta-data called TAGs can be computed with MAC –
Message Authentication Code – functions [3], or are
nonce (redundancy) added to plaintext block before
block encryption [4]. The main drawback of these

approaches is the off-chip memory area overhead, due
to the TAG storage [4, 5, 6, 7].

Code Compression was first idealized to respond to
the memory constraints of embedded systems. When
introduced [8], a decompressor hardware engine was
used between the cache and the main memory of a
system, therefore the decompression overhead could be
hidden by the cache (a block decompression occurs
only on a cache miss). This scheme imposes a penalty
in execution time due to decompression. On the other
hand, less access to the main memory is expected,
which in turn, alleviate the performance problem.

In this paper we devise the Instruction Based
Compression with Encryption and Integrity checking,
IBC-EI, method. IBC-EI uses the concept of block-
level Added Redundancy Explicit Authentication –
AREA [4, 7] – to pursue integrity and confidentiality at
the same time, while has its bases founded on the
Instruction Based Compression, IBC, method [9]. The
objective is to keep the code compressed and ciphered
in the main memory. Then, during execution, the block
is deciphered, exposing a TAG and the compressed
information. While the decompressor retrieves the
original instructions from a dictionary, the TAG is
checked to guarantee integrity.

This work focuses on the protection of the code (i.e.
Read Only information), thus it is possible to compress
and cipher off-line. On the other hand, decompression
and deciphering are done on-the-fly. For performance
reasons, the deciphering and the decompression are
performed in hardware.

This paper describes the compression method. It is
organized as follows: in Section 2 the threat model is
described. Section 3 presents the proposed code
compression method. Section 4 shows the results for
the Leon Processor [10] and a set of benchmarks from
MiBench [11] and Mediabench [12] suites; in the
Section 5 a discussion is presented. Finally, we present
our conclusions and future work in Section 6.

19th International Symposium on Computer Architecture and High Performance Computing

1550-6533/07 $25.00 © 2007 IEEE
DOI 10.1109/SBAC-PAD.2007.40

185

19th International Symposium on Computer Architecture and High Performance Computing

1550-6533/07 $25.00 © 2007 IEEE
DOI 10.1109/SBAC-PAD.2007.40

185

Authorized licensed use limited to: UNIVERSITE DE BRETAGNE SUD. Downloaded on July 28, 2009 at 08:35 from IEEE Xplore. Restrictions apply.

2. Threat Model and Existing
Countermeasures

2.1. Threat Model

In this work we assume some constraints in the
threat model. The most important is to consider the
SoC as secure, including the processor, the caches and
the hardware modules used in our solution. The
attacks to refrain from are those threatening the off-
chip memory and the bus transfers. Both
confidentiality and integrity are challenged. An
attacker may want to retrieve sensitive data
(confidentiality menace) or disturb the program
execution (integrity menace).

We are particularly interested in spoofing attacks in
which an adversary changes aleatoric bits in the
memory or on the bus and disturbs the program
behavior randomly. Splicing attacks are also addressed.
They consist in moving a block of memory to another
address. This block of memory, having a known
behavior, can help the attacker on finding its contents
and its relation with the remaining of the code. Such an
attack can be seen as a spatial permutation of memory
block in memory. We do not face replay attacks
(temporal permutation of memory block) because we
deal only with Read Only information (the code).

2.2. Existing Techniques for Encryption and
Integrity Checking

In order to prevent the attacks before mentioned we

must provide data integrity and confidentiality.
Data integrity can be reach by using a MAC that

generates a compact representative image of the
information. This image is called TAG and is supposed
to be kept along with the information, as a signature.
To do so the MAC function is applied on the original
plaintext by enrolling a secret key. For the
confidentiality aspect an encryption algorithm is used.

The conventional way to provide both integrity
checking and confidentiality is to use one of three
different schemes: Encrypt-then-MAC, MAC-then-
Encrypt and MAC-and-Encrypt. Encrypt-then-MAC is
the most implemented scheme since proved secure
[13]. However, in all cases during the ciphering and/or
during the deciphering, the MAC and Encryption or
Decryption units are not fully parallelizable, producing
an impact on performance and/or on silicon area in the
implementation.

Thus, in this paper, we will use the concept of
block-level AREA introduced in [4, 7]. This principle
leverages the diffusion property of block encryption to
add the integrity checking capability to this type of
encryption algorithm. This is achieved by applying the
AREA technique at the block level [14]: redundant

data (e.g. a nonce – a Number used ONCE) is added to
each plaintext block before encryption and checked in
the decrypted ciphertext block. Upon a memory write,
the SoC appends an n-bit nonce to the data to be
written to memory, encrypts the resulting plaintext
block and then writes the ciphertext to memory.

The decryption is performed using a key securely
stored on the SoC. The SoC decrypts the block it
fetches from memory and verifies that the first n bits of
the resulting plaintext block are equal to the nonce that
was inserted by the SoC upon encryption. Since a
single block encryption invocation is required to
provide both data confidentiality and integrity, the
concept of block-level AREA is parallelizable on read
and write operations.

The first implementation of the block-level AREA
concept, called PE-ICE was proposed in [7] and is
shown in Figure 1. We use the address of each
plaintext block as a nonce: the data and its address are
concatenated, encrypted and stored in the memory.
Whenever the processor accesses the block, using its
address, the ciphertext block is decrypted and the
address that comes up will be checked against the
address of the block provided by the processor. If they
match the block is considered valid.

Nevertheless, this approach will still incur
performance penalties and, more inconvenient, a
considerable off-chip memory overhead. The off-chip
memory area used to keep the same program will be
increased by the TAG of the block (its address).

In this work we propose to compress the code to
compensate the memory overhead generated by the
TAG required by the integrity checking process.
Moreover, code compression means that more
information is brought on-chip with a single memory
access and thus improving run-time performance.

Fig. 1. Parallelized confidentiality and
integrity checking scheme.

En
cr

yp
tio

n

C
ip

he
rte

xt

D
ec

ry
pt

io
n

D
at

aB
lo

ck

A
dd

r

=

A
dd

r

A
dd

r
D

at
aB

lo
ck

t ciphering deciphering

186186

Authorized licensed use limited to: UNIVERSITE DE BRETAGNE SUD. Downloaded on July 28, 2009 at 08:35 from IEEE Xplore. Restrictions apply.

3. IBC-EI: the Instruction Based
Compression with Encryption and
Integrity Checking

Code compression is first aimed at minimizing the
constrained memory area requirement for embedded
systems. As a side-effect, the code compressed in
memory is transferred to the SoC using less memory
accesses (or more information is transferred per
memory access), thus improving performance.
Unfortunately, the decompressor used to restore the
original information will introduce some penalty in
performance. However, this penalty can be hidden by
the expensive memory operations reduction.

The idea to derive a code compression method
integrating encryption and integrity checking is based
on the fact that the main degradation (performance hit
and memory overhead) introduced by the underlying
cryptographic functions can be solved by compression.

The framework for the proposed integration method
can be seen in Figure 2. First the original code is
compressed and then encrypted. Then, the ciphered
code is stored in the main memory. During the code
execution, a block of memory is retrieved and
delivered to the processor. The Decryption Unit
deciphers, checks the block and transfers it to the
Decompression Unit, which, in turn, decompresses the
block and delivers the instructions to the Processor.

The Decryptor and the Decompressor are allocated
into the trusted zone and are used only upon a cache
miss. The compression method described here is based
on a dictionary approach in which the instructions in
the original code are substituted by an index into the
dictionary [9]. The index size, IDXsize, is a function of
the number of dictionary entries, DICTentries, as show
in Equation1

 IDXsize = log2DICTentries (1)

The more instructions are in the dictionary, the
greatest are the indexes. The compressed code will be a
sequence of indexes and its size will be determined by
the number of original instructions in the code
multiplied by the index size and possibly some final
padding bits to fulfill a memory word (Equation 2).
Moreover, the dictionary size, in bits, will be the
instruction word size multiplied by the number of
dictionary entries (Equation 3).

 COMPsize= #InstOrignalCodexIDXsize+Padding (2)

 DICTsize= DICTentries x InstructionWordsize (3)

The metric used to evaluate a code compression
method will be the Compression Ratio, which
represents the size of the compressed code (and the
dictionary associated) over the original code size, as
defined in Equation 4. This metric is sometimes
presented in percentage.

