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ABSTRACT 

Traditionally codesign flow aims to help the designers to take 
decisions about the system architecture, however due to the 
complexity of both system architectures and applications it is 
now necessary to perform before any codesign flow a first 
application analysis step in order to highlight the application's 
specificity. An efficient way to analyze the application is to 
define accurate metrics that exhibit the application's specificity 
impacting the system performance. In this paper, we propose 
several metrics that allow an efficient analysis of a system right 
after the specification of the application (tasks graph) before any 
design flow step. These metrics enable to measure some 
characteristics of the application as communication data size and 
data sharing between tasks... As they are defined before any 
design flow step they do not measure directly the system 
performance or the costs but they provide information that leads 
to optimize these costs. Several experimental results performed 
on an UMTS application demonstrate the efficiency of these 
metrics to exhibit the main characteristics of an application. The 
results also show the ability of the proposed metrics to correctly 
measure the applications specificity. Finally, the results show the 
interest of the metrics to be used in a clustering approach or other 
codesign flow. 

Keywords 
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1. INTRODUCTION 

A thorough analysis of the application is necessary to define 
efficient and flexible multiprocessor system on chip (SoC). 
During the design steps of such systems, designers have to make 
important decisions as system architecture definition, 
communication architecture selection, resources allocation, 
scheduling... Of course, these decisions depend on the application 
and have a very important impact on the final system 
performance and costs (time, area, power...). Unfortunately the 
complexity of the systems leads to make these decisions more 
and more difficult. To be more efficient these decisions must take 
into account some application's specificity. For example, 
emphasizing some intensive communicating tasks will help the 
designers to optimize their system costs by allocating both tasks 
within the same processing resource. Traditionally codesign flow 

aims to help the designers to take these decisions, however due to 
the complexity of both system architectures and applications it is 
now necessary to perform before any codesign flow a first 
application analysis in order to highlight the application's 
specificity. In this paper as will be shown in the following we 
propose some metrics to realize this first analysis step. 

To justify our proposition the complexity of both system 
architectures and applications is presented in the following. 
Generally, during the design flow, designers use their own 
experience to analyze the systems and perform manually some 
design steps. For example, communication architectures are 
generally designed based only on the experience of the designers. 
Thus sometimes it may lead to either an over-designed system or 
a failure to meet the requirements because of the complexity of 
the systems. This point is due to several reasons: On one hand the 
complexity of the applications is raising continuously (systems 
are composed of an increasing number of tasks) and at the same 
time, time to market constraint is more and more stringent. On 
the other hand, systems usually include many hardware and 
software components, numerous communication resources and a 
large number of memories. The complexity of both system 
architectures and applications (a large number of communicating 
tasks) leads to consider the communications as one of the more 
critical issue in the design flow. In fact, during the last years, 
numerous works have focused on the development of new 
communication resources such as for example communication 
supports (buses [1,2,3], micro-networks [4], network on chip [5]) 
and protocols in order to cope with the communication 
bottleneck. 

Hence, to improve system design it is necessary to propose new 
approaches that first perform an analysis step. An efficient way to 
analyze the application is to define accurate metrics that exhibit 
the application's specificity impacting the system performance. 
These metrics enable to measure some characteristics of the 
application as communication data size and data sharing between 
tasks... These metrics do not correspond to system performance 
or costs estimates, but measure application's specificity which can 
guide the designers to optimize system performance and costs. 
For example, links between tasks have an important impact on 
the final system performance (this impact is more detailed later in 
this paper). 

In this paper, we propose several metrics that allow an efficient 
analysis of a system right after the specification of the application 
(tasks graph) before any design flow step. These metrics have to 
highlight 1) the characteristics of the tasks and 2) the links 
between the tasks as will be shown in the following. 



The paper is organized as follows. Section 2 presents an overview 
of related work dealing with metrics before describing our 
contribution. The specification graph that describes the system is 
presented in section 3. Section 4 details our metrics and a 
discussion about their relevance is proposed. The metrics are then 
validated in section 5 by experimental results related to an UMTS 
application. Section 6 draws some conclusions and discusses 
future works. 

2. REVIEW OF RELATED WORK AND 
CONTRIBUTION 

In this section, we review related previous work and describe our 
contribution. 

