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Abstract 
Code Compression has been used to alleviate the 

memory requirements as well as to improve 
performance and/or minimize energy consumption. On 
the other hand, implementing security primitives on 
Embedded Systems is always costly in terms of area 
and performance.  In this paper we present a code 
compression method, the IBC-EI (Instruction Based 
Compression with Encryption and Integrity checking), 
tailored to provide integrity checking and encryption to 
secure processor-memory transactions. The principle 
is to keep the code compressed and ciphered in the 
memory, thus reducing the memory footprint and 
providing more information per memory access. For 
the Leon processor and a set of benchmarks from the 
Mediabench and MiBench suites the habitual 
overheads due to security trend to zero in comparison 
to a system without security neither compression. 
 
1. Introduction 
 

The demand for embedded system has been 
growing more and more and the mobile terminal is one 
of the faces of this astonishing increase. Ubiquitous 
bank transactions, for example, are now a real 
requirement for this type of embedded system. Despite 
of the energy consumption, performance and 
miniaturization axis to drive the designs, the security 
requirements play nowadays an important role in the 
system conception. 

Threats come from everywhere and one possibility 
is probing the processor-memory traffic in order to 
interfere in the execution flow and/or obtaining secret 
information, like passwords or confidential data [1,2]. 
These board-level attacks challenge not only data 
confidentiality but also data integrity.  

While memory encryption can be used to ensure 
confidentiality of processor-memory transactions, data 
integrity requires additional information to be added to 
the original data in order to verify its integrity. These 
meta-data called TAGs can be computed with MAC – 
Message Authentication Code – functions [3], or are 
nonce (redundancy) added to plaintext block before 
block encryption [4]. The main drawback of these 

approaches is the off-chip memory area overhead, due 
to the TAG storage [4, 5, 6, 7]. 

Code Compression was first idealized to respond to 
the memory constraints of embedded systems. When 
introduced [8], a decompressor hardware engine was 
used between the cache and the main memory of a 
system, therefore the decompression overhead could be 
hidden by the cache (a block decompression occurs 
only on a cache miss). This scheme imposes a penalty 
in execution time due to decompression. On the other 
hand, less access to the main memory is expected, 
which in turn, alleviate the performance problem. 

In this paper we devise the Instruction Based 
Compression with Encryption and Integrity checking, 
IBC-EI, method. IBC-EI uses the concept of block-
level Added Redundancy Explicit Authentication – 
AREA [4, 7] – to pursue integrity and confidentiality at 
the same time, while has its bases founded on the 
Instruction Based Compression, IBC, method [9]. The 
objective is to keep the code compressed and ciphered 
in the main memory. Then, during execution, the block 
is deciphered, exposing a TAG and the compressed 
information.  While the decompressor retrieves the 
original instructions from a dictionary, the TAG is 
checked to guarantee integrity.  

This work focuses on the protection of the code (i.e. 
Read Only information), thus it is possible to compress 
and cipher off-line. On the other hand, decompression 
and deciphering are done on-the-fly. For performance 
reasons, the deciphering and the decompression are 
performed in hardware.  

This paper describes the compression method. It is 
organized as follows: in Section 2 the threat model is 
described. Section 3 presents the proposed code 
compression method. Section 4 shows the results for 
the Leon Processor [10] and a set of benchmarks from 
MiBench [11] and Mediabench [12] suites; in the 
Section 5 a discussion is presented. Finally, we present 
our conclusions and future work in Section 6. 
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2. Threat Model and Existing 
Countermeasures 
 
2.1. Threat Model 
 

In this work we assume some constraints in the 
threat model. The most important is to consider the 
SoC as secure, including the processor, the caches and 
the hardware modules used in our solution.  The 
attacks to refrain from are those threatening the off-
chip memory and the bus transfers. Both 
confidentiality and integrity are challenged. An 
attacker may want to retrieve sensitive data 
(confidentiality menace) or disturb the program 
execution (integrity menace). 