COMPsize + DICTsize Compression Ratio = ORIGINALsize
 (4)

This simple approach is still insufficient because the
code execution flow can be break by a branch
instruction. In this case the processor is supposed to
begin decompressing the next instruction from an
address and offset different of the following. Possible
solutions are aligning every code target and patching
the branch instructions offsets or using an Address
Translation Table, ATT, mapping original addresses to
compressed code addresses and offsets. The ATT size,
which is impractical, can be reduced if not every
address is mapped, but only blocks of addresses. This
is intuitive for the case of decompression between the
cache and the main memory, as far as the cache line
will be the block of information to be fulfilled by the
decompressor.

Thus, the ATT will keep just the compressed
addresses corresponding to the original cache line
addresses (and the offset associated). The ATT can
also be implemented as a linear function since the
indexes have fixed sizes.

Some stronger compressions can be obtained by
using multiples dictionaries of varying sizes [9]. In this
approach the smaller dictionary, which will have the
smaller indexes associated, will keep the instructions
that appear the most in the original code.

On the other hand, to identify the dictionary to
which the index in the compressed code belongs, a
prefix is necessary. A typical curve for the compressed
code size as a function of the number of dictionaries
used can be seen in Figure 3. Usually, 4 dictionaries
with 2 bits prefixes will lead to better compression of
the code. Then, we will use a set of four dictionaries
for our experiments.

@

PE
-I

C
E

En
cr

yp
t

So
ftw

ar
e

Code Comp
Code

Ciphered

C
om

pr
es

so
r

Ciphered

Main
Memory

C
ac

he

 Pr
oc

es
so

r H
ar

dw
ar

e

D
ec

om
pr

es
so

r

PE
-I

C
E

D
ec

ry
pt

or

Fig. 2. Code Compression and security

Trusted Zone

187187

Authorized licensed use limited to: UNIVERSITE DE BRETAGNE SUD. Downloaded on July 28, 2009 at 08:35 from IEEE Xplore. Restrictions apply.

3.1. Integrating Confidentiality and Integrity

In our description we use the term chunk to indicate
the atomic IBC-EI block loaded from memory for
decryption and integrity checking. A chunk, shown in
Figure 4, is composed of the block address (the TAG
used to check data integrity) and one or more
compressed cache line – also called the payload of a
chunk. A compressed cache line is the representation
of every original cache line with prefixes (p) and
indexes (i) into the dictionaries. This chunk is
encrypted with a block cipher, in the case the
Advanced Encryption Standard [15] – AES, and stored
in the main memory. If a compressed cache line
extrapolates the chunk threshold – or more accurately
the payload threshold – it will be delocalized and
inserted in the next chunk. This will avoid the use of
two consecutive time-expensive AES decryptions to
fulfill a simple cache line whenever necessary,
although the compression results will be negatively
affected.

The ATT will map the address of every original
cache line to the address of the chunk in which the
corresponding compressed line is present. Moreover,
as more than one cache line can be accommodated into
the payload, every cache line needs an offset identifier,
which represents the starting bit of compressed cache
line, relative to the IBC-EI Block start

Figure 4 shows a conceptual view of a chunk in the
memory (before encryption). Such a chunk contains
two compressed cache lines. In this case, the original
cache line size is 16 bytes long. Supposing that the
next compressed cache line does not fit the remaining
bits of the chunk it will be assembled in the next one
and padding is inserted at end of the current chunk.

It is also possible to observe the ATT architecture.
Note that every original cache line address can be
identified by only a subset of the address bits. The
number of bits in this subset is program size
dependent. For example, a 1k bytes code will have 64
16-byte cache lines associated. Thus observing 6 bits
in the address it is possible to identify every cache line.
We use these bits as an index into the ATT.

The same principle is used to keep the

corresponding chunk addresses in the ATT.
Nevertheless, two original cache lines that have their
corresponding compressed cache line in the same
chunk will have two entries in the ATT with the same
IBC-EI block address, but different offsets.

The offsets have fixed sizes as they represent the
starting bit of a compressed cache line relative to the
bit 0 of the chunk. The offset size depends only on the
chunk size. On the other hand, the ATT size depends
also on the original cache line size.

