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Continuous advances in processor and ASIC technologies enable the integration of more and
more complex embedded systems. Since their implementations generally require the use of
heterogeneous resources (e.g., processor cores, ASICs) in one system with stringent design
constraints, the importance of hardware/software codesign methodologies increases steadily.
Interfacing heterogeneous hardware and software components together through a communica-
tion structure is particularly error prone and time consuming. Hence, on the basis of a generic
architecture dedicated to telecommunication and multimedia applications, we propose an
extended communication synthesis method that provides characterization of communications
and their implementation schemes in the target architecture. This method takes place after
the partitioning and scheduling phase and may constitute the basis of a back-end of a codesign
framework leading to HW/SW integration.
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tions]: Computer-Aided Engineering
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1. INTRODUCTION
The use of programmable processors and the advances in HW and SW
technologies have led to a generalization of digital systems in numerous
application domains (e.g., automotive, telecommunication). These systems
are generally dedicated to one application, since 98% of sold microproces-
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sors deal with embedded systems. Wireless and multimedia are typical
application examples and belong to the fastest growing industrial activity
today. The growth rate of GSM in the next four years will be over 300%,
from 280 million parts in 2000 to an expected 1 billion parts by 2003.
Moreover, the importance of the time-to-market constraint is becoming
commonplace because customer requirements are always increasing. Con-
sequently, the average time window for a new product may be as short as
18 months. The complexity of embedded systems is also growing and often
imposes the use of heterogeneous resources in a single chip (i.e., several
processor cores, coprocessors, dedicated functional units). Hence, codesign
methodologies of such systems must respect cost and performance con-
straints with a reduced time-to-market. However, due to the lack of a
general formalism able to provide models for various application domains
with efficient implementations, codesign methodologies concentrate on a
specific application domain with a dedicated generic architecture. Since we
focus on telecommunications and multimedia applications, we consider a
dataflow-oriented static model that permits us to describe a wide range of
applications in this area [Buck et al. 1994]. At each step in the design flow
(i.e., HW and SW estimation, partitioning, code generation, communication
synthesis, HW/SW integration), codesign methodologies target a generic
architecture composed of interconnected heterogeneous resources. For em-
bedded system design, it is of prime importance to develop methods that
minimize the area and delays induced by interconnections. We propose a
model of a generic architecture dedicated to embedded telecommunication
applications and an associated extended communication synthesis method.
This pairing, whose aim is to define efficient HW/SW integrated system
models, takes place during the back-end steps in codesign flow. Hence, to
provide high flexibility to this process, it is essential to define an efficient
architecture model that includes functionalities adapted to the require-
ments of the application domain and authorizes an automatic generation of
control patterns. The following section depicts state of the art architectures
for codesign and communication synthesis. Section 3 presents characteris-
tics of our generic architecture, including the communication scheme.
Section 4 details an extended communication synthesis method that pro-
motes synchronous transfers in the architecture to reduce the interconnect
area and introduces an HW/SW integration method. Before concluding, we
depict results of an audio decoder and an acoustic echo canceller.

2. STATE OF THE ART

Integration rates and chip sizes are increasing steadily every year. Hence,
design of very highly complex embedded systems in a single chip are
expected in the near future. Further, such core-based designs offer numer-
ous advantages [Kalavade 1995]: performance improvement, field and
mask programmability, and area and power reduction. The most relevant
work at the chip level is introduced in Kalavade [1995] and Van Rompaey
et al. [1996]. In Kalavade [1995] the target architecture consists of a single

A Codesign Back-End Approach • 493

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 3, July 2000.



