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Motivations

Source
coding

emitter Channel
coding

Modu
lation

Channel

Design of a communication system...

Source
decoder

receiver Channel
decoder

Demodu
lation

...find the best complexity-performance trade-off
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Motivation
Performance:

- BER
- Jammer rejection
- time of synchronization…
-…

Complexity:
-  area, power dissipation
- time to market
- …

algorithm
ADC  resolution, 
sampling frequency, 
fixed precision

A very complex problem...
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Monte-carlo simulation

* Formal expression of the BER: refer to Proakis

* In practice, estimation of the BER using Monte-carlo simulation

1) Software model of emitter, channel, receiver
2) Emulation of the transmission of N bits
3) Estimation of the BER as Nb_errors/N

VERY FLEXIBLE
      but...
TIME CONSUMMING: BER of 10-6 (+-3%) requires 109 bits.
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Software simulation

Three  methods to reduce the simulation time:

a) code optimization

b) powerful computing

c) parallel computing
(One Mbps for a turbo-decoder with a cluster of 16 PCs)

also use hardware emulation 
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Current methodology

Software Hardware

Algorithm

C programs

Compilation

Validation/optimization
with long simulations

Fix specifications

VHDL programs

Synthesis, place and route 
operations

Validation

Final prototype
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Proposed methodology

Software Hardware

Algorithm

C programs

Compilation

Validation/optimization

Fix algorithm + Set of non-
specified parameters

Generic VHDL programs, IP

Synthesis, place and route 
operations (on FPGA)

Hardware simulation/validation

Final prototype
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Channel emulation

Type of communication channel:
- AWGN
- Rice
- Rayleigh
... 

All those channels can be derived from Gaussian 
Noise (with ARMA filter, non-linear operators).

=> Need a White Gaussian Noise Generator (WGNG)
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Specifications of the WGNG

WGNG

clk

seed

init

n
(4.b) 2

Output rate > 10MHz

Out_v

b=2 to 10 bit after the dot
Sample between -8 and 8

a Flat spectrum
a (4σ, 1%) normal-like p.d.f

))(1,0(
))(1,0()(

)(
xN

xNxX
xX

−=ξ

|ξX(x)|<1% for |x|<4

A periodicity > 260

+ LOW COST FPGA IMPLEMENTATION
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Previous WGNG

0) Using thermal noise of a resistor (non deterministic)

1) Case of low ADC precision

2) Central limit theorem

3) Box-Muller method 
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Case of low ADC precision (1)

+1

-1

Emitter N=4-Level ADC of the receiver

y3

y2

y1

y0

P(b=+1,y3)

The probabilities P(x=i, yj) are known for a given SNR

Example: P(b=+1, y3) = 0,3 P(b=+1, y2) = 0,5
P(b=+1, y1) = 0,15 P(b=+1, y3) = 0,05 
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Case of low ADC precision (2)

Uq Generator
q

{0,1,…2q-1}

Compare
x

0   ≤ x/2q < S0

S0   ≤ x/2q < S1

S1   ≤ x/2q < S2

S2   ≤ x/2q < 1

∑
=

===
k

j
k jyixPS

0

),(Repartition function:

S3=1
S2=0.8

S1=0.2
S0=0.05
0

Segment [0,1]

Precision depends on q, Complexity in O(qN)
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Central limit theorem

X is a real r.v. of mean mx and standard deviation σx, 

XN  defined as:

tends towards N(0,1), when N tends towards infinity.

∑
−

=
−=

1

0

)(
1 N

i
xi

x
N mx

N
X

σ

Let U(q,N) = sum of N Uq, (Uniform distribution over {0,…,2q-1})
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P.d.f. U(q=8,N=2)
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P.d.f. of U(q=8,N=4)
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P.d.f U(q=8,N=8)

-5 -4 -3 -2 -1 0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

-3



20Cider Seminar, University of Toronto, August the 24th 2001

Epsilon function

0 1 2 3 4 5
-0.1

-0.05

0
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x

E
ps

ilo
n(

x)
8 16 32 64 

The convergence is very slow...
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Box-Muller method

Method used in software program:

If x1 and x2 are two uniform r.v. over [0,1], then:

)()(

)2cos(2)(

)ln()(

21

22

11

xgxfn

xxg

xxf

=
=

−=

π

give a sample n of the normal distribution

Efficient with a floating CPU unit, not with an FPGA
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Proposed method

Quantized version of Box-Muller method adapted to 
hardware implementation

=> rough distribution

Smooth the distribution using central limit theorem 

Desire an accurate complexity model and an exact distribution
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Quantization of f(x1)

Plot of function f(x1)

Need a fine quantization around 0

f -1(1)=0.36

f -1(2)=1.8 10-2

f -1(3)=1.2 10-4

f -1(4)=1.1 10-7

x1

0

1

2

3

4

0 0.2 0.4 0.6 0.8 1

)ln()( 11 xxf −=
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Non uniform quantization (1)

0 2 ∆=1∆= 2-q 2∆ 3∆ q

rank 1

rank 2

rank K

...
∆2

∆K

2∆ 3∆

2∆ 3∆

2

K

2

K

2 ∆  =∆

2 ∆  =∆

2

K

q

q K-1

Let s1, s2, …, sK be K independent r.v. of q bits (distribution Uq)

If s1>0, use ROM f1, else if s2>0, use ROM f2 … and so on...

ROM f1

ROM f2

ROM fk

Result: the probability to draw segment s of rank r is 2-rq
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Pre-compute values of the ROMs

The quantized value associated with the ROM r at the address s is:

m bits3 bits

δ relative position 
of x1  in segment
[s∆r, (s+1) ∆r[

Remark: Probability to draw fr(s) is P(fr(s)) = 2-rq

)ln()( 11 xxf −=

( )  )2()(ln2)( mrm
r ssf −×∆+= δ
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Example of quantization of f(x1)

0 0.125 0.25 0.375 0.5 0.625 0.75 0.875 1
0

0.5

1

1.5

2

2.5

3
δ=1/4

f1(3)

f1(2)
f1(1)

f2(3)

f2(2)

K=3, q=2, m=2, δ=1/4

Rank 1

Rank 2

1
3
4
0

s1

5
5
6
0 6

7
7
0

s2

s3ROM f1

ROM f2

ROM f3
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Quantization of g(x2)

)2(
2

)’’(’
cos22)’( ’’ mm s

sg −×










 +∆= δπ

Let us define s’, a q’ bit random variable
∆’ = 2-q’ is the quantization step of segment [0,1/4] 
ROM g (s’) is quantized as:

The problem of sign is analyzed later

m’ bits1 bit

 δ’ relative position 
of the point in segment
[s’∆’, (s’+1) ∆’  [
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0 0.1250.250.375 0.5 0.6250.750.875 1
0

0.125
0.25

0.375
0.5

0.625
0.75

0.875
1

1.125
1.25

1.375
1.5

Example of quantization of g(x1)

δ’=1/2

g(3)

g(7)

g(1)

g(0)

g(2)

q’=3, m’=3, δ’=1/2

1
3
5
7

s’

ROM g

8
9
10
11

Probability to draw
a given point is 
P(s’)=2-q’
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Half Box-Muller r.v.

)2(
2

)’()( b
bmm

r sgsf
n −

−+
+ ×



 ×=

For a given triple (s,r,s’), n+ (Half Box Muller) is computed as: 

∑
∈),,(

+ ==
nSs

sgsfrPnHBMP
’rs

))’(),(()(

)’(2))’(),(( qrq
r sgsfP +−=

Let Sn be the subset of {0, ..., 2q-1}x{1, ..., K}x{0,..., 2q’-1}
 of all triples (s,r,s') that give n+ using (*) 

The exact probability 
density function of 
HBM can be computed

(*)
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Construction of HBM

scaling = pow2(m_f + m_g - b);  

for s=1:pow2(q_f)-1
  for r=1:K
    for u=1:pow2(q_g)
   n=floor((rom_f(s,r)*rom_g(u)/scaling);
   HBM(n+1) = HBM(n+1) + pow2(-(r*q_f + q_g));
   end; 
 end; 
end; 

Exhaustive exploration

Probability of the triplet s,r,u
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Box_Muller r.v.

 n = (1-2sign) n+-sign

From a binary r.v. sign, Box-Muller p.d.f. is obtained

The exact p.d.f. of BM can also be computed

HBM

BM

n+

n
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Example of distribution

Parameters:
b=6 bits after dot
K=5 fr ROMs
q=4 (16 words ROM for fr) 
q’=8 (256 words ROM for g)
m=7 (3+m=10 bit-word for fr)
m’=6 (1+m’=7 bit-word for g)
δ=0.36   δ’=0.5

Complexity:
5 ROMs 16x10 for fr

1 ROMs 256x7 for g
5x4 + 8 +1 = 29 binary r.v.
10 bits x 7 bits multiplier
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Resulting p.d.f.

-8 -6 -4 -2 0 2 4 6 8
0

0.002

0.004

0.006

0.008

0.01

Large variations around N(0,1) due to quantization effects
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Epsilon function

0 1 2 3 4 5
-0.1

-0.05
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E
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Need to smooth the variation with central limit theorem
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-8 -6 -4 -2 0 2 4 6 8
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1
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3

4

5
x 10

-3

Use of central limit theorem

Distribution of BM2 can be computed (BM2=BM1⊗BM1) 

Generation of BM2 
as the sum of

two independent 
draws of BM1
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Use of central limit theorem

…thus, use central limit theorem again 
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BM2 is much better than BM1, 
but still not (4σ, 1%) 
normal-like p.d.f ...
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Distribution BM4

The p.d.f. of BM4 is (4σ, 1%) normal-like
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Performance results
Maximum relative error ξX(x) between the ideal gaussian

distribution and BMA

b : number of bits
after decimal point

A : number of
accumulations

q=4, K=5, q’=8

AMax ξ X(x) ∗ 1 0 − 3

between 0 and 4σ    2 3 4 5

1  δ=0.44 0.65 0.08 0.15 0.29

2  δ=0.453 11.5 1.96 0.93 0.43

3  δ=0.445 20.2 2.12 0.56 0.34

b 4  δ=0.467 64.6 5.4 0.71 0.31

5  δ=0.467 57.3 5.4 1.12 0.69

6  δ=0.467 71.9 5.8 1.38 0.93

7  δ=0.467 237 8.4 0.68 0.28

8  δ=0.467 503 26.5 1.76 0.26

The quality can be controlled with MATLAB
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Global architecture

q s1

q s2

q sK

q’ s’

1 sign

fr
(2.m)2

fr(s)

g
g(s’)

2).4( b
trunc.

LFSR

(4.(m+m’))2

n+ n

(4..b)2

A iterations

(4+log2(A).b)2

(1.m’)2

ROMs

R

Architecture complexity = f(parameters) 
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Generation of binary variables

+D     Q D     Q D     Q D     Q D     Q
x x2 x3 x4 x5

clk

A LFSR of length l can generate a binary “random like” sequence
of periodicity 2l-1

The periodicity of all LFSRs should be relatively prime in order to
maximize the periodicity of the WGNG 

=> Choice of l so that 2l-1 is a prime number

Xn mod P[X]
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Optimization for FPGA

LCELL of the FPGA: RAM R

=> q=4, in order to use LCELL for ROMs fr

=> Use LFSR performing X4n mod P[X] instead of Xn mod P[X]: 
- 4 bits generated per cycle instead of 1 bit
- Same hardware complexity
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Synthesis results

FFPPGGAA
ddeevviiccee

cceellllss mmeemmoorryy
bblloocckk

cclloocckk  rraattee OOuuttppuutt  rraattee

10K100AR
C240-1

434 1 74MHz 18.5MHz

10K100EQ
C240-1

437 0.5 98MHz 24.5MHz

Less than 10% of FLEX10K100 resources

A = 4
Parameters b = 6

LFSR length = 22,21,20,17,13,7,15 (G, Fr and sign)
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Experimental results

Theoretical distribution = measured distribution
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Conclusion

Box-Muller
method

Central-limit
method

Efficient

WGNG

Parameterizable low complexity WGNG

Quality can be fixed

Undergoing work to extend WGNG to
Rayleigh Noise generator


