
Predictibility of Inter-component latency in a Software Communications
Architecture Operating Environment

Gael Abgrall∗, Frédéric Le Roy∗, Jean-Philippe Diguet†, Guy Gogniat† and Jean-Philippe Delahaye‡
∗UEB, ENSIETA / DTN, 2 rue Francois Verny, 29806 Brest Cedex 9, France

{gael.abgrall, frederic.le roy}@ensieta.fr
†UEB, UBS / Lab-STICC, BP 92116, 56321 Lorient Cedex, France

{jean-philippe.diguet, guy.gogniat}@univ-ubs.fr
‡DGA / CELAR, La Roche Marguerite, 35174 Bruz, France

jean-philippe.delahaye@dga.defense.gouv.fr

Abstract—This paper presents an in-depth analysis of the
behavior of a SCA component-based waveform application
in terms of ”inter-component” communication latency. The
main limitation with SCA, in the context of embedded
systems, is the additional cost introduced by the use of
CORBA. Previous studies have already defined the major
metrics of interest regarding this issue, these are CPU cost,
memory requirements and ”inter-component” latency. Real-
time systems can not afford high latency, in consequence, this
paper focuses on this metric. The starting point of this paper
is the desire of knowing if the SCA CF does not also bring an
overhead. Measurements have been realized with OmniORB
as CORBA distribution and OSSIE for SCA implementation.
In order to perform these measurements, a SCA waveform
composed of several ”empty-components” have been created.
”Empty-components” are software components compliant to
SCA without any signal processing part. The study only
focuses on communications between components. The same
kind of ”inter-component” link has been measured between
two components using CORBA without SCA. It is possible to
compare the latency values between the two measurements
and to show as a result that they are approximately the same.
The CORBA bus is really the part which brings an overhead
to the system. The final part of this paper introduces a
statistical estimation of the latency distributions. It results
from measurements performed with various data packet sizes
and uses a fitting method based on a combination of Gaussian
functions.

Keywords-Software Radio; SCA; CORBA; OSSIE; Om-
niORB; Latency

I. INTRODUCTION

Current radio communications are evolving to a new
kind of software and hardware design. From this perspec-
tive, Software Radio (SWR) appears to be the future of the
radio communication domain. J.Mitola has defined SWR
in [1] as a radio whose channel modulation waveforms are
defined in software. Waveforms are generated as sampled
digital signals, converted from digital to analog via a
wideband Digital to Analog Converter (DAC) and then
possibly upconverted from intermediate frequency (IF) to
radio frequency (RF). Similarly, the receiver is based on a
wideband Analog to Digital Converter (ADC) that captures
all of the channels of the software radio node. The receiver
then extracts, downconverts and demodulates the channel
waveform using software on a general purpose processor.
However, current technological issues limit the concept
of ideal SWR defined by Mitola. One of the key techno-

logical issues is the ADC and DAC converters to reach
the high speed and high resolution needed for the high
spectrum bandwidth digitalization expected for the SWR
digital front end. Another issue concerns the embedded
signal processing units, which today are not powerful
enough to process RF digitalized data. Nowadays, the
technology allows neither developers, nor users to fully
exploit SWR due to analog to digital rate restrictions, so it
is more appropriate to talk about Software Defined Radio
(SDR).

During the past decade several groups have been work-
ing on SDR in both military and civil domains. In the
civil domain, many telecom operators already use SDR for
managing base stations. But they all have developed their
own architectures that cannot be published for intellectual
property reasons. The main advance in standardisation of
the software radio architecture platform appears in the
military domain. The JTRS (Joint Tactical Radio System),
a program of the US Department of Defense (DoD), has
standardized a software architecture for software radio
called SCA (Software Communications Architecture) [2],
[3]. The concept of this architecture is to optimize radio
platform interoperability, software component reusability
and portability. The SCA standard defines the software
architecture of an Operating Environment (OE) that should
be used to optimize radio nodes interoperability. The
OE architecture is based on COTS technologies. This
architecture is based on the software bus CORBA (Com-
mon Object Request Broker Architecture) [4]. Several
distributions of OE exist, some of them are free (OSSIE
[5], Scari Open) and some are not (Harris dmTK, Scari++).

In SDR systems designed with SCA, processes, method-
ologies, metrics for performance measurement of the em-
bedded software and the middleware layer as well as the
application, are essential to characterize the system mainly
based on software. It will also enable the verification
of the software behavior and enable the performance
enhancement of multi-components distributed software
applications. One of the main parameters that impacts
SCA SDR system performances is the delay introduced
by CORBA communications. This time is a key feature
regarding QoS (Quality of Service) especially in real-time
systems. This paper is focused on this essential aspect.

