

High level analysis

of multiprocessor system on chip
MAALEJ Issam

LESTER
CNRS FRE 2734, UBS

Rue st maude
56100, Lorient, France

Maalej@iuplo.univ-ubs.fr

GOGNIAT Guy
LESTER

CNRS FRE 2734, UBS
Rue st maude

56100, Lorient, France
guy.gogniat@univ.ubs.fr

ABID Mohamed
GMS,ENIS

B.P : W3038
SFAX,TUNISIA

mohamed.abid@enis.rnu.tn

PHILIPPE Jean Luc
LESTER

CNRS FRE 2734, UBS
Rue st maude

56100, Lorient, France
Jean-Luc.Philippe@univ.ubs.fr

ABSTRACT

Traditionally codesign flow aims to help the designers to take
decisions about the system architecture, however due to the
complexity of both system architectures and applications it is
now necessary to perform before any codesign flow a first
application analysis step in order to highlight the application's
specificity. An efficient way to analyze the application is to
define accurate metrics that exhibit the application's specificity
impacting the system performance. In this paper, we propose
several metrics that allow an efficient analysis of a system right
after the specification of the application (tasks graph) before any
design flow step. These metrics enable to measure some
characteristics of the application as communication data size and
data sharing between tasks... As they are defined before any
design flow step they do not measure directly the system
performance or the costs but they provide information that leads
to optimize these costs. Several experimental results performed
on an UMTS application demonstrate the efficiency of these
metrics to exhibit the main characteristics of an application. The
results also show the ability of the proposed metrics to correctly
measure the applications specificity. Finally, the results show the
interest of the metrics to be used in a clustering approach or other
codesign flow.

Keywords
System on Chip (SoC), Multiprocessor, Metrics, Communication,
System architecture.

1. INTRODUCTION

A thorough analysis of the application is necessary to define
efficient and flexible multiprocessor system on chip (SoC).
During the design steps of such systems, designers have to make
important decisions as system architecture definition,
communication architecture selection, resources allocation,
scheduling... Of course, these decisions depend on the application
and have a very important impact on the final system
performance and costs (time, area, power...). Unfortunately the
complexity of the systems leads to make these decisions more
and more difficult. To be more efficient these decisions must take
into account some application's specificity. For example,
emphasizing some intensive communicating tasks will help the
designers to optimize their system costs by allocating both tasks
within the same processing resource. Traditionally codesign flow

aims to help the designers to take these decisions, however due to
the complexity of both system architectures and applications it is
now necessary to perform before any codesign flow a first
application analysis in order to highlight the application's
specificity. In this paper as will be shown in the following we
propose some metrics to realize this first analysis step.

To justify our proposition the complexity of both system
architectures and applications is presented in the following.
Generally, during the design flow, designers use their own
experience to analyze the systems and perform manually some
design steps. For example, communication architectures are
generally designed based only on the experience of the designers.
Thus sometimes it may lead to either an over-designed system or
a failure to meet the requirements because of the complexity of
the systems. This point is due to several reasons: On one hand the
complexity of the applications is raising continuously (systems
are composed of an increasing number of tasks) and at the same
time, time to market constraint is more and more stringent. On
the other hand, systems usually include many hardware and
software components, numerous communication resources and a
large number of memories. The complexity of both system
architectures and applications (a large number of communicating
tasks) leads to consider the communications as one of the more
critical issue in the design flow. In fact, during the last years,
numerous works have focused on the development of new
communication resources such as for example communication
supports (buses [1,2,3], micro-networks [4], network on chip [5])
and protocols in order to cope with the communication
bottleneck.

Hence, to improve system design it is necessary to propose new
approaches that first perform an analysis step. An efficient way to
analyze the application is to define accurate metrics that exhibit
the application's specificity impacting the system performance.
These metrics enable to measure some characteristics of the
application as communication data size and data sharing between
tasks... These metrics do not correspond to system performance
or costs estimates, but measure application's specificity which can
guide the designers to optimize system performance and costs.
For example, links between tasks have an important impact on
the final system performance (this impact is more detailed later in
this paper).

In this paper, we propose several metrics that allow an efficient
analysis of a system right after the specification of the application
(tasks graph) before any design flow step. These metrics have to
highlight 1) the characteristics of the tasks and 2) the links
between the tasks as will be shown in the following.