programmable processor core and multiple hardware modules connected to
a single system bus. It is assumed that hardware and software components
communicate via a memory-mapped, asynchronous, blocking communica-
tion mechanism. The various components in the architecture are configured
as a globally asynchronous, locally synchronous model that enables each
component to be used at its maximum speed. However, this architecture
model targets single processor systems only, which may constitute a
limitation for complex application design. In COWARE [Van Rompaey et al.
1996], the integration of heterogeneous (e.g., DSP or microcontroller cores
from different vendors) and dedicated hardware modules into a custom
target embedded architecture is achieved by encapsulating each component
into a module template. Communications between components are through
a point-to-point communication structure. For example, a software unit
template is composed of three main components: the processor core itself,
an internal memory structure for storing the program instructions and
runtime data, and a hardware I/O unit that implements the hardware
communication interface to the external environment. Communication with
the external environment is accomplished through at least one input or
output port attached to the I/O unit. These ports implement channel
controls using a circuit-level handshaking protocol. However, this generic
protocol implies the duplication of transferred data and the point-to-point
connection limits the reusability of I/O ports.

One of the most important factors in selecting an architecture template is
the choice of the interconnect scheme to link the various modules together
[Srivasta and Brodersen 1995]. However, the task of interfacing the hard-
ware and the software components together to support communication
between them is particularly error prone and time consuming [Vercauteren
et al. 1996]. Hence, several efforts have focused on communication synthe-
sis at different levels of abstraction. Methods proposed by Nestor and
Thomas [1986]; Boriello and Katz [1987]; Hayati et al. [1988]; Narayan and
Gajski [1995] consider low-level descriptions of communication protocols
and take place after HW/SW partitioning. The synthesized hardware
interfaces are based on finite state machines with resource optimization. In
these approaches, designers need to have a precise knowledge of the
protocols being requested. For complex systems using heterogeneous re-
sources, these techniques may become inextricable. Thus, the following
work deals with communication synthesis at a higher level of abstraction.
In Daveau et al. [1995] and Narayan and Gajski [1994] the aim is to
maximize bandwidth utilization of buses by analyzing peak and average
data transfer rates over communication channels, but they do not consider
task scheduling that results from partitioning. However, this schedule
constitutes a set of timing constraints that communications must respect.
In Madsen and Hald [1995], channel synthesis uses a sequence of timed
events as specification, each event corresponding to a single data transfer.
Transfers of arrays are not supported by this approach. The most relevant
work for our problem is presented in Filo et al. [1993]. Interface optimiza-
tion attempts to maximize the use of the nonblocking protocols in order to
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minimize control logic on channels. But the side effects consist of control
delays introduced by both sender and receiver that impose a global refer-
ence clock.

3. AN ARCHITECTURE FOR CODESIGN

Our target architecture takes place at the chip level and promotes modu-
larity, reusability, flexibility, and uniformity. The principles stated by
Srivasta and Brodersen [1995] lead to a definition of an efficient generic
architecture for complex digital applications. This architecture encourages
(i) modularity, which means viewing the system as interacting hardware
and software modules with well-defined interfaces; (ii) reusability allows us
to use already defined modules in several applications with low overhead
cost; (iii) flexibility permits us to easily improve the architecture with new
modules in order to take late modifications into account in the design cycle;
(iv) uniformity enables us to make modules, whether hardware or software,
interact in a uniform way using a small number of well-defined communi-
cation mechanisms. Since defining an efficient architecture dealing with a
broad spectrum of applications is a very hard problem, better results can be
obtained if we consider a restricted application area. Hence, we must point
out the main characteristics of the targeted applications handled by a
codesign method. The important characteristics in embedded signal-pro-
cessing telecommunication applications under consideration are as follows:

● At the upper level, applications are generally modeled by functions
connected in a static dataflow style (as this model was successfully used
to model DSP-oriented systems [Lin 1996], e.g., the SDF/DDF domains in
PTOLEMY and the GRAPE II system). Commercial offerings include
SPW from Alta/Cadence, COSSAP from Synopsis, and the DSP-Station
from Mentor.

● Image and frequency domain processing leads to array or vector compu-
tation and communication, whereas time domain processing of monodi-
mensional signals implies scalar computation and communication.

