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Abstract—Cortex codes are an emerging family among the
rate-1/2 self-dual systematic linear block codes with good distance
properties. This paper investigates the challenging issue of
designing an efficient Maximum Likelihood (ML) decoder for
Cortex codes. It first reviews a dedicated architecture that takes
advantage of the particular structure of this code to simplify
the decoding. Then, we propose a technique to improve the
architecture by the generation of an optimal list of binary vectors.
An optimal stopping criterion is also proposed. Simulation
results show that the proposed architecture achieves an excellent
performance/complexity trade-off for short Cortex codes. The
proposed decoder architecture has been implemented on an
FPGA device for the (24,12,8) Cortex code. This implementation
supports an information throughput of 300 Mb/s. At a signal-to-
noise ratio Eb/No=8 dB, the Bit Error Rate equals 2 × 10

−10,
which is close to the performance of the Maximum Likelihood
decoder.

Index Terms—Cortex codes, auto-dual codes, VLSI, ML de-
coding.

I. INTRODUCTION

Nowadays, modern Forward Error Correction (FEC) tech-

niques, such as Low-Density Parity-Check (LDPC) codes [1]

approach the limit of the channel capacity, for long code

lengths (thousands of bits). Nevertheless, a long FEC code

may be not relevant for particular applications, such as mobile

phone communications or internet protocols due to latency

constraints. For short block length (hundreds of bits or less),

LDPC codes showed a low performance due to the increasing

density of ’1’s in the Parity-Check matrices. Turbo-codes [2]

achieve near optimal decoding performance for codes longer

than a few hundreds bits, but become less appropriate for

shorter codes.

The emerging Cortex codes [3], [4] may offer a practical

and efficient alternative to the best known iterative decoders,

i.e. binary (or non-binary) LDPC and Turbo-Codes for very

short frames. Cortex codes were initially proposed by Carlach

in [3]. They are systematic rate-1/2 self-dual block codes

with large minimum distance. A Cortex encoder combines

a very short mother code with a sequence of permutations

to produce the parity bits. If the mother code is self-dual,

the resulting Cortex code inherits from this self-dual property

[4]. Therefore, the (N = 2K,K) parity check matrix of a

Cortex code can be written as H = [P, I], where I is the
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Fig. 1. Architecture of a Cortex encoder with N=24 built from (8,4,4)
Hamming codes

K × K identity matrix and P a dense K × K sub-matrix

satisfying P × P ′ = I (P ′ denotes the transpose matrix of

P ). In particular, if X = (x1, x2, · · · , xK)′ is the information

vector and R = (r1, r2, · · · , rK)′ the redundancy vector, then

R = P.X and X = P ′.R.

Fig. 1 shows an example of a three stage Cortex encoder

(24,12,8) also known as the Golay code. The code is based

on extended (8,4,4) Hamming codes and interleavers as com-

ponents. Note that, thanks to the simple network structure,

the calculation of R from X (or X from R) requires only

7×9 = 63 2-input XOR operations (7 XOR for each extended

Hamming code).

Efficient decoding of Cortex codes is a new challenge

recently taken up by [5], [6], [7], [8] and work is still to be

done to approach the performance of Maximum-Likelihood

(ML) decoding at a reasonable cost.

The remainder of the paper is organized as follows: Section

II presents the construction of Cortex Codes and gives an

overview of the existing Cortex decoders. Section III depicts

the proposed decoder architecture. Section IV first shows the

synthesis results and BER measurement for the Golay code.

Then, a stopping criterion is presented with results in terms

of throughput increase.

II. CORTEX CODE DECODER

This section presents a brief state-of-the-art of Cortex code

decoding. We particularly focus on the method presented in

[7]. Then, we propose to modify this architecture in order to

improve the decoder performance.

A. ML decoding

Let us consider a (N ,K) binary linear code C and let C =
(c1, c2, · · · , cN ) be a codeword of C. For BPSK transmission,

C is mapped into the bipolar sequence Y = (y1, y2, · · · , yN )
with yi = (−1)ci ∈ {±1}. After transmission, the received

sequence at the output of the sampler in the demodulator
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is Z = (z1, z2, · · · , zN ) with zi = yi + wi, where for

1 ≤ i ≤ N , wi’s are statistically independent Gaussian random

variables with zero mean and variance σ2 = N0/2. The Log-

Likelihood Ratio (LLR) associated to the binary symbol ci is

thus LLR(ci) =
2zi
σ2 . Assuming that the codewords are equally

probable, the ML decoding is reduced to:

Ĉ = arg min
C∈C

{P (Z/C)} (1)

Using the transformation in [9], [10], Equation (1) can be

replaced by:

Ĉ = arg min
C∈C

{

N∑

i=1

|zi|δ(ci, zi)} (2)

where |zi| is the absolute value of zi and δ(ci, zi) equals 0

if the hard decision HD(zi) on zi gives ci (no transmission

error) and equals 1 otherwise (transmission error).