We are particularly interested in spoofing attacks in 
which an adversary changes aleatoric bits in the 
memory or on the bus and disturbs the program 
behavior randomly. Splicing attacks are also addressed. 
They consist in moving a block of memory to another 
address. This block of memory, having a known 
behavior, can help the attacker on finding its contents 
and its relation with the remaining of the code. Such an 
attack can be seen as a spatial permutation of memory 
block in memory.  We do not face replay attacks 
(temporal permutation of memory block) because we 
deal only with Read Only information (the code). 
 
2.2. Existing Techniques for Encryption and 
Integrity Checking 

 
In order to prevent the attacks before mentioned we 

must provide data integrity and confidentiality.  
Data integrity can be reach by using a MAC that 

generates a compact representative image of the 
information. This image is called TAG and is supposed 
to be kept along with the information, as a signature. 
To do so the MAC function is applied on the original 
plaintext by enrolling a secret key. For the 
confidentiality aspect an encryption algorithm is used.  

The conventional way to provide both integrity 
checking and confidentiality is to use one of three 
different schemes: Encrypt-then-MAC, MAC-then-
Encrypt and MAC-and-Encrypt. Encrypt-then-MAC is 
the most implemented scheme since proved secure 
[13]. However, in all cases during the ciphering and/or 
during the deciphering, the MAC and Encryption or 
Decryption units are not fully parallelizable, producing 
an impact on performance and/or on silicon area in the 
implementation. 

Thus, in this paper, we will use the concept of 
block-level AREA introduced in [4, 7]. This principle 
leverages the diffusion property of block encryption to 
add the integrity checking capability to this type of 
encryption algorithm. This is achieved by applying the 
AREA technique at the block level [14]: redundant 

data (e.g. a nonce – a Number used ONCE) is added to 
each plaintext block before encryption and checked in 
the decrypted ciphertext block. Upon a memory write, 
the SoC appends an n-bit nonce to the data to be 
written to memory, encrypts the resulting plaintext 
block and then writes the ciphertext to memory.  

The decryption is performed using a key securely 
stored on the SoC. The SoC decrypts the block it 
fetches from memory and verifies that the first n bits of 
the resulting plaintext block are equal to the nonce that 
was inserted by the SoC upon encryption.  Since a 
single block encryption invocation is required to 
provide both data confidentiality and integrity, the 
concept of block-level AREA is parallelizable on read 
and write operations.  

The first implementation of the block-level AREA 
concept, called PE-ICE was proposed in [7] and is 
shown in Figure 1. We use the address of each 
plaintext block as a nonce: the data and its address are 
concatenated, encrypted and stored in the memory. 
Whenever the processor accesses the block, using its 
address, the ciphertext block is decrypted and the 
address that comes up will be checked against the 
address of the block provided by the processor.  If they 
match the block is considered valid.  

Nevertheless, this approach will still incur 
performance penalties and, more inconvenient, a 
considerable off-chip memory overhead. The off-chip 
memory area used to keep the same program will be 
increased by the TAG of the block (its address). 

In this work we propose to compress the code to 
compensate the memory overhead generated by the 
TAG required by the integrity checking process. 
Moreover, code compression means that more 
information is brought on-chip with a single memory 
access and thus improving run-time performance. 

Fig.  1.  Parallelized confidentiality and 
integrity checking scheme. 
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3. IBC-EI: the Instruction Based 
Compression with Encryption and 
Integrity Checking 
 

Code compression is first aimed at minimizing the 
constrained memory area requirement for embedded 
systems. As a side-effect, the code compressed in 
memory is transferred to the SoC using less memory 
accesses (or more information is transferred per 
memory access), thus improving performance. 
Unfortunately, the decompressor used to restore the 
original information will introduce some penalty in 
performance. However, this penalty can be hidden by 
the expensive memory operations reduction.  

The idea to derive a code compression method 
integrating encryption and integrity checking is based 
on the fact that the main degradation (performance hit 
and memory overhead) introduced by the underlying 
cryptographic functions can be solved by compression. 

The framework for the proposed integration method 
can be seen in Figure 2. First the original code is 
compressed and then encrypted. Then, the ciphered 
code is stored in the main memory. During the code 
execution, a block of memory is retrieved and 
delivered to the processor. The Decryption Unit 
deciphers, checks the block and transfers it to the 
Decompression Unit, which, in turn, decompresses the 
block and delivers the instructions to the Processor. 