According to these characteristics and principles, we propose a new generic
model for an architecture that matches efficiently embedded signal-process-
ing telecommunication applications. The control of each resource integrated
in the architecture is triggered by data arrivals. Several architectures
dedicated to signal processing [Corporall and Hooger 1996; Aarts et al.
1996; Yeung and Rabaey 1992] and to intensive numerical computing
[Jegou and Seznec 1986] using this mechanism have proven their effi-
ciency. However, they correspond to ASIP with operations at a low level of
granularity, which does not allow us to take into account the high complex-
ity of codesign applications. The proposed architecture can be composed of
several heterogeneous resources (e.g., DSP core, RISC core, coprocessor)
configured in a globally asynchronous locally synchronous computing
model. This model contributes to a modular and extensible architecture
because its overall control is distributed.
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3.1 A Generic Model of the Target Architecture

The template architecture can be composed of software, hardware, memory,
and interface components. Software components represent processor cores,
since telecommunication applications generally require several DSP and
RISC cores in a chip. For example, the VLSI VVS3670 system integrates
two cores, a RISC (ARM7TDMI) and a DSP (OAK). Hardware components
correspond to specific computation units issued by a library of cells or by a
synthesizer. Memory components consist of shared memory that may be
helpful in cases of high communication volume. Interface components
implement the hardware communication interface connecting the system to
the external environment (e.g., D/A converter). All these components have
their own internal memory and communicate through a bus structure.
Communication mechanisms are either synchronous using a handshaking
protocol or asynchronous. In the case of a synchronous communication,
both sender and receiver need to be synchronized during data transfer.
With asynchronous communications, data written by the sender is memo-
rized in a FIFO to make it available when the receiver is ready to read.
Since it is rather difficult to determine the communication interfaces
between heterogeneous resources, the components are encapsulated using
hardware wrappers and communicate through well-defined protocols. The
wrappers may result from a low-level description interface synthesis [Bori-
ello and Katz 1987]. Encapsulation is managed by the communication
interface as shown in Figure 1.

3.2 A Generic Model of Communication

Communication of the application is supported by the interconnection of
components through buses and managed by well-defined protocols. Using a
structure composed of buses instead of point-to-point connections is moti-
vated by the encapsulation of each component, allowing greater flexibility:
the communication interface associated with a component is not affected by
the number of connections to other components, since input and output
ports are only the result of the number of data channels imposed by the
component itself. Late modifications of the architecture do not imply a
redesign of the communication interfaces. Moreover, compared to a point-
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Fig. 1. Target architecture.
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to-point scheme, a bus-based interconnection allows communication sav-
ings for broadcasting [Yen and Wolf 1995]. For static applications, a
schedule of operations can be computed at compilation time. Consequently,
an optimized communication network using the minimum number of buses
can be defined.

Communicating through buses can be either synchronous or asynchro-
nous. Since a handshake protocol is used between the sender and the
receiver in a synchronous case, two control signals are managed by the
communication interface (i.e., request and acknowledge). The receiver
initiates the communication, and both sender and receiver use a blocking
protocol. In the case of asynchronous communication, the sender writes the
data to be transferred in a FIFO. Communication synthesis must verify
that at least one FIFO is always available with adequate memory to
contain all the transferred data. Thus, the protocol used by the sender is
nonblocking. The protocol associated with the receiver can be either block-
ing or nonblocking. The protocol is blocking if the receiver must check the
availability of data before reading from the FIFO . This situation may occur
when the receiver is faster than the sender. In return, if the data is
expected to be in FIFO, no verification is performed and a nonblocking
protocol is considered. The same I/O port can be used for synchronous and
asynchronous transfers, which allows for simple communication interfaces.
Generally, both types of communication are used to implement an applica-
tion as shown in Figure 1, where FIFOs and buses interact in the final
architecture.