In Figure 4 we observe two original 16 bytes cache
lines compressed in the same chunk. The first one
occupies bits 32 to 73 of the chunk. The second one
occupies bits 74 to 106. Note that the ATT holds one
entry for every original cache line with the same chunk
address, but with two different offsets (32 and 74). The
compression algorithm is responsible for creating the
adequate ATT for a given program.

3.2. The Compression Algorithm

The compression algorithm used to generate the
compressed code, the ATT and the Dictionaries is
composed by two main routines:
CreateDictionaries and IBC-EICompress.
CreateDictionaries receives the Original Code
and produces the 4 dictionaries to be used by
IBC-EICompress. To do this, we rank the instructions
by usage and divide in four groups with the same
contribution. When this division is not exactly we use a
branch-and-bound approach in the neighborhood of the
division thresholds to find the best partition, the one
that yields the best compression.

Fig. 3. Compressed Code size for multiples
dictionaries usage relative to the original

50%

55%

60%

65%

70%

1 2 4 8 16

C
om

pr
es

se
d

C
od

e
Si

ze

Chunk@
 …i p i p i p
 i p i p i p i p i…
 padding i p C

hu
nk

 (A

ES
 B

lo
ck

)

00 32
00 74

40000000
40000004
40000008
4000000c
40000010 Chunk@

01 32

?? ???
: :

in
de

x

ATT
Offset

(base 10)

0 31

40000 0 1 0

Original cache line
address

constant constant

p: dictionary prefix
i : index into the
 corresponding
 dictionary

40000 _ _ 0

constant

Chunk address
Compressed
 line start bit

Fig. 4. IBC-EI Block and ATT architectures

Bbit 106 of the fist
chunk

188188

Authorized licensed use limited to: UNIVERSITE DE BRETAGNE SUD. Downloaded on July 28, 2009 at 08:35 from IEEE Xplore. Restrictions apply.

IBC-EICompress receives the original code, the

chunk size and the cache line size as input parameters,
as shown in the Figure 5. The first step in the
compression algorithm is exactly calling the dictionary
routine. Then, the first IBC-EI block is created. Now,
for every cache line of the original code we try to insert
the corresponding compressed line into the current
block. The CompressCacheLine routine is
responsible for transforming, using the dictionaries
information, an original cache line into a sequence of
prefixes and indexes. If the recent assembled
compressed cache line does not fit the block in use,
this latter will be padded, and a brand new block is
created. Then the compressed line will be added.

At this point, it is possible to identify which block
holds the current compressed cache line, and exactly
where it starts (bb variable in the pseudo-code). These
are the information we need for a new ATT entry.

There is just one usage detail of the present
algorithm: if one compressed cache line does not fit an
empty payload part of a block. For this situation,
omitted for the sake of simplicity in the pseudo-code,
the compressed cache line is necessarily split into two
consecutive blocks.

3.3. The Decompression Hardware

The main components of the decompressor engine,
shown in Figure 6, are the ATT; the set of
Dictionaries; and the AES deciphering unit. Whenever
a cache miss occurs, the cache line address is presented
to the decompressor engine. The first address goes
through the ATT and the converted chunk address is
found. A copy of this address is kept in one of the
inputs of the Comparator (Comp). Then, the encrypted
chunk is transferred to the Decompressor Engine. The
AES-1 deciphering unit is used to retrieve the original
compressed block that is kept in a buffer. Once the
decryption is done, the portion of the information used
to hold the TAG is compared with the first address of
the block to check for integrity. If they match, the

block is valid and the decompression begins. A series
of shifts obtains the prefixes and indexes into the
dictionary. Finally, the instructions can be delivered to
the cache/processor.

If a second line is requested by the CPU the ATT
converts the address and the comparator is used to
check if the cache line is already buffered in the
engine, thus, no memory access is required, neither the
AES-1.

Note that the expensive deciphering AES-1
operation will be used over compressed data, which
means that more information will be brought on-chip
on each memory access (and thus saving block
decryption invocation). This means that decryption is
only required upon decompressor necessity, not
necessarily on every cache miss.

4. Results

We have run extensive simulations in order to
evaluate our proposal. The base setup is shown in table
1. Then we varied the I-cache size and line size. We
observed the memory latency impact on our design.
We also increased the IBC-EI block to check the
effects. Finally we noticed the impact of choosing
different dictionaries based on the execution frequency
of the each instruction instead of on the static count.
The following results are presented relative to an
implementation without security primitives neither
compression.