2.1. Related work 

A thorough analysis of the application is necessary for 
multiprocessor system on chip design. In SoC design flow, 
estimates of system costs as power, time and area are computed 
to build the system design. There are many codesign 
methodologies to design such system. Always, these methods try 
to take into account all task interactions as dependencies, 
communication and scheduling. But, due to the complexity of 
systems, it is very difficult to take into account all these 
parameters at the same time. Then, always, some assumptions 
and/or modifications on the application are made before 
beginning the codesign flow. For example in [6], Knudsen and 
Madsen manually define the communication architecture and 
resources of the system. Then, they propose several models to 
estimate the communication cost to design the hardware/software 
architecture. The main drawback of these approaches is due to the 
fact that an intuitive definition of the communication architecture 
may lead to a final architecture that doesn’t meet requirements. 
Application analysis is done manually and the designers define 
the communication architecture and resources based on their own 
experience to make suitable the codesign flow (figure.1). 

But due to the increasing complexity of applications and systems, 
we claim that a manual analysis, such the one proposed by 
Knudsen and Madsen [6], isn’t anymore enough efficient to 
prepare the application to the design flow. 

Hence, several researchers have proposed the definition of an 
earlier analysis step (automatic and fast) based on metrics 
computation. Some metrics are proposed before the codesign 
flow [7,8,9]. In [7], Le Moullec et al. present a tool to compute 
some metrics for data and control dependency analysis of a task. 
This tool is named design trotter. They also presume that it is 
possible to extend existing metrics to estimate the local memory 
resources size necessary for one task. The values proposed by [7] 
are based on a graph named HCDFG (Hierarchical Control Data 

Flow Graph) describing one task. However an application is 
composed of several tasks, a limitation of their approach is due to 
the fact that they only consider a single task at a time and they do 
not take into account the interactions between the tasks. For 
example, the local memory resources size value does not take 
into account the memory size shared between the tasks of the 
system. In [8], Carro et al. present three interesting metrics 
representing the characteristic of a task in terms of control, data 
transformation and data accesses.  However, these metrics do not 
give information about the exclusion or the preference of the 
execution of a task with existing processing element as digital 
signal processor (DSP), video signal processor (VSP), general 
purpose processor or others. In [9], Scuito et al. define more 
specific metrics where exclusion and preference are not binary. In 
their case, these metrics correspond to a real value between 0 and 
1 called Affinity. They have defined affinity to GPP, DSP and 
ASIC. This notion of affinity is more significant than totally 
exclusion or preference since it can represent more accurately the 
matching between a task and a processing element. Hence, in 
their approach they use the affinity metrics in order to propose a 
first allocation of processing element to each task of the 
application as shown in figure 2. Note that the application is 
analyzed before any codesign flow steps. Once the analysis step 
ends the application (noted application FCF (for codesign flow)) 
is ready for the codesign flow.  
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Figure 2. analysis based on tasks

Of course, task's characteristic has an important impact on 
the system performances, but considering only this feature 
is not always enough to take a decision. Even though a task 
is more suitable to a processing element (in term of 
affinity) it can have a large cost on power and area when 
implemented on it. If the task has a large amount of data 
exchange with another task (even if this task has an 
important affinity to another processing element) it may be 
more interesting to gather them in the same processing 
element to limit the communication cost and complexity. 
Hence, the affinity metrics are still limited since the 
analysis does not take into account the interaction between 
tasks that compose the system, and in some cases this can 
be a strong limitation.  
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Figure 1. Earlier manual analysis 

 

2.2. Contribution  

In order to consider the interactions between the tasks a first 
analysis step must be done to exhibit these interactions. The aim 
is to define different clusters of tasks that take into account the 
interactions between the tasks, the application is thus transformed 



in order to reduce the complexity of the design flow and to define 
more rapidly an efficient and flexible system architecture. 

Hence, in this paper, we propose several metrics able to make an 
efficient analysis of the systems at a tasks graph level. These 
metrics belong to the methodology described in figure 3. 

In this methodology, clustering is used to define the application 
FCF. Clustering is defined as grouping tasks into groups to be 
later allocated onto processing elements. Dave and al. in [10] and 
[11] have demonstrated the interest of using clustering. Their 
clustering method is based in four values. Preference and 
exclusion vector indicates the most suitable mapping or the 
exclusivity between the tasks and all the processing elements of 
the library. These vectors are defined from the experience of the 
designer. The value of a preference or exclusion can be 0 or 1. 
However, in some cases due to interaction constraints a task can 
be more efficiently executed on one processing element even if 
its attribute is preferential or exclusion. The proposed tool by 
Dave et al. can not detect these cases. Execution time vector 
indicates the worst-case execution time of a task on all the 
processing elements of the library. Memory vector indicates the 
different types of storage required for a task. The two last values 
require a tool to be computed (it can be done by emulation, by 
simulation or preferentially by estimation) since as known the 
number of processing elements in the library increases 
continuously.  