3.3 Architecture Software Components

The architecture’s software components are based on processor cores and
are composed of four main units: the processor core itself (e.g., OAK,
ARM7, DSP56009), an on-chip internal memory (either on core or off core)
to store data and programs, a communication interface to communicate
with other components and mixed memory (Figure 2). Mixed memory has a
particular function in the component since it can be controlled either by the
processor core or by the communication interface. When communication is
initiated, the communication interface takes control of the address and of
the data buses connected with the mixed memory in order to manage
communication through the network. As long as communication proceeds,
the processor core cannot reach this memory. When the software compo-
nent performs an output, the data is read by the communication interface
from mixed memory and sent through the communication network. In the
case of an input, data issued by other components is written into mixed
memory. When communication is completed, the processor core can have
access to data in the mixed memory. This mechanism permits the use of
generic protocols through the communication network and avoids duplica-
tion of data in a dedicated buffer [Vercauteren et al. 1996]. Furthermore,
according to the processor core used, since communication generally corre-
sponds to memory-mapped access to mixed memory, an easy implementa-
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tion is made possible.When the processor core has dedicated I/O ports, the
communication interface can also handle transfers through the network by
buffering the corresponding data.

The software communication interface can be managed either in a
sequential mode or in an overlapping mode. The easiest strategy is the
sequential mode that consists of exclusive accesses to mixed memory. When
communication begins, the processor core configures the communication
interface using memory-mapped control registers and waits until the
transfer is completed to continue its computation. With the overlapping
strategy, communication and the computation are executed in parallel. In
this case, while the mixed memory is controlled by the communication
interface, the processor core can have access to its data memory to execute
its operations. This technique can only be applied if the transferred data is
not needed by the processor core to complete its computation.

3.4 Architecture Hardware Components

The architecture’s hardware components mainly correspond to three cate-
gories: computing, interface, and memory. These components are encapsu-
lated in order to use generic communication protocols to provide a stan-
dardized interface. The internal structure of hardware components is
similar to that of software, except for the use of a main controller that
manages the scheduling of communication and computation (Figure 3).
This controller, adapted to each category of hardware component, config-
ures the communication interface and activates the functional unit to
execute one of its associated functions. All the communication and function
activities performed by a hardware component during the execution of an
application are stored in the instruction memory associated with the main
controller. Thus, the functional unit corresponds to a data path and an
internal controller triggered by the main controller.

4. COMMUNICATION SYNTHESIS AND HW/SW INTEGRATION

The codesign back-end has two phases: communication synthesis followed
by HW/ SW integration. In this approach, the communication synthesis
problem is addressed as a characterization of the communication involved
in the application. At this step, only a general model of architecture is
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Fig. 2. A generic model of software components.
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considered. The extended synthesis method detailed in this paper is based
on a refined communication model that achieves accurate synthesis (com-
pared to Freund et al. [1997]). The aim of HW/SW integration is to optimize
communication resources and to generate the corresponding controls, de-
pending on the target architecture. Communication synthesis and HW/SW
integration occur after the partitioning and scheduling phase, allowing the
use of various partitioning heuristics.

4.1 Graph Model of Partitioned Applications

Static signal-processing applications can be modeled by a direct acyclic
graph where nodes represent computations and edges correspond to data
dependencies. By G~V, E! we denote the graph of the application after
partitioning and scheduling. An edge ei, j [ E between two nodes Vi, , Vj [ V
denotes a dependency. Three types of dependency are considered: temporal,
functional, and internal. A temporal dependency (TD) edge connects two
nodes that do not communicate but are allocated to the same component.
This link describes the order of node execution imposed by scheduling.
Functional dependency edges (FD) represent data transfers between nodes.
These edges are annotated with volume di, j and word size (Ldata) of
transferred data. An internal dependency (ID) edge connects two communi-
cating nodes implemented on the same component. In this case, no trans-
fers are needed since the data is stored in the internal memory of the
component.