Table1: Simulator Architectural Parameters
Parameter Specification

I-Cache 1k / 16B lines, Direct Mapped

D-Cache 8k / 16B lines, Direct Mapped

Memory latency 75 cycle per cache line fetch

Memory bus frequency 133MHz

Processor frequency 400MHz

IBC-EI Block 128 bits

AES latency 17 cycles

Decompression latency 4 cycles

M
em

or
y

Fig. 6. Decompressor Engine

i-c
ac

he

@original
ATT

A
ES

-1

Comp

Instrucs

Ok?

Dictonaries

Decompressor Engine

TA
G

C
P
U

@compressed

PE-ICE

01 IBC-EICompress(c, // Original Code
02 b, // IBC-EI BlockSize
03 l) // Original Cache Line Size
04 {
05 d ← CreateDictionaries(c);
06 cl ← NULL; //compressed cache line
07 bb ← TAG_Size; // current block bit (used-1)
08 cb ← CreateNewBlock();//current block
09 for (ol: each original cache line in c) do {
10 cl ← CompressCacheLine(ol, d);
11 if (bb + size(cl) > b){ //comp cache line
 does not fit current block
12 FulfillPadding(cb, bb, b-1);
13 cb ← CreateNewBlock();
14 bb ← TAG_Size;
15 }
16 AddCompLine(cb, cl); //cl is assembled in cb
17 ATT ← CreateNewEntry(cb, bb);//bb=offset
18 bb ← bb + size(cl);
19 }
20 }

Fig. 5. IBC-EI Compression Pseudo-Code

189189

Authorized licensed use limited to: UNIVERSITE DE BRETAGNE SUD. Downloaded on July 28, 2009 at 08:35 from IEEE Xplore. Restrictions apply.

4.1. Compression Ratio Analyses

Initially we observed the compressed code

formation for the basic setup. Figure 7 shows the
results. The first remark in this figure is that the IBC-
EI blocks that will be stored in the off-chip memory
represent on average 53% of the original code size. On
the other hand, it is also necessary to keep the ATT and
Dictionaries contents. They are stored in the
decompressor engine. If we consider the area overhead
expressed as the compression ratio, comprising also the
ATT and the Dictionaries, the results point to 101% on
average relative to the original. The djpeg has the
poorest compression ratio, but the overhead is still
below 20%. If we consider that for every cache line we
added a 32-bit TAG (25% of a cache line size), in all
the cases the compression solved the overhead problem
due to the security implementation. Many parameters
influence the compression ratio of IBC-EI. The cache
line size, the IBC-EI block size and the dictionary
construction will change the results.

Varying the cache line size is important to present
the results for several available configurations of real
SoC implementations. From Table 2 we see that
increasing the cache line will always produce better
compression. In fact, increasing the cache line size will
produce smaller ATTs because the number of cache
line in the original code (i.e. the number of ATT
entries) will decrease. If we double the cache line size
we will half-size the ATT. The number of padding bits
will also decrease, because the granularity of the
fragmentation will increase.

The size of the IBC-EI block is also important. One
of the code compression benefits is that we can
minimize the use of the AES-1 hardware unit. Although
the AES works with a fixed size data block (128 bits),
the Standard was defined after a contest in which the
Rijndael proposal was chosen to be the standard. This
proposal is not limited to 128 bits, thus 192 and 256
bits are also possible. As the IBC-EI uses the AES to
decipher its blocks, we also investigated the possible
256 bits block size originally proposed.

Fig. 7. Compressed code components

Table 2: Compression Ratios (%)
Dictionary Static Dynamic

Block Size (bits) 128 256 128 256
Cache Line Size

 (bytes) 16 32 16 32 16 32 16 32

adpcm_e 73 69 66 64 78 75 71 69
adpcm_d 72 68 66 64 77 74 70 67
cjpeg 115 96 94 90 128 104 99 98
dijkstra 105 93 95 92 119 102 99 94
djpeg 118 99 96 92 135 108 101 99
search 106 94 97 94 119 103 99 95
susan 115 98 96 92 132 107 98 92

Average 101 88 87 84 113 96 91 88

When the block size increases, more cache line can
be accommodated in the payload thus reducing the
padding bits used. That is why we observe that
increasing the block size we produce better
compression ratios. Using a 256-bit block and 32 bytes
cache lines will produce the best results for
compression for the static dictionary.

