
Designing formal reconfiguration control using
UML/MARTE

Sébastien Guillet*, Florent de Lamotte*, Nicolas Le Griguer*, Éric Rutten**, Guy Gogniat*, Jean-Philippe Diguet*
*Lab-STICC, France, {sebastien.guillet,florent.lamotte,nicolas.le-griguer,jean-philippe.diguet,guy.gogniat}@univ-ubs.fr

**LIG / INRIA Rhône-Alpes, France, eric.rutten@inria.fr
Abstract—This paper presents the first framework to design and

synthesize a formal controller managing dynamic reconfiguration,

using a Model Driven Engineering methodology base on an ex-

tension of UML/MARTE. The implementation technique highlights

the combination of hard configuration constraints using weights

(control part) – ensured statically and fulfilled by the managed

system at runtime – and soft constraints (decision part) which,

given a set of correct and accessible configurations, choose one

of them. An application model of an image processing application

is presented, then transformed and synthesized to be executed

on a Xilinx platform to show how the controller, executed on a

Microblaze, manages the hardware reconfigurations.

1

I. INTRODUCTION

The control of dynamicity in reconfigurable System-on-Chip
(SoC) is one of the biggest challenges facing designers of such
systems. And the increasing complexity of embedded system
designs in general make it even more difficult to design a safe
system, which is critical as they tend to be ubiquitious. This
increasing complexity calls for both formal methods and high-
level specification formalisms with automated transformations
towards lower-level descriptions. In this context, the present
study offers a modeling approach to enforce reconfiguration
constraints in an integrated and automated solution. Specifically,
a UML/MARTE 2 model – which is used to specify real time
embedded systems – augmented with control information is
transformed into a synchronous specification, named BZR, to be
synthesized by a formal tool (SIGALI) which performs Discrete
Controller Synthesis (DCS). DCS is an automated technique
which finds (if it exists) a controller of a system, given its
reconfiguration behavior, its controllability and its constraints
that should be enforced.

Figure 1 shows the execution model targeted by this approach.
Suppose that a system contains a global execution loop, which
starts by taking events from the environment. Then these events
get processed by a task (Reconfiguration controller) which
choses the system’s configuration. Finally, this configuration
order gets dispatched through the system’s tasks following its
model of computation, and another iteration of the loop can start
again. Many systems follow this kind of execution model. For
example, this is the case for many image processing applications
which perform image transformations and receives events from
the environment to adapt their behavior. If a system can be rep-
resented using this execution model, then the proposition of this
paper can help to design and formally obtain its Reconfiguration
controller task.

The whole proposition, cf. figure 2, is integrated using a UML
modeller, Papyrus, from which MARTE models augmented with

1This work is supported by the ANR FAMOUS project (ANR-09-SEGI-003)
2http://www.omg.org/spec/MARTE/1.1/

Start

End

Need reconfigure

End of Loop

Reconfiguration controller

Receiving
events

No

Yes

Yes Dispatch Reconfiguration

No

events + current configuration

System

chosen configuration

Tasks execution

Figure 1. Configuration processing flowchart

Xilinx Platform Studio

Papyrus

MARTE model

Control model

Controller
specification

Reconfiguration
controller

XMI Java

BZR

C

Platform
VHDL/C

Model to
model

Model to text

Compilation +
Controller Synthesis

M
odel transform

ation

Integration

Figure 2. MDE flow

control information are specified. These models are transformed
into a synchronous program in BZR language, from which a for-
mal method, Discrete Controller Synthesis, can be performed to
obtain a correct-by-construction controller that can be integrated
into a Xilinx platform project.

After presenting the related work and tools, MARTE control
elements are presented, then MARTE transformations are de-
tailed and finally, a controller is synthesized from the mapped
formal representation and integrated to be executed on the
platform showing a reconfigurable image processing application.

II. RELATED WORK

Many research works contribute to the domain of reconfig-
urable embedded systems, some of them use continuous control
techniques. This study is especially interested in those which

care about the closed-loop management of reconfiguration. In
[9], an FPGA-based PID motion control system that dynamically
adapts the behavior of a robot is presented. Several designs can
be swapped, and tradeoff between them are evaluated in terms
of area, speed or power consumption. It has to be noted that
functional correctness of all the designs is verified by experiment,
and not by a formal method. To assure the correctness of
the execution of embedded systems, analysis verification and
control methods are needed. These methods are often based on
model checking, for example in [1] authors use such technique
for migration (reconfiguration) of algorithms from hardware to
software. Another approach is based on theorem proving, such as
[12] that presents a framework for description and verification of
parametrized hardware libraries with layout information (explicit
symbolic coordinates, neighboring placement). The correctness
of the generated layout is established by proof in higher order
logic using Isabelle theorem prover. What these studies have in
common is that each time, the control system for reconfiguration
must be entirely specified by the designer, so that it can be
verified or proven afterwards. But a technique from discrete
control theory, discussed in the next section, allows for the
control design only by giving its constraints. A closer approach
to the current proposition is [5] where a formal control technique,
based on Discrete Controller Synthesis, is used to control the
communications between system-on-chip components by filter-
ing their inputs. But the technique is only applicable in a class
of applications in hardware design where input filtering can be
safely achieved.

The considered reconfigurable SoCs are a specialization of
autonomic computing systems [8], which adapt and reconfigure
themselves through the presence of a feedback loop. This loop
takes inputs from the environment (e.g. sensors), updates a
representation (e.g. Petri nets, automata) of the system under
control, and decides to reconfigure the system if necessary.
Several works [3] [4] chose to describe these loops in terms
of Discrete Controller Synthesis (DCS) problems. It consists in
considering on the one hand, the set of possible behaviors of
a discrete event system [10], where variables are partitioned
into uncontrollable and controllable ones. The uncontrollable
variables typically come from the system’s environment (i.e.
”inputs”), while the values of the controllable variables are
given by the synthesized controller itself. On the other hand,
it requires a specification of a control objective: a property
typically concerning reachability or invariance of a state space
subset. Such programming makes use of reconfiguration policy
by logical contract. Namely, specifications with contracts amount
to specify declaratively the control objective, and to have an
automaton describing possible behaviors, rather than writing
down the complete correct control solution. The basic case is
that of contracts on logical properties i.e., involving only Boolean
conditions on states and events. Within the synchronous approach
[14], DCS has been defined and implemented as a tool integrated
with the synchronous languages: Sigali [11]. It handles transition
systems with the multi-event labels typical of the synchronous
approach, and features weight functions mechanisms to introduce
some quantitative information and perform optimal DCS. It
has been applied to the generation of correct task handlers,
adaptive resource management [4], reconfigurable component-

based systems [2], and integrated in a synchronous language,
named BZR [13].

In [7], BZR is used to synthesize a controller to manage
partial and dynamic reconfiguration. This approach gives the
opportunity to the designer to only specify the constraints that
must be ensured at runtime so that a corresponding controller,
if it exists, can be computed. The controller is maximally
permissive, it means that every possible decision are presented
at each control step, for example several configurations can be
allowed in a step, so a decision system must be implemented to
chose only one of them. The current study is an improvement
of this work on several aspects: it shows how to integrate this
decision module, it adds weights constraints, and the concept
can be generated using high level models.

III. MARTE CONTROL MODEL

Existing MARTE elements are used to specify the reconfigu-
ration behavior, but low level details about a complete controller
specification ready for Discrete Controller Synthesis can not yet
be generated because of the lack of an associated semantic in
MARTE. We now go into details and show both standard and
non standard model elements mandatory for a complete control
specification.

In MARTE, Modes represent alternative operational states of
a system or component. Mode transition models dynamic opera-
tional behavior that represents switching between configurations
and changes in components’ internal characteristics. Modes and
mode transitions are defined in UML StateMachine diagrams,
which are stereotyped as ModeBehavior. Each mode is repre-
sented by a UML State stereotyped as Mode, and transitions,
describing how modes are linked together, are represented by
UML Transitions stereotyped as ModeTransition (cf. figure 3).

The MARTE standard provides a mode specific component
topology. Such a mode abstraction is an explicitly defined
configuration of sub-components, connections, flows, end-to-end
flows as well as property values. It is represented by a UML
Composite structure specialized by the Configuration stereotype.
It contains a Mode attribute which makes reference to a specific
mode state, declared in a ModeBehavior (cf. figure 4). When
specifying a MARTE Configuration, the designer should be
able to attach specific properties characterizing the configuration
so that he can specify control constraints about them. These
properties are named Weights and define a value, associated to
a type.

Types of weights should then be defined in the MARTE spec-
ification. The required metadata is a unique string for each type,
so that at transformation time, these names can be connected to
a real object type, defining 1) how to combine weights 2) how to
compare weights and 3) the neutral weight value to set if none
is specified for a configuration. Inputs used by ModeBehaviors
should also be specified and typed in the MARTE model, so
that they can be extracted for the step function of the controller,
which aggregates the set of Inputs for all ModeBehaviors. Spe-
cific variables, named Controllables and assimilable to control
points, should also be defined in the MARTE specification, so
that they can be used in ModeBehaviors. Their values are set
by the controller so that temporal properties remain True for all
possible executions. Temporal properties, named Contract and

«modeBehavior»
MyFsm1

goB or not(goA)«mode»
modeA

«mode»
modeB

(x == 0) and c1

x == 2
«mode»
modeC (x == 0) or not(c2)

Figure 3. MARTE modeBehavior stereotype

«configuration»
MyConfiguration

:MyApplication
:A_impl

:MySwPlatform
:BlackBox

«allocate»

{mode=modeA}
{Weight1=10, Weight2=25}

Figure 4. MARTE configuration stereotype with weights proposition

«controller»
MyController

Weight1:Integer,+,<
Weight2:Float,*,>

c1,c2

modeA or Weight1≤11

«controllables»

«contract»

«weights»

not(in1 and in2) «hypothesis»

x:Integer
goA:Boolean

{modeBehavior=MyFsm1} mode1
{modeBehavior=MyFsm2} mode2

goB:Boolean

Figure 5. Proposition for a MARTE controller stereotype

Hypothesis are also new element propositions for the MARTE
standard. They both define boolean equations. At runtime the
hypothesis is supposed to be true; and respectively, the contract
is guaranteed to be true thanks to a controller which will further
be obtained through Discrete Controller Synthesis (only if it
succeeds, else it means that the contract cannot be fulfilled).
Controllables, Types of weights, Contract and Hypothesis have
been defined in a MARTE extension stereotype, appropriately
named Controller (cf. figure 5). This controller also shows
explicitly the modeBehavior it should manage: these can be
infered from the stereotype of its output ports (mode1, mode2),
the Inputs ones (x, goA, goB) being processed by the controller
and dispatched to the modeBehaviors.

IV. MARTE TO SYNCHRONOUS REPRESENTATION

From a MARTE model, containing the previously described
standard and non standard elements, several transformations are
performed to obtain a Controller specification ready for Discrete
Controller Synthesis. This section presents the mapping between
such a MARTE model to a BZR program. The synchronous
background related to BZR is first recalled, then an example
of a MARTE model with control elements is shown with its
targeted transformation result, and finally the transformations are
formalized.

A. Synchronous background
Definition 1. Labeled Transition System (LTS):

A LTS is a tuple S = hQ, q0, I,O, T i where Q is is a finite
set of states, q0 is the initial state of S, I is a finite set of input

events (produced by the environment), O is a finite set of output
events (emitted towards the environment), and T is the transition
relation, that is a subset of Q⇥Bool(I)⇥O⇤⇥Q, where Bool(I)
is the set of boolean expressions of I. If we denote by B the
set {true, false}, then a guard g 2 Bool(I) can be equivalently
seen as a function from 2I into B.

Each transition has a label of the form g/a, where g 2 Bool(I)
must be true for the transition to be taken (g is the guard of the
transition), and where a 2 O⇤ is a conjunction of outputs that
are emitted when the transition is taken (a is the action of the
transition). State q is the source of the transition (q, g, a, q0),
and state q0 is the destination. A transition (q, g, a, q0) will be
graphically represented by (q

g,a��! q0).
The composition operator of two LTS put in

parallel is the synchronous product, noted ||, and a
characteristic feature of the synchronous languages. The
synchronous product is commutative and associative.
Formally: hQ1, q0,1, I1,O1, T1i||hQ2, q0,2, I2,O2, T2i =
hQ1 ⇥ Q2, (q0,1, q0,2), I1 [I2,O1 [O2, T i with

T = {((q1, q2)
(
Vn

k=1 gk)/(
Vn

k=1 ak)�������������! (q01, q
0
2))|(qk

gk/ak����!
q0
k

) 2 T 0
k

, (q
k

, q0
k

) 2 q ⇥ q0}.
Here (q1, q2) is called a macro-state, where q1 and q2 are its

two component states. A macro-state containing one component
state for every LTS synchronously composed in a system S is
called a configuration of S.

Definition 2. Discrete Controller Synthesis (DCS) on LTS:

A system S is specified as a LTS, more precisely as the result
of the synchronous composition of several LTS. F is the objec-
tive that the controlled system must fulfill, and H is the behavior
hypothesis on the inputs of S. The controller C obtained with
DCS achieves this objective by restraining the transitions of S,
that is, by disabling those that would jeopardize the objective
F , considering hypothesis H. Both F and H are expressed as
boolean equations. The set I of inputs of S is partitioned into
two subsets: the set I

C

of controllable inputs and the set I
U

of
uncontrollable inputs. Formally, I = I

C

[I
U

and I
C

\I
U

= ;.
As a consequence, a transition guard g 2 Bool(I

C

[I
U

) can
be seen as a function from 2IC ⇥ 2IU into B. A transition is
controllable if and only if (iff) there exists at least one valuation
of the controllable inputs such that its guard is false; otherwise
it is uncontrollable. Formally, a transition (q, g, a, q0) 2 T is
controllable iff 9X 2 2IC such that 8Y 2 2IU , we have
g(X,Y) = false. In the framework of this document, the
following function S

c

= make invariant(S,E) from SIGALI is
used to synthesize the controlled system S

c

= S\C where E is
any subset of states of S, possibly specified itself as a predicate
on states (or control objective) F and predicate on inputs (or
hypothesis) H. The function make invariant synthesizes and
returns a controllable system S

c

, if it exists, such that the
controllable transitions leading to states q

i

/2 E are inhibited,
as well as those leading to states from where a sequence of
uncontrollable transitions can lead to such states q

i

/2 E. If DCS
fails, it means that a controller of S does not exist for objective F
and hypothesis H. In this context, the present proposition relies
on the use of DCS to synthesise a controller C which makes
invariant a safe set of states E in a LTS-based system where E is

«modeBehavior»
FilterFSM

goColor«mode»
BW

«mode»
Color

goBw

Figure 6. Filter automaton

«modeBehavior»
ResolutionFSM

goMedium or not(a)«mode»
High

«mode»
Medium

goLow or not(a)

goHigh and c
«mode»
Low goLow

goHigh and c goMedium

Figure 7. Resolution automaton with controllables variable a and c

inferred by boolean equations defining a control objective and an
hypothesis on the inputs. The controller C given by DCS is said
to be maximally permissive wich means that it doesn’t set values
of controllable inputs which can be either true or false while still
compliant with the control objective. Actually, the BZR compiler
defaults these variables to true but this type of decision is too
arbitrary and the current proposition – which relies on BZR– also
proposes a way to integrate a custom decision module, defined
by a function interface in C, which can be implemented by the
designer. This way, when the controller states that more than
one configuration is accessible, this decision module can safely
chose one of them to optimize the transitions choices inside E.
The actual implementation of such a module goes beyond the
scope of this paper so it will be assimilated to a simple random
choice.

Definition 3. Potential transition:

A transition is potential if the current state is its source and
at least one authorized values combination for the controllable
variables (if there are any) associated to the uncontrollable input
values allows its guard to be evaluated to true.

Definition 4. System equivalence:

Two systems S and S0 sharing the same states and the same
initial state are equivalent with respect to (wrt) an objective F
and an hypothesis H they have in common iff for all correct
execution wrt H:

• objective F is guaranteed in both S and S0;
• every potential transition for each step of execution in a

system is also potential in the other.
Two equivalent systems only differ on the final potential transi-
tion choice at each step. This choice being always correct wrt
F and H.

Definition 5. State and configuration accessibility:

A state of a LTS is accessible if at least one transition going to
it from the current state is potential (which includes by default
the case where this state is the current state and no outgoing
transition is potential). A configuration, or macro-state of a
system, is accessible if each state of its composition is accessible.

«controller»
MyController

QoS:Integer,+,<
Power:Integer,+,<

a,c

QoS>14 or Power>15

«controllables»

«contract»

«weights»

true «hypothesis»

goHigh:Boolean
goMedium:Boolean

{modeBehavior=ResolutionFSM} modeR
{modeBehavior=FilterFSM} modeF

goLow:Boolean
goColor:Boolean
goBw:Boolean

Figure 8. Controller definition

B. Model and transformation example

So as to better understand the equations (coming in the next
section) defining the actual transformations, a MARTE example
is shown with its transformation into BZR. The example is
based on a reconfigurable image processing application. The
considered system is composed of two reconfigurable tasks,
FilterTask and ResolutionTask, respectively filtering and resizing
images from a video stream. Each task has several implemen-
tations (IPs), respectively Color, Bw and High, Medium, Low.
These implementations are abstracted as MARTE Configurations
(defined in figure 4), in order to give them the following weight
values for two defined weight types named QoS and Power 3:

Color Bw High Medium Low
QoS 5 8 5 10 11

Power 8 7 8 20 17

When a control step is triggered (e.g. by pushing a button),
the system receives five events from its environment (eg. from
dip switches): goHigh, goMedium, goLow, goColor and goBw,
which are used to take transitions from an implementation
to another in both tasks. For example, upon the reception of
goMedium, the system is supposed to go from whatever im-
plementation of ResolutionTask to the Medium implementation.
The reconfiguration behaviors of FilterTask and ResolutionTask
are specified by the MARTE modeBehaviors, shown respectively
in figures 6 and 7, each mode being connected to a MARTE
configuration as a property. Figure 8 shows a controller which re-
ceives several uncontrollable boolean inputs (goHigh, goMedium,
goLow, goColor and goBW) and several controllable boolean
inputs (a and c). It will dispatch them to 6 and 7 and output
their respective active modes. The hypothesis H is set to true,
meaning that each controllable input combination is correct, and
the control objective F (contract) states that the total weights
combination of QoS and Power for each mode of a configuration
should always remain respectively higher than 14 and 15 units for
all possible execution/reconfiguration. The weights compositions
are defined in the controller specification which states that QoS
and Power are Integers and they can be composed using addition
on Integers. They can also be compared using the ”lower than”
operation on Integers, which can be usefull when implementing
a decision module. If it exists, a controller obtained through
DCS is able to keep the system in states where F remains
true for all possible executions by setting the correct values of

3Such values could come from profiling or simulation tools for example

Controller(okHighColor, okHighBw, okMediumColor, okMediumBw,
 okLowColor, okLowBw, goHigh, goMedium, goLow, goColor, goBw)
returns(canHighColor, canHighBw, canMediumColor,
 canMediumBw, canLowColor, canLowBw)

atLeastOne = (((false -> pre(canHighColor)) ∧ okHighColor) ∧
((true -> pre(canMediumColor)) ∧ okMediumColor) ∧
((false -> pre(canLowColor)) ∧ okLowColor) ∧
((false -> pre(canHighBW)) ∧ okHighBW) ∧
((false -> pre(canMediumBW)) ∧ okMediumBW) ∧
((false -> pre(canLowBW)) ∧ okLowBW))

atMostOne = (¬(
(okHighColor ∧
 (okMediumColor ∨ okLowColor ∨
 okHighBW ∨ okMediumBW ∨ okLowBW)) ∧
(okMediumColor ∧ (okLowColor ∨ okHighBW ∨
 okMediumBW ∨ okLowBW)) ∧
(okLowColor ∧ (okHighBW ∨ okMediumBW ∨
 okLowBW)) ∧
(okHighBW ∧ (okMediumBW ∨ okLowBW)) ∧
(okMediumBW ∧ okLowBW)))

assume(atLeastOne ∧ atMostOne)
enforce((canHighColor ∨ canMediumColor ∨ canLowColor ∨

 canHighBW ∨ canMediumBW ∨ canLowBW) ∧
(((QoS*-1) ≤ -16) ∨ ((Power*-1) ≤ -14))))

with(a,c)

canHigh = (medium ∧ (goHigh ∧ c)) ∨ (low ∧ (goHigh ∧ c)) ∨
(high ∧ ¬((goMedium ∨ ¬(a)) ∨ (goLow ∨ ¬(a))))

canMedium = (high ∧ (goMedium ∨ (¬(a))) ∨ (low ∧ (goMedium)) ∨
(medium ∧ ¬((goHigh ∧ c) ∨ (goLow)))

canLow = (medium ∧ (goLow)) ∨ (high ∧ (goLow)) ∨
(low ∧ ¬((goMedium) ∨ (goHigh ∧ c)))

canColor = (bw ∧ (goColor)) ∨ (color ∧ ¬(goBW))
canBW = (color ∧ (goBW)) ∨ (bw ∧ ¬(goColor))

canHighColor = canHigh ∧ canColor
canHighBW = canHigh ∧ canBW
canMediumColor = canMedium ∧ canColor
canMediumBW = canMedium ∧ canBW
canLowColor = canLow ∧ canColor
canLowBW = canLow ∧ canBW

(QoS,Power) =
if(okMediumBw) then (18,27) else (
if(okMediumColor) then (15,28) else (
if(okLowBw) then (19,24) else (
if(okLowColor) then (16,25) else (
if(okHighBw) then (13,15) else (
if(okHighColor) then (10,16) else (
(0,0)))))))

6

7

5

4

2

3

1

8

Figure 9. Target transformation to BZR. Circled numbers are references to
equations.

a and c which are boolean variables defined as “controllable”.
These variables are defined in the “controllables” section of the
controller specification. They are used to respectively inhibit
transitions to High (if c is set to False) and force transitions
going out of High (if a is set to False). So in this specification,
if nothing has to be controlled to fulfill the control objective, a
and c remain true and no transition is forced or inhibited.

Figure 9 shows a transformation result of this MARTE specifi-
cation into BZR using the equations given in the next part. Each
circled number in this figure is a reference to a corresponding
equation. To avoid redundancies, the transformation of the two
modeBehaviors from figures 6 and 7 is shown in figure 11, which
gives their graphical representation. This transformation is also
explained in the following equations.

V. DECISION INTEGRATION AND WEIGHT CONSTRAINTS

As can be seen from definition 1, a direct mapping from a
MARTE ModeBehavior is trivial: a Mode is a state, a Mode-
Transition is a transition and a ModeBehavior is a LTS; inputs
of the LTS comes from both the inputs and controllables sections
of the controller proposition in MARTE; finally the control
objective and hypothesis comes respectively from the contract

and hypothesis sections of the controller specification. But this
simple mapping into a LTS with a contract and an hypothesis
is not satifying as it does not take advantage of the transition
choice when several transitions from a state are possible (ie.
when multiple configurations are allowed by the controller). This
is why this part shows how to transform such a LTS into one
that can be connected to a decision module which can choose
between several reconfigurations propositions.

Let S = hQ, q0, I,O, T i be a system defined as a LTS or
a synchronous composition of several LTS, and F its control
objective guaranteed wrt an hypothesis H. The objective is to
build a system S0 = hQ, q0, I 0,O0, T 0i, equivalent to S wrt F
and H (cf. definition 4), integrating a decision system which
makes a choice on accessible configurations at each step.

A. Modifying inputs and outputs
S0 encapsulates both the inputs and outputs of S and extends

them in order to take into account the configurations accessibility
as output and the choice of an accessible configuration as input.
Let n be the number of configurations given by all possible
combinations of the states of the LTS of S, and m be the
number of LTS of S. Let 1  i  n and 1  j  m.
Let D and P be two boolean sets, with card(D) = card(P)
= n, where d

i

2 D corresponds to the choice given by the
decision system where only one configuration is chosen at each
step, formally: 8d

i

2 D, {d
i

= false|i 6= x, 1  x  n},
x is the chosen configuration identifier (id), and p

i

2 P
reflects the accessibility of the configuration for which the id
is i. At least one configuration must be accessible so formally
9p

i

2 P, p
i

= true. The inputs and outputs I 0 and O0 of S 0 are
defined as:

I 0 = I [D,with I \D = ;
O0 = O [P,with O \ P = ; (1)

I being equal to I
C

[I
U

, the controllables I
C

can be seen
in the with part of figure 9. Each configuration accessibility
boolean p

i

is defined by an equation evaluating the potentiality
of all transitions going to each state of the configuration i. This
equation is true if all concerned states are accessible. So let
p
i

2 P , and s
ij be a boolean reflecting the accessibility of a

state j of the configuration i. p
i

is defined by the following
equation:

p
i

=
^

m

j=1
s
ij (2)

with each s
ij defined by:

s
ij =

W
{(g ^ b

q

)|(q g/a��! q0) 2 T } (3)

b
q

=

⇢
true if q is the current state

false otherwise

To ensure that, at each step, at least one accessible configu-
ration exists wrt F , this property has to be added as a control
objective so that DCS can enforce it. Thus, the control objective
F 0 of S 0 is specified by:

F 0 =
_

n

i=1
p
i

^ F , p
i

2 P (4)

It has to be noted that if F 0 is enforced, then F is also enforced
implicitly for S 0, which is important because S 0 is supposed to
be equivalent to S wrt F .

B. Correct decision as input
Now that a way to output the next accessible configurations

has been specified, processing the final configuration choice
(coming as input from a decision module) should be defined. The
decision system is seen as a black box from the point of view of
DCS, only its inputs (P) and outputs (D) are known. However
it is necessary to specify some behavior hypothesis from this
system in order to give the following formal information to DCS:

• at least one accessible configuration, given in the previous
step, should be given as input (at least one boolean of D is
true);

• at most one configuration is chosen (at most one boolean
of D is true).

The hypothesis H0 of S 0 extends the hypothesis H of S in order
to indicate the previous properties. The pre operator, as it is
defined in synchronous languages, allows here to refer to the
values of configuration accessibility (values of P) at previous
step. Formally, let atLeastOne and atMostOne be two equations
defining respectively 1) the fact that at least one accessible
configuration is chosen and 2) at most one configuration is given:

H0 = H ^ atLeastOne ^ atMostOne (5)

Thus, H, atLeastOne and atMostOne should always be true.
Let z be the identifier of the initial configuration, 1  z  n,
atLeastOne is specified by:

atLeastOne = ((true ! pre(p
z

)) ^ d
z

) _ (6)

(
_

((false ! pre(p
i

)) ^ d
i

)), i 6= z

which means that at first step, the initial input given by
decision sets d

z

to true, then for the next steps d
i

or d
z

should
be true only when pre(p

i

) or pre(p
z

) is true. And atMostOne is
given by:

atMostOne = ¬(
n�1_

x=1

(d
x

^
n_

y=x+1

d
y

)) (7)

C. Modifying the LTS transitions
In order to finalize a step execution, it is necessary to modify

the LTS transitions of S 0, so that they react only on occurrence
of inputs coming from the decision system (inputs from the spec-
ification of S are entirely processed by the previous equations
defining P). The LTS should also be modified in order to output,
besides their original outputs, a set of boolean values, named
B, allowing to identify their current state, which is needed to
evaluate b

q

in the specification of a state accessibility.
Let S

k

and S0
k

(with 1  k  m) be respectively an LTS
of S and a transformation of S

k

as an LTS of S0. Let B
k

be a
set of boolean variables and n

k

= card(B
k

) = card(Q
k

). The
transformation of each S

k

is specified by:

8S
k

= hQ
k

, q0k , Ik,Ok

, T
k

i, S0
k

= hQ
k

, q0k ,D,O0
k

, T 0
k

i

with O0
k

= O
k

[B
k

, T 0
k

⇢ (Q Bool(I)/O0⇤
k��������! Q), O0⇤

k

being
a conjunction of O0

k

, and T 0
k

being defined by:

T 0
k

= {(q
k

{Wn
i=1 di2D|qi2Q,q

0
k2qi}/(a,

Snk
j=1 bqkj

)

��������������������������! q0
k

)|

(q
k

g/a��! q0
k

) 2 T
k

},

b
qkj

=

⇢
true if q

kj = q0
k

, q
kj 2 Q

k

false otherwise

The result of this transformation is shown on the transitions
of the automata from figure 11, which now reacts only on
decision inputs (and not original inputs eg. goHigh, goColor,
etc.). Finally, in accordance with the synchronous composition
principle, transitions T 0 of S 0 are determined by:

T 0 ={(q (
Vn

k=1 gk)/(
Vn

k=1 ak)�������������! q0)|

(q
k

gk/ak����! q0
k

) 2 T 0
k

, (q
k

, q0
k

) 2 q ⇥ q0}

This transformation proposition has shown the way to instru-
ment a equivalent version S0 of S wrt definition 4. This version
allows the designer to implement its own decision system without
interfering with the control objectives as long as it complies with
the control interface which is:

• a set of booleans P for configuration accessibility as input;
• a set of booleans D, containing one and only one final

choice (one boolean set to true) as output among accessible
configurations given at previous step (so there is a direct
correspondence between D and P).

D. Weights computation
To complete the transformations of a MARTE specification

into BZR, weights combinations (ie. weights of all config-
urations) have to be computed. Types of weights appear in
the specification, but the actual way to combine and compare
them is a technical detail which is implemented directly in the
transformations. This way, the designer can use the already
implemented types and operations or implement its own by
extending the type system as long as they follow the following
rules. Let W be the set of types of weights. Each type w

f

2 W
is associated to a partially ordered group which consists of a
group defined by a set V

f

together with a binary operation ?f on
this set, a neutral element ;

f

(so that when a weight value is not
given, the neutral element is used), and a partial order relation �f

on this group. The objective being to compute the combination
of the weights values v

fk of each mode q
k

of a configuration
(for all configurations) so that global weights constraints can be
set, variables v

f

for each weight type w
f

are defined in S0 by
the following equations:

8w
f

2 W, v
f

= {
m

Ff

k=1

v
fk | b

qk}, (8)

b
qk =

(
true if q

k

2 q0, (q
g/a��! q0) 2 T

false otherwise

Computation of these global weights values happens offline
during the model transformations, so every v

f

variable is stat-
ically defined. Currently, BZR only propose the order relation
”lower or equal” on Integers and Floats, so every type and op-
erations defined in the transformations type system must be map-
pable to pure Float or Integers, and weight constraints (as can
be shown in point 4 of figure 9) can only use ”lower or equal”
on these mappings. However, ?f operations are actually useful
when implementing the decision module to make optimizations,
as it becomes possible to compare configurations with them.
With these mechanisms, a designer can define MARTE models
with the control extension to specify a reconfiguration behavior
based on weights and states, and can connect a system-specific

Filter Reassembler

Bus2IPS ICAP GPIO

Switches

Push
button

Ethernet UART

Bitstreams Logs

Resolution

MB RAM

reconfigure

x, y, w, h

PR PR

wout, hout

vga vga vga

vga

Figure 10. Target platform

decision component. The next section shows the execution of
the given example.

VI. EXPERIMENT

The generated BZR from figure 9 is compiled and DCS –
happening during compilation by calling SIGALI – succeeds,
which means that a controller has been found and its code in
C is given. The decision module itself is generated by default
as a random choice, and all this C code is then deployed on a
concrete FPGA-based application system which conforms to the
execution model presented in figure 1. The platform is a XUPV5
board which is based on a Xilinx Virtex V FPGA and provides
two video ports that we use to capture images from a camera and
display them to a screen. The global architecture of the system
is presented in figure 10.

A. Architecture

This architecture is composed of two parts. An operative part,
which is the video pipeline, implementing the application, and
a command part consisting in a microprocessor architecture on
which runs the controller. On the video pipeline, the two hard-
ware tasks have been implemented on partially reconfigurable
(PR) zones. The first zone receives the resolution IP (High,
Medium or Low) and the second receives the filter which either
provides a grayscale or color image (respectively with BW and
Color IPs). First zone is directly fed by the data from the camera.
For the display, a third IP, which is named reassembler, has
been developed. This processor writes the current frame on the
framebuffer of the video output, ensuring good synchronization.
Since it depends on the resolution used – the image size can
vary – it adds padding to the image according to a parameter of
the resolution IP.

The microprocessor architecture is based on a Microblaze
configured through EDK. Control of the video pipeline is done
through two channels. The first one is a Bus2IPS IP, used to send
parameters to the IPs in the pipeline, in this application, we can
change the position and size of the input image in the video
stream. The second one is through the ICAP, which can change
the configuration of a PR zone. An Ethernet controller is used to
download the bitstream from a server [6]. Finally, a GPIO has
been synthesized to send events to the controller. To sum up, the
controller program reads the request from the GPIO, chooses a

Control part

canHighColor = ((medium ∧ (goHigh ∧ c)) ∨ (…)) ∧ ((bw ∧ (goColor)) ∨ (color ∧ ¬(goBw)))
... ↳ canHigh = TRUE ↳ canColor = TRUE

 canH
ighC

olor

canH
ighBw

canM
edium

C
olor

canM
edium

Bw

canLow
C

olor

canLow
Bw

okH
ighC

olor

okH
ighBw

okM
edium

C
olor

okM
edium

Bw

okLow
C

olor

okLow
Bw

System (Step 1)

okH
ighC

olor

okH
ighBw

okM
edium

C
olor

okM
edium

Bw

okLow
C

olor

okLow
Bw

goH
igh

goM
edium

goLow

goC
olor

goBw

Decision part

canH
ighC

olor

canH
ighBw

canM
edium

C
olor

canM
edium

B
w

canLow
C

olor

canLow
B
w

okH
ighC

olor

okH
ighBw

okM
edium

C
olor

okM
edium

Bw

okLow
C

olor

okLow
B
w

System (Step 2)

 okH
ighC

olor

okH
ighBw

okM
edium

C
olor

okM
edium

Bw

okLow
C

olor

okLow
Bw

goH
igh

goM
edium

goLow

goC
olor

goB
w

System (Step 3)

Decision part

Control part

canHighBw = ((…) ∨ (high ∧ ¬((goMedium ∨ ¬(a)) ∨ (goLow ∨ ¬(a))))) ∧ (…)
…

canMediumBw = ((high ∧ (goMedium ∨ ¬(a))) ∨ (…)) ∧ ((color ∧ goBw) ∨ (…))
…

canLowBw = ((high ∧ (goLow ∨ ¬(a))) ∨ (…)) ∧ ((color ∧ goBw) ∨ (…))
...

↳ canHigh = FALSE, because 'a' is set to FALSE

↳ canMedium = TRUE, (a = FALSE) ↳ canBw = TRUE

↳ canBw = TRUE, (a = FALSE) ↳ canBw = TRUE

ColorFSM

Color

BW

okHighColor ∨
okMediumColor ∨

okLowColor

okHighBW ∨
okMediumBW ∨

okLowBW

color = true
bw = false

color = false
bw = true

ResolutionFSM

High

Medium

Low

okHighColor ∨
okHighBW

okMediumColor ∨
okMediumBW

okMediumColor ∨
okMediumBW

okLowColor ∨
okLowBW

high = true
medium = false
low = false

high = false
medium = true
low = false

high = false
medium = false
low = true

okHighColor ∨
okHighBW

okLowColor ∨
okLowBw

ResolutionFSM

High

Medium

Low

okHighColor ∨
okHighBw

okMediumColor ∨
okMediumBw

okMediumColor ∨
okMediumBw

okLowColor ∨
okLowBw

high = true
medium = false
low = false

high = false
medium = true
low = false

high = false
medium = false
low = true

okHighColor ∨
okHighBw

okLowColor ∨
okLowBw

ColorFSM

Color

BW

okHighColor ∨
okMediumColor ∨

okLowColor

okHighBw ∨
okMediumBw ∨

okLowBw

color = true
bw = false

color = false
bw = true

Figure 11. Two first execution steps

configuration for the PR zones, downloads the bitstreams and
apply them through the ICAP.
B. Execution

Controller steps are triggered by a push button, and the event
values are taken from the states of switches, so five switches are
dedicated to the events goHigh, goMedium, goLow, goColor and
goBw. Two first execution steps of the controller are shown in
figure 11 (timeline going from top to bottom).

It should be noted that, to really comply with the MARTE
controller specification, the decision module should output mode
values the system instead of a boolean for each configuration.
Actually a module (also generated) has this role but is not
represented here for space reason.

On the first one, the system gives the initial values of the
decision which reflects the initial configuration; here okMedi-
umColor is set to true which is correct with respect to the fact
that the atLeastOne equation (cf. point 2 of figure 9) requires
okMediumColor to be True at the first step, and only this variable
is True, which respects the hypothesis defined by the atMostOne
equation (cf. point 3 of figure 9). The system also gives the
inputs coming from the environment (i.e. the switches values),
here only goHigh is arbitrarily set to True.

Given these inputs, the controller takes no transition yet
(because it is already in configuration [Medium, Color]) and
computes the other equations dedicated to the outputs. From
these other equations, only one is True, canHighColor, because
given the current configuration and only goHigh from the envi-
ronment being True, and also because the controller keeps the
default values of the c controllable variable to True, the only
accessible configuration for the next step is [High, Color]. Given
this only possible configuration, the decision process doesn’t do
much for the present step and just provides back a True value
for okHighColor as the identifier of the chosen configuration for
the next step.

This choice is then given as a reconfiguration order, performed
by the Microblaze which downloads the bitstream High from the
bitstream server and reconfigures the downscaler after the current
image from the VGA stream is processed.

A second control step can then be prepared by setting new
switch states (for example to set goHigh and goBw to True) and
pressing the push button. The system sets the new inputs of the
controller: the current configuration given by the decision process
in the previous step (okHighColor), and the current inputs from
the environment given by the switch states.

Given these inputs, the controller takes transitions to the
configuration [High, Color] and computes the output equations.
But this time, should not go to [High, Bw] even if the inputs
goHigh and goBw are True, because it would jeopardize the
control objective: indeed, combining the weights of High and Bw
provides a QoS of 13 units (5+8) and a Power of 15 units (8+7).
The controller is prepared for this situation and autonomously
sets the controllable variable a to False, which will force to
go out of the state High in the next step. So canHighColor is
evaluated to False because a is set to False, which has the border
effect of setting canMediumBw and canLowBw to True.

Now given these two possibilities provided by the controller, a
decision must be set to choose between them. Here, the decision
system retains (remember, this choice is seen as random) the
configuration [Low, Bw] by setting okLowBw (and only this
variable) to True to the system. And finally, the system prop-
agates the new configuration by downloading and setting the
partial bitstreams Low and Bw.

From this example, we understand that the next steps will
continue to follow this execution pattern of providing both the
current configuration and the switch values to the controller,
which will compute the available configurations and let the

decision process inform the system about the configuration
choice, which performs reconfigurations.

VII. CONCLUSION AND PERSPECTIVES

This paper presented a way to specify a reconfiguration
controller for a DPR SoC in MARTE and synthesize it using the
Discrete Controller Synthesis formal technique. To the best of
our knowledge, this is the first experiment that introduces DCS to
secure configuration transitions in the context of reconfigurable
computing.

As usual when speaking about state combination, this ap-
proach has its limits due to the state-explosion problem. How-
ever, this is still an automated and formal solution to a problem
currently solved manually. Controllers obtained through this
methodology are guaranteed to always provide a correct config-
uration to the system, with respect to constraints specified by the
designer, for every possible execution, thus freeing the designer
to test the system on this critical aspect. This methodology is
integrated in a conception flow from where the reconfiguration
controller can be designed and transformed into an executable
one. The MARTE-based profile used in this study provides
a clear definition of control and configurations. The MARTE
standard is currently reworked to integrate these modeling and
transformation concepts, so that a clear semantic can be used by
designers to create standard and consistent models.

As a perspective for the BZR compiler, the integration of the
decision module into the control step, instead of being externally
defined, would also be great improvement.

REFERENCES

[1] M. Borgatti, A. Fedeli, U. Rossi, J.-L. Lambert, I. Moussa, F. Fummi,
C. Marconcini, and G. Pravadelli. A verification methodology for re-
configurable systems. Microprocessor Test and Verification, International
Workshop on, 0:85–90, 2004.

[2] Tayeb Bouhadiba, Quentin Sabah, Gwenaël Delaval, and Éric Rutten.
Synchronous control of reconfiguration in fractal component-based systems
– a case study. EMSOFT, 2011.

[3] Fabienne Boyer, Gwenaël Delaval, Noël de Palma, Olivier Gruber, and
Eric Rutten. Discrete supervisory control application to computing systems
administration. In INCOM, 2012.

[4] Gwenaël Delaval and Éric Rutten. Reactive model-based control of
reconfiguration in the fractal component-based model. CBSE, 2010.

[5] E Dumitrescu, M Ren, L Pietrac, and E Niel. A supervisor implementation
approach in discrete controller synthesis. Emerging Technologies and
Factory Automation, 2008. ETFA 2008. IEEE International Conference on,
pages 1433 – 1440, 2008.

[6] P. Bomel; J. Crenne; L. Ye; J.-P. Diguet; G. Gogniat. Ultra-fast downloading
of partial bitstreams through ethernet. ARCS, 2009.

[7] S. Guillet, F. De Lamotte, É. Rutten, G. Gogniat, and J.-P. Diguet. Modeling
and formal control of partial dynamic reconfiguration. ReConFig, 2010.

[8] J. O. Kephart and D. M. Chess. The vision of autonomic computing. IEEE
Computer, 2003.

[9] W. Zaho; B. H. Kim. Fpga implementation of closed-loop control system
for small-scale robot. ICAR, 2005.

[10] C. Cassandras; S. Lafortune. Introduction to discrete event systems. Kluwer
Acad. Publ., 1999.

[11] Hervé Marchand, Patricia Bournai, Michel Borgne, and Paul Guernic.
Synthesis of discrete-event controllers based on the signal environment.
Discrete Event Dynamic Systems, 10(4):325–346, Oct 2000.

[12] O. Pell. Verification of fpga layout generators in higher-order logic. Journal
of automated reasoning, 2006.

[13] G. Delaval; H. Marchand; E. Rutten. Contracts for modular discrete
controller synthesis. In Proc. of the ACM SIGPLAN/SIGBED Conference
on Languages, Compilers and Tools for Embedded Systems, LCTES, 2010.

[14] A. Benveniste; P. Caspi; S. A. Edwards; N. Halbwachs; P. Le Guernic;
R. De Simone. The synchronous languages 12 years later. PROCEEDINGS
OF THE IEEE, 91:64—83, Jan 2003.