The paper is organized as follows. Section 2 presents an overview
of related work dealing with metrics before describing our
contribution. The specification graph that describes the system is
presented in section 3. Section 4 details our metrics and a
discussion about their relevance is proposed. The metrics are then
validated in section 5 by experimental results related to an UMTS
application. Section 6 draws some conclusions and discusses
future works.

2. REVIEW OF RELATED WORK AND
CONTRIBUTION

In this section, we review related previous work and describe our
contribution.

2.1. Related work

A thorough analysis of the application is necessary for
multiprocessor system on chip design. In SoC design flow,
estimates of system costs as power, time and area are computed
to build the system design. There are many codesign
methodologies to design such system. Always, these methods try
to take into account all task interactions as dependencies,
communication and scheduling. But, due to the complexity of
systems, it is very difficult to take into account all these
parameters at the same time. Then, always, some assumptions
and/or modifications on the application are made before
beginning the codesign flow. For example in [6], Knudsen and
Madsen manually define the communication architecture and
resources of the system. Then, they propose several models to
estimate the communication cost to design the hardware/software
architecture. The main drawback of these approaches is due to the
fact that an intuitive definition of the communication architecture
may lead to a final architecture that doesn’t meet requirements.
Application analysis is done manually and the designers define
the communication architecture and resources based on their own
experience to make suitable the codesign flow (figure.1).

But due to the increasing complexity of applications and systems,
we claim that a manual analysis, such the one proposed by
Knudsen and Madsen [6], isn’t anymore enough efficient to
prepare the application to the design flow.

Hence, several researchers have proposed the definition of an
earlier analysis step (automatic and fast) based on metrics
computation. Some metrics are proposed before the codesign
flow [7,8,9]. In [7], Le Moullec et al. present a tool to compute
some metrics for data and control dependency analysis of a task.
This tool is named design trotter. They also presume that it is
possible to extend existing metrics to estimate the local memory
resources size necessary for one task. The values proposed by [7]
are based on a graph named HCDFG (Hierarchical Control Data

Flow Graph) describing one task. However an application is
composed of several tasks, a limitation of their approach is due to
the fact that they only consider a single task at a time and they do
not take into account the interactions between the tasks. For
example, the local memory resources size value does not take
into account the memory size shared between the tasks of the
system. In [8], Carro et al. present three interesting metrics
representing the characteristic of a task in terms of control, data
transformation and data accesses. However, these metrics do not
give information about the exclusion or the preference of the
execution of a task with existing processing element as digital
signal processor (DSP), video signal processor (VSP), general
purpose processor or others. In [9], Scuito et al. define more
specific metrics where exclusion and preference are not binary. In
their case, these metrics correspond to a real value between 0 and
1 called Affinity. They have defined affinity to GPP, DSP and
ASIC. This notion of affinity is more significant than totally
exclusion or preference since it can represent more accurately the
matching between a task and a processing element. Hence, in
their approach they use the affinity metrics in order to propose a
first allocation of processing element to each task of the
application as shown in figure 2. Note that the application is
analyzed before any codesign flow steps. Once the analysis step
ends the application (noted application FCF (for codesign flow))
is ready for the codesign flow.

Application

Designer’s
experience

Application
FCF

Codesign
flow

Task
metrics

PEs first
Allocations

Figure 2. analysis based on tasks

Of course, task's characteristic has an important impact on
the system performances, but considering only this feature
is not always enough to take a decision. Even though a task
is more suitable to a processing element (in term of
affinity) it can have a large cost on power and area when
implemented on it. If the task has a large amount of data
exchange with another task (even if this task has an
important affinity to another processing element) it may be
more interesting to gather them in the same processing
element to limit the communication cost and complexity.
Hence, the affinity metrics are still limited since the
analysis does not take into account the interaction between
tasks that compose the system, and in some cases this can
be a strong limitation.

Application

Designer’s
experience

Manual
analysis

Application
+

Communication
resources

Codesign
flow

Figure 1. Earlier manual analysis

2.2. Contribution

In order to consider the interactions between the tasks a first
analysis step must be done to exhibit these interactions. The aim
is to define different clusters of tasks that take into account the
interactions between the tasks, the application is thus transformed

in order to reduce the complexity of the design flow and to define
more rapidly an efficient and flexible system architecture.