The static dictionary is the one that we build based
on the static profiling of the code. The motivation to
build dynamic dictionaries, in a sense that these
dictionaries are built based on the execution profiling
of the code, is that the code execution hot spots will
have the smaller compressed instructions (the pairs
(prefix, index)). In this case, the blocks that contain the
most frequently executed instructions will
accommodate more compressed cache lines. During
execution these blocks will be more frequently invoked
by the processor, increasing also the probability of
finding the compressed line already deciphered and
ready to be decompressed inside the IBC-EI engine.

Unfortunately, using dynamic dictionaries will not
maximize the code compression because the
instructions that are executed the most are not the same
instructions we find more frequently in the code. That
is the phenomena we observe in our table 2. For the
same block and cache line parameters, using dynamic
dictionaries will always produce worst compression
ratios. On the other hand, using dynamic dictionaries is
supposed to provide better performance results.

4.2. Performance Analyses

The goal of the following experiments is to show
the parameters that affect the performance of a system
based in our proposal. All the performance results are
presented, in terms of IPC, relative to the execution of
the program without security neither compression
(base execution). We have evaluated
IBC-EI varying the memory performance; the cache
setup, including size and line size; and the dictionary
construction aspects. While varying one of the
parameter, the others remain as stated in Table 1.

In the first observation we proposed some memory
setups. As we considered the AMBA bus running at
133MHz and the Processor running at 400MHz every
bus clock takes 3 processor clock cycles. We evaluated
this question by using 6, 15 and 25 bus cycles to

0.0
adpcm_e adpcm_d cjpeg dijkstra djpeg search susan average

0.2

0.4

0.6

0.8

1.0

1.2

AT
T

AT
T

AT
T

AT
T

AT
T

AT
T

AT
T

AT
T

D
IC

T

D
IC

T

D
IC

T

D
IC

T

D
IC

T

D
IC

T D
IC

T

D
IC

T

C
om

pr
es

si
on

 R
at

io

Compressed lines TAG bits Padding bits

O
ff-

ch
ip

O

n-
ch

ip

Original Code Size

190190

Authorized licensed use limited to: UNIVERSITE DE BRETAGNE SUD. Downloaded on July 28, 2009 at 08:35 from IEEE Xplore. Restrictions apply.

retrieve a block from the main memory. The reasoning
is that a 6 cycle memory is very fast and a 25 cycle (75
processor clock cycles) is too slow.

In the Figure 8 we present our results. Observe that
for fast memories, the impact on performance due to
the IBC-EI engine reaches about 15% on average,
which means that the price for security will be the 15%
performance hit. On the other hand, as the memory
becomes slow, the time to bring a block to the IBC-EI
engine becomes more and more dominant. For a slow
memory, the performance hit is only 1% on average
and in some cases is really possible to execute faster
then the base execution. For the intermediate speed
memory the performance hit is only 5%, which means
that if we do not use a very fast memory the
performance lost is fast mitigated by our proposal.

The ADPCM benchmarks are not very influenced
by the memory performance. As they are tiny codes,
the cache holds all the instructions for the execution, so
no memory access is used (except the ones generated
by the compulsory cache misses).

The memory speed is not relevant to the
compressibility of the code. Neither is the cache size.
Nevertheless, the cache line size interferes on the
compression ratio, as we have already observed. The
question is: would the cache line size interfere also in
performance? To answer this question we varied this
parameter from 16 to 32 bytes.

The expected performance speedup due to the cache
size increase can be observed in Figure 9. Note that, as
the cache size increases, the performance tends to be
the same as the original. This fact is due to the nature
of cache misses that tends to be Compulsory in

0%

20%

40%

60%

80%

100%

120%

adpcm_e adpcm_d cjpeg djpeg dijkstra search susan Average

IP
C

 re
la

tiv
e

to

ba
se

 e
xe

cu
tio

n

25 cycles 15 cycles 6 cycles

Fig. 8. Memory speed dependent performance

0%

20%

40%

60%

80%

100%

120%

adpcm_e adpcm_d cjpeg dijkstra djpeg search susan

IP
C

 re
la

tiv
e

to

ba
se

 e
xe

cu
tio

n

1024 bytes 128bits 1024 bytes 256bits

8192 byte 128bits 8192 byte 256bits

 Fig. 9. Cache Setup dependent performance

majority, especially for the smaller benchmarks like
ADPCM. Once in the cache, and with a low miss ratio,
the Decompressor engine is not more used, and the
only AES usage is for fulfilling the cache.