Going back to the auto-dual code, we can separate the

function cost due to the K received LLRs of informa-

tion (LX(i)i=1..K) and K received LLRs of redundancy

(LR(i)i=1..K). Let CX = (X,R = P.X) be a codeword, then

the distance D(CX) between CX and the received LLRs is

defined as: D(CX) = D(X) +D(P.X), where:

D(X) =

K∑

i=1

|LX(i)|δ(xi, sign(LX(i))) (3)

D(P.X) = D(R) =

K∑

i=1

|LR(i)|δ(ri, sign(LR(i))) (4)

To reduce the complexity of the ML decoding (testing

the 2K codewords), sub-optimal decoding methods have been

proposed. The first family of sub-optimal algorithms is based

on the exchange of information between processing nodes,

such as the Belief Propagation (BP) algorithm. The second

family exploits the reliability of the received symbols to search

for the most likely codeword in a reduced set of codewords.

B. Iterative algorithm

BP decoding is a soft-input soft-output decoding algorithm

relying on the exchange of soft information along the edges

of a graph defined by the parity check matrix [11]. The BP

algorithm is known to closely approximate the performance of

optimal Maximum A Posteriori (MAP) decoding at reduced

complexity for codes with sparse parity-check matrices. How-

ever, it works poorly with Cortex codes because their parity-

check matrices are not sparse.

Different techniques are then investigated. The first one

consists in an analog Cortex decoder that replaces the discrete

iterations with a continuous processing [5] and shows better

performance than an LDPC-like decoder. The second strategy

uses a stochastic processing [6] to compute BP, leading to a

decoding performance at 0.8 dB from the ML decoding for

the (32,16,8) Cortex code.

C. Reduced search algorithms

Reduced search algorithms are based on the reduction of

the space of search from C to a subset CZ of codewords that

could be close to the received vector Z . Several strategies

could be applied: For example, modification of the value of

the least reliable bits of the received codeword and perform

a decoding algorithm to search for a codeword (known as

Chase’s algorithm [9]). Another method [12] encodes the K
most reliable bits using a modified generator matrix deduced

by Gaussian elimination. In [7] and [8], the authors exploit the

auto-duality of Cortex codes to create two lists of codewords:

the first list is generated from the least reliable information bits

X and the second one from the least reliable redundant bits R.

Just by simple encoding operations, this method adds diversity

in the search of candidate codewords, leading to a very good

decoding performance. In contrast, the Chase’s algorithm [9]

requires several explicit algebraic decoding operation, while

the method proposed by Fossorier et al. in [12] requires a

Gaussian elimination of the encoding matrix.

Since the error pattern generation is symmetrical for infor-

mation and parity bits, only the former is presented. In [7],

[8], the error patterns are generated by determining the first λ
bits of smallest reliability and by testing exhaustively the 2λ

possible error patterns among these λ bits (typical values of

λ are 3, 4 or 5).

Note that the generated list of codewords is not optimal,

since other pattern errors containing other bits can lead to

information vectors X of smaller distances (see eq. 2). For ex-

ample, if |LX | = {|LX(i)|}i=1..5 = {0.35, 0.2, 0.1, 0.35, 0.3}
and λ = 3, the 8 pattern errors imply only the bits

{x3, x2, x5}, with a maximum cost of 0.6 for the error pattern

”01101”. However, the error patterns ”10000” and ”00010”,

which both lead to a cost of 0.35, are never tested.

D. Word generator based on minimum distance

In this paper, we propose to overcome this problem by

generating the entire sorted list of candidates with the first

ρ smallest distances. The idea is to generate explicitly the

complete list of codewords Xup(l) and its associated small-

est increasing distance D(Xup)(l), for l = 1 . . . ρ, where

l ≤ l′ ⇒ D(Xup)(l) ≤ D(Xup)(l′) (and also the symmetrical

list Rup(l), l = 1..ρ). Doing so, we are guaranteed to test only

good candidates. It also allows us to define a criterion to stop

the decoding process when it becomes useless, thus reducing

the average time and power dissipation to decode a codeword

(stopping criterion).

III. DECODER ARCHITECTURE

This Section describes the word generator architecture and

its integration in the global decoder architecture.

A. Word generator architecture

For the candidate codewords generation, different tech-

niques have already been proposed [13], [10]. In [10], a

systolic architecture generates binary vectors for Non-Binary

LDPC decoders. This architecture can be efficiently used as
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a codeword generator since it produces the codewords in

increasing order (in terms of distance). This means that the

ρ first half words generated are the closest to the received

half word.

The systolic architecture is based on K Processing Elements

(PEs) that are serially connected from j = 1 to j = K .

The jth PE receives from the (j − 1)th PE the sorted list

(Xup
j−1(l), D(Xup

j−1(l))l=1..min(2j−1,ρ) generated from the first

j− 1 received symbols {zi}i=1..j−1. From this list and the zj
value, the jth PE provides to the j + 1th PE the sorted list

generated from the first j received symbol. After propagating

through the K PEs (latency of 2K clock cycles), every

cycle, the word generator provides a new word Xup(l) (or

Rup(l)) and its associated increasing distance D(Xup)(l) for

l = 1 . . . ρ, i.e. l ≤ l′ ⇒ D(Xup)(l) ≤ D(Xup)(l′). The

reader is invited to refer to [10] for more details on the

hardware implementation of this algorithm.

B. Pipelined architecture

Fig. 2 shows the decoder architecture which is pipelined

for high throughput. The enable signal Enin is used on rising

edge to indicate the start of the decoding of a new word.

At the start of the decoding process, K LLRs are loaded in

parallel at the two word generator entities. The falling edge

indicates the end of the decoding of the current word. When

the enable signal is forced to zero, a new word is fetched. The

enable signal is propagated through the decoder so that the

different elements are reset (FIFO, Memory) in one cycle for

the decoding of the next word. During the distance calculation,

the distance already computed in the word generator is added

to the distance of the other half of the codeword. To reduce

the complexity, the distance computation can be performed

by adding only the channel LLRs of erroneous bits [9]. These

LLRs are read from a FIFO to deal with the word generator

delay.

IV. APPLICATION CASE

The Cortex decoder has been simulated and implemented

on an FPGA platform for validation purposes.

A. Simulation results

Fig. 3 illustrates the BER performances of fixed point

decoders for N = 24, 32, 40 and 56 bits. Thanks to hardware

emulation on FPGA [14], very low BER values are obtained.

The curve in dash line illustrates simulation with a com-

bination of the λ = 4 minimal LLRs as in [7]. The number

of generated words with the two methods are equal, but the

performance is improved with the minimum-distance-based

word generation. Note that the number of generated words

increase exponentially with N .

B. Synthesis

Table I shows the synthesis results of the implementation of

the Cortex (24,12,8) decoder on an FPGA platform containing

a Xilinx Virtex 5 XQ5VLX85. Note that the Word generator,

Encoder and Distance entities are instantiated twice in the im-

plementation. Most of the complexity of the decoder resides in
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Fig. 3. Fixed point simulation results for N = 24, 32, 40, 48 and 56

XQ5VLX85 REG LUT logic LUT RAM

decoder 4650 5730 562

Word generator 1611 2450 248
PE1 154 236 16
PE11 156 243 36

Encoder 25 73 0

Distance 325 242 33

min 120 20 1

TABLE I
SYNTHESIS RESULTS FOR CORTEX (24,12,8) DECODER

the word generator. The maximum frequency, after place and

route, is 400MHz. For comparison, the decoder implemented

in [7] on a Virtex 5 FPGA requires 2905 slice registers and

1114 slice LUTs.

C. Air throughput without stopping criterion

Table II shows the performance in terms of BER at

Eb/N0 = 5 dB for N = 24, 32, 40, 48 and 56. The table

also shows the number of words generated to reach a BER

at 0.1 dB from the ML decoding. The decoding latency is

expressed as Ldec = 3(K − 1) + log2(K) + 8 + ρ. For

high frequency, each PE is pipelined in 3 cycles. The word

generator latency corresponds to the term 3(K− 1). The term

log2(K) corresponds to the distance calculation and the term 8
corresponds to the number of pipeline steps in the architecture.

Finally, ρ represents the number of tested codewords. For

comparison, the decoding latency in [7] is 80 cycles, but

N= 24 32 40 48 56

BER 1.10−4 5.10−5 2.10−5 1.10−5 4.10−6

ρ 16 64 128 512 2048

Ldec 61 121 192 594 2142

Mb/s 300 100 62 16 6

TABLE II
PERFORMANCE AND AIR THROUGHPUT FOR N = 24, 32, 40, 48 AND 56
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Fig. 2. Code Cortex decoder architecture
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Fig. 4. Average number of generated words before the ML codeword is
found as a function of the signal-to-noise ratio

maximum frequency is 72 MHz. Thanks to pipelining, the air

throughput is given by K×Fclk/ρ. The air throughput is 300

Mb/s for N = 24 and 100 Mb/s for N = 32. For comparison,

air throughput in [7] is 36 Mb/s for N = 32, with a latency

of 61 cycles.

The increasing ρ value leads to a throughput reduction down

to 6 Mb/s for N = 56. For N > 32, a stopping criterion should

be used to reduce the average number of generated words and

thus increase the throughput.

D. Optimal stopping criterion

Fig. 4 illustrates the average number of generated codewords

E[ρ] before the ML codeword is found. Simulation results are

based on a ”genius” stopping criterion, i.e., the decoding stops

as soon as one of the two word generators provides the ML

codeword. For N = 56, at Eb/N0 = 5 dB, an ML codeword is

found on average after testing 6 words instead of 2048 (thus a

99.7% computation time saving would be obtained). However,

proving that a given codeword is the ML codeword is an NP-

hard problem.

In practice, our stopping strategy is to stop the decoding

process when no better codeword can be found. Let Dm(l) be

the minimum distance found after testing the first l codewords.

If D(Xup(l)) + D(Rup(l)) > Dm(l) (stopping criterion),

then the decoding process can stop, since the next generated

codewords lead to a distance greater than Dm(l).
proof by contradiction: Let us assume that a better codeword

can be found for a value l′ > l. This codeword can be either

CX(l′) (hypothesis H1) or CR(l
′) (hypothesis H2). Let us

consider first hypothesis H1. We have:

D(Xup(l′)) +D(P.Xup(l′)) < Dm(l) (5)

According to the stopping criterion:

D(Xup(l′))+D(P.Xup(l′)) < D(Xup(l))+D(Rup(l)) (6)

Since D(Xup(l′)) ≥ D(Xup(l)), then

D(P.Xup(l′)) < D(Rup(l)) (7)

This inequality implies that R = P.Xup(l′) has already

been tested for a value q ≤ l and thus, that Dm(l) ≤
D(CX(l′)), which is in contradiction with the initial hypothe-

sis H1. In the case of hypotheses H2, symmetrical arguments

also lead to a contradiction, which confirms the proof.

Fig. 5 illustrates the evolution of the distances as a function

of l for N=40 and Eb/No = 3. In this simulation, the stopping

criterion stopped the decoding process after 19 generated code-

words while the ML codeword is found after 12 codewords.

Fig. 6 shows the average number of words before the

stopping criterion detects that an ML codeword has been

found.

The main advantage of the proposed stopping criterion

resides in its implementation simplicity and the absence of

BER performance loss.
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Fig. 6. Average number of generated words using with the stopping criterion

Table III shows the air throughput performance at Eb/No =
5 dB for N = 24, 32, 40, 48 and 56. The latency of decoding

is given by Ldec = 3(K−1)+ log2(K)+8+E[ρ]. Because of

the stopping criterion, the decoding of two consecutive words

cannot be pipelined. The air throughput is replaced by K ×
Fclk/Ldec Mb/s.

Note that for N = 24, the air throughput is reduced com-

pared to the pipelined implementation without the stopping

criterion (Table II) for which the air throughput reaches 300
Mb/s. For N = 40, 48 and 56, the stopping criteria makes it

N= 24 32 40 48 56

ρ 16 64 128 512 2048

E[ρ] 1.5 2 3 5 9

Ldec 47 59 73 87 103

Mb/s 101 108 109 109 108

TABLE III
AIR THROUGHPUT FOR N = 24,32,40,48 AND 56

possible to keep the air throughput above 100 Mb/s.

V. CONCLUSION

In this paper, we consider the design of efficient Cortex code

decoders. An existing soft-decision decoding algorithm is used

to exploit the code structure to achieve ML performance. We

added a word generator to the architecture and an optimal

stopping criterion. We showed that the proposed decoder

architecture provides performance which is very close to ML

decoding for a fraction of the ML decoding complexity. The

implemented pipelined architecture achieves a throughput of

300 Mb/s with N = 24 bits. The implementation of a

simple stopping criterion provides an efficient solution for

N > 32. Future work will be dedicated to optimize the

hardware implementation of the decoder in terms of area and

frequency, as well as the stopping criterion.
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