In our approach, the clustering is based on the application 
analysis using several metrics that are computed from the 
application's specificity and tasks characteristics. Compare to 
previous work we present metrics which are able to make an 
analysis (takes into account task interaction) of the systems from 
a tasks graph. These metrics are computed to evaluate the impact 
of the tasks and application's specificity onto the performance and 
the costs of the system. They do not estimate the system costs as 
power, time or area. But, they measure the impact of application 
proprieties as data transfer and data sharing onto the system costs. 
They also measure the impact of the task proprieties as task 
affinity and the interaction between the tasks as tasks cluster 
affinity onto the system costs. Thanks to such a thorough analysis 
of the application and tasks characteristics, the designers can 
perform an optimization of the application to improve and reduce 
the complexity of a SoC codesign flow. 

In [12], Vahid and Gajski present similar metrics to analyze the 
application at a high description level. Their metrics are used to 
analyze the interaction between behaviors within tasks. Their 
analysis is used to change behaviors from a task to another in 
order to make more suitable the application for the codesign flow. 
This methodology is similar to our approach, but it can’t be used 
in our context. First, transfer behaviors from a task to another 
leads to create for each system some new tasks. This point is not 

compatible with the notion of reuse, which consists on reusing 
the same task description for all systems. Also, interactions 
between behaviors within tasks are different from interactions 
between tasks within groups. So, the metrics used on the first 
case can’t be used in the second. 

In this paper we focus on the description of the application at a 
tasks graph level and on the computation of metrics able to 
analyze efficiently the application. The clustering step is not 
described in this paper, but we have implemented a genetic 
algorithm to perform this step. Thus, in this work we define the 
metrics to analyze the impact of grouping tasks onto the system 
performance. We propose communication metric, memory 
metric, throughput constraint metric, channel metric and affinity 
metric. Experimental results show the efficiency of our approach 
to evaluate the impact of each metric onto the performance. 

3. SPECIFICATION GRAPH 

To apply these metrics we first define a tasks graph, which 
describes the application at the tasks level. The graph describes 
the characteristics of each task of the application and the 
interaction between them like dependencies or data transfers.  

The graph consists of nodes and edges. A node represents a task 
and an edge corresponds to a data dependency. The node is 
weighted with different values, which characterize the task. Each 
node is characterized by the following attributes: 
• Throughput constraint: Usually, application has some 

computing constraints especially input and output 
constraints. In video computing, for example, system has to 
send 25 frames (images) per second. This throughput 
constraint characterizes the output tasks of the system. Tc 
names throughput constraint, it is an integer value and its 
definition is in bit per second.     
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• Affinity vector: It is a vector, which gathers the affinity 
values of a task ti to Processing Elements (PEs) possibilities. 
Affinity Affinity (ti) (PEj) of the task ti to a PE PEj is a 
real value between 0 and 1. If the value is 0, the task can not 
be executed on PEj. If the value is equal to 1, the task is 
fully suitable to be executed on PEj. Even if the value is 1 
for a particular PE, it does not imply that the value is equal 
to 0 for another PE. These values can be determined based 
on prior experience of the designer or based on some work 
as proposed by Sciuto et al. [13]. If there is no preference or 
exclusion for any PEs, the affinity is considered to be the 
same for all PEs and is equal to 1/(number of PE 
possibilities).     

Figure 3. Our approach used for the earlier analysis

• Local memory size: Memory resources used in a system can 
be the shared memory used by the components, or resources 
used locally by the tasks as registers. Local memory size 
determines the size of the memory resources required by the 
task. This value is evaluated using DesignTrotter [11]. It is 
named LM_size.   

• Execution frequency: This value indicates the number of the 
execution of the task during one execution of the system. It 
is named Exec_freq. 

The edge represents the interaction between tasks as dependency 
and data transfer. It is labeled with information about data size 
transfer and the type of transfer. Each data transferred from a task 
to another may be direct or memorized. If the Memorization 
value is equal to 1, the transfer needs memorization else the 



transfer is direct. The Word size is a value representing the 
granularity of the data transfer. The Word number is a value 
representing the number of words transferred from a task to 
another. For example, the transfer of a vector of 12 integers, 
corresponds to Word number = 12 and Word size = 32 bits 
(size of integer). Finally, Executions occurrence is a value 
representing the number of transfers for a single execution of the 
producer task. 