The analysis for the cache line size is a little bit
different. In fact, augmenting the cache lines size will
allow us to explore more spatial locality. This is very
code dependent. But another fact is also important: we
have already seen that increasing the cache line will
produce better compression ratios. In this case, the
compression of the code is also responsible to the
performance improvement.

This opens a new question: will the compression
play an even more significant role in performance? To
investigate this possibility we tried the following
approach: if the trace that is executed the most is also
the smaller, more instructions will be fetched into the
processor per memory access. On the other hand we
can not guarantee that the compressibility will be the
same as before. Then, we constructed the dictionaries
dynamic profiling of the code execution. Figure 10
shows the positive impact of this approach. On average
a 10% performance benefit can be observed. This
represents a trade-off as compression will be reduced
by using dynamic dictionaries. Nevertheless, from the
execution point of view, the code will appear to be
smaller. Thus, the system constraints will determine
the balance between performance and area, which will
drive the choices for the systems parameters.

Finally, to provide some information about the
quality of our results in comparison to other
approaches we have implemented the PE-ICE solution
and the AES-only solution. The first will provide
integrity and confidentiality but will produce the

0%

20%

40%

60%

80%

100%

120%

adpcm_e adpcm_d cjpeg djpeg dijkstra search susan

IP
C

 re
la

tiv
e

to

ba
se

 e
xe

cu
tio

n

Static Dynamic

Fig. 10. Dictionaries dependent performance

0%

20%

40%

60%

80%

100%

120%

adpcm_e adpcm_d cjpeg djpeg dijkstra search susan

IP
C

 re
la

tiv
e

to
 b

as
e

ex
ec

ut
io

n

IBCEI AES-only PE-ICE

 Fig. 11. Results comparison

adpcm_e adpcm_d cjpeg dijkstra djpeg search susan Average

adpcm_e adpcm_d cjpeg dijkstra djpeg search susan Average

191191

Authorized licensed use limited to: UNIVERSITE DE BRETAGNE SUD. Downloaded on July 28, 2009 at 08:35 from IEEE Xplore. Restrictions apply.

impact of 25% in code area and some extra cycles to
retrieve the TAG. The AES-only has not code area
overhead, but it will provide only confidentiality. The
performance for these solutions can be seen in Figure
11. Note that in every case the IBC-EI outperforms
both AES and PE-ICE.

5. Improvement Discussion

The block-level AREA concept and the related
engine for SoC, PE-ICE provides data confidentiality
and integrity [4, 7]. However, PE-ICE, as well as those
conventional methods, still generates a non-negligible
off-chip memory overhead to store the TAG required
for memory integrity checking. We show that our
proposed engine IBC-EI allows for the cancellation of
this off-chip memory overhead.

In general the IBC-EI provides means to use more
effectively the expensive AES block, by supporting not
only one cache line per chunk. As a result, IBC-EI
allows for providing code integrity in addition to code
confidentiality at almost no cost when compared to an
AES encryption scheme. On the other hand, the
internal memory necessary to implement it will be
greater than the one for PE-ICE, due to the dictionaries

In terms of security, our solution can be seen as an
extension to the PE-ICE solution which relies on the
diffusion feature of the encryption algorithm. Thus
corrupting one bit of the ciphertext will affect various
bits in the plaintext after decryption. In other words,
changing one bit in the memory will mostly affect the
tag area with a strong probability in the decrypted
chunk and invalidate the block after the tag matching
process. This probability depends on the length of the
TAG as shown in [4]. When the 32-bit address is used
as TAG, spoofing attack has 1/232 likelihood to
succeed

Concerning splicing attacks, the tag used – the
chunk address – is a nonce, thus a different tag is used
for every chunk stored off-chip. It results that a spliced
block will always be detected upon the corresponding
tag matching process. Moreover, AES encryption is
implemented in IBC-EI, preventing passive attacks
carried out on the processor-memory bus to succeed.

