
Targeting Tiled Architectures in Design Exploration

Lilian Bossuet1, Wayne Burleson2, Guy Gogniat1, Vikas Anand2, Andrew Laffely2, Jean-Luc Philippe1

1 LESTER Lab
University of South Brittany,

Lorient, France
{lilian.bossuet, guy.gogniat,

jean-luc.philippe}@univ-ubs.fr

2 Department of Electrical and Computer
Engineering

University of Massachusetts,
Amherst, USA

{burleson, vanand, alaffely}@ecs.umass.edu

Abstract

Tiled architectures can provide a model for early
estimation of global interconnect costs. A design
exploration tool for reconfigurable architectures is
currently under development at LESTER-UBS. The tool
allows various reconfigurable architectures to be
compared for different applications and sets of
constraints. One of the challenges of the tool is the ability
to estimate interconnect costs at a high level of
abstraction.

This project explores the use of the Adaptive System
on a Chip (aSoC) tiled architecture, developed at UMASS
as a target architecture for design exploration. aSoC
provides an important capability to the LESTER tool by
allowing interconnect costs to be modeled very early in
the design process by partitioning and placing each
portion of the computation into a square tile on a 2D
grid. aSoC is primarily an interconnect architecture,
based on static scheduling of virtual interconnects onto a
highly characterized and regular physical interconnect
fabric. aSoC supports a wide variety of cores, including
dedicated, hardware programmable and software
programmable thus allowing a wide range of design
exploration.

1. Introduction

Design methodologies and system on chip (SoC)
technologies will have to overcome several difficult
challenges in the near future including the growing
importance of on-chip interconnect. It is mandatory to
improve the versatility and hence lifetime of a system to a
greater extent in order to face the increasing costs of an
advanced foundry process. Optimization of power
consumption without affecting the necessary increase of
computational performance is also a major issue for
embedded systems. Design cycle reduction and very early
performance evaluation especially of new architectures
and heterogeneous architectures are also critical.

In order to face these challenges, it is necessary to
provide novel approaches to design with higher quality
and more rapidly at the system level, and to target new
technologies. Thus, reconfigurable computing is
becoming very attractive in SoC design since it provides
an efficient executive platform that overcomes several
technological issues. Moreover, heterogeneous domain
specific reconfigurable architectures may be more
appropriate for multimedia and telecommunication
applications than classical RISC or DSP processors or
FPGAs since the parallelism and granularity of resources
do not lead to an efficient performance/power trade-off.
Performance improvement and power reduction can
benefit from the wide spatial parallelism typical of
reconfigurable architectures in addition to temporal
parallelism (i.e. pipelining). The lifetime of a system can
be enhanced through reconfiguration and versatile
environment evolutions can be supported through
dynamic reconfiguration mechanisms (Run Time
Reconfiguration). At the circuit level, improvement of the
reliability is also expected - thanks to a very regular
technology, which is important to support fault avoidance
in deep sub-micron technologies. Finally, regular SoC
platforms allow the use of aggressive circuit techniques
for interconnect that would be too risky to use widely in a
conventional ASIC methodology.

To efficiently utilize reconfigurable computing it is
necessary to propose new methodologies that emphasize
the synergy between the application and the architecture
(e.g. granularity, parallelism). In order to manage the
wide design space that provides reconfigurable
architectures, it is important to define rigorous
exploration strategies both at the system and at the
architectural levels to progressively converge toward an
efficient solution. These methodologies should be based
on several models to facilitate rapid evaluation and
support architecture and technology migrations.

Hence, at the system level (i.e. algorithmic level) the
representation should exhibit the intrinsic application
optimization potential. At the architectural level, the

2 / 8

representation should describe not only the computation
and memory resources but also the communication
resources. This last feature is very important in the case of
reconfigurable architectures since interconnect costs are
very difficult to estimate early in the design cycle, which
can ultimately lead to a violation of application
constraints. In our approach, we overcome the complexity
of estimating routing through an efficient communication
topology, which is tile-based since this architecture model
has proven its efficiency in terms of locality and
regularity. Moreover, tile-based architectures present the
strong advantage of deterministic communication
topology and performance.

Run time reconfiguration has to be evaluated early in
the design cycle in order to define a scheduling of context
switching and to build an architecture that enhances the
flexibility. In our approach the considered target is the
aSoC architecture that supports static communication
scheduling in order to adapt the communication resources
to the execution schema. Moreover the proposed
exploration methodology is able to define multi context
tiles. In this paper we propose an original exploration
flow that targets aSoC architecture. The definition of the
architecture and the associated tools has been done
considering the challenges presented above and in our
work, we take a longer term approach leveraging trends in
VLSI which will allow much larger systems to be
integrated on a chip.

This paper is organized as follows. Section 2 describes
several works dealing with tile-based architectures and
design space exploration methodologies. Section 3
presents the tile-based architecture - aSoC. Section 4
describes the design space exploration flow. Finally, the
section 5 concludes this paper and exposes several future
directions.

2. Related work

Reconfigurable architectures are becoming very
popular and many researchers are focussing on this topic
[1]. All architectures can be characterized by their
interconnect resources but in the case of reconfigurable
architectures this feature is particularly important since
interconnections represent a large ratio in time
performances. As FPGAs, interconnect resources can also
become a bottleneck for reconfigurable architectures.

Many works on reconfigurable architectures aim to
define efficient interconnect styles. Among these are
some target tile-based architectures that are characterized
by a distributed interconnection overlaid on a set of
heterogeneous, or non-heterogeneous resources.
Furthermore, the interconnect structure is independent of
the connected resources. The adaptive System On a Chip
(aSoC) architecture [2], the Raw Microprocessors
architecture [3] or the Field Programmable Function
Arrays (FPFA) architecture [4] are good examples of tile-

based architectures. These architectures are energy-
efficient, in particular for digital signal processing [4, 5,
6] applications.

In this paper, the aSoC tiled architecture, developed at
the University of Massachusetts Amherst [2], has been
presented as the target architecture for design space
exploration. The problem of design space exploration
consists of the proper selection of design alternatives in
order to meet a given design goal [7]. Several works have
focused on this issue, with several levels of granularity. In
[8] FPGAs are targeted and the exploration is based on
precise estimations. For the cluster-based architecture
DART, a dynamically reconfigurable architecture [9]
proposes a design flow able to take into account dynamic
reconfiguration. In this design flow, the application is
specified using C at a high level of abstraction, in order to
exhibit application’s parallelism. Their flow is based on
the SUIF compiler from Stanford University to generate a
control and data flow graph (CDFG).

In [7, 10] the design space exploration targets a mesh
architecture called KressArray - a fast reconfigurable
ALU. The exploration tool, Xplorer aims to assist the
designer in finding a suitable architecture for a given set
of applications. This tool is architecture-dependent, but
the use of fuzzy logic to analyze the results of the
exploration is a very attractive approach.

[11] presents the design space exploration for the Raw
Microprocessor as an example for a tiled architecture. The
Raw Microprocessor is reminiscent of coarse-grained
FPGA and comprises a replicated set of tiles coupled
together by a set of compiler orchestrated, pipelined,
switches. Each tile contains a RISC-like processing core
and SRAM memory for instructions and data.

First challenge, as pointed out in [11], in this
architecture is to determine the best division of VLSI
resources among computing, memory, and
communication - the balance problem. The second
challenge is to determine the number and granularity of
the tiles – the grain problem. To overcome these
challenges, the authors propose an analytical framework,
which is based on several models: application model,
architecture model and cost model. For the cost model,
the processor and the communications are taken into
account. The framework in this case however is tile-
dependent as all tiles are identical - RISC cores and
SRAM memory.

In this paper, we proposed a design space exploration
method targeting the aSoC architecture. For this work we
have considered the major characteristics noted
previously. The proposed method uses a high level
specification of the application in C language as the input.
This is parsed into an intermediate representation - a
hierarchical control and data flow graph (HCDFG).

For the architecture description, two models have been
formalized, one to describe the tiles with several level of
granularity and one to describe the global architecture

3 / 8

with communication resources. A distinguishing
characteristic of the aSoC architecture is that it can have
heterogeneous tiles. The proposed method is both tile and
architecture-independent since it is based on two generic
architecture models. Moreover dynamic reconfiguration
can be taken into account during the exploration process.
This can be carried out when targeting run-time
reconfiguration.

3. aSoC architecture

aSoC is a modular communications architecture and
serves as a platform for on-chip interconnects. Its tiled
architecture addresses both scalability and flexibility. As
shown in figure 1, aSoC contains a two dimensional mesh
of computational tiles each of which consists of a core
and an associated communications interface (figure 2).
The interface design can be customized based on core
data widths and operating frequencies to allow for
efficient use of resources. Communication between nodes
takes place via pipelined, point-to-point connections. An
important feature of aSoC architecture is its ability to
support both statically scheduled and run-time dynamic
transfer of data [2, 6].

DCT
Motion Estimation
and Compensation

FIR RISC

Viterbi
Decoder

RAM

FPGA

Control Interface

Interconnect

Cores
DCTDCT

Motion Estimation
and Compensation
Motion Estimation
and Compensation

FIRFIR RISCRISC

Viterbi
Decoder
Viterbi
Decoder

RAMRAM

FPGAFPGA

ControlControl Interface

Interconnect

Cores

Figure 1. aSoC Architecture

A high level view of the Communication Interface has
five components responsible for aSoC communications
[12]. These are: Interface Crossbar – allows for inter-tile
and tile to core transfer; Interconnect/Instruction Memory
– contains instructions to configure the interface crossbar
on a cycle-by-cycle basis; Interface Controller – control
circuitry to select an instruction from the instruction
memory; Coreport – data interface and storage for
transfers to/from the tile IP core; Communication Data
Memory – buffer storage for inter-tile data transfer.

The architectural framework has been designed and
simulated in both 250nm and 180nm technologies. Tiles

are square, and can be up to 30k times the minimum
feature size, while maintaining interconnect clock speeds
of up to 400MHz, in the 180nm system. The
communications interface and interconnect mesh
infrastructure use approximately 20K transistors per tile,
and occupy less then 10% of chip active area. Each core is
constrained to fit in within one or more tiles in a row of
the aSoC.

Core

Coreports

Decoder

North to South & East

Instruction Memory

PC

Controller

North
South
East

West

Local Config.

North

South

East

West

Inputs Outputs

Crossbar

Data
Memory

Core

Coreports

Decoder

North to South & East

Instruction Memory

PC

Controller

North
South
East

West

Local Config.

North

South

East

West

Inputs Outputs

Crossbar

Data
Memory

Figure 2. Detailed Communications Interface

4. Design space exploration flow

4.1 Proposition of a Design Flow

Reconfigurable tile-based architectures have many
characteristics that must be considered in order to perform
an efficient design space exploration. Tile interconnect
styles, resource (computing or memory) granularity and
corresponding numbers, architecture topology, tile types
and numbers of each tile are for example different
characteristics that must be settled. These architecture
characteristics define a very large design space that can
rapidly become complex to explore manually in order to
converge to an architecture and meeting a set of
application constraints. Hence, the architect may face the
following questions:

• Among modeled tiles, what are the best tiles for
the application with a set of constraints?

• In order to realize the application, how many
tiles are necessary?

• What is the optimal tiles placement in the global
architecture?

4 / 8

• What interconnect style improves the
application’s performance?

• How to schedule the application
communications?

In order to answer these questions, we have developed
a design exploration flow targeting tiled architecture
(figure 3). This is composed of several steps, which are as
under:

First, the system level specification is provided in a
high level language (C language) and is then translated
into an intermediate representation - the HCDFG model.
This model is a Hierarchical Control and Data Flow
Graph allowing efficient algorithm characterization and
exploration of complex modern applications including
control flow and multi-dimensional data. Further
descriptions of the HCDFG model are presented in
section 4.2.

After the Application Analysis step during which the
application is characterized and scheduled, the Tile
Exploration Step, aims at estimating and compare each
function of the application on several tiles (e.g. ASIC,
FPGA, DSP, RISC) in order to exhibit the best tile for one
or several functions. Note that in the case of
reconfigurable tiles when a tile is able to support several
functions, each one is executed separately through a
specific execution context that is managed at run time

(Run Time Reconfiguration).
During the tile exploration step, all the performance

estimation results are gathered into a table where each
function of the application is characterized for at least one
tile. The corresponding tiles can be designed for the
current application or can already exist in a library. The
selection of the best tiles for one application can be done
manually after an analysis of the exploration/estimation
results or can be selected automatically during the aSoC
Builder Step. This step aims to build an aSoC
architecture and map the application onto it. Hence,
starting from the application specification and a library of
characterized tiles, the aSoC builder step ends with a
proposition of aSoC (allocation of tiles and placement of
the selected tiles into the aSoC) and a mapping of the
application on the architecture (partitioning and
scheduling).

In order to completely build the aSoC architecture it is
necessary to perform the communication synthesis step.
In the aSoC case, it is carried out through a static
communication scheduling step that computes the
instructions that configure the interface crossbar (figure 2)
on a cycle-by-cycle basis.

The last step - Analysis Step aims to make a complete
estimation of the proposed solution in order to give the
designer a quality measure of the final solution

C SPECIFICATION

C to HCDFG parser

Function F2

HCDFG Graphs of the application

Application App1

Function F1

Model of the aSOC Architectures

Tile T2aSOC A1

Tile T1

Application Analysis

Tile Exploration

Results of the Tile exploration step

Function Tile Performance
F1 T1 T11, C11, Occ11

T2 T21, C21, Occ21

F2 T1 T12, C12, Occ12

T2 T22, C22, Occ22

aSOC Builder

Static Communication Scheduling

Final model of
aSOC architecture

aSOC Analysis

THF Model HF Model

1
2

3

F1

F2

T2

T1

Figure 3. Design exploration flow targeting tiled architecture.

5 / 8

(adequacy, performance, flexibility). In this step, the
results of the partitioning and the communication
scheduling are used to estimate the global execution time
and the global consumption. The quality of the aSoC
architecture can also be characterized with information
like utilization rates of each tile, size of the tiles, width of
the connections, utilization of the connections etc.

To propose an efficient and flexible exploration flow
two main features must be considered: first, the definition
of the flow must be based on a high level application
representation to take benefit of the optimization potential
that is exhibited at the system level. Second the
architecture must be defined through a formalized model
in order to enhance the genericity of the description and
be technology independent. Hence, we have considered a
model centric approach, which is based on two modeling
processes: a reconfigurable architecture modeling to
model the tiles and a tile based architecture modeling to
model the aSoC. Following paragraphs elaborate on each
part of the design flow:

4.2 Application Specification and Analysis

The application to be designed is specified with the C
language and can be composed of several C functions.
Once the application has been functionally validated, it is
translated into an intermediate format which is a
Hierarchical Control and Data Flow Graph (HCDFG)
[13]. In HCDFG, each C function in the specification
corresponds to a node at the top level of the hierarchy, as
shown on figure 4. Hence, a C function is a node
encapsulating an HCDFG. An application is modeled
with several nodes (which could be as many as the
number of C functions) connected through control
structures or dependence relations (typically represented
with a CFG Control Flow Graph).

An HCDFG is therefore a graph, which can contain
other HCDFGs (other functions), control structures (CFG)
encapsulating HCDFGs or DFGs (Data Flow Graph) and
DFGs. This decomposition enables to precisely highlight
the hierarchy of the application, which is very important

❶void uppol2 (short AH1, short AH2,
short PH, short PH1, short PH2, short
*APH2) {

short const_128 = 128;
short const_m128 = -128;
short const_35512 = 35512;
short const_12288 = 12288;
short const_m12288 = -12288;
short tmp1,tmp2;
short WD1,WD2,WD3,WD4,5;

1 tmp1 = AH1 + AH1;

WD1 = tmp1 + tmp1;

2 if ((PH>>15) == (PH1>>15))

WD2 = 0 - WD1;
else

WD2 = WD1;

3 if ((PH>>15) == (PH2>>15))

WD3 = const_128;
else

WD3 = const_m128;

4 tmp2 = WD2>>7;

WD4 = tmp2 + WD3;
WD5 = AH2 * const_35512;
*APH2 = WD4 + WD5;

}

WD1#0

WD2#0

-

WD1#0 C&0

WD2#0

DFG
True#2

DFG
False#2

WD1#0

WD2#0

IF#2

EIF#2

DFG
Cond#2

=

>>15

Int#0

PH#0

>>15

Int#1

PH1#0

Cond#2

*

+

WD2#0

WD3#0Tmp2#0

>>7

C&35512

+

AH2#0

APH2#1

WD4#0 WD5#0

WD1#0

Tmp1#0

+

AH1#0

UPPOL2 #0

AH1#0 AH2#0 PH#0 PH1#0 PH2#0

APH2#1

DFG
True#1

DFG
False#1

WD3#0

IF#1

EIF#1

DFG
Cond#1

WD3#0

C&m128

WD3#0

C&128

=

>>15

Int#2

PH#0

>>15

Int#3

PH2#0

Cond#1

PH1#0

AH2#0

DFG #0

WD1#0

CFG
IF#2

CFG
IF#1

WD2#0 WD3#0

DFG #1

PH2#0PH#0

APH2#0

AH1#0

APH2#0

+

1

2

3

4

Figure 4. C to HCDFG model

6 / 8

for exploration. For example it enables to consider multi
granularity during the exploration flow. A CFG only
contains elementary control nodes (e.g. loops, conditional
branching) and HCDFGs or DFGs. A DFG corresponds to
linear sequences of operations. A DFG only contains
elementary memory and processing nodes. Namely it
represents a sequence of non-conditional instructions.
There are two kinds of elementary nodes in a DFG whose
granularity depends on the underlying architectural
model: a processing node represents an arithmetic or logic
operation (ALU, MAC, +, -, etc.). A memory node
represents a data transfer. Its parameters are the transfer
mode (read/write), the data format and the memory
hierarchy level, which can be fixed by the designer
(cache, in/off core memory). Memory nodes are explicitly
represented in the HCDFG model in order to be able to
efficiently deal with applications requiring data intensive
manipulations, such as image processing.

During the Application Analysis Step (figure 3,
number 1) each function (i.e. HCDFG) is considered
independently. However, during the aSoC Builder Step
(figure 3, number 2) the application (i.e. CFG), is
considered as a whole in order to build the complete
architecture. During the application analysis step, the
application’s orientation is defined through three axes -
processing, control and memory. Specific metrics are
used to find this orientation. These are described in [14].
Once the application orientation is found a resources
scheduling is performed accordingly. For example, if the
application is processing oriented, the first step is process
scheduling and the second step is memory scheduling (the
opposite if the application is memory oriented). The main
objectives of the application analysis step are to highlight
the intrinsic processing and memory parallelisms of the
application and to give some guidance on how to build
the architecture (pipeline, parallelism, memory hierarchy
etc.).

4.3 Architecture Modeling

Two models are necessary for the exploration flow -
one to model the tiles, and the other to model the aSoC
architecture. In the first case it is necessary to describe a
tile by what it is able to perform in terms of processing
and memories. This is functional modeling [15]. In the
second case it is necessary to describe the geographical
placement of tiles and the characteristics of interconnect
resources (width, number, style etc.). This is physical
modeling. These two models are called the HF
(Hierarchical Functional) model and the THF (Tile
Hierarchical Functional) model [16].

With the HF model [15, 16] the architecture’s
elements are functionally described and the modeling
allows representing different architectural styles and
different architecture elements. However, the routing
resources are not explicitly described, even if they are

taken into account in the estimation tool. In fact,
connection resources are taken into account by connection
costs in the HF model. There are two types of elements in
this model: the hierarchical elements and the functional
elements. The hierarchical elements are used to describe
the architecture’s hierarchy. A hierarchical element can be
composed of functional elements and other hierarchical
elements. The functional elements are used to describe the
architecture’s resources. They can be logical resources,
input/output resources, memory resources, computing
resources etc.

The THF model [16] is an extension of the HF model
since the HF model is insufficient to model tile-based
architectures, where the communications between the tiles
must be explicitly modeled. As opposed to the HF model,
the THF model uses a physical description to model the
tiles. This time, each tile is described by its position in a
two dimensions space (X-axis, Y-axis). This way, it is
possible with this model (for an automatic tool or
manually) to perform the placement of the tiles. Note that,
each tile still has its internal description specified with the
HF model. The communications between the tiles are
described by the possible inter-tile interconnections and
by the type of communication supports (wire, bus,
crossbar). Moreover the communication topology is
characterized by a cost function, which depends on the
coordinates of the tiles.

4.4 Tile Exploration Step

The tile exploration step (figure 3, number 1) uses a
library of tiles modeled with the HF model, and the
description of the functions (HCDFG formalism) as
inputs to evaluate. To perform a tile exploration, the user
has the opportunity to define new tiles based on the
guidance obtained after the application analysis step or to
use existing ones that he or she has already built. During
that step the central tool - Relative Estimation Tool
estimates the function performances for each tile selected
from the library and proceeds in following three steps:

The projection step makes the correspondence
between the necessary resources (processing and
memory) of the function and the available resources of
the tile. At the end some resources of the tile are assigned
to the functions. If a difference of resource granularity
exist between the necessary resources (from the
application) and the available resources (in the tile), the
necessary resources can be decomposed as fine-grained
resources using a library called Technological Trees (the
same method is used with the PipeRench reconfigurable
architecture [17]). The method used to make the
assignment between necessary and available resources is
to consider the communications between all the
processing and memory resources of the application, in
order to assign in the same hierarchical level of a tile the

7 / 8

resources that communicate the most. In order to perform
the mapping we use a heuristic based on the Weighted
Bipartite-Matching Algorithm [18].

The compositing step takes into account the function's
scheduling in order to refine previous estimations, since it
is necessary to add resources dedicated to realize the
scheduling like multiplexer, register or states machine.
These additional resources are taken into account in the
last step, the estimate process.

Finally, the estimate step characterizes the specified
function performances implemented into the modeled tile.
The estimations take into account the static costs of the
tile model (interconnect costs between two hierarchical
elements and the usage costs of the functional elements),
and the dynamic costs of the function (critical path,
operators communications, memories reads/writes). The
results of this step are gathered into a table where each
function of the application is characterized for at least one
tile. It is also possible to have several tables for one
function (and one tile) in the case of architectural
exploration, then one table is produced for each function’s
scheduling. The Application Analysis step proposes
several scheduling for a same function (so several
parallelism levels), since for each potential time
constraint a scheduling is defined. For example, if two
time constraints are considered for a single function then
two result tables are defined. This feature enables to
explore the application’s parallelism at a high level and to
make a projection on a specific tile.

4.5 aSoC Builder

This step is carried out using the aSoC application-
mapping environment, AppMapper [12], This
environment builds upon existing compiler infrastructure
provides an automated flow with the potential for user
interaction. This flow roughly consists of three steps as
shown in Figure 5. The first step uses SUIF [19] to build
an optimized syntax tree representation of the code.
During this stage, users are allowed to annotate branches
of the syntax tree with desired target core types. Branches
of this syntax tree form Basic Blocks of code to be placed
in specific aSoC cores. The second step performs the
analysis at the heart of the aSoC Builder concept in two
distinct parts. First, the Basic Blocks are assigned to the
best fit core type based on Run Time Estimations. After
this assignment a greedy algorithm spreads the Basic
Blocks over the available cores within the same type. The
final core selection attempts to maximize system
throughput and is subject to inter-block dependencies. For
example, blocks of code assigned to the RISC processor
core type would be placed in the available RISC
processors. Placement can be accomplished at this stage
as the aSoC architecture features predictable low cost core
interconnections between cores. It is during this

Assignment step that aSoC Builder can specify, modify or
iterate on the distribution of core types in the system. The
last step in the AppMapper process uses a combination of
tools and compilers to generate the core specific binaries
and the required communications instructions.

Core
Compilation

Communication
Scheduling

Inter-Core
Synchronization

Basic Block
Partition/Assignment

Code
Generation

Front-end
Parse

SUIF
Optimization

C/C++

Annotate

Run Time
Estimation

Code

Run Time

Graph-based IF

Enhanced IF

Dependencies

Stream Schedules

Stream Assignment

Core IF

R4000
Instructions

Bitstreams Communication
Instructions

1) Preprocess

2) Partition &
Assignment

3) Compile

Core
Compilation

Communication
Scheduling

Inter-Core
Synchronization

Basic Block
Partition/Assignment

Code
Generation

Front-end
Parse

SUIF
Optimization

C/C++

Annotate

Run Time
Estimation

Code

Run Time

Graph-based IF

Enhanced IF

Dependencies

Stream Schedules

Stream Assignment

Core IF

R4000
Instructions

Bitstreams Communication
Instructions

1) Preprocess

2) Partition &
Assignment

3) Compile

Figure 5. aSoC application mapping flow

4.6 Analysis Step

Analysis Step aims to make a complete estimation of
the proposed solution. In this step, the results of
partitioning and the communication scheduling are used
in order to estimate the global execution time and the
global power consumption. It is also possible to carry out
an analysis of the results in order to evaluate the quality
of the solution (utilization rates of each tile, size of the
tiles, width of the connections, utilization of the
connections etc.). The utilization rates of each tile depend
of the tile; Utilization in FPGAs refers to occupancy of
logic blocks, while utilization in an instruction set
processor refers to the percentage of available cycles
used. Note that clock and voltage scaling allow low
utilization to be exploited with power savings.

5. Conclusions and future work

A prototype of the aSoC interconnect approach
outperforms the standard IBM CoreConnect on-chip bus
protocol by up to a factor of five in both single word and
burst transfer modes [2]. The point-to-point nature of this
architecture also allows a predictable and scalable
communication clock speed of 400 MHz in 0.18 �P

8 / 8

technology [12]. Most recently some basic matrix
operations such as matrix transpose, matrix-vector
multiplication and sparse matrix-vector multiplication
have been mapped and simulated on the aSoC in order to
explore the behavior for very regular and scalable
applications. The results of these experimental studies
establish the ability of the aSoC to carry out fairly
complex communications between the tiles and confirm
its scalability and adaptability.

In order to exploit efficiently the potential of the aSoC
architecture we have defined an original design
exploration flow working at a high level of abstraction. It
enables to compare several reconfigurables architectures
in order to find the best target for one or several
applications. The exploration can be carried out at the tile
or at the aSoC level that conducts to a large architectural
exploration.

Future work includes the exploration of larger and
more heterogeneous systems. Our largest benchmark
currently under study is a large satellite communication
System-on-Chip currently implemented with 6 distinct
Tensilica RISC cores and various dedicated blocks
totaling 200 million transistors. This work will further
provide insight into the ability of aSoC to carry out DSP
and control for voice, video and data processing over
large networks. We expect to develop a larger set of
Design Exploration benchmarks and integration with
other tools for specific optimizations such as memory,
multi-processor compilation and power-aware computing.
Finally, techniques for test and fault-tolerance and their
associated overhead will also be an objective of design
exploration.

We close with the conjecture that targeting tile-
architectures may provide a reasonable early estimate of
global interconnects even when the final target
architecture is not tiled. This is similar to using FPGAs to
estimate costs for an ASIC implementation.

6. Reference

[1] R. Hartenstein. A Decade of Reconfigurable Computing :
a Visionary Retrospective. In IEEE Design , Automation
and Test in Europe Conference, DATE’01, Munich,
Germany, 13-16 March, 2001.

[2] J. Liang, S. Swaminathan, R. Tessier. aSoC : A scalable,
Single-Chip Communications Architecture. IEEE
Conference on Parallel Architectures and Compilation
Technique, Philadelphia, USA, October 2000.

[3] E. Waingold and all. Baring it all to Software. IEEE
Computer, September 1997, pp. 86-93.

[4] P. M. Heysters, J. Smit, G. Smit, P. Havinga. Mapping of
DSP Algorithms on Field Programmable Function Arrays.
In IEEE Field Programmable Logic, FPL’00, Australia,
August 2000.

[5] J. M. Rabaey. Reconfigurable Processing: The Solution to
Low-Power Programmable DSP. In IEEE International
Conference on Acoustics Speech and Signal Processing,
ICASSP’97, Munich, Germany, April 1997.

[6] A. Laffely, J. Liang, P. Jain, N. Weng, W. Burleson, R.
Tessier. Adaptive System on a Chip (aSoC) for Low-
Power Signal Processing. Asilomar Conference on
Signals, Systems and Computers, November 2001.

[7] U. Nageldinger. Coarse-Grained Reconfigurable
Architecture Design Space exploration. Ph.D. Thesis,
University of Kaiserlautern, Germany, June 2001.

[8] S. Bilavarn, G. Gogniat, J.L. Philippe. An Estimation and
Exploration Methodology from System-Level
Specifications: Application to FPGAs. In ACM/SIGDA
International Symposium on Field Programmable Gate
Arrays, FPGA’03, Monterey, CA, USA, February 2003.

[9] R. David, D. Chillet, S. Pillement, O. Sentieys. DART: A
Dynamically Reconfigurable Architecture dealing with
Future Mobile Telecommunications Constraints. In IEEE
Reconfigurable Architectures Workshop, RAW’02, Fort
Lauderdale, USA, April 15, 2002.

[10] R. Hartenstein, T.H. Hoffmann, U. Nageldinger. Design-
Space Exploration of Low Power Coarse Grained
reconfigurable Datapath Array architectures. In
International Workshop on Power and Timing Modeling
Optimization and Simulation, PATMOS 2000, Göttingen,
Germany, September 13-15, 2000.

[11] C. A. Moritz, D. Yeung, A. Agarwal. Exploring Optimal
Cost-Performance designs for Raw Microprocessors, In
IEEE Symposium on Field Programmable Custom
Computing Machines, FCCM’98, Napa, CA, USA, April
1998.

[12] J. Liang, A. Laffely, S. Srinivasan, and R. Tessier. An
Architecture for scalable On-Chip Communication.
Technical Report, University of Massachusetts, Amherst,
September 2002.

[13] J. P. Diguet, G. Gogniat, P. Danielo , M. Auguin, J.L
Philippe. The SPF model. In Forum on Design Language,
FDL’00, Tübingen, Germany, September, 2000.

[14] Y. Le Moullec, N.Ben Amor, J.P. Diguet, M. Abid, J.L.
Philippe. Multi-Granularity Metrics for the Era of Strongly
Personalized SOCs. In IEEE Design, Automation and Test
in Europe, DATE 03, Munich, Germany, 3-7 March, 2003.

[15] L. Bossuet, G. Gogniat, J.P. Diguet, J.L. Philippe. A
Modeling Method for Reconfigurable Architecture. In
IEEE International Workshop on System On a Chip,
IWSOC’02, Banff, Canada, July, 2002.

[16] L. Bossuet, G. Gogniat. Reconfigurable Architecture
Modeling: The THF Model, Application to the aSoC
Architecture. Technical Report, University of South
Brittany, September 2002.

[17] M. Budiu, S. C. Goldstein. Fast Compilation for
PipeRench Reconfigurable fabrics. In ACM/SIGDA
International Symposium on Field Programmable Gate
Arrays, FPGA’99, Monterey, CA, USA, 1999.

[18] D. Gajski, N. Dutt, A. Wu, S. Lin. High-Level Synthesis.
Introduction to Chip and System Design. Kluwer
Academic Publishers, 1992.

[19] R. Wilson, R. French J. Hennessy. SUIF: An
Infrastructure for Research on Paralleling and
Optimizing Compilers, In ACM SIGPLAN Notices,
December 1996.