Hence, in this paper, we propose several metrics able to make an
efficient analysis of the systems at a tasks graph level. These
metrics belong to the methodology described in figure 3.

In this methodology, clustering is used to define the application
FCF. Clustering is defined as grouping tasks into groups to be
later allocated onto processing elements. Dave and al. in [10] and
[11] have demonstrated the interest of using clustering. Their
clustering method is based in four values. Preference and
exclusion vector indicates the most suitable mapping or the
exclusivity between the tasks and all the processing elements of
the library. These vectors are defined from the experience of the
designer. The value of a preference or exclusion can be 0 or 1.
However, in some cases due to interaction constraints a task can
be more efficiently executed on one processing element even if
its attribute is preferential or exclusion. The proposed tool by
Dave et al. can not detect these cases. Execution time vector
indicates the worst-case execution time of a task on all the
processing elements of the library. Memory vector indicates the
different types of storage required for a task. The two last values
require a tool to be computed (it can be done by emulation, by
simulation or preferentially by estimation) since as known the
number of processing elements in the library increases
continuously.

In our approach, the clustering is based on the application
analysis using several metrics that are computed from the
application's specificity and tasks characteristics. Compare to
previous work we present metrics which are able to make an
analysis (takes into account task interaction) of the systems from
a tasks graph. These metrics are computed to evaluate the impact
of the tasks and application's specificity onto the performance and
the costs of the system. They do not estimate the system costs as
power, time or area. But, they measure the impact of application
proprieties as data transfer and data sharing onto the system costs.
They also measure the impact of the task proprieties as task
affinity and the interaction between the tasks as tasks cluster
affinity onto the system costs. Thanks to such a thorough analysis
of the application and tasks characteristics, the designers can
perform an optimization of the application to improve and reduce
the complexity of a SoC codesign flow.

In [12], Vahid and Gajski present similar metrics to analyze the
application at a high description level. Their metrics are used to
analyze the interaction between behaviors within tasks. Their
analysis is used to change behaviors from a task to another in
order to make more suitable the application for the codesign flow.
This methodology is similar to our approach, but it can’t be used
in our context. First, transfer behaviors from a task to another
leads to create for each system some new tasks. This point is not

compatible with the notion of reuse, which consists on reusing
the same task description for all systems. Also, interactions
between behaviors within tasks are different from interactions
between tasks within groups. So, the metrics used on the first
case can’t be used in the second.

In this paper we focus on the description of the application at a
tasks graph level and on the computation of metrics able to
analyze efficiently the application. The clustering step is not
described in this paper, but we have implemented a genetic
algorithm to perform this step. Thus, in this work we define the
metrics to analyze the impact of grouping tasks onto the system
performance. We propose communication metric, memory
metric, throughput constraint metric, channel metric and affinity
metric. Experimental results show the efficiency of our approach
to evaluate the impact of each metric onto the performance.

3. SPECIFICATION GRAPH

To apply these metrics we first define a tasks graph, which
describes the application at the tasks level. The graph describes
the characteristics of each task of the application and the
interaction between them like dependencies or data transfers.

The graph consists of nodes and edges. A node represents a task
and an edge corresponds to a data dependency. The node is
weighted with different values, which characterize the task. Each
node is characterized by the following attributes:
• Throughput constraint: Usually, application has some

computing constraints especially input and output
constraints. In video computing, for example, system has to
send 25 frames (images) per second. This throughput
constraint characterizes the output tasks of the system. Tc
names throughput constraint, it is an integer value and its
definition is in bit per second.

Application
FCF

Application
metrics

Application

Designer’s
experience

Clustering Codesign
flow

• Affinity vector: It is a vector, which gathers the affinity
values of a task ti to Processing Elements (PEs) possibilities.
Affinity Affinity (ti) (PEj) of the task ti to a PE PEj is a
real value between 0 and 1. If the value is 0, the task can not
be executed on PEj. If the value is equal to 1, the task is
fully suitable to be executed on PEj. Even if the value is 1
for a particular PE, it does not imply that the value is equal
to 0 for another PE. These values can be determined based
on prior experience of the designer or based on some work
as proposed by Sciuto et al. [13]. If there is no preference or
exclusion for any PEs, the affinity is considered to be the
same for all PEs and is equal to 1/(number of PE
possibilities).