4. METRICS  

In this section, we define several metrics, which allows analyzing 
the system characteristics at the tasks level. These metrics 
evaluate the impact of communication, memory, throughput and 
affinity on the final system performances. We have defined five 
metrics that are communication metric, memory metric, 
throughput constraint metric, channel metric and affinity metric. 
Metrics are represented by values between 0 and 1. The value is 
"1" when considering this metric will lead to an efficient 
optimization of the application, and "0" when no optimization is 
obvious considering this metric.  

4.1. Communication metrics 

These metrics evaluate the degree of optimization of 
communications and their impact on the system performances. 
Due to the complexity of systems, several communication 
resources need to be used. Hence, the tasks graph needs to be 
divided into clusters where each one shares a communication 
resource. To optimize the influence of the communication in such 
architecture, we define two communication metrics: 
communication inside the cluster, and communication between 
clusters (connections and data size) as shown in figure 4.  

4.1.1. Equilibrate the exchanged data sizes between 
the different clusters 
We make the assumption that “Small exchanged data sizes lead 
to better system cost in time, area, power and design time”. In 
fact, when the number of data to be transferred is important, the 
communication resources that must be used are costly to respect 
constraints and to perform data transfers at the required rate. In 
consequence, there is more area, power consumption and 
complexity of connections. Furthermore to cope with this large 
amount of exchanged data, various data transfer protocols must 
be used as burst, split… So, extra area is needed for the 
implementation of these protocols. Finally, to manage important 
data transfer load, multi-masters protocols are used. It leads that 
in addition to extra area used to implement these protocols, delay 
due to the master changes and access permissions are added in 
the system cost. Moreover, more exchanged data quantity is 
important more transfer synchronization is costly in time, 
memory resources and design time for the complex interface 
module.  
 
Hence, to optimize the communication cost, exchanged data 
quantity must be the lowest in each cluster. Thus, it must be 
distributed equally within the different clusters.  
We define Equilibrate Data exchange metric E_De, which 
enables to inform about the balance between the exchanged data 
quantity in each cluster. This metric is defined as follow: 
 

E_De = Min(Com_Degree(p))/Max(Com_Degree(p)) 

Where p is a cluster of the architecture and: 
ComDegree(p)=Bit_exchange(p)/Bit_exchange(GS) 

Bit_exchange(p)=∑(ti,tj)∈(p)Task_bits_exchanges(ti,tj) 

Where GS is the Global System and: 

Task_bits_exchanges(ti,tj)=word_size×word_number×

execution_occurrence×exec_freq 

Where ti is the task number i. 

In other words, we first calculate the size of data exchanged in a 
cluster p Bit_exchange(p) (data represented by circles in fig.4). 
This data size corresponds to the sum of the size of all data 
exchanged by the tasks in the cluster. Data transfer is calculated 
based on the values associated to the edges. Bit_exchange(p) 
corresponds to the data transferred by the edge multiplied by the 
execution frequency of the task that produces this edge. Second, 
we compare the data quantity in each cluster by dividing the 
smallest quantity by the greatest one. If data quantity is balanced, 
then the minimum is equal to the max, so E_De = 1. 

Task
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Task Task
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Figure 4. Target clustering to optimize communications

4.1.2. Minimize data transfers between clusters 

We make the assumption that “Transfers between clusters have a 
great cost in time, power and area”. In fact, communications 
between two tasks in different clusters use communication 
resources within each cluster and the communication supports 
between the two clusters, or a dedicated communication resource 
(not shared) between the two tasks. In the first case, 
communications between tasks, which are in the same cluster, 
and communication between two tasks in different clusters are 
blocked until the current communication ends to release the 
communication resources. In the second case, there is simply an 
additional cost in design time, power and area due to the 
dedicated link. 

To minimize the communication cost, clustering have to 
minimize data transfers between clusters. To evaluate this point, 
we propose two metrics. The first calculates the degree of 
exchanged data quantity between clusters. This metric is named 
Data Exchange Inter Cluster metric DEIC. The second 
calculates the degree of connections between clusters. It’s named 
Connection Inter Cluster metric CIC. 
 



