Scalable NoC-based architecture of neural coding for new efficient associative memories

<u>Jean-Philippe DIGUET</u>, Martha J. SEPULVEDA Lab-STICC, CNRS / Université de Bretagne de Sud CODES-ISSS'13, Montréal

OUTLINE

- 1. Introduction
- 2. Neural Coding
- 3. Architecture
- 4. NoC Performances
- 5. SystemC Simulation
- 6. Conclusion

1.Introduction

- Early days of neurosciences: Bergson, Le Rêve, Conf. at International Psychology Institute, Paris, Mai 1901.
 - Consciousness and Dream are similar: a permanent adaptation mechanism to adjust (limited, perturbed) perception and memories.

• Partial perception enough, e.g. Writing Experience, Goldscheider & Müller 1893. Zur Physiologie und Pathologie des Lesens, Zeitschr. f. klinische Medicin, 1893.

1.Introduction

- Associative Memories
 - Current Applications:
 - Telecom Routers
 - Image Processing : pattern / face /... recognition
 - Compression / Coding

- Internet increasing demand => Emerging needs:
 - Multi-criterion recognition
 - Cloud Database & Data mining
 - Memory Mimic = partial blur pieces

1.Introduction

- Associative Memories
 - CAM-based solutions: Important Complexity and Limited Size

- Hopfield Neural Networks (HNN)
 - Communications identified as the main bottleneck
 - Bus based solutions + broadcast: good performance but scalability issues
 - Packet-based NoC: high bandwidth and multicast relevant property
 - Neural Coding outperforms HNN in Capacity, Efficiency and Diversity

2. Neural Coding

Authors

- C.Berrou, V.Gripon (Telecom Bretagne/Lab-STICC, Brest, France)

Principle

- Neurons ⇔ Nodes of a graph
- Message ⇔ Clique of C Symbols
- Repairing: decoding
- Decision: Winner-Take -All

Two ideas

- **Sparsity**: message size < Nb Neurons
- Clique-based codewords

2. Neural Coding

- Properties
 - Factor of Merit $F = R.d_{min} = 2 > 1$ so this is an error-correction code
 - Minimum distance between two codewords: d_{min}=2.(C-1)
 - Coding rate: R=1/(c-1)
 - Simple code comparable to LDPC but easy to decode (Winner-Take-All)
- Theoretical comparison with HNN for associative memories
 - Gripon, Berrou, IEEE Trans. Neural Networks, Jul. 2012
 - Same memory size: 1.8Mbits, C=8, L=256
 - Sparsity property:
 - Capacity: x20
 - Diversity: x250

2. Neural Coding

- Error rate vs Density
 - Density = Number of learnt messages / Max. number of messages
 - C=8, L=256, Initial Error: 50%

- 3 components + Communication Network
 - Active Memories, Manager, Winner-Take-All Processors

- Connection active Memory
 - Minimum bound: 1 bit / connection
 - C.(C-1)/2 Mem. of L^2 bits
 - L banks of L bits
 - 2 possible responses
 - Full connection vector (ordered diagonal or line)
 - ID of '1' connection only

- Winner-Take-All Processor
 - Connection vector
 - Best score sorting
 - L cycles if serial implementation
 - Alternatives for performances:
 - Send only "1"
 - Parallel sorting
- Manager
 - Simple FSM
 - Mapping function
 - Iteration control

- Communication
 - Learning: Store connection between clusters
 - Data to Manager.
 - Manager analyzes and distributes the data among the memories.
 - **Repairing**: Recovery of data
 - Stage 1: From Manager to memories
 - Which store links of clusters with unknown neurons
 - Stage 2: From memories to WTAP
 - Retrieve links
 - Stage 3: From WTAP to Manager
 - Send best neuron candidate

- Network On Chip
 - Four topologies

- 1. Hybrid interconnection (Bus + NoC)
 - **Bus**: Broadcast data (*manager-memories*)
 - Learning
 - Repairing (*stage 1*)
 - NoC: Parallel communication
 - Repairing (*stages 2 and 3*)
- 2. Regular mesh (Unicast-multicast)
 - Unicast: Single destination
 - Multicast: Multiple destination.
 - Destination extract the proper parts of message.
 - Stage 1