Thus our objective, in this study, is to characterise the

978-1-4244-6534-7/10/$26.00 ©2010 IEEE

software component latency behavior of the SCA based
radio system software, which is one of the key issues in
SCA application performances.

In section II, we give a description of the software used
in this study. Then, in section III, we describe our process
of latency measurement introduced by the SCA related
software and in section IV, we give the corresponding
measurement results. Section V presents the main research
contribution based on previously described framework and
results. This is a statistical model for the estimation of
latency within a SCA system. The input of the model
is the number of components and channels that can vary
according to waveform and use cases. Finally, we conclude
and give some perspectives.

II. SOFTWARE DESCRIPTION

This section gives an overview of a SCA system speci-
fying the software architecture requirements and software
components responsible for the deployment, configuration,
and control of the waveforms on the hardware. The soft-
ware infrastructure provided by SCA for the distributed
application deployment is based on the CORBA software
bus.

A. CORBA

CORBA is a standard defined by the Object Manage-
ment Group (OMG), which allows software components
written in different languages and potentially running on
several hosts to communicate with each other. It is based
on an Object Request Broker (ORB). An ORB acts as
the ”glue” for distributed applications running on one or
more processors [6]. The most popular ORB are TAO
and OmniORB. CORBA is not the only software archi-
tecture, there are two other well-known software which
are Java RMI (Remote Method Invocation) and Microsoft
RPC (Remote Procedure Call). Comparisons between
these middlewares have already been performed in [7],
[8]. Initially CORBA was specified for large distributed
systems consisting of hundred of networked computers
in application domains, such as banking and business.
CORBA was defined without real-time considerations;
communications are asynchronous implying lack of com-
pletion. But it provides most of the services required for
waveform deployment, configuration and control. Today
the adaptation of CORBA to the world of embedded radio
systems is still a challenging issue for software industries.
For instance, some of the computational resources used in
SDR radio such as DSP and FPGA were not capable of
CORBA until recently and still need a lot of improvement
to reach services available on GPP.

B. SCA

1) Overview: The Software Communications Architec-
ture defined by the JTRS specifies an Operating Environ-
ment. It allows for the abstraction between software and
hardware. In an ideal view, any waveform (application)
can be installed on any platform. The waveform develop-
ment is a component based software design. For maximum
re-use and re-configuration, the SCA defines waveforms

and platforms as a set of interconnected components.
These components can be re-used and are independent.
They encapsulate their behavior and provide certain func-
tionality, exposed through interfaces. This system is di-
vided into three main parts (Figure 1):

• a Core Framework (CF),
• a CORBA ORB,
• an Operating System.
The CORBA ORB and the Operating System depend

on the underlying hardware system but all the Core
Framework must have the same function. It provides:

• a collection of services used by the waveforms and
the other applications,

• a software, which enables the installation, the con-
figuration, the management and the control of wave-
forms,

• a file system to manage the waveforms,
• hardware interfaces to enable the abstraction of the

platform.
As shown in Figure 2, the CF is divided in components.

It is also important to know that every entity in SCA has
a Universally Unique Identifier (UUID) as defined by the
DCE UUID standard adopted by CORBA [2], [4]. This
UUID allows for the identifying of every entity when the
CF discovers the platform resources (hardware devices and
software components) using the CORBA services.

2) SCA waveforms development tools: Due to the com-
plexity of waveform development with SCA (CORBA
Design Component and the respect to more than 600,000
of requirements from the SCA specification), it is very
difficult to guarantee no syntax errors when creating SCA
formatted files without a CAD tool. Two such tools are
available today for improving SCA design time:

• SCA Architect by CRC,
• Spectra CX by PrismTech.
Both allow developers to create, manage and run wave-

forms on a platform.

C. OSSIE

OSSIE is an open source SCA Open Environment
developed by the Wireless Team at Virginia Tech [5]
and working with the CORBA ORB OmniORB. This
open platform is available for workstations running under
Linux. The full installation of OSSIE provides some
drivers for peripherals (Sound card and Universal Software
Radio Peripheral (USRP) [9]) but they are not in the
scope of this study. Some development tools are provided
too: WaveDev for instance allows developers to generate
the entire skeleton of the C++ files needed by the SCA
architecture to run a component.