4.2 Communication Synthesis Flow

The aim of communication synthesis is to minimize the amount of re-
sources and overhead due to communication delays, while respecting the
designer’s constraints. The communication characteristics used for the
synthesis are based on a general model of architecture in order to evaluate
communication implementations on several architectures, and are defined
by the following features:

● the transfer mode (i.e., overlapping or sequential);

● the transfer type (i.e., synchronous or asynchronous);
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● communication supports and protocols (i.e., memory, bus; blocking, non-
blocking).

With the overlapping transfer mode, a communication and a computation
thread can be executed in parallel using, for example, a DMA mechanism or
the mixed memory of our model (Section 3.3). When processors do not
support DMA or equivalent transfer modes, only sequential executions are
considered. The transfer type corresponds to the execution scheme (i.e.,
synchronous or asynchronous). Communication supports are the hardware
resources required to execute the set of data transfers resulting from
allocation and scheduling of the graph on componenets of the architecture
(i.e., memory, bus). The protocol associated with a communication can be
blocking or nonblocking. A blocking protocol must be selected if the consis-
tency of data is not guaranteed by a nonblocking protocol. Figure 4
represents the synthesis flow that is divided into two main tasks. The first
one characterizes each communication in the partitioned and scheduled
graph, whereas the second task optimizes the number of resources and
determines the set of controls required to manage communication. This last
task is architecture-dependent and leads to the complete overall definition
of the final target architecture.

4.2.1 Characterizing Communication Edges. The main task in charac-
terizing communication is determining the transfer type, since this maxi-
mizes the number of synchronous communications, and consequently mini-
mizes the number of FIFOs. Two evaluation methods are addressed in
order to reach this goal, based on a global and a fine behavioral model of
the system. The global model is introduced in Freund et al. [1997] and is
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based on the usual communication and execution model [Lee and Messer-
schmitt 1987]. As shown in Figure 5(b), this model, in a single time frame,
merges the computation (i.e., Texei) and communication times (i.e., send
times tei, j and/or receive times trij) associated with a node in the graph.
For example, node V1 sends data to V3, V4, V5, hence its new execution time
corresponds to its computation time increased by the three data emission
delays. With this model, the execution of a node can only start when all the
data produced by its preceding nodes is transferred. Hence, communication
synthesis is based on a global model of communication. In the fine evalua-
tion method, the communication model does not merge computation and
communication, leading to a more realistic behavioral description of the
system (Figure 5(c)). Furthermore, a single communication time tsyni, j,
corresponding to the elapse time induced by the data transfer, is consi-
dered. This fine model permits a global and a local optimization of commu-
nication, since each data transfer associated with a node is locally ordered
before scheduling the whole sequence of transfers. This point is detailed in
the sequel. Since the global evaluation approach has been published in
Freund et al. [1997], we focus mainly on the fine evaluation method.

Communication synthesis starts with an estimate of all the transfer
times associated with communication edges (i.e., functional dependencies)
of the partitioned graph. These communication edges correspond to data
transfers between the different instances of the architecture (e.g., DSP and
RISC, DSP and a coprocessor). With a general model of architecture, these

Fig. 5. Execution schemes for communication.
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estimates represent the data transfer times of the sender ~tei, j! and the
receiver ~tri, j!, and are given by

Tcom 5 di, j 3 Ldata

Lbus  3 Nc 3 Tc

where Tcom is either tei, j or tri, j, di, j represents the amount of data to be
transferred between the sender and the receiver; Ldata corresponds to the
size of the data; Nc is the number of clock cycles to access a data; Tc is the
clock period of the processor or coprocessor; and Lbus corresponds to the
communication bus size. Since the aim of communication synthesis is to
promote synchronous communication, the communication time tsyni, j be-
tween two nodes Vi and Vj is estimated as the maximum of the sending and
the receiving times, e.g., the slowest instance imposes its communication
rate with a handshake protocol.