DEIC = 1–(Bit_exchange_IC/Bit_exchange(GS)) 

Bit_exchange_IC=∑(ti,tj)∈(p)[Task_bit_exchange(ti,tj); 

if cluster(ti)•cluster(tj)] 

Where Cluster(ti) corresponds to the cluster whose the task 

ti belongs to. 
 

This metric corresponds to the percentage of data, which are 
exchanged between clusters (Bit_exchange_IC) in relation to the 
total number of data in the system. If all data is exchanged 
between cluster, the clustering is very poor, and the metric is 0. 
 

CIC = Connection_IC/Connection_GS 
 
Where Connection_IC and Connection_GS are respectively the 
number of connections between clusters and within the global 
system. 

4.2. Memory metric 

As known, larger memory size implies slower access time and 
higher power consumption. Furthermore new technology as 
reconfigurable architecture supports spatial distribution of the 
memory resources (registers, memory bank…). So it’s more 
interesting to distribute uniformly the memory used by the system 
to get the less possible cost in time, area and power consumption. 

We propose a memory metric Mem, which informs about the 
better distribution of memory when it is equal to 1. This metric 
evaluates the memory resources size needed within a cluster: 
shared and local resources. For the local resources, the local 
memory size LM_size is computed using DesingTrotter [11]. 
Shared memory resources is determined with the graph. 
 
Mem = Min(Mem_Degree(p))/Max(Mem_Degree(p)) 

Where MemDegree(p) corresponds to the percentage of memory 

used by the cluster p and:  
MemDegree(p)=Mem_resources(p)/Mem_resources(GS) 

Where Mem_resources(p) corresponds to the memory 

resources required by the cluster p and: 
Mem_resources(p)=LM_size(p)+shared_mem(p) 

LM_size(p)=∑ti∈(p)[LM_size(ti)]; if ti ∈ p 

shared_mem(p)=∑(ti,tj)∈(p)edge.Memorization(ti,tj)×Tas
k_bits_exchanges(ti,tj) 

This metric evaluates from the graph the percentage of memory 
used by each cluster and verifies the balance of memory 
distribution (the value is defined between 0 and 1). This value is 
1 when the memory is the same in each cluster. 

4.3. Affinity metric 

When a task has the highest affinity to a PE, its performance is 
optimal when implemented on this PE. The optimal clustering in 
each case, is the one that leads to build clusters of tasks having 
the higher affinity to the same PE. 
 

AFF = min(met_aff(p)) 

Where 
Met_aff(p)=Ag(MaxA(p))(p)/Amax(MaxA(p),nbt(p)) 

Where Ag(PEj)(p)corresponds to the affinity of the cluster p 

to PEj, and: 

Ag(PEj)(p)=∑ ti∈(p)A(ti) (PEj) if ti ∈ p 

Where A(ti) (PEj) corresponds to the affinity of the task ti to 

PEj, this is the value defined in the specification graph. MaxA(p) 

is the PE who has the maximal affinity to the cluster p.  

MaxA(p) = PEj, if Ag(PEj)(p) ≥ Ag(PEk)(p) ∀ k  

Where Nbt(p) is equal to the number of tasks in the cluster p. 

Amax(PEj,n) is equal to the sum of the Nbt(p) higher affinity 

to PEj of task in GS. 

 
In other word, we calculate the affinity of the cluster, which 
corresponds to the sum of the tasks affinity within the cluster. We 
compare the maximal affinity value to a PE of the cluster with the 
best affinity value that can have this PE in the whole application. 

4.4. Throughput constraint metric 

As shown on the specification graph, some tasks have a 
throughput constraint. This throughput consists in the minimum 
throughput that communication resources must have to support 
efficiently the communication. This throughput must be imposed 
to all tasks that share the same communication resources. So, if 
another task in the same cluster has a different (higher or lower) 
throughput constraint, the communication resources have at least 
the higher throughput of the two tasks. As consequence, the 
communication resources have to be over-designed and cost more 
in time, power (frequency) and complexity. That is why the best 
clustering has to distribute efficiently the throughput constraints. 
We define the throughput constraint metric Tc as follows: 
 

Tc = min (throughput_degree (p)) 

Where Throughput_degree(p)=Diff_throughput(p)/ 
Diff_throughput(GS) 

Where Diff_throughput(p) corresponds to the difference 

between the higher and the lower throughput of tasks in the 

cluster p. 