The Decryptor and the Decompressor are allocated 
into the trusted zone and are used only upon a cache 
miss. The compression method described here is based 
on a dictionary approach in which the instructions in 
the original code are substituted by an index into the 
dictionary [9]. The index size, IDXsize, is a function of 
the number of dictionary entries, DICTentries, as show 
in Equation1 

 
 

                  IDXsize = log2DICTentries             (1) 
 

The more instructions are in the dictionary, the 
greatest are the indexes. The compressed code will be a 
sequence of indexes and its size will be determined by 
the number of original instructions in the code 
multiplied by the index size and possibly some final 
padding bits to fulfill a memory word (Equation 2). 
Moreover, the dictionary size, in bits, will be the 
instruction word size multiplied by the number of 
dictionary entries (Equation 3). 
 

 COMPsize= #InstOrignalCodexIDXsize+Padding       (2) 
 

      DICTsize= DICTentries x InstructionWordsize             (3) 
 

The metric used to evaluate a code compression 
method will be the Compression Ratio, which 
represents the size of the compressed code (and the 
dictionary associated) over the original code size, as 
defined in Equation 4. This metric is sometimes 
presented in percentage. 

 

COMPsize  + DICTsize Compression Ratio = ORIGINALsize 
     (4) 

 

This simple approach is still insufficient because the 
code execution flow can be break by a branch 
instruction. In this case the processor is supposed to 
begin decompressing the next instruction from an 
address and offset different of the following. Possible 
solutions are aligning every code target and patching 
the branch instructions offsets or using an Address 
Translation Table, ATT, mapping original addresses to 
compressed code addresses and offsets. The ATT size, 
which is impractical, can be reduced if not every 
address is mapped, but only blocks of addresses. This 
is intuitive for the case of decompression between the 
cache and the main memory, as far as the cache line 
will be the block of information to be fulfilled by the 
decompressor.  

Thus, the ATT will keep just the compressed 
addresses corresponding to the original cache line 
addresses (and the offset associated). The ATT can 
also be implemented as a linear function since the 
indexes have fixed sizes.  

Some stronger compressions can be obtained by 
using multiples dictionaries of varying sizes [9]. In this 
approach the smaller dictionary, which will have the 
smaller indexes associated, will keep the instructions 
that appear the most in the original code.  

On the other hand, to identify the dictionary to 
which the index in the compressed code belongs, a 
prefix is necessary. A typical curve for the compressed 
code size as a function of the number of dictionaries 
used can be seen in Figure 3. Usually, 4 dictionaries 
with 2 bits prefixes will lead to better compression of 
the code. Then, we will use a set of four dictionaries 
for our experiments. 

@ 

PE
-I

C
E 

En
cr

yp
t 

So
ftw

ar
e 

Code Comp 
Code 

 
Ciphered 

C
om

pr
es

so
r 

 
Ciphered 

Main 
Memory 

C
ac

he
 

 Pr
oc

es
so

r H
ar

dw
ar

e 

D
ec

om
pr

es
so

r 

PE
-I

C
E 

D
ec

ry
pt

or
 

Fig.  2.  Code Compression and security

Trusted Zone

187187

Authorized licensed use limited to: UNIVERSITE DE BRETAGNE SUD. Downloaded on July 28, 2009 at 08:35 from IEEE Xplore.  Restrictions apply. 



 
3.1. Integrating Confidentiality and Integrity  

 

In our description we use the term chunk to indicate 
the atomic IBC-EI block loaded from memory for 
decryption and integrity checking. A chunk, shown in 
Figure 4, is composed of the block address (the TAG 
used to check data integrity) and one or more 
compressed cache line – also called the payload of a 
chunk. A compressed cache line is the representation 
of every original cache line with prefixes (p) and 
indexes (i) into the dictionaries. This chunk is 
encrypted with a block cipher, in the case the 
Advanced Encryption Standard [15] – AES, and stored 
in the main memory. If a compressed cache line 
extrapolates the chunk threshold – or more accurately 
the payload threshold – it will be delocalized and 
inserted in the next chunk. This will avoid the use of 
two consecutive time-expensive AES decryptions to 
fulfill a simple cache line whenever necessary, 
although the compression results will be negatively 
affected. 