3. Semi-Torus NoC (Unicast-multicast)

- Decrease hop distance
- Memories WTAP
- XY min routing

4. NoC 3D (Bus + NoCs)

- Vertical integration
- Layered: Storage-processing
- Increase bandwidth

4.Performances Analysis

- Experimental setup
 - VHDL-RTL implemented models:
 - Case 1 : C=4 L= 4 (6 memories, 11 IPs)
 - Case 2 : C=16 L=128 (120 memories, 137 IPs)
 - Components synthesized on a 65 nm Virtex 5
 - Six NoC Topologies for C=4, L=16, 32 and 64
 - Traffic simulation for 6 NoC topologies:
 - Hybrid interconnection
 - Regular mesh unicast
 - Regular mesh multicast
 - Semi-torus unicast
 - Semi-torus multicast
 - NoC 3D
 - Traffic model: 25% Learning, 75% repairing
 - Percentage of errors: 10% to 75%

4. Performances Analysis

- Latency vs error percentage, 6 NoC configurations
 - R: #Neuron/#Cluster ratio

R= 4 (L=16, C=4)

4. Cost: Resources

Resources

- 16 bits links
- Cost: Mainly Memory: $L^2.C.(C-1)/2 + L\cdot C\cdot Log(C-1)$ ($C_{ij}Mem / WTAP$)
- But NoC to be chosen carefully: Mesh+Multicast: good tradeoff

NC	Communication structure						
	Configuration	FFs	LUTs				
$\{4,\!4,\!6\}$	HoC	514	721				
(11 IPs)	Regular mesh (unicast)	452	614				
	Regular mesh (multicast)	502	746				
	Semi-Torus (unicast)	622	936				
	Semi-Torus (multicast)	734	1021				
	NoC 3D	1248	1972				
{16,128,120}	НоС	5672	8435				
(137 IPs)	Regular mesh (unicast)	4956	7122				
	Regular mesh (multicast)	5482	8504				
	Semi-Torus (unicast)	6702	10483				
	Semi-Torus (multicast)	8212	11537				
	NoC 3D	14222	22086				

NC	Manager		WTAP		Memories		
	FFs	LUTs	FFs	LUTs	FFs	LUTs	
$\{4,4,6\}$	5	52	28	36	23	30	
(11 IPs)	· -		+1 BRAM				
{16,128,120}	12	57	44	77	16384	28563	
(137 IPs)		-	+4 BRAM				
	X	3.4					
				X 1.3			
C=16, L=12	28, 120	0 Mem.					

4.Cost: Power

Power Consumption

- 65nm 3D NoC Power model from 3D Integration for NoC-based SoC Architectures, Springer, 2011, Heibanyrad, Pétrot, Jantsch eds.
- Function of: #Hops, Link and Router activities, Vertical and Horizontal links

5. SystemC Simulation

Experimental Setup

- Memory, WTAP, Manager: TLM-Level, cycle budget from implementation
- NoC: cycle accurate, required for routing
- C=16 clusters, L=128 neurons
- Messages: randomly generated with a given error ratio (e)
- 4 points generated for each case, then average (28-120 min / point)
- 3 experiments e =10%, 30% and 40%

5. SystemC Simulation

Results

- 10% very close to 1-iteration theory (1 iteration enough most of the time)
- 30-40% : Gap = corrections (#iterations) & random process approximation side effects

6. Conclusion

- Promising solution: cost & performance
 - Cost vs CAM
 - Efficiency vs HNN
- Architecture
 - Successfully demonstrated
 - NoC based architectures fit with NC requirements
 - MESH + Multicast NoC = good tradeoff.
 - Open to ongoing neural coding evolutions

6. Conclusion

- Perspectives: Optimization tracks to be explored:
 - Links Bitwidth (1, 8, ..) => NoC Cost reduction
 - Fewer WTAP: dynamic allocations (reduced sorting memory cost)
 - More active memories: send only '1' (sparsity benefit, reduced WTA delay)
 - Hierarchy of NoC for multi concept associative memory