 
This metric calculates the degree between the different 
throughput constraints in one cluster, which is computed by the 
difference between the max and the min throughput in the cluster 
Diff_throughput(p). To evaluate the efficiency of the distribution 
of the throughput constraints we compare it with the difference of 
the min and the max of all the system. This degree informs about 
the good or not distribution of throughput constraints in one 
cluster. As, the best is to maximize a global distribution on 
clusters, we check the minimum value of all throughput 



distribution. This value corresponds to the metric and enables to 
analyze the throughput constraint distribution. 

5. METRICS APPLICATION: UMTS 

In this section, we validate the proposed metrics and we 
demonstrate that they enable to make an efficient analysis of the 
system performances at the tasks level. This validation is 
performed using an UMTS application (uplink transmitter). To 
apply these metrics we first specify the UMTS application using 
the proposed tasks graph. Then, we perform several experimental 
results on the UMTS application to demonstrate the efficiency of 
these metrics to exhibit the different characteristics that we have 
considered (communication, memory, throughput).  

5.1. UMTS specification graph 

In this section, we do not describe the algorithms of the tasks that 
compose the UMTS application since we do not need this 
information to perform our analysis. However, we suppose that 
the affinity metrics have already computed by for example the 
method proposed by Sciuto et al. [13]. To define the specification 
graph, we only need to describe the data dependencies and tasks 
proprieties as shown in figure 5. 

 

The transmitter of the uplink terminal UMTS is composed of 14 
tasks and 13 edges. Each task is labeled with a figure in order to 
simplify the discussion about the results. As noted by ×4, task 1 
and 2 are executed 4 times during one execution time of the 
application. Tasks 3 to 8 are executed only one time and the other 
tasks 15 times (tasks 9 to 14). Edges are labeled with the data 
quantities that are transferred. Two values are associated with 
each edge, one corresponds to the data emitted and the second 
one to the data received. 

The UMTS application is under a real time constraint since the 
whole application has to be executed every 10 ms. It leads to 
apply some throughput constraints to different tasks: task1 - 114 
kbits/s, task8 - 37 Mbits/s, task10 - 15 kbits/s and task14 - 8 
Mbits/s. 

Concerning the specification of the application no other 
information is required. The analysis can be performed. 

5.2. Experimental results 

In this section we have applied the metrics to different clustering 
examples to show their ability to efficiently evaluate the 

characteristics of the application. 

PS

As a first example we consider a 2 clusters solution that is 
described in table 1. The values presented in table 1 correspond to 
intermediate results required to compute the metrics presented in 
table 2. These intermediate values are presented in order to 
enable the discussion that follows about the metrics. Note that in 
the case of a real utilization of the metrics these intermediate 
values are not provided to the designer. 

 

 Cluster 1 Cluster 2 
Tasks 1-2-3-4-8-13-14 4-5-6-7-9-10-11-12 

Data (bits) 80368 80550 
ComDegree(p) 0.4008 0.4017 
Shared_mem(p) 39600 1200 
Mem_dedree(p) 0.9705 0.0294 

Min(tc) 116800 15000 
Max (tc) 38400000 15000 

Throughput 
degree(p) 

0.9969 0 

Met_aff(p) 0.910714 1 

Table 1. Characteristics of the application for a 2 clusters solution  
In this example, the exchanged data quantity in each cluster is 
nearly the same as shown in the Data line in table 1. Hence, 
exchanged data is well balanced for this clustering example. This 
result is highlighted by the E_De metric since its value is equal to 
0.9977. It demonstrates the efficiency of E_De to evaluate the 
good balance of data exchange in clusters. The inter clusters data 
exchange is 39600 bits (or 19.74 percent of the total exchanged 
data in the system). Hence, it is normal that the DEIC value is not 
equal to 1 but to 0.8. However this value is close to 1 since even 
if the solution does not correspond to the best one, it is still a 
good compromise. We can say that the DEIC metric takes 
correctly into account this trade-off. The same remarks can be 
done for the CIC metrics.  

MEM and TC, as shown in table 2 are nearly equal to 0. It means 
that the considered clustering does not optimize the memory and 
the throughput distribution. In fact, as shown in table 1, nearly 
the totality of the memory requirements is in the cluster 1, and 
nearly nothing in the second. So, the memory distribution is not 
balanced. Furthermore, in cluster 1 there are 3 different 
throughputs : 37 Mbits/s, 8 Mbits/s and 114Kbits/s that is close to 
the minimum throughput of the application which is on cluster 2 

Figure 5. Transmitter of a terminal UMTS
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(15 kbits/s). Hence, the throughput distribution is also not 
balanced for this clustering as shown by the metric TC. 
 