To run a waveform under OSSIE, three commands are
necessary:

• ”omniNames”: starts the ORB (also present for the
OmniORB measurement),

• ”nodeBooter”: runs the Device Manager (beginning
of all SCA CF boot up sequence),

• ”wavLoader”: loads waveforms into the system.

Figure 1. SCA Software Structure

Some new features are now available with OSSIE (like
the Eclipse Plug-In to create and manage components and
waveforms) but this study did not used them.

III. LATENCY PROFILING

Managing a waveform with distinct components brings
the need of using a protocol for ”inter-component” com-
munications. CORBA bus has been held back to realize
this function. But adding communication layers in a sys-
tem will inevitably increase the time required to bring data
from one component to another. Time measurements on
software bus have already been done in different ways
[10]–[12]. The main difference between this approach and
the others ones is the presence of signal processing com-
ponents. These measurements are specifically focused on
the communication overhead. The measurements realized
in this paper do not include signal processing, the only
metrics which is analysed is the inter-component latency.

A. Measurements without SCA

The first realised measurement does not use OSSIE but
only OmniORB to clearly show what CORBA really gives
to a SCA OE. CORBA is based on a Client/Server archi-
tecture, so the application consists of a client requesting
services on a server (both of them are executed by the

Figure 2. SCA Architecture [3]

Figure 3. OmniORB measurement process

same computer). The server response is a string of ran-
domised characters, which has a defined length identical
for OSSIE measurements. To measure the time elapsed
between emission and reception, an assembly command
can be used: RDTSC (ReaD Time Stamp Counter [13]).
This counter is incremented at the CPU frequency speed,
so the result of the measurement has a good accuracy on
actual processor (i.e. more than 1 GHz). The measurement
process is shown in Figure 3. The latency measurement is
realized by calculating the time difference between step 3
and step 5.

B. Measurements with OSSIE

Measuring latency with OSSIE is realized in the same
way as for OmniORB measurements. OSSIE allows the
creation of waveforms. Multiple tests are possible by
creating several waveforms. All these cases allow for the

measurement of the inter-component latency with differ-
ent configurations. The idea is to create multi channels
and/or multi inter-component links as proposed in Figure
4, where OmniORB is limited to one channel and one
inter-component link in this study. All the waveforms are
composed of several components:

Figure 4. Waveforms created for the measurements

• a source to generate the packet to transmit,
• at least two ”SPC” (Signal Processing Component),

these components are here to simulate the introduc-
tion of signal processing stages but because of the
interest of this study, there is no signal processing in
it,

• one or more sinks (one per channel) to receive the
data.

An OSSIE component is composed of several parts as
shown in Figure 5:

• the main part where all the signal processing are
done,

• the ”communication” part where data are ex-
changed between other components, this part consists
of two functions: ”Get()” for receiving data and
”Push Packet ()” to transmit data.

Figure 5. OSSIE Component Architecture and measurement process

Introducing RDTSC measurements just after the Get
function and just before the Push Packet function gives
the elapsed time to transfer the data from one component
to another.

The results of all these measurements provide a better
knowledge of the waveform behavior with a complete

Figure 6. OmniORB latency measurement

abstraction of signal processing stages. The behavior of
the system might be totally different depending either on
the number of components in a channel or on the number
of channels itself.

IV. RESULTS

All this study has been performed on the same computer
(Intel Pentium 4 @ 3 GHz with 1 GB of memory) running
with Linux Fedora Core 6. Versions of OmniORB and
OSSIE were 4.1.0 and 0.6.1 respectively. Note that new
versions for both softwares since these measurements have
been taken. This section presents the results obtained for
both OmniORB and OSSIE. A comparison between these
two solutions is also given. A finer analysis is shown in
the next section.

A. OmniORB Results

The measurement process has been explained earlier in
this paper. Measurements have been realized for different
sizes of transferred data. OSSIE works with packets, for
this study, a ”RealShort” packet type has been chosen.
It corresponds to 2 Bytes. In OmniORB, this kind of
abstraction does not exist, the possible data types are the
standardized data contained in the C++. To have the same
amount of transmitted data in both measurements, a string
of chars (1 Byte) has been sent with size equivalent to an
”OSSIE packet”. For example, an OSSIE packet of 8,192
samples (RealShort type, 2 Bytes) is equivalent to a string
of chars with 16,384 chars transmitted on OmniORB in
pure CORBA packet string.

This measurement has been done with transmitted data
size of 256 Bytes to 32,768 by increasing in power of 2
and also with 10,000 Bytes to have one point out of the
powers of two. The data rate is set to 320,000 ”packets”
per second, this value is the same for all the measurements.
This rate has been chosen to guarantee the work integrity
with the previous studies realized [11], [12]. Other rates
have been used to make some comparison in OSSIE but
the main part of the measurements is only with 320 k
samples per second (kSps). Every set of measurements is
on 5,000 samples. Once the mean calculated, a curve can
be exploited as shown in Figure 6.

Figure 7. Distribution of the measured latency for data size of 256
Bytes (OmniORB)

In this figure, the latency increases when the size of
the transmitted data grows. Some particular points can be
observed for transmitted data sizes of 8,192 and 10,000
Bytes where the latency decreases slowly to continue
normally for the next points. The solid curve shows the
measured data and the dashed one shows a basic fitting of
the results without the two points mentioned earlier. It can
be noticed that the progression is not linear, it is basically
a logarithmical curve.

Instead of looking to the latency mean of each mea-
surement, it appears to be more interesting to look at the
repartition of each one of the measurements by creating
histograms as done in Figures 7 and 8. The repartition of
the data is totally different between the two campaigns of
measurements. For small data size (256 Bytes in Figure 7),
a ”pseudo-periodic” comportment can be observed: there
is a maximum for 26 μs, another peak is visible at 31 μs
and a last one at 36 μs. These three values are separated
by 5 μs each.

The second histogram represents the measurement for a
high amount of data transmitted (32768 Bytes in Figure 8).
In comparison to a small data size, there still is a maximum
peak but the rest of the curve does not present any other
peak.

These measurements realized with OmniORB give a
first relevant comparison point regarding the aim of this
study: characterising the latency in a SCA system.

After measuring the latency with OmniORB, it is in-
teresting to add a software layer (OSSIE) to see how the
system will then behave.

B. OSSIE Results

The same kind of latency measurement has been
made with OSSIE. Thanks to ”WaveDev” (included with
OSSIE), the development of components and waveforms
is very simple. Thus, several waveforms have been created
to have a large panel of measurements as explained earlier
with Figure 4.

1) Link Number Variation: In a first approach, the
measurement parameter is the number of components in

Figure 8. Distribution of the measured latency for data size of 32,768
Bytes (OmniORB)

Figure 9. Latency measurements with component variation in a single
channel waveform (OSSIE)

a single channel waveform. The results of these measure-
ments are presented Figure 9. The first noticeable remark
is the similitude with the OmniORB measurement (Figure
6). The look of the curves is approximately the same with
an identical peak between 5,000 and 10,000 Bytes of data
transmitted. By focusing on the OSSIE measurements,
they are all nearly identical with an increase of the latency
when the number of links is higher. The difference seems
to be negligible (about 10 μs) but it is important not to
forget that in a waveform with nine links like this one, the
total latency is higher than for a single link waveform:

• for one link, the latency is about 226 μs for 32,768
Bytes of data transmitted,

• for nine links, the average latency on one link is about
232 μs but the total latency of the waveform is 232*9
which equals 2 ms.

The difference between these two measurements shows
the importance of taking care of the inter-component
latency. Added to the time spent in signal processing, these
2 ms are significant regarding the global system latency.

Some measurements have also been done with different
data rates to see if a difference could appear. The default
data rate for this study is 320 kSps, to perform the
comparison, measurements at 100 kSps and 500 kSps

have been realized. The difference is weak, so it has been
decided to continue to perform the study with only one
data rate.

Figure 10. Distribution of the measured latency for data size of 256
Bytes on an inter SPC component link

It is interesting to look at the histograms as was
previously done for OmniORB. The Figures 10 and 11
show the histograms for one component waveform but
they have been realized with different sizes of packets.
The waveform in Figure 10 corresponds to a packet size
of 256 Bytes (128 RealShort) while there are 32,768 Bytes
(16,384 RealShort) in a packet for the waveform in Figure
11.

By looking at these two figures, some similarity with
those realized with OmniORB only in Section 4.1 can be
found. The same pseudo-period is present on the 256 Byte
data size measurement. With OSSIE using OmniORB, it
is comforting to find the same behavior again.

Figure 11. Distribution of the measured latency for the data size of
32,768 Bytes on an inter SPC component link (OSSIE)

When other components are added in a waveform (ob-
viously inter-components links are added too), the latency
mean does not vary a lot as shown in Figure 9. The same
report can be done for histograms, Figures 7 and 10 are
approximately the same.

These measurements show the limits of separating
signal processing functions into several components. By
only having an elementary signal processing function, the

Figure 12. Latency measurement with channel number variation with
one link per channel (OSSIE)

reusability of a component increases considerably but as
can be seen with these measurements, a high number of
inter-component links in a channel induces the presence
of a large amount of latency. The size of a component (in
terms of signal processing) must be a trade-off between
reusability and a minimal number of components in the
waveform.

2) Channel Number Variation: A second kind of mea-
surement performed with OSSIE is to add additional
channels as shown in Figure 4.

Like for the component number variation, the latency
mean of each measurement has been calculated and the
result is presented in Figure 12. It shows that when the
number of channels increases, the latency increases too. It
makes a huge difference with Figure 9, where the variation
of the latency in function to the number of components in
a single channel is low.

The gap between a single channel waveform and the
other waveforms shows once again the importance of
designing a waveform with concern of not only what is
inside the component, but also what is outside it.

C. OmniORB and OSSIE Comparison

It is interesting to notice that OSSIE does not bring
more latency than OmniORB itself as shown in Figure
13. For small data size, communication time with OSSIE
is longer than communication time with OmniORB only.
When the size of the data transmitted increases (i.e.
superior to 10,000 Bytes), a reversal can be observed even
if the difference is very low: 12 μs on a total time of 250
μs which represents less than 5%.

The explanation of this observation can be the fact that
OSSIE is using a ”faster” method to transmit data than
the one used to realize this study.

V. STATISTIC ESTIMATION

Being able to measure the inter-component latency is
not enough. The ideal result for designers is the possibility
to predict this latency. Thus, the purpose of this section
is to propose a statistical model to know, while designing
a waveform, the cost of the inter-component latency and

Figure 13. Comparison between OmniORB and OSSIE on one inter-
component link

being able to choose the right component number, and the
corresponding granularity to find a trade-off between the
reusability of the component and the global latency of the
system.

A. Homogeneity of Latency in a Waveform

The first performed test consists in testing if all the
communications inside a waveform are similar or not.
To get this information, the Kolmogorov-Smirnov Test
[14] has been used. This test is useful to know if it is
sufficient to perform the other tests on one distribution or
on many distributions. If all the distributions are similar,
the assumption done for one is also valuable for the others.

The results of the test are interesting because for each
waveform the assumption of similar distributions is ver-
ified. The following analyses are performed only on one
link of the waveforms by taking the assumption verified
in this section.

B. Operating System Noise Measurement

Running this kind of measurements on a complex
operating system can distort the measurements in several
ways. Even if the test machine was installed with the
minimal software to carry out the measurement, it is still
possible to have a process, which runs at the same time
and takes some resources. Thus, a kind of pre-processing
on the data was decided on and the samples that were not
significant for the measurement (i.e. latency values which
are more than twice as great as the latency mean) were
removed. Removal of these samples does not mean that
they are irrelevant because they are present in most of the
system. But after comparison of tests with and without
these samples, removing them allows for better accuracy
in the statistical model. Figure 14 shows data repartition
before and after this pre-processing. The relevant samples
are kept and the others are deleted.

C. Statistical Model

As previously seen, Figures 10 and 11 show the repar-
tition of the latency on an inter SPC component link in
an OSSIE waveform. Looking at the histograms gives a

Figure 14. Comparison between a graph without preprocessing (a) and
a graph with it (b)

first indication of the behavior of the latency but having
a deeper analysis can be very helpful. To realise this, two
MATLAB tools have been used (dfittool and cftool). The
choice of the tool used depends of the nature of the curves.
The histogram of Figure 10, which presents several peaks,
does not correspond to distributions present in ”dfittool”.
By using ”cftool”, the result of the fitting gives an equation
like this:

Eq = a1 ∗ e−
x−b1
c1 + . . .+ a6 ∗ e−

x−b6
c6 (1)

This equation corresponds to the sum of six Gaussians
and the result can be seen in Figure 15. In this Figure,
many curves can be observed. The red one is the result
of the fitting process, which was given the equation
mentioned above. The two dashed curves represent this
equation too but only with a precision of 95%. It gives
an idea how well the test curve fits with the calculated
ones. This equation gives a fast estimation of the latency
evolution; this is relevant information for designers who
do not have any metric today.

Figure 15. Fitting of Figure 10 histogram

The size of transmitted data in this test is very low,

it is not representative of an operational waveform. The
histogram of Figure 11 represents the measurement for
data size, which could be implemented in a real system.
By using ”dfittool” on this distribution, two well-known
distributions appear to be similar to the under-test one.

Figure 16 shows the result of this analysis. The two
possible distributions are the T-Location Scale distribution
and the Generalized Extreme Value distribution. They
are not exactly similar to the measured values but they
are closer than the other distributions available in the
MATLAB tool. The equations of these two distribution are
presented here (respectively T-Location Scale distribution
(2) and Generalized Extreme Value distribution (3)):

f (x|Γ, υ, µ, σ) =
Γ
(
υ+1
2

)
σ
√
υπΓ

(
υ
2

) [υ +
(
x−µ
σ

)2
υ

]−(υ+1
2)

(2)

f (x| k, µ, σ) =

(
1

σ

)
exp

(
−
(

1 + k
(x− µ)

σ

)− 1
k

)
×

(
1 + k

(x− µ)

σ

)−1− 1
k

(3)

Figure 16. Fitting of Figure 11 histogram

VI. CONCLUSION

This study shows the behaviour of inter-component
communications in a SCA OE and demonstrate the ne-
cessity of having good knowledge about this to design
efficient waveforms. In a waveform with many compo-
nents, this latency can exceed 2 ms, which is a really
significant overhead. The comparison of communications
between OmniORB and OSSIE also shows that OSSIE
does not bring some extra latency to the system. Good
knowledge of the communications in a SCA architecture
requires a good control of CORBA. The real challenge is
to find the good trade-off between component reusability
and system latency. A second result that must be under-
lined is the impact of the choice regarding the size of
data transmitted. Finally, we propose in this paper a first

model that enable one estimate the best suitable known
distribution. It provides SWR developers with a tool to
anticipate the communication behavior at design time.
Obviously, estimated latency values on the test platform
are not usable on other platforms. But the process is
simple and can be implemented easily. Alternately, the
measurement process could be used in a different way.
Measuring inter-component latency during run-time may
allow the system to dynamically reconfigure parts which
do not respect real-time system limitations. It may bring
SDR closer to Cognitive Radio.

VII. FUTURE WORK

The good knowledge of SCA through these OSSIE
experimentations will be used to go further and to investi-
gate implementation solutions of CORBA over a Network
On Chip (NoC). The idea is to take advantage of this
kind of architecture to increase the CORBA performances
and especially the mapping of the GIOP (General Inter-
ORB Protocol) onto the NoC powerful hardware transport
mechanisms.

REFERENCES

[1] J. Mitola III. Software radio architecture: A mathematical
perspective. IEEE Journal on Selected Areas in Communi-
cations, 17(4), April 1999.

[2] JTRS SCA v2.2.2. http://sca.jpeojtrs.mil/.

[3] J. Bard, V.J. Kovarik. Jr. Software Defined Radio: The
Software Communications Architecture. WILEY, 2007.

[4] Object Management Group, CORBA.
http://www.corba.org/.

[5] Virginia Tech, Open Source SCA Implementation :: Em-
bedded. http://ossie.mprg.org.

[6] Rhapsody. CORBA Development Guide.

[7] A. Buss, L. Jackson. Distributed Simulation Modeling: A
Comparison of HLA, CORBA and RMI. Winter Simulation
Conference, 1998.

[8] M.B. Juric, I. Rozman, M. Hericko. Performance Com-
parison of CORBA and RMI. Information of Software
Technology, 42(13), September 2000.

[9] Ettus Universal Software Radio Peripheral.
http://www.ettus.com/.

[10] P.J. Balister, M. Robert, J.H. Reed. Impact of the use
of corba for the inter-component communication in SCA
based radio. SDR Forum Technical Conference, 2006.

[11] T. Tsou, P.J. Balister, J.H. Reed. Latency profiling for SCA
software radio. SDR Forum Technical Conference, 2007.

[12] G. Abgrall, F. Le Roy, J.P. Delahaye, J.P. Diguet, G. Gog-
niat. Comparative study of two software defined radio
environments. SDR Forum Technical Conference, 2008.

[13] P. Work, K. Nguyen. Measure Code Sections Using the
Enhanced Timer. Intel Corporation.

[14] F.J. Massey Jr. The kolmogorov-smirnov test for goodness
of fit. Journal of the American Statistical Association,
46(253), March 1951.