The ATT will map the address of every original 
cache line to the address of the chunk in which the 
corresponding compressed line is present. Moreover, 
as more than one cache line can be accommodated into 
the payload, every cache line needs an offset identifier, 
which represents the starting bit of compressed cache 
line, relative to the IBC-EI Block start  

Figure 4 shows a conceptual view of a chunk in the 
memory (before encryption). Such a chunk contains 
two compressed cache lines. In this case, the original 
cache line size is 16 bytes long. Supposing that the 
next compressed cache line does not fit the remaining 
bits of the chunk it will be assembled in the next one 
and padding is inserted at end of the current chunk.  

It is also possible to observe the ATT architecture. 
Note that every original cache line address can be 
identified by only a subset of the address bits. The 
number of bits in this subset is program size 
dependent. For example, a 1k bytes code will have 64 
16-byte cache lines associated. Thus observing 6 bits 
in the address it is possible to identify every cache line. 
We use these bits as an index into the ATT. 

 

 
The same principle is used to keep the 

corresponding chunk addresses in the ATT. 
Nevertheless, two original cache lines that have their 
corresponding compressed cache line in the same 
chunk will have two entries in the ATT with the same 
IBC-EI block address, but different offsets.  

The offsets have fixed sizes as they represent the 
starting bit of a compressed cache line relative to the 
bit 0 of the chunk. The offset size depends only on the 
chunk size. On the other hand, the ATT size depends 
also on the original cache line size.  

In Figure 4 we observe two original 16 bytes cache 
lines compressed in the same chunk. The first one 
occupies bits 32 to 73 of the chunk. The second one 
occupies bits 74 to 106. Note that the ATT holds one 
entry for every original cache line with the same chunk 
address, but with two different offsets (32 and 74). The 
compression algorithm is responsible for creating the 
adequate ATT for a given program. 

 
3.2. The Compression Algorithm 

 

The compression algorithm used to generate the 
compressed code, the ATT and the Dictionaries is 
composed by two main routines:  
CreateDictionaries and IBC-EICompress. 
CreateDictionaries receives the Original Code 
and produces the 4 dictionaries to be used by  
IBC-EICompress. To do this, we rank the instructions 
by usage and divide in four groups with the same 
contribution. When this division is not exactly we use a 
branch-and-bound approach in the neighborhood of the 
division thresholds to find the best partition, the one 
that yields the best compression. 

Fig.  3.  Compressed Code size for multiples 
dictionaries usage relative to the original 
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IBC-EICompress receives the original code, the 

chunk size and the cache line size as input parameters, 
as shown in the Figure 5. The first step in the 
compression algorithm is exactly calling the dictionary 
routine. Then, the first IBC-EI block is created. Now, 
for every cache line of the original code we try to insert 
the corresponding compressed line into the current 
block. The CompressCacheLine routine is 
responsible for transforming, using the dictionaries 
information, an original cache line into a sequence of 
prefixes and indexes. If the recent assembled 
compressed cache line does not fit the block in use, 
this latter will be padded, and a brand new block is 
created. Then the compressed line will be added.  

At this point, it is possible to identify which block 
holds the current compressed cache line, and exactly 
where it starts (bb variable in the pseudo-code). These 
are the information we need for a new ATT entry. 

There is just one usage detail of the present 
algorithm: if one compressed cache line does not fit an 
empty payload part of a block. For this situation, 
omitted for the sake of simplicity in the pseudo-code, 
the compressed cache line is necessarily split into two 
consecutive blocks.  

 

3.3. The Decompression Hardware 
 

The main components of the decompressor engine, 
shown in Figure 6, are the ATT; the set of 
Dictionaries; and the AES deciphering unit.  Whenever 
a cache miss occurs, the cache line address is presented 
to the decompressor engine. The first address goes 
through the ATT and the converted chunk address is 
found. A copy of this address is kept in one of the 
inputs of the Comparator (Comp). Then, the encrypted 
chunk is transferred to the Decompressor Engine. The 
AES-1 deciphering unit is used to retrieve the original 
compressed block that is kept in a buffer. Once the 
decryption is done, the portion of the information used 
to hold the TAG is compared with the first address of 
the block to check for integrity. If they match, the 

block is valid and the decompression begins. A series 
of shifts obtains the prefixes and indexes into the 
dictionary. Finally, the instructions can be delivered to 
the cache/processor. 

