
A generic multi-unit architecture for codesign methodologies

Guy GOGNIAT, Michel AUGUIN, CCcile BELLEUDY

13S, UniversitC de Nice SophirJAntipolis - CNRS, 41 Bld. Napoleon III 06041 Nice
Cedex, France. - “name”@alto.unice.fr

Abstract: This paper introduces a template architecture for codesign methodologies. This architecture
is based on a data synchronized control scheme that is well adapted to the implementation of numerous
telecommunication applications specified with a data frow model:The template architecture permits an
easy integration of HW and SW coarse grain units. Communications between internal units are assumed
to have an asynchronous protocol that is the more general transfer mechanism but also the more ex-
pensive in hardware resources. Hence, a communication synthesis method is presented that transforms
asynchronous communications into synchronous ones. Results on an acoustic echo canceller illustrate
the interest of the approach.

1. Introduction

The complexity of embedded systems for multimedia and wireless applications imposes the use of het-
erogeneous resources (i.e. processor cores, dedicated functional units). Codesign methodologies of such
systems must respect cost and performance constraints with a reduced time to market. The need for co-
design techniques results from the increasing complexity of applications and the advances in HW and
SW technologies. Due to the lack of a general formalism able to provide models for various application
domains with efficient HW or SW implementations, codesign methodologies focus on a specific appli-
cation domain with a dedicated generic architecture. For example, codesign methods consider generally
a template architecture composed of a single processor and an ASIC [5],[7],[10]. But, with current ad-
vances in VLSI technologies, vendors propose systems on a chip composed of a DSP core, a RISC core
and customized hardware cells. This limit of two processors on a chip will be widely overstepped short-
ly. Hence, more general architecture models targeted by codesign or system synthesis methodologies
have to be investigated. Generally, the more template architectures are targeted to a restricted set of ap-
plications, the more efficient implementations can be achieved. But, codesign methodologies that focus
on a too restricted application domain are somewhat uninteresting. Therefore, trade-offs between appli-
cability and efficiency have to be explored. Since we focus on telecommunication and multimedia ap-
plications we consider a data flow oriented static model ([3] for example) that permits to describe a wide
range of applications. In this paper a template architecture adapted to application and technology re-
quirements is introduced. The following section depicts characteristics of this architecture. Section 3
presents a communication synthesis method that promotes synchronous transfers in that architecture to
reduce the interconnect area. Before concluding, results about an acoustic echo canceller are depicted.

2. Template architecture for codesign

A static data flow model of an application can be described by a directed acyclic graph where nodes
correspond to tasks of the application and edges represent data transfers between tasks. In this paper we
focus on a coarse grain task model of applications. Generally, codesign techniques [2],[13],[7],[5], be-
gin with a HW/SW partitioning of tasks which provides an assignment of implementation units to tasks.
Some partitioning techniques are based on scheduling algorithms [9],[11]. The partitioning must take
into account a target architecture in order to provide realistic solutions.
Our target architecture is based on the DSPA (data synchronized pipeline architecture) architecture [8]
which was developed for high performance scientific computing. The initial DSPA model is composed
of functional units (ALU, Mul, Mem,...) receiving their instruction flows through FlFOs from a VLIW
type instruction memory. An instruction is executed by a functional unit (FU) as soon as data are avail-
able on its input ports. Outputs and inputs of PUS are connected through an incomplete crossbar net-
work. Each crosspoint corresponds to a FIFO. This model presents attractive characteristics:

1. PUS may be asynchronous since they are synchronized on data arrivals. Then, communications
between FUs are asynchronous. The Siera template architecture [12] considers also this ap-
proach to avoid the distribution of a global clock over the whole system.

2. Since FUs have a local data flow behavior, the mapping of a data flow model is facilitated.
3. Pipelining techniques can be applied to speed-up computations on data flows.

23
0-8186-7895-X/97 $10.00 0 1997 IEEE

4. PUS are controlled and interconnected with the same scheme, including communication ports.
This facility allows to consider heterogeneous Fus in the same structure: for instance DSP and
RISC processors and pre-designed Fus.

The DSPA model is a good candidate for codesign methodologies dealing with telecommunication and
multimedia applications. Analog architectures where computation and memorization units are modeled
at a fine grain level have already been developped for video and signal processings [4],[I]. The control
scheme of these architectures allows an efficient mapping of the specification but the important use of
PIPOs constitutes a major drawback for embedded system design. Therefore, refinements and improve-
ments to the basic model are required to get a real template architecture for HWBW codesign.

2.1 Control scheme of the model

Since Fus are either processor cores or pre-designed units, they cannot be controlled efficiently with a
fine grain VLIW type instruction. Hence, a main controller (MC) is associated with each FU. This con-
troller ensures the execution of corresponding instructions that are stored in a local instruction memory
(Fig. 1 0). More precisely, the partitioning and the scheduling of tasks or nodes of the data flow graph

IM: Instr. Memory
MC: Main Contmller

Fig. 1 l The considered target architecture
of the application [lO],[1 l] provide coarse grain instruction segments for each F’IJ. A coarse grain in-
struction contains information required to execute the operation: the location of the input or output data
crosspoints in the communication network, indication of associated protocols to perform their transfers,
and, if the unit supports several operations (for instance, FFT and FFT’), the op-code of the operation.
The main controller sends to the PU this instruction and wait for an end of execution before sending the
next one. Since we consider applications with a static behavior, only a global loop involving all instruc-
tions is required in the main controller. In order to facilitate the I-N/SW system integration, we assume
that all HW or SW Fus have this common interface with the network and the main controller. Therefore,
input/output data transfers and PU’s computations are considered to be internal to the NJ, controlled by
a specific controller (Fig. 2 l) or by a program memory of a core processor. This specific controller has
in charge the management of network protocols and control signals of the FU.

Fig. 2 l Control structure of functional units

2.2 Communication model

In the initial DSPA model, interconnection crosspoints are FIFO queues. This asynchronous communi-
cation model leads to an ASAP (As Soon As Possible) execution style of operations by PUS. Since con-
sidered applications have a static behavior, a fixed scheduling of operations may be defined during
partitioning. Then, some communications may be changed into synchronous transfers (rendez-vous
mechanism) without overstepping timing constraints. The protocol associated with a transfer can be
blocking or non blocking. The protocol is blocking if before reading or writing into a crosspoint the PIJ

24

must check availabilities of data. With a non blocking transfer no verification needs to be done. To limit
the cost due to FIFOs, the static schedule of tasks has to minimize the use of asynchronous communi-
cations. This point is addressed in the following section.

3. Communication synthesis

After partitioning communication edges represent links between HW and SW units, between different
SW units or different HW units. Communication synthesis consists in determining for each communi-
cation edge the type of transfer (i.e. synchronous or asynchronous), the communication resources, the
transfer protocol (blocking or non blocking) and the transfer mode (DMA or memory mapped I/O for
processors). As mentioned above, the raw template architecture considers asynchronous communica-
tions with FIFOs. Hence, it is of prime importance to minimize their use in order to reduce communi-
cation resources. In the sequel, we address this point and details on other steps of the communication
synthesis flow can be found in [6].
The communication synthesis method assumes that after partitioning a schedule of tasks on FUs is pro-
vided. The aim is to transform asynchronous communications into synchronous ones by local resched-
ulings. Fig. 3 l a,b and c depict an example of a feasible rescheduling whereas Fig. 3 l d,e and f illustrate
the case of an imposed asynchronous communication.

tioned graph.

b. Initial sc@d@ing of the graph without
~0mm~m~at~0n optumwt~on.

software unit
hardware unit

e. A timing constraint is set up on task 7.
. .

synchronization loop

c. With a synchronization between node 3 and 4
the communication becomes synchronous, without FIFOs.

Fig. 3 l Local rescheduling of nodes
1. Rescheduling node 5 is not feasible.

The algorithm is based on two functions: Nodecharacterization and Edge-characterization. For each
node Vi Node-characterization computes the mobility interval AMaVi defined as the interval between the
ASAP starting time ~(AsAp)i and the LAP ending time te(Aup)i : A~-vi = [fs~AsAp)i,fe(A~p)j]. COm-
putations of interval mobilities take into account timing constraints. *Edge-characterization co.nfputes
the mobility interval AMei,j of a communication edge ei,! and its moblhty value Mei,j. The mob&y m-
terval represents all the instants where a communication between two nodes Vi and Vj can take
place: AMei,i = [fs(ASAP))fe(A/!.AP)i]* The value ?s(ASAP)j p re resents the ASAP starting time of the node
that receives data and the value te(Aup)j re p resents the ALAP ending time of the node that sends data.
The mobility ValUe Mei,j iS equal t0 te(Aup)i - tS(~s~pa. If ?s(ASAP)j > te(Aup)i then Mei,j iS IlegatiVe and
the communication is asynchronous since there is no timing overlap between the sender and the receiv-
er. Otherwise the communication in considered as potential synchronous.
The Edge-characterization function also provides a cost value 5eij for edges with a potential synchro-
nous communication and represents the ratio of the amount of data that is transferred through this edge
(volume of communication Veij) and its mobility value: &i,j = Vey / Meij. Edges that have the highest
cost value are considered first iince if communications associated with these edges are synchronous a
better hardware minimization is expected.
The algorithm (Fig. 3 0) operates as follows. Firstly, nodes and edges are characterized. An edge eij is
labelled when a transfer type (synchronous or asynchronous) is assigned. Edges with asynchronous
comnnmications (ts(ASAp)j > tc(mp)i i.e., Meij <0) are labelled and are not considered for the remain-
der. The ordered list L of potential synchronous edges is created according to &i,j, Nodes Vi and Vj cor-
responding to the first non labelled edge eij of L are preliminarily scheduled (local rescheduling).

25

Impacts of this schedule on other communication edges is analyzed by characterizing nodes and edges
again. If any communication edge ekl (k#i and Z+) becomes asynchronous, ei,j is definitively scheduled
and is labelled with a synchronous transfer. Otherwise another non labelled edge ei,j from L is consid-
ered. The process is iterated until all the communication edges that have no impact on other edges are
labelled.
After this step remaining potential synchronous edges in L involve at least one asynchronous commu-
nication. Let Gi,j be the cost function associated with ci,j defined as the ratio of the total volume of data
associated with edges of L that become asynchronous and the total volume of data associated with edges
of L that remain synchronous: si,j = c data of asynchronous edges I c data of synchronous edges. The
edge ei,j of L with C,j minimum is labelled with a synchronous transfer since the objective is to minimize
the area dedicated to FIFOs.

While all the communication edges are not labelled do
For each potential synchronous communication edge in the list L do
Preliminarily schedule the next edge eij that is not labelled;
Analyze the impact of that solution on other communication edges;

If no asynchronous communication edges is revealed then
Schedule definitively the edge eij;
Label the edge eij with a synchronous transfer;
Reorder the list L; -- local rescheduling may alter mobilities of other edges
End it

End for;
Definitively schedule the edge eij that have the lowest cost function cij;
Label the edge eij with a synchronous transfer;
Remove asynchronous communication edges from the list L;
Reorder the list L;

End while;

Fig. 4 l Communication synthesis algorithm

4. Example: GMDFo:

To illustrate the principles of this generic architecture we consider a frequency domain block adaptative
algorithm for acoustic echo cancellation (GMDFo). The flow graph is depicted in Fig. 5 l , The prece-

SW HW Scheduling 56002 Hardware
Nodes Nodes begin -> end (ps) operators

0 0 -> 86 FFr
1 87 -> 5.58
2 5.59 -> 1288
3 1289 -> 1758
4 1759 -> 1820

!7.2...7.8l 1 2456->...->5743 1 I -_ --__ --_-_____----- _---

Fig. 5 l Flow graph of GMDFa and partitioning

5744 -> 5840 PPT, Adder
5840 ps FFT, Adder

dence constraints between two nodes are expressed by an edge. On each edge, the name and the volume
of data are given. A dotted line means that this data will be used at the next iteration of the algorithm.
Node 0 computes an FFI on the input signal (XT). Node 1 is a normalization block. The output of node
2 gives the estimated output in the frequency domain (Qx which denotes arrays Qr and Qi of complex
values) by a convolution product, and after an FFT’ (node 3), we obtain the estimated output in the time
domain (Ytest). The difference between the desired output (YT) and the estimated output is calculated
in node 4. Node 5 provides the echo (YF). Node 6 transforms the error signal (Et) into an error signal
in the frequency domain (Ex) by one FFT. In nodes 7.i and 8.i, (i=l..k) filter coefficients are computed
by FFT and FFT’ operations of each elementary cells. In Fig. 5 * is given a HW/SW partitioning of the
flow graph [1 I]. This partitioning attempts to minimize the hardware area with a timing constraint of 8

26

ms. The software unit is a DSP56002 processor and the hardware part is composed of a FFlY operator,
an adder and two data memories Hr, Hi (Fig. 6 *.a).
Before synthesis of communications all units are connected through FIFOs placed in a network of six
bus. The schedule of application nodes allows to label all communication edges with a synchronous
transfer mode avoiding FIFOs. With the knowledge of timings of data transfers, a minimization of the
number of bus can be performed (for example with a graph coloring method) and the network can be
reduced to only two bus (Fig. 6 l .b). This example illustrates that the template architecture is designed

All the crosspoint connecum use the synchro-
now transfer mode

cttmc interface

architecture

Fig. 6 l HW/SW architectures for GMDFa.

to support a general communication mechanism through FIFOs but the particularization induced by the
knowledge of a specific application can lead to efficient implementations.

5. Concluding remarks

In this paper a generic architecture for HW/SW codesign methodologies is presented. Main character-
istics of this model include asynchronous behaviors of functional units with synchronizations on data
arrivals, common encapsulation of functional units that allows easy extension capabilities and integra-
tion of heterogeneous HW/SW units. But the communication model can lead to excessive communica-
tion resources, therefore a communication synthesis method that performs local reschedulings of
transfers, permits to replace asynchronous communications involving FIFOs with synchronous transfers
supported by bus. Our template architecture is therefore a good candidate model for codesign method-’
ologies dealing with applications with a static behavior. For applications with a dynamic behavior, im-
portant extensions to this model are required and are area for future works.

6.

Ill
121
[31

[41

151

161

[71

181

[91

I101

[ill
114
[131

References

AARTS E.H.L., ESSINK G., De KOCK E.A. Recursive bipartitioning of signal flow graphs for programmable
video signal processors. Eurq~un Design and Test Conference, pages 460-466. Paris, March, 1996.
ADAMS .I. K. and THOMAS D. E. The Design of Mixed Hardware/Software Systems. DAC. Las Vegas, NV,
USA, june, 1996.
BUCK J., HA S., LEE E.A., MESSERSCHMI’IT D.G. Ptolemy: a framework for simulating and prototyping het-
erogeneous systems. Int. Journal of Computer Simulation: special issue on Simulation Sofhvare Development.
4april.1994.
CORPORAAL H., HOOGERBRUGGE J. Cosynthesis with the MOVE framework. CESA’96 IMACS Multicon-
ference, pages 184-189. Lille, France, july, 9-12, 1996.
ERNST R., HENKEL J., BENNER T. Hardware-Software Cosynthesis for Microcontrollers. IEEE Joumuf
Design and Test of Computers. 64-15, december, 1993.
GOGNIAT G. Etude de la synthese des communications dans les systemes 1ogicielsAnaten’els. Technical Report
RT96-01, I3S, Sophia-Antipolis, France, juillet, 1996.
GUPTA R.K., DE MICHELI G. Hardware-Software Cosynthesis for Digital Systems. IEEE Journal Design and
Test of Computers. 29-41, September, 1993.
JEGOU Y., SEZNEC A. Data synchronized pipeline architecture: pipelining in multiprocessor environments.
Journal of Parallel and Distributed Computing. 3508-526, 1986.
KALAVADE A., LEE E. A global criticality/local phase driven algorithm for the constrained hardware/software
partitioning problem. Proceedings Int. Workshop on Hardware-Software Co-Design, pages 42-48. Grenoble,
France., September 22-24, 1994.
KALAVADE A., LEE E. The extended partitioning problem: hardware/software mapping and implementation-bin
selection. Proceedings Int. Workshop on Rapid System Pmtolyping, pages 12- 18. Chapel Hill, NC, June 7-9.1995.
ROUSSEAU I?, BENZAKKI J., BERGE J.M., ISRAEL M. Adaptation of force-directed scheduling for hardware/
software partitioning. Proceedings Int. Workshop on Rapid System Prototyping. Chapel Hill, NC, June 7-9, 1995.
SRIVASTA M.B., BRODERSEN R.W.,. SIERA: A Unified Framework for Rapid-F’rototyping of System-Level
Hardware and Software. IEEE Transactions on Computer-Aided Design. 14(6):676-693, June, 1995.
VAHID E, GONG J., GAJSKI D. A binary-constraint search algorithm for minimizing hardware during hardware/
software partitioning. IEEE CS Press (editor), Pmt. European Design Automatton Conference. 1994.

27