The fine evaluation model illustrated in Figure 5(c) leads us to resche-
dule nodes in the graph in order to take into account data transfers
between components. This is achieved by computing a preliminary schedule
of data transfers in a sequence of communications associated with a node.
The order of analysis of these data transfers is given by scheduling rules.
On the sender, these rules first schedule the outputs of data corresponding
to functional dependency edges (Figure 6(a)). We assume that the execution
time of a node depends on the amount of data consumed. Therefore, the
highest priority level Pe~i, j! 5 1 is associated with the edge with the
longest communication time in order to promote execution of time-consum-
ing nodes. Priorities for other edges are set up according to their decreasing
communication times. The receiver can only start if temporal and internal
dependencies are verified, hence the highest priority level Pr~i, j! 5 1 is
associated with these edges (Figure 6(b)). For the remaining edges a
decreasing rule is used again.

Local scheduling attempts to maximize the use of synchronous transfers.
However, even with local rescheduling, it is not always possible to use only
synchronous communication [Gogniat 1997]. In such cases, asynchronous
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communication is required, and both transfer types are implemented in the
final architecture (see, for example, Figure 1). The algorithm is based on
two functions: node_characterization and edge_characterization. For each
node Vi node_characterization computes its mobility interval DM2Vi defined
as the interval between the ASAP starting time tsASAPi and the ALAP
ending time teALAPi of Vi. Computing interval mobilities takes into account
timing constraints and local scheduling associated with nodes. Determina-
tion of ASAP node starting time and ALAP node ending time is presented
in Figure 7. For each node Vi all the predecessors and all the successors are
scanned in order to define tsASAPi and teALAPi.

Edge_characterization computes the mobility value Mei, j of a communi-
cation edge ei, j defined as the difference between teALAPi and tsASAPi. If
tsASAPi . teALAPi then Mei, j is negative and the communication is asynchro-
nous, since there is no timing overlap between the sender and the receiver.
Otherwise the communication is considered as potentially synchronous.
The edge_characterization function also provides a cost value jei, j for the
edges with a potential synchronous communication that represents the
ratio of the amount of data di, j transferred through this edge and its
mobility value. Edges with the highest cost values are considered first,
since a better hardware minimization is expected if a synchronous transfer
mode is associated with these edges.

The algorithm for determining the transfer type with the fine evaluation
method is similar to the one with the global evaluation model [Gogniat
1997] (except the evaluation of node_characterization and edge_character-
ization functions) and is briefly described here (Figure 8). First, nodes and
edges are characterized. An edge ei, j is labelled when a transfer type
(synchronous or asynchronous) is assigned to this edge. Edges with asyn-
chronous communication (i.e., Mei, j , 0) are labelled and are not consid-
ered further. The ordered list L of potential synchronous edges is created
according to jei, j. Nodes Vi and Vj corresponding to the first nonlabelled
edge ei, j of L are scheduled preliminarily (local rescheduling). The impacts

Fig. 7. Determining the ASAP node starting and ALAP node ending times.
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of this schedule on other communication edges are analyzed by character-
izing nodes and edges again. If any communication edge ek, l (k Þ i and l
Þ j) becomes asynchronous, ei, j is definitively scheduled and is labelled
with a synchronous transfer. Otherwise another nonlabelled edge ei, j from
L is considered. The process is iterated until all the communication edges
that have no impact on other edges are labelled.

After this step, the remaining potential synchronous edges in L involve
at least one asynchronous communication. Let zi, j be the cost function
associated with ei, j, defined as the ratio of the total volume of data
associated with edges of L that remain asynchronous and the total volume
of data associated with edges of L that become synchronous. The edge ei, j

of L with zi, j minimum is labelled with a synchronous transfer, since the
objective is to minimize the area dedicated to FIFOs.

The next step in communication synthesis flow outlines the nature of
communication protocols and resources. For a synchronous communication,
only one bus is required to support the data transfer between the sender
and the receiver, but with an asynchronous communication three resources
are necessary: the bus from the sender to the FIFO, the FIFO itself, and
the bus from the FIFO to the receiver. All these resources are characterized
by their width, throughput, and the depth of the FIFOs. A sender and a
receiver involved in a synchronous transfer use a blocking protocol. With
an asynchronous transfer, the receiver can use either a blocking or a
nonblocking protocol (see Section 3.2). The sender uses a nonblocking
protocol, since memory elements (FIFOs) are available. This ends the
communication characterization task: all communications are character-
ized with their mode, type, resource(s) and protocol(s).

4.2.2 Communication Implementation Task. The communication imple-
mentation task corresponds to HW/SW integration, which depends on the
target architecture. The aim of this task is to minimize the number and the
size of memory units and buses required in the communication network to
support all the data transfers [Gogniat 1997]. In order to merge communi-
cation resources with exclusive lifetimes, we use an extended weighted

While  all the communication edges are not labelled do
For  each potential synchronous communication edge in the list L do
 Preliminarily schedule the next edge ei,j that is not labelled;
Analyze the impact of that solution on other communication edges;

If no asynchronous communication edges is revealed then
Schedule denitively the edge ei,j;
Label the edge ei,j with a synchronous transfer;
Reorder the list L; -- local rescheduling may alter mobilities of other edges
End if ;

End for ;
Denitively schedule the edge ei,j that have the lowest cost function ζi,j;
Label the edge ei,j with a synchronous transfer;
Remove asynchronous communication edges from the list L;
Reorder the list L;

End while ;

Fig. 8. Algorithm for determining transfer type.
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bipartite matching algorithm [Gajski et al. 1992]. With the target architec-
ture (see Section 3.1), this step leads to the minimization of FIFO and bus
hardware costs. Next, data is distributed between internal and mixed
memories of components, according to possible overlapping execution of
transfers and computations. Control resources (e.g., buffer, multiplexer)
necessary to control the communication network are also determined.
Then, for each component allocated to the executions of several nodes and
edges, the sequences of computation activations and communications are
generated. All these operations end the HW/SW integration of the applica-
tion. Hence, starting from a partitioned and scheduled graph, the proposed
approach first performs the communication synthesis that characterizes all
the communications of the application according to a general architectural
model, and then integrates the HW/SW, which defines the optimized
communication network and the set of controls associated with each
component in the final target architecture. This last step is architecture-
dependent, and must be adapted to the model of the target architecture.

5. DESIGN RESULTS

To illustrate the principles of this codesign back-end, we consider two
applications. With a simplified AC3 audio decoder we show the ability of
the communication characterization step (Figure 4) to assist the designer
in selecting an architecture model. The second application, a frequency
domain block adaptative algorithm for acoustic echo cancellation (GMDFa),
illustrates the full communication synthesis flow depicted in Figure 4.

5.1 Simplified AC3 Audio Decoder

The dataflow graph of a 3–channel AC3 audio decoder [ATSC 1995]
corresponding to worst-case behavior is depicted in Figure 9 with execution
times (ms) and area values for HW and SW implementation. Software
execution times are estimated values using the Motorola DSP56009. Values
for SW and HW areas are given in gate equivalents. The software area of a
task corresponds to the size of the RAM and ROM memory required to store
the task’s variables and instructions. The size of the DSP core is not
included in area values. After partitioning and scheduling the specification,
we retain four potential solutions satisfying a time constraint of 2ms. The
communication characterization step produces the results given in Table I.
Communication is supported through a single bus in the four architectures.
Only the simplest architectures (i.e., 1 and 2) require a memory unit to
store data due to asynchonous transfers. Despite this additionnal memory
cost, architecture 1 has the lowest gate count. Compared to other solutions
this architecture realizes the best execution time/area tradeoff. These
results also show that solutions with a high degree of parallelism (i.e., 3
and 4) induce an interconnection structure without memorization. This is
due to the fact that a higher tasks mobility is the result of a lower unit
utilization rate. This example highlights the capacity of the communication
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characterization method to quickly evaluate potential implementations,
including communication.

5.2 Acoustic Echo Cancellation

The GMDFa algorithm is shown in detail in Freund et al. [1997], which
also shows a partitioned task schedule. From this schedule an optimized
hand-crafted approach and the method presented here were applied to
synthesize communication and to perform HW/SW integration in the final
architecture. In the hand-crafted design, the components of the architec-
ture are directly connected to each other without using encapsulation
through the generic interface. The timing characteristics of the hand-
crafted approach are the result of logic simulation and synthesis. The
global and fine evaluation methods were applied in order to compare both
models. The solutions are close, since all the transfers are implemented
using synchronous communication on a single bus. Moreover, several
communications took advantage of the overlapping scheme in order to
reduce global timing overhead costs. The estimated schedules and the real
one provide similar execution times, as shown in Table II. However,
communication synthesis using the global evaluation method provides
overestimated communication delays, since there is a difference of 70%
between the estimated solution and the real one. The behavioral model in
the fine evaluation method provides a more realistic estimate of communi-
cation times, since a difference of 34% is obtained compared to the hand-
crafted result.

Finally, the automatically constructed architecture and the manually
optimized one lead to a similar hardware area (Table II). Even if the
distributed control and the generic communication interface integrated in
each component contribute to an increase in the area (i.e., 0.45 mm2

instead of 0.15 mm2), this augmentation is still negligible (i.e., less than
0.5%), compared to memory and data path areas. Figure 10 represents the
target architecture with the communication interfaces, the mixed memo-
ries, and the main controller associated with each hardware component.

Table I. Architecture Characteristics

Solutions 1 2 3 4
Units DSP, BA DSP, BA, DM Exp, BA, DM,

DC, RX, Itdac
DSP, 2xBA,
Exp, DM, RX

Execution time 1778 858 711 452
Nb Bus 1 1 1 1
Nb memorization unit/size 1/768x4 bits 1/512x16 bits 0/0 0/0
Sync./Async. Transfers 3976/768 5216/512 7008/0 6752/0
Area HW/SW 2119/1557 2816/1362 8091/0 5903/637

Memorization unit 490 1300 0 0
Total 4266 5478 8091 6540
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6. CONCLUSION AND FUTURE WORK

The proposed codesign back-end performs communication synthesis and
resource optimization from a static partitioned/scheduled graph and a
generic modular architecture in order to provide a dedicated realistic
signal-processing embedded architecture. This architecture presents inter-
esting features for embedded systems, since it is integrated in a single chip
and encourages component reusability by encapsulating computation units
in hardware wrappers with a standard external interface. A generic com-
munication network built on a bus-based scheme constitutes the underly-
ing communication model. Furthermore, in order to avoid error-prone and
time-consuming manual determination of interfaces between heteroge-
neous components of the architecture, an extended communication synthe-
sis method is defined. This new method has proven its efficiency on static
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Fig. 9. Flow graph of a simplified AC3 audio decoder.

Table II. Comparing the Final Results

After communication
synthesis (fine

estimate)

After communication
synthesis (global

estimate)
After communication

synthesis (real)

Hardware area 6.97 mm210.45mm2 6.97 mm210.45mm2 6.97 mm210.15mm2

Execution time 6683 ms 6722 ms 6800 ms
Communication time 550 ms 700 ms 411 ms
Processor utilization

rate
92.7% 92.2% 91%

Hardware unit
utilization rate

14.5% 14.4% 14%
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Fig. 10. Target architecture for the GMDFa application.
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applications and permits a better estimate of the communication schemes
implemented in the final architecture. However, this static model may be
inadequate for dealing with multimedia and telecommunication services
that require complex controls due to the key role of user interaction and
environmental data communication, coupled with sophisticated signal pro-
cessing. Hence, our work will be extended in order to take dynamic
application execution schemes into account.
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