 Finally, compression will enhance the entropy
before the encryption, which in turn, can provide better
statistical spread of information in the ciphertext.

6. Conclusion

In this paper we presented IBC-EI, a code
compression method tailored for integrity checking and
confidentiality. We showed that the code compression
layer of IBC-EI added to PE-ICE allows for the
reduction of its off-chip memory overhead. Moreover,
IBC-EI incurred a negligible run-time performance hit.
It results that IBC-EI ensures the confidentiality and
integrity security services to code at almost no cost.

Future work involves the relocation of cache lines
to better explore the chunk space and/or to better
compress the critical execution paths of the code. The
energy measurements are also necessary to provide a
complete picture of the solution. Moreover, we
currently adapt the concept behind IBC-EI to read
write data.

10. References
[1] M. G. Kuhn, “Cipher Instruction Search Attack on the Bus-
Encryption Security Microcontroller DS5002FP”, IEEE Trans.
Comput., vol. 47, pp. 1153–1157, October. 1998.
[2] A. Huang. "Keeping secrets in hardware the microsoft xbox case
study". MIT AI Memo, 2002.
[3] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone.
Handbook of Applied Cryptography. CRC Press, 1996.
[4] R. Elbaz, “Hardware Mechanisms for Secured Processor-Memory
Tansactions in Embedded Systems” PhD Thesis, LIRMM laboratory
Montpellier University, 2006.
[5] Gookwon Edward Suh, “AEGIS: A Single-Chip Secure
Processor”, PhD thesis, Massachusetts Institute of Technology,
September 2005.
[6] G. Suh, D. Clarke, B. Gassend, M. van Dijk and S. Devadas,
“Efficient Memory Integrity Verification and Encryption for Secure
Processors” In Proceedings of the 36th Int’l Symposium on
Microarchitecture (MICRO-36). pp. 339-350, (Dec. 2003).
[7] R. Elbaz, L. Torres, G. Sassatelli, P. Guillemin, M. Bardouillet
and A. Martinez. “A Parallelized Way to Provide Data Encryption and
Integrity Checking on a Processor-Memory Bus” In Proceedings of
the 43rd Design Automation Conference (DAC-43). pp. 506-509, (July
2006).
[8] A. Wolfe and A. Chanin. “Executing compressed programs on an
embedded RISC architecture”. In Proceedings of the Int’l Symp. on
Microarchitecture pp. 81-91 (Dec. 1992).
[9] R. Azevedo, “An architecture for Executing Compressed Code in
Embedded Systems” PhD Thesis, Institue of Computing, UNICAMP.
2002.
[10] Gaisler, G. Leon, 2003. Available at: http://www.gaisler.com
accessed June/2006
[11] Guthaus, M., Ringenberg, M., Ernst, D., Austin, T., Mudge, T.
and Brown, R. MiBench: a free, commercially representative
embedded benchmark suite. In Proceedings of the IEEE 4th Annual
Workshop on Workload Characterization pp. 3-14, (Dec. 2001).
[12] Lee, C., Potkonjak, M. and Mangione-Smith, W. MediaBench: a
tool for evaluating and synthesizing multimedia communication
system. In Proceedings of the Int’l Symp. on Microarchitecture,
pp.330-337, (Dec. 1997).
[13] M. Bellare and C. Namprempre, “Authenticated Encryption:
Relations among Notions and Analysis of the Generic Con-struction
Paradigm”, In T. Okamoto, editor, Asiacrypt 2000, volume 1976 of
LNCS, p. 531- 545. Springer-Verlag, Berlin Germany, December
2000.
[14] C. Fruhwirth, “New Methods in Hard Disk Encryption”, Institute
for Computer Languages, Vienna University of Technology, 2005.
May/2007. Available at http://clemens.endorphin.org/cryptography.
[15] National Institute of Science and Technology. FIPS PUB 197:
Adavnced Encryption Standard (AES), Nov. 2001

192192

Authorized licensed use limited to: UNIVERSITE DE BRETAGNE SUD. Downloaded on July 28, 2009 at 08:35 from IEEE Xplore. Restrictions apply.

