Cider Seminar, University of Toronto

DESIGN AND PERFORMANCE ANