NOC-centric Security of Reconfigurable SoCs

Jean-Philippe Diguet

LESTER lab.
CNRS / Université Européenne de Bretagne
Lorient, France
Outline

- Attacks on embedded systems
 - Classification
 - RSoC perspective
 - NoC perspective
 - Model of threats
 - Scenario Example

- Our approach
 - Strategy
 - Centralized decision & distributed execution
 - 4-steps access control strategy
 - Secure Network Interface and separate channels
 - Secure protocol for (re)configuration

- Implementation case studies

- Conclusion
Classification

- Embedded system security
 - Sensitive data
 - Personal devices

A cryptosystem should be secure even if everything about the system, except the key, is public knowledge.

A. Kerckhoff, J. Sc. Militaires, 01/1883
Classifications

- **Hardware vs Software attacks**
 - **Hardware attacks**
 - Chip cutting
 - Chemical attack of the chip
 - Glitch attack (power, clock)
 - Variation of Vdd or T°
 - Fault Injection
 - **Proximity-based**
 - Timing analysis
 - Power consumption Analysis
 - Electromagnetic emission analysis
 - Bus Eavesdropping
 - **Physical**
 - Irreversible (invasive)
 - **Physical**
 - Reversible (non-invasive)
 - **Active attacks**
 - **Passive attacks**
 - **Side-channel**
 - (non-invasive)

- **Software attacks**
 - Remote attacks
 - Trojan horse
 - Logic bomb
 - Virus
 - Worm
Classification

- **Security Objectives**: Protect Data / Programs / Design / System Against:
 - Extraction of secret information
 - Modification its the behavior
 - Hijacking
 - Denial of service
 - Overloading computing / communications resources

- **Solutions**
 1. **Ciphering**: Readable Data
 2. **Integrity checking**: before using Data or running Programs
 3. **Access Control**: to Data / Program / Configuration (bitstream)
 - Entity authentication
 4. **Monitoring and Countermeasures**
 - Detection of abnormal behaviors
Reconfiguration becomes an industry concern

- Time to market
 - Start design before standard full specification
 - Hardware required for Performances
- Hardware debug
- HW/SW firmware updates (Multimedia, Telecom Stds)
- New Opportunity for Attack (fake HW, hijacking) but also for countermeasures

What’s specific?

- Hardware is no more fully trustable
 - Confidentiality + Authentication solutions
- Configuration memories: new sensitive data
- Secured / unsecured area map can change
- Access control scheme can evolve
NoC perspective

- Means multiplication of IPs and complex communications
 - Non Centralized Management
 - NI = existing smart interfaces = opportunity for distributed access control
 - Traditional network security (IDS) not applicable in embedded SoC
- New threat: Denial of communication service
 - life-lock, dead-lock, incorrect paths
- Paths and Emitter @ = new features for identification
 - Separation between global and local access control
- New opportunities for HW-based monitoring security
 1. SW control access, OS supervision: important overhead in embedded SoC
 2. HW to alleviate security cost
 - Secure core
 - Encryption coprocessor
 - HW integrity / authentication: \textit{a posteriori} solution (board perspective)
 3. HW control access: few work, bus based solution (SECA, [Coburn05])
 4. NoC can provide HW efficient and scalable solutions
Model of threats

- Trusted and untrusted IP / Sensitive & non-sensitive memories
- NoC is a secured area but the payload may vehicle attacks
 - Secured packeting
 - Secured routing
- Security based on access control and monitoring
- Software attacks:
 - Hijacking: *Write control*
 - Data extraction: *Read Control*
 - Denial of service: *NoC use monitoring*
Scenario

- **Example of Attack Strategy with a unsecured NoC:**
 1. Execution of Fake Application: Trojan T installed, modifies NI path tables. GPP2 has now access to Mem.2 and GPP1 to Mem.3 containing secure data.
 2. GPP2 runs an infected application, a Worm W that can copy itself in Mem.2.
 3. GPP1 download malicious multimedia data (D.jpg) in M1, a buffer overflow launches W that copies secure data from Mem.3 to share Mem.4.
 4. W finally implements a logic Bomb for hiding the first attack, while producing later a denial of NoC services with infinite access loop to system memories.

![Diagram showing the attack scenario](image-url)
Outline

- Attacks on embedded systems
 - Classification
 - RSoC perspective
 - NoC perspective
 - Model of threats
 - Scenario Example

- Our approach
 - Strategy
 - Centralized decision & distributed execution
 - 4-steps access control strategy
 - Secure Network Interface and separate channels
 - Secure protocol for (re)configuration

- Implementation case studies

- Conclusion
Security objectives:
1. Detection of abnormal communication behaviors.
 - Control Global and Local R/W Accesses (Hijacking, Extraction)
 - Supervise Traffic, detection of overload (Denial Of Service)
2. Implement counter-attacks (close infected ports, reboot, …)

Methodology for security implementation based on 4 ideas:
- Separation high priority channel security-related traffic and low priority channel for application traffic
- Hierarchical access control strategy
- Secure Network Interface
- Secure protocol for (re)configuration
Centralized decision & distributed execution

- I-“Centralized Security Decision with Distributed Security Policy Execution through Secured NI”
 - One single IP for Security Management (SCM)
 - First mission stored in system boot memory.
 - Configures NI, i.e. control access rules
 - Pends on attack detection from NI
4-Steps access control strategy

II-“Hierarchy of simple tests”

1. I/O Rules loaded by the SCM
 - Global Inter-IP access checking:
 - R/W communication rules based on packet header (Path)
 - Local Access R/W checking
 - R/W communication based on local @ from the Payload
 - Overflow checking:
 - Comparison between announced (in Payload) and Real message sizes (Credit based)
 - Traffic Monitoring
 - Credits counting, comparison with bounds
 - Rules violation => Alerts transmitted to the SCM
Secured Network Interface and Separate Channels

- III-“Enhanced Secured NI applying security rules connected to SCM through a secure Virtual Channel”

- 2 Virtual Channels
 - No physical links between IP and Security Management
 - NI / SCM communications: Priority Best Effort
 - Configuration / Alerts
 - IP / IP: Best Effort

- NI overhead:
 - VC FIFOS
 - Counters
 - Security Table Memory

Diagram:
- SNI, IP configuration
- FIFO PBEOutChannel
- FIFO BEOutChannel
- FIFO ctrl
- Messages
- Statistics
- AGU
- NIconroller
- Security Controller
- FIFO PBEInChannel
- FIFO BEInChannel
- FIFO ctrl
- Packet
- Routing
- Local Credits
- Monitoring Tables
- Offset
- Message Size
- Access Config
- Received Credits
- Depacket
- Port
- Slave / Master Wrapper
- R/W Ctrl Signals
- Data
Secure protocol for (re)configuration

- IV-“Avoid security weakness due to SCM access to both VCs”
- 4 states FSM
- Specific configuration for SCM
 - Exclusive access to Secured VC (Priority BE) and Un-Secured VC (BE)
 - Access to Secure VC for NI configuration and monitoring in RUN Status
 - Access to Unsecure VC (BE) during (re)configuration
 - Switch to SNI or DPR
Outline

- Attacks on embedded systems
 - Classification
 - RSoC perspective
 - NoC perspective
 - Model of threats
 - Scenario Example

- Our approach
 - Strategy
 - Centralized decision & distributed execution
 - 4-steps access control strategy
 - Secure Network Interface and separate channels
 - Secure protocol for (re)configuration

- Implementation case studies
 - Synthetic Set-Top Box
 - SECA case study (DRM)
 - NoC generation

- Conclusion
Synthetic Set-Top Box

- Sensitive Data: Crypto Proc., Pgm, Private data, Network Accesses
- 1st step, boot/reset: SCM/ IP-SNI communications instanciated over PBE VC. SCM starts transferring security rules in SNI tables
Synthetic Set-Top Box

- 2nd step, as a result of 1st configuration process BE communications are instantiated between SCM and IP SNI for security rules configuration.
- Security rules may be reduced to sensitive access.

Diagram:

- Crypto Processor
- Crypto Proc. PGM Memory
- Private Data Memory
- Public Data Memory
- Network Processor
- Mac
- Ciphered Extra Bitstream memory
- Data Memory 1 (Clear)
- Data Memory 2 (Ciphered)
- GPP
- Video Processor
- GPPs
- DMA
- GPPs Program Memory
- SCM
- Graphics Engine
- Security/Ciphered Boot ROM
- External Reset ROM
- Global ciphered Bitstream

Legend:
- BE: Sensitive BE
- PBE not indicated
At run time, a reconfiguration for Firmware Update => new communication scheme
DRM case-study from SECA

- DRM architecture for Portable playback of MM content
- Different memory access rights for CPU A (ARM) and CPU B (crypto)

Access rules for proc. X:
- X-N: Not accessible,
- X-R: Read Only,
- X-RW: Read Write,
- XW: Write only

NoC-Centric security of RSoCs
µSpider NOC CAD Tool: flexible framework for NoC generation
- Wormhole Packet switching
- Topology, minimum routing instruction size
- Routing / Arbiter Policies
- Number of Virtual Channels
- TDM / BE / BE with priority

New Network Interfaces
- Security Tables
- Counters
- Rule Checkers
- No Time Overhead
- Limited Area Increase compared to routers
NoC Generation

- Test Topology for synthetic Set Top Box example:
 - 2D MESH : 4 X 3
 - 22 SNI
 - Bitwidth: 32; Buffer depth: 8 words for BE, 4 words for PBE
 - 7 Master IP, 13 Slave Memories,
 - Same architecture applicable to SECA example

- μSpider
 - VHDL generation
 - Specific Output for EDK Xilinx NOC IP generation

- Preliminary Results:
 - Without Security : 23818 slices
 - With Security : 34568
 - Overhead: 45%
 - Mainly due to Routers for implementing PBE VC
Conclusion

- A complete architecture and methodology is proposed for NoC-centric security applicable to RSoC.
- Security has a cost ... (2.2 % of main US company turnover in 07)
 - How much for personal security in the future?
 - Separate channels are necessary
- The Secured NoC overhead can be reduced:
 - By using a reduced number of routers with 2 Virtual Channels
 - Low bandwidth requirements
 - Bitwidth may be reduced
 - By improving synthesis, FPGA => overestimation
- Anyway, a systematic methodology is required to address complex access control schemes in future multi-processor RSoC
- Future work: Implementation of countermeasures strategy
 - What’s the reaction against attacks alerts?
Conclusion

Thank You