Figure 3. Our approach used for the earlier analysis

• Local memory size: Memory resources used in a system can
be the shared memory used by the components, or resources
used locally by the tasks as registers. Local memory size
determines the size of the memory resources required by the
task. This value is evaluated using DesignTrotter [11]. It is
named LM_size.

• Execution frequency: This value indicates the number of the
execution of the task during one execution of the system. It
is named Exec_freq.

The edge represents the interaction between tasks as dependency
and data transfer. It is labeled with information about data size
transfer and the type of transfer. Each data transferred from a task
to another may be direct or memorized. If the Memorization
value is equal to 1, the transfer needs memorization else the

transfer is direct. The Word size is a value representing the
granularity of the data transfer. The Word number is a value
representing the number of words transferred from a task to
another. For example, the transfer of a vector of 12 integers,
corresponds to Word number = 12 and Word size = 32 bits
(size of integer). Finally, Executions occurrence is a value
representing the number of transfers for a single execution of the
producer task.

4. METRICS

In this section, we define several metrics, which allows analyzing
the system characteristics at the tasks level. These metrics
evaluate the impact of communication, memory, throughput and
affinity on the final system performances. We have defined five
metrics that are communication metric, memory metric,
throughput constraint metric, channel metric and affinity metric.
Metrics are represented by values between 0 and 1. The value is
"1" when considering this metric will lead to an efficient
optimization of the application, and "0" when no optimization is
obvious considering this metric.

4.1. Communication metrics

These metrics evaluate the degree of optimization of
communications and their impact on the system performances.
Due to the complexity of systems, several communication
resources need to be used. Hence, the tasks graph needs to be
divided into clusters where each one shares a communication
resource. To optimize the influence of the communication in such
architecture, we define two communication metrics:
communication inside the cluster, and communication between
clusters (connections and data size) as shown in figure 4.

4.1.1. Equilibrate the exchanged data sizes between
the different clusters
We make the assumption that “Small exchanged data sizes lead
to better system cost in time, area, power and design time”. In
fact, when the number of data to be transferred is important, the
communication resources that must be used are costly to respect
constraints and to perform data transfers at the required rate. In
consequence, there is more area, power consumption and
complexity of connections. Furthermore to cope with this large
amount of exchanged data, various data transfer protocols must
be used as burst, split… So, extra area is needed for the
implementation of these protocols. Finally, to manage important
data transfer load, multi-masters protocols are used. It leads that
in addition to extra area used to implement these protocols, delay
due to the master changes and access permissions are added in
the system cost. Moreover, more exchanged data quantity is
important more transfer synchronization is costly in time,
memory resources and design time for the complex interface
module.

Hence, to optimize the communication cost, exchanged data
quantity must be the lowest in each cluster. Thus, it must be
distributed equally within the different clusters.
We define Equilibrate Data exchange metric E_De, which
enables to inform about the balance between the exchanged data
quantity in each cluster. This metric is defined as follow:

E_De = Min(Com_Degree(p))/Max(Com_Degree(p))

Where p is a cluster of the architecture and:
ComDegree(p)=Bit_exchange(p)/Bit_exchange(GS)

Bit_exchange(p)=∑(ti,tj)∈(p)Task_bits_exchanges(ti,tj)

Where GS is the Global System and:

Task_bits_exchanges(ti,tj)=word_size×word_number×

execution_occurrence×exec_freq

Where ti is the task number i.

In other words, we first calculate the size of data exchanged in a
cluster p Bit_exchange(p) (data represented by circles in fig.4).
This data size corresponds to the sum of the size of all data
exchanged by the tasks in the cluster. Data transfer is calculated
based on the values associated to the edges. Bit_exchange(p)
corresponds to the data transferred by the edge multiplied by the
execution frequency of the task that produces this edge. Second,
we compare the data quantity in each cluster by dividing the
smallest quantity by the greatest one. If data quantity is balanced,
then the minimum is equal to the max, so E_De = 1.

Task

cluster1

Task

Task Task

Task

cluster2

Task

Task

Task

cluster3

Task

Task Task

Data exchanged
in a cluster

Data exchanged
between clusters

Connections
between clusters

Figure 4. Target clustering to optimize communications

4.1.2. Minimize data transfers between clusters

We make the assumption that “Transfers between clusters have a
great cost in time, power and area”. In fact, communications
between two tasks in different clusters use communication
resources within each cluster and the communication supports
between the two clusters, or a dedicated communication resource
(not shared) between the two tasks. In the first case,
communications between tasks, which are in the same cluster,
and communication between two tasks in different clusters are
blocked until the current communication ends to release the
communication resources. In the second case, there is simply an
additional cost in design time, power and area due to the
dedicated link.

To minimize the communication cost, clustering have to
minimize data transfers between clusters. To evaluate this point,
we propose two metrics. The first calculates the degree of
exchanged data quantity between clusters. This metric is named
Data Exchange Inter Cluster metric DEIC. The second
calculates the degree of connections between clusters. It’s named
Connection Inter Cluster metric CIC.

DEIC = 1–(Bit_exchange_IC/Bit_exchange(GS))

Bit_exchange_IC=∑(ti,tj)∈(p)[Task_bit_exchange(ti,tj);

if cluster(ti)•cluster(tj)]

Where Cluster(ti) corresponds to the cluster whose the task

ti belongs to.

This metric corresponds to the percentage of data, which are
exchanged between clusters (Bit_exchange_IC) in relation to the
total number of data in the system. If all data is exchanged
between cluster, the clustering is very poor, and the metric is 0.

CIC = Connection_IC/Connection_GS

Where Connection_IC and Connection_GS are respectively the
number of connections between clusters and within the global
system.

4.2. Memory metric

As known, larger memory size implies slower access time and
higher power consumption. Furthermore new technology as
reconfigurable architecture supports spatial distribution of the
memory resources (registers, memory bank…). So it’s more
interesting to distribute uniformly the memory used by the system
to get the less possible cost in time, area and power consumption.

We propose a memory metric Mem, which informs about the
better distribution of memory when it is equal to 1. This metric
evaluates the memory resources size needed within a cluster:
shared and local resources. For the local resources, the local
memory size LM_size is computed using DesingTrotter [11].
Shared memory resources is determined with the graph.

Mem = Min(Mem_Degree(p))/Max(Mem_Degree(p))

Where MemDegree(p) corresponds to the percentage of memory

used by the cluster p and:
MemDegree(p)=Mem_resources(p)/Mem_resources(GS)

Where Mem_resources(p) corresponds to the memory

resources required by the cluster p and:
Mem_resources(p)=LM_size(p)+shared_mem(p)

LM_size(p)=∑ti∈(p)[LM_size(ti)]; if ti ∈ p

shared_mem(p)=∑(ti,tj)∈(p)edge.Memorization(ti,tj)×Tas
k_bits_exchanges(ti,tj)

This metric evaluates from the graph the percentage of memory
used by each cluster and verifies the balance of memory
distribution (the value is defined between 0 and 1). This value is
1 when the memory is the same in each cluster.

4.3. Affinity metric

When a task has the highest affinity to a PE, its performance is
optimal when implemented on this PE. The optimal clustering in
each case, is the one that leads to build clusters of tasks having
the higher affinity to the same PE.

AFF = min(met_aff(p))

Where
Met_aff(p)=Ag(MaxA(p))(p)/Amax(MaxA(p),nbt(p))

Where Ag(PEj)(p)corresponds to the affinity of the cluster p

to PEj, and:

Ag(PEj)(p)=∑ ti∈(p)A(ti) (PEj) if ti ∈ p

Where A(ti) (PEj) corresponds to the affinity of the task ti to

PEj, this is the value defined in the specification graph. MaxA(p)

is the PE who has the maximal affinity to the cluster p.

MaxA(p) = PEj, if Ag(PEj)(p) ≥ Ag(PEk)(p) ∀ k

Where Nbt(p) is equal to the number of tasks in the cluster p.

Amax(PEj,n) is equal to the sum of the Nbt(p) higher affinity

to PEj of task in GS.

In other word, we calculate the affinity of the cluster, which
corresponds to the sum of the tasks affinity within the cluster. We
compare the maximal affinity value to a PE of the cluster with the
best affinity value that can have this PE in the whole application.

4.4. Throughput constraint metric

As shown on the specification graph, some tasks have a
throughput constraint. This throughput consists in the minimum
throughput that communication resources must have to support
efficiently the communication. This throughput must be imposed
to all tasks that share the same communication resources. So, if
another task in the same cluster has a different (higher or lower)
throughput constraint, the communication resources have at least
the higher throughput of the two tasks. As consequence, the
communication resources have to be over-designed and cost more
in time, power (frequency) and complexity. That is why the best
clustering has to distribute efficiently the throughput constraints.
We define the throughput constraint metric Tc as follows:

Tc = min (throughput_degree (p))

Where Throughput_degree(p)=Diff_throughput(p)/
Diff_throughput(GS)

Where Diff_throughput(p) corresponds to the difference

between the higher and the lower throughput of tasks in the

cluster p.

This metric calculates the degree between the different
throughput constraints in one cluster, which is computed by the
difference between the max and the min throughput in the cluster
Diff_throughput(p). To evaluate the efficiency of the distribution
of the throughput constraints we compare it with the difference of
the min and the max of all the system. This degree informs about
the good or not distribution of throughput constraints in one
cluster. As, the best is to maximize a global distribution on
clusters, we check the minimum value of all throughput

distribution. This value corresponds to the metric and enables to
analyze the throughput constraint distribution.

5. METRICS APPLICATION: UMTS

In this section, we validate the proposed metrics and we
demonstrate that they enable to make an efficient analysis of the
system performances at the tasks level. This validation is
performed using an UMTS application (uplink transmitter). To
apply these metrics we first specify the UMTS application using
the proposed tasks graph. Then, we perform several experimental
results on the UMTS application to demonstrate the efficiency of
these metrics to exhibit the different characteristics that we have
considered (communication, memory, throughput).

5.1. UMTS specification graph

In this section, we do not describe the algorithms of the tasks that
compose the UMTS application since we do not need this
information to perform our analysis. However, we suppose that
the affinity metrics have already computed by for example the
method proposed by Sciuto et al. [13]. To define the specification
graph, we only need to describe the data dependencies and tasks
proprieties as shown in figure 5.

The transmitter of the uplink terminal UMTS is composed of 14
tasks and 13 edges. Each task is labeled with a figure in order to
simplify the discussion about the results. As noted by ×4, task 1
and 2 are executed 4 times during one execution time of the
application. Tasks 3 to 8 are executed only one time and the other
tasks 15 times (tasks 9 to 14). Edges are labeled with the data
quantities that are transferred. Two values are associated with
each edge, one corresponds to the data emitted and the second
one to the data received.

The UMTS application is under a real time constraint since the
whole application has to be executed every 10 ms. It leads to
apply some throughput constraints to different tasks: task1 - 114
kbits/s, task8 - 37 Mbits/s, task10 - 15 kbits/s and task14 - 8
Mbits/s.

Concerning the specification of the application no other
information is required. The analysis can be performed.

5.2. Experimental results

In this section we have applied the metrics to different clustering
examples to show their ability to efficiently evaluate the

characteristics of the application.

PS

As a first example we consider a 2 clusters solution that is
described in table 1. The values presented in table 1 correspond to
intermediate results required to compute the metrics presented in
table 2. These intermediate values are presented in order to
enable the discussion that follows about the metrics. Note that in
the case of a real utilization of the metrics these intermediate
values are not provided to the designer.

 Cluster 1 Cluster 2
Tasks 1-2-3-4-8-13-14 4-5-6-7-9-10-11-12

Data (bits) 80368 80550
ComDegree(p) 0.4008 0.4017
Shared_mem(p) 39600 1200
Mem_dedree(p) 0.9705 0.0294

Min(tc) 116800 15000
Max (tc) 38400000 15000

Throughput
degree(p)

0.9969 0

Met_aff(p) 0.910714 1

Table 1. Characteristics of the application for a 2 clusters solution
In this example, the exchanged data quantity in each cluster is
nearly the same as shown in the Data line in table 1. Hence,
exchanged data is well balanced for this clustering example. This
result is highlighted by the E_De metric since its value is equal to
0.9977. It demonstrates the efficiency of E_De to evaluate the
good balance of data exchange in clusters. The inter clusters data
exchange is 39600 bits (or 19.74 percent of the total exchanged
data in the system). Hence, it is normal that the DEIC value is not
equal to 1 but to 0.8. However this value is close to 1 since even
if the solution does not correspond to the best one, it is still a
good compromise. We can say that the DEIC metric takes
correctly into account this trade-off. The same remarks can be
done for the CIC metrics.

MEM and TC, as shown in table 2 are nearly equal to 0. It means
that the considered clustering does not optimize the memory and
the throughput distribution. In fact, as shown in table 1, nearly
the totality of the memory requirements is in the cluster 1, and
nearly nothing in the second. So, the memory distribution is not
balanced. Furthermore, in cluster 1 there are 3 different
throughputs : 37 Mbits/s, 8 Mbits/s and 114Kbits/s that is close to
the minimum throughput of the application which is on cluster 2

Figure 5. Transmitter of a terminal UMTS

H
5120

2560
SCR

2560

2560

38400

SPRctrl
1010

2560

SU
2560

2560

2560
M

CST_SCR_code

SPR atad
801200 2560

2560DPCCH

IN 2T
1200

1200

slot/slot

frame/frame

INT1EQU
1200

1200
COD

1200

1200
SEG

1200

1200
CRC

1200

300
SRC

292

292
transport bloc

1 2 3 4 5 6 7 9

10 11

12
13 14

8

X 4 X 1

X 1

X 15

PSH
5120

2560
SCR

2560

2560

38400

SPRctrl
1010

2560

SU
2560

2560

2560
M

CST_SCR_code

SPR atad
801200 2560

2560DPCCH

IN 2T
1200

1200

slot/slot

frame/frame

INT1EQU
1200

1200
COD

1200

1200
SEG

1200

1200
CRC

1200

300
SRC

292

292
transport bloc

1 2 3 4 5 6 7 9

10 11

12
13 14

8

X 4 X 1

X 1

X 15

(15 kbits/s). Hence, the throughput distribution is also not
balanced for this clustering as shown by the metric TC.

E_De DEIC CIC MEM AFF TC

0.9977 0.8025 0.8461 0.0303 0.9107 0.0031

Table 2. Metrics for example 1

This first part has demonstrated the ability of the proposed
metrics to analyze the clustering efficiency. Below, we further
discuss this point since we show that when the number of clusters
is not adapted to the application some metrics are closed to 0. A
manual analysis of the UMTS specification graph shows that
exchanged data sizes are so different that it is not possible to
balance the exchanged data sizes when the system in partitioned
in 3 clusters. To demonstrate this analysis and to show the ability
of the E_De metric to detect such feature different examples of 3
clusters are considered in the following. In the table 3, each
clustering example is represented as a vector of 14 values, where
each value represents the cluster whose the task belongs to. For
example, in the first vector the task 1 belongs to the cluster1, task
2 to the cluster 1 … Table 3 presents the E_De value for these
different examples. As expected, the E_De value is always close
to 0.

Example E_De

11333322222211 0.0460

11111122223333 0.0104

11223311223332 0.0149

Table 3 . Some examples of 3 groups clustering
We can notice that even if the solutions are not efficient, we can
still compare them and for the considered examples, the first
solution is the best one.

The last part of the experimental results section focuses on the
ability of the metric to compare different clustering solutions. The
proposed metrics are very interesting to analyze and to compare
the clustering possibilities. In table 4 another example of a 2
clusters solution is proposed for which we have calculated the
metrics (and the intermediate results in order to discuss these
metrics) to compare with the first example discussed above.

 Cluster 1 Cluster 2
Tasks 1-2-3-4-5-6-7 8-9-10-11-12-13-14

Data (bits) 7168 192150
ComDegree(p) 0.0357 0.9582
Shared_mem(p) 1200 39600
Mem_dedree(p) 0.0294 0.9705

Min(tc) 116800 15000
Max (tc) 116800 38400000

Throughput
degree(p)

0 0.9996

Met_aff(p) 1 0.0004

Table 4. Characteristics of the application for a 2 clusters solution
In table 5 the different metrics are presented for that second
example. As we can see even if the DEIC, CIC and AFF metrics

are very good, this solution is not as efficient as the first one since
the E_De and the MEM metrics are lower than the values of the
first solution. Hence, thanks to these metrics it is straightforward
to compare different solutions.

E_De DEIC CIC MEM AFF TC

0.0373 0.9944 0.9285 0 0.9107 0.0031

Table 5. Metric for example 2

6. CONCLUSION

Due the complexity of both the applications and the systems,
classical codesign flows are not enough efficient to design SoC
system without first modifying the application or adding some
assumptions on the architecture. That’s why an earlier, fast and
automatic analysis step is essential to identify the application's
specificity in order to help the codesign flow.

To perform such an approach, we propose in this paper, several
metrics (communications, memory, affinity and throughput)
which allows analyzing the system characteristics at a tasks level.
These metrics are computed to evaluate the impact of the tasks
and application proprieties onto the performance and the costs of
the system. They don’t estimate the system costs as power, time
or area. But, they measure the impact that some application
proprieties as communication and memory sharing have onto the
system costs. They also measure the impact onto the system costs
of task proprieties (as task affinity) and of interaction between
task affinity within a cluster. Analyzing the application and the
task characteristics the designer can optimize the application for a
SoC codesign flow.

The metrics have been validated on an UMTS application.
Results have demonstrated that the metrics are able to evaluate
efficiency the characteristics analyzed and that they enable to
compare different tasks clustering solutions.

This work is part of a design space exploration approach
that has been developed within the DesignTrotter
environment. DesignTrotter starts from a task graph and
leads to the definition of the architecture (computing,
memory and communication resources) and the hardware-
software partitioning of the application. As the actual
researches, our research is focused on the new challenges
of embedded real-time system consequence of the new
technologies. This work is a first step of approaches which
is based on application analysis to predict the impact of the
application on the system performances and costs
independently of the technology and execution support.

7. REFERENCES

[1] “AMBA 2.0 Specification”, www.arm.com/armtech/AMBA

[2] “Peripheral Interconnect Bus architecture”,
www.sussex.ac.uk/engg/
research_groups/vlsi/projects/pibus/

[3] “The AVALON bus specification”,
www.altera.com/products/ devices/excalibur/features/exc-
nios_avalon_bus.html

[4] “Sonics µNetworks, Technical Overview”,
www.sonicsinc.com

[5] John Dielissen, Andrei Radulescu, Edwin Rijpkema, Kees
Goossens, " Concepts and Implementation of the Philips
Network-on-Chip", International workshop on IP based
system on chip design. Grenoble, France, November 2003.

[6] Peter Voigt Knudsen and Jan Madsen. Integrating
communication protocol selection with hardware/software
codesign. In IEEE Transactions on Computer- Aided Design
of Integrated Circuits and Systems, pages 1077–1095,
August 1999.

[7] Yannick Le Moullec, Nader Ben Amor, Jean-Philippe
Diguet, Mohamed Abid et Jean-Luc Philippe « Multi-
Granularity Metrics for the Era of Strongly Personalized
SOCs» Design, Automation and Test in Europe Conference
(DATE 03), Munich, Allemagne, 3-7 Mars 2003.

[8] L.Carro, M.Kreutz, F.Wagner and M.Oyamada, "System
Synthesis for Multiprocessor Embedded Applications",
DATE'00, Paris, France, Mar. 2000

[9] D.Sciuto, F.Salice, L.Pomante and W.Fornaciari, "Metrics
for Design Space Exploration of Heterogeneous
Multiprocessor Embedded Systems", CODES’02, Estes
Park, USA, May 2002

[10] B.P.Dave, G.Lakshminarayana and N.K. Jha, “COSYN :
Hardware software Co-synthesis of heterogeneous
distributed embedded systems”, In IEEE Transaction on
software Engineering, volume 7, mars 1999.

[11] B.P.Dave and N.K. Jha, “Casper : concurrent Hardware
software Co-synthesis of embedded system architectures”,
In book Design, Automation \ & Test in europe conf. Feb
1998

[12] F.Vahid and D.D.Gajski, "Closeness Metrics for System-
Level Functional Partitioning", EDAC'95, U.K, Sep. 1995

	ABSTRACT
	INTRODUCTION
	REVIEW OF RELATED WORK AND CONTRIBUTION
	Related work
	Contribution

	SPECIFICATION GRAPH
	METRICS
	Communication metrics
	Memory metric
	Affinity metric
	Throughput constraint metric

	METRICS APPLICATION: UMTS
	UMTS specification graph
	Experimental results

	CONCLUSION
	7. REFERENCES