E_De DEIC CIC MEM AFF TC 

0.9977 0.8025 0.8461 0.0303 0.9107 0.0031 

Table 2. Metrics for example 1 

This first part has demonstrated the ability of the proposed 
metrics to analyze the clustering efficiency. Below, we further 
discuss this point since we show that when the number of clusters 
is not adapted to the application some metrics are closed to 0.  A 
manual analysis of the UMTS specification graph shows that 
exchanged data sizes are so different that it is not possible to 
balance the exchanged data sizes when the system in partitioned 
in 3 clusters. To demonstrate this analysis and to show the ability 
of the E_De metric to detect such feature different examples of 3 
clusters are considered in the following. In the table 3, each 
clustering example is represented as a vector of 14 values, where 
each value represents the cluster whose the task belongs to. For 
example, in the first vector the task 1 belongs to the cluster1, task 
2 to the cluster 1 … Table 3 presents the E_De value for these 
different examples. As expected, the E_De value is always close 
to 0. 

 

Example E_De 

11333322222211 0.0460 

11111122223333 0.0104 

11223311223332 0.0149 

Table 3 . Some examples of 3 groups clustering 
We can notice that even if the solutions are not efficient, we can 
still compare them and for the considered examples, the first 
solution is the best one. 

The last part of the experimental results section focuses on the 
ability of the metric to compare different clustering solutions. The 
proposed metrics are very interesting to analyze and to compare 
the clustering possibilities. In table 4 another example of a 2 
clusters solution is proposed for which we have calculated the 
metrics (and the intermediate results in order to discuss these 
metrics) to compare with the first example discussed above.  
 

 Cluster 1 Cluster 2 
Tasks 1-2-3-4-5-6-7 8-9-10-11-12-13-14 

Data (bits) 7168 192150 
ComDegree(p) 0.0357 0.9582 
Shared_mem(p) 1200 39600 
Mem_dedree(p) 0.0294 0.9705 

Min(tc) 116800 15000 
Max (tc) 116800 38400000 

Throughput 
degree(p) 

0 0.9996 

Met_aff(p) 1 0.0004 

Table 4. Characteristics of the application for a 2 clusters solution 
In table 5 the different metrics are presented for that second 
example. As we can see even if the DEIC, CIC and AFF metrics 

are very good, this solution is not as efficient as the first one since 
the E_De and the MEM metrics are lower than the values of the 
first solution. Hence, thanks to these metrics it is straightforward 
to compare different solutions. 

 

E_De DEIC CIC MEM AFF TC 

0.0373 0.9944 0.9285 0 0.9107 0.0031 

Table 5. Metric for example 2 

6. CONCLUSION 

Due the complexity of both the applications and the systems, 
classical codesign flows are not enough efficient to design SoC 
system without first modifying the application or adding some 
assumptions on the architecture. That’s why an earlier, fast and 
automatic analysis step is essential to identify the application's 
specificity in order to help the codesign flow.  

To perform such an approach, we propose in this paper, several 
metrics (communications, memory, affinity and throughput) 
which allows analyzing the system characteristics at a tasks level. 
These metrics are computed to evaluate the impact of the tasks 
and application proprieties onto the performance and the costs of 
the system. They don’t estimate the system costs as power, time 
or area. But, they measure the impact that some application 
proprieties as communication and memory sharing have onto the 
system costs. They also measure the impact onto the system costs  
of task proprieties (as task affinity) and of interaction between 
task affinity within a cluster. Analyzing the application and the 
task characteristics the designer can optimize the application for a 
SoC codesign flow. 

The metrics have been validated on an UMTS application. 
Results have demonstrated that the metrics are able to evaluate 
efficiency the characteristics analyzed and that they enable to 
compare different tasks clustering solutions.  

This work is part of a design space exploration approach 
that has been developed within the DesignTrotter 
environment. DesignTrotter starts from a task graph and 
leads to the definition of the architecture (computing, 
memory and communication resources) and the hardware-
software partitioning of the application. As the actual 
researches, our research is focused on the new challenges 
of embedded real-time system consequence of the new 
technologies. This work is a first step of approaches which 
is based on application analysis to predict the impact of the 
application on the system performances and costs 
independently of the technology and execution support.   
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