If a second line is requested by the CPU the ATT 
converts the address and the comparator is used to 
check if the cache line is already buffered in the 
engine, thus, no memory access is required, neither the 
AES-1. 

Note that the expensive deciphering AES-1 
operation will be used over compressed data, which 
means that more information will be brought on-chip 
on each memory access (and thus saving block 
decryption invocation). This means that decryption is 
only required upon decompressor necessity, not 
necessarily on every cache miss. 
 

4. Results 
 

We have run extensive simulations in order to 
evaluate our proposal. The base setup is shown in table 
1. Then we varied the I-cache size and line size. We 
observed the memory latency impact on our design. 
We also increased the IBC-EI block to check the 
effects. Finally we noticed the impact of choosing 
different dictionaries based on the execution frequency 
of the each instruction instead of on the static count. 
The following results are presented relative to an 
implementation without security primitives neither 
compression. 

 

Table1: Simulator Architectural Parameters 
Parameter Specification 

I-Cache  1k / 16B lines, Direct Mapped  

D-Cache  8k / 16B lines, Direct Mapped  

Memory latency  75 cycle per cache line fetch 

Memory bus frequency 133MHz 

Processor frequency 400MHz 

IBC-EI Block 128 bits 

AES latency 17 cycles   

Decompression latency 4 cycles 
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01 IBC-EICompress(c, // Original Code  
02                b, // IBC-EI BlockSize 
03                l) // Original Cache Line Size 
04 { 
05   d  ← CreateDictionaries(c); 
06   cl ← NULL; //compressed cache line  
07   bb ← TAG_Size; // current block bit (used-1) 
08   cb ← CreateNewBlock();//current block 
09   for (ol: each original cache line in c) do { 
10     cl ← CompressCacheLine(ol, d);  
11     if (bb + size(cl) > b){ //comp cache line 
                         does not fit current block 
12       FulfillPadding(cb, bb, b-1); 
13       cb ← CreateNewBlock(); 
14       bb ← TAG_Size;  
15     } 
16     AddCompLine(cb, cl); //cl is assembled in cb 
17     ATT ← CreateNewEntry(cb, bb);//bb=offset 
18     bb ← bb + size(cl); 
19   } 
20 } 

Fig.  5.  IBC-EI Compression Pseudo-Code
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4.1. Compression Ratio Analyses 
 
Initially we observed the compressed code 

formation for the basic setup. Figure 7 shows the 
results. The first remark in this figure is that the IBC-
EI blocks that will be stored in the off-chip memory 
represent on average 53% of the original code size. On 
the other hand, it is also necessary to keep the ATT and 
Dictionaries contents. They are stored in the 
decompressor engine. If we consider the area overhead 
expressed as the compression ratio, comprising also the 
ATT and the Dictionaries, the results point to 101% on 
average relative to the original. The djpeg has the 
poorest compression ratio, but the overhead is still 
below 20%. If we consider that for every cache line we 
added a 32-bit TAG (25% of a cache line size), in all 
the cases the compression solved the overhead problem 
due to the security implementation. Many parameters 
influence the compression ratio of IBC-EI. The cache 
line size, the IBC-EI block size and the dictionary 
construction will change the results.  

Varying the cache line size is important to present 
the results for several available configurations of real 
SoC implementations. From Table 2 we see that 
increasing the cache line will always produce better 
compression. In fact, increasing the cache line size will 
produce smaller ATTs because the number of cache 
line in the original code (i.e. the number of ATT 
entries) will decrease. If we double the cache line size 
we will half-size the ATT. The number of padding bits 
will also decrease, because the granularity of the 
fragmentation will increase. 

The size of the IBC-EI block is also important. One 
of the code compression benefits is that we can 
minimize the use of the AES-1 hardware unit. Although 
the AES works with a fixed size data block (128 bits), 
the Standard was defined after a contest in which the 
Rijndael proposal was chosen to be the standard. This 
proposal is not limited to 128 bits, thus 192 and 256 
bits are also possible. As the IBC-EI uses the AES to 
decipher its blocks, we also investigated the possible 
256 bits block size originally proposed.  

 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7.  Compressed code components 
 
 

Table 2: Compression Ratios (%) 
Dictionary Static Dynamic 

Block Size (bits) 128 256 128 256 
Cache Line Size 

 (bytes) 16 32 16 32 16 32 16 32 

adpcm_e 73 69 66 64 78 75 71 69 
adpcm_d 72 68 66 64 77 74 70 67 
cjpeg 115 96 94 90 128 104 99 98 
dijkstra 105 93 95 92 119 102 99 94 
djpeg 118 99 96 92 135 108 101 99 
search 106 94 97 94 119 103 99 95 
susan 115 98 96 92 132 107 98 92 

Average 101 88 87 84 113 96 91 88 
 

When the block size increases, more cache line can 
be accommodated in the payload thus reducing the 
padding bits used. That is why we observe that 
increasing the block size we produce better 
compression ratios. Using a 256-bit block and 32 bytes 
cache lines will produce the best results for 
compression for the static dictionary. 

The static dictionary is the one that we build based 
on the static profiling of the code. The motivation to 
build dynamic dictionaries, in a sense that these 
dictionaries are built based on the execution profiling 
of the code, is that the code execution hot spots will 
have the smaller compressed instructions (the pairs 
(prefix, index)). In this case, the blocks that contain the 
most frequently executed instructions will 
accommodate more compressed cache lines. During 
execution these blocks will be more frequently invoked 
by the processor, increasing also the probability of 
finding the compressed line already deciphered and 
ready to be decompressed inside the IBC-EI engine. 

Unfortunately, using dynamic dictionaries will not 
maximize the code compression because the 
instructions that are executed the most are not the same 
instructions we find more frequently in the code. That 
is the phenomena we observe in our table 2. For the 
same block and cache line parameters, using dynamic 
dictionaries will always produce worst compression 
ratios. On the other hand, using dynamic dictionaries is 
supposed to provide better performance results. 

 

4.2. Performance Analyses 
 

The goal of the following experiments is to show 
the parameters that affect the performance of a system 
based in our proposal. All the performance results are 
presented, in terms of IPC, relative to the execution of 
the program without security neither compression 
(base execution). We have evaluated  
IBC-EI varying the memory performance; the cache 
setup, including size and line size; and the dictionary 
construction aspects. While varying one of the 
parameter, the others remain as stated in Table 1. 

In the first observation we proposed some memory 
setups. As we considered the AMBA bus running at 
133MHz and the Processor running at 400MHz every 
bus clock takes 3 processor clock cycles. We evaluated 
this question by using 6, 15 and 25 bus cycles to 
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retrieve a block from the main memory. The reasoning 
is that a 6 cycle memory is very fast and a 25 cycle (75 
processor clock cycles) is too slow.  

In the Figure 8 we present our results. Observe that 
for fast memories, the impact on performance due to 
the IBC-EI engine reaches about 15% on average, 
which means that the price for security will be the 15% 
performance hit. On the other hand, as the memory 
becomes slow, the time to bring a block to the IBC-EI 
engine becomes more and more dominant. For a slow 
memory, the performance hit is only 1% on average 
and in some cases is really possible to execute faster 
then the base execution. For the intermediate speed 
memory the performance hit is only 5%, which means 
that if we do not use a very fast memory the 
performance lost is fast mitigated by our proposal. 

The ADPCM benchmarks are not very influenced 
by the memory performance. As they are tiny codes, 
the cache holds all the instructions for the execution, so 
no memory access is used (except the ones generated 
by the compulsory cache misses). 

The memory speed is not relevant to the 
compressibility of the code. Neither is the cache size. 
Nevertheless, the cache line size interferes on the 
compression ratio, as we have already observed. The 
question is: would the cache line size interfere also in 
performance? To answer this question we varied this 
parameter from 16 to 32 bytes.  

The expected performance speedup due to the cache 
size increase can be observed in Figure 9. Note that, as 
the cache size increases, the performance tends to be 
the same as the original. This fact is due to the nature 
of cache misses that tends to be Compulsory in 
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 Fig.  9.  Cache Setup dependent performance 

majority, especially for the smaller benchmarks like 
ADPCM. Once in the cache, and with a low miss ratio, 
the Decompressor engine is not more used, and the 
only AES usage is for fulfilling the cache. 

The analysis for the cache line size is a little bit 
different. In fact, augmenting the cache lines size will 
allow us to explore more spatial locality. This is very 
code dependent. But another fact is also important: we 
have already seen that increasing the cache line will 
produce better compression ratios. In this case, the 
compression of the code is also responsible to the 
performance improvement. 

This opens a new question: will the compression 
play an even more significant role in performance? To 
investigate this possibility we tried the following 
approach: if the trace that is executed the most is also 
the smaller, more instructions will be fetched into the 
processor per memory access. On the other hand we 
can not guarantee that the compressibility will be the 
same as before. Then, we constructed the dictionaries 
dynamic profiling of the code execution. Figure 10 
shows the positive impact of this approach. On average 
a 10% performance benefit can be observed. This 
represents a trade-off as compression will be reduced 
by using dynamic dictionaries. Nevertheless, from the 
execution point of view, the code will appear to be 
smaller. Thus, the system constraints will determine 
the balance between performance and area, which will 
drive the choices for the systems parameters. 

Finally, to provide some information about the 
quality of our results in comparison to other 
approaches we have implemented the PE-ICE solution 
and the AES-only solution. The first will provide 
integrity and confidentiality but will produce the 
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Fig.  10.  Dictionaries dependent performance 
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impact of 25% in code area and some extra cycles to 
retrieve the TAG. The AES-only has not code area 
overhead, but it will provide only confidentiality. The 
performance for these solutions can be seen in Figure 
11. Note that in every case the IBC-EI outperforms 
both AES and PE-ICE.  
 

5. Improvement Discussion 
 

The block-level AREA concept and the related 
engine for SoC, PE-ICE provides data confidentiality 
and integrity [4, 7]. However, PE-ICE, as well as those 
conventional methods, still generates a non-negligible 
off-chip memory overhead to store the TAG required 
for memory integrity checking.  We show that our 
proposed engine IBC-EI allows for the cancellation of 
this off-chip memory overhead.  

In general the IBC-EI provides means to use more 
effectively the expensive AES block, by supporting not 
only one cache line per chunk. As a result, IBC-EI 
allows for providing code integrity in addition to code 
confidentiality at almost no cost when compared to an 
AES encryption scheme. On the other hand, the 
internal memory necessary to implement it will be 
greater than the one for PE-ICE, due to the dictionaries 

In terms of security, our solution can be seen as an 
extension to the PE-ICE solution which relies on the 
diffusion feature of the encryption algorithm. Thus 
corrupting one bit of the ciphertext will affect various 
bits in the plaintext after decryption. In other words, 
changing one bit in the memory will mostly affect the 
tag area with a strong probability in the decrypted 
chunk and invalidate the block after the tag matching 
process. This probability depends on the length of the 
TAG as shown in [4]. When the 32-bit address is used 
as TAG, spoofing attack has 1/232 likelihood to 
succeed  

Concerning splicing attacks, the tag used – the 
chunk address – is a nonce, thus a different tag is used 
for every chunk stored off-chip. It results that a spliced 
block will always be detected upon the corresponding 
tag matching process. Moreover, AES encryption is 
implemented in IBC-EI, preventing passive attacks 
carried out on the processor-memory bus to succeed. 

 Finally, compression will enhance the entropy 
before the encryption, which in turn, can provide better 
statistical spread of information in the ciphertext. 
 

6. Conclusion 
 

In this paper we presented IBC-EI, a code 
compression method tailored for integrity checking and 
confidentiality. We showed that the code compression 
layer of IBC-EI added to PE-ICE allows for the 
reduction of its off-chip memory overhead. Moreover, 
IBC-EI incurred a negligible run-time performance hit. 
It results that IBC-EI ensures the confidentiality and 
integrity security services to code at almost no cost.  

Future work involves the relocation of cache lines 
to better explore the chunk space and/or to better 
compress the critical execution paths of the code. The 
energy measurements are also necessary to provide a 
complete picture of the solution. Moreover, we 
currently adapt the concept behind IBC-EI to read 
write data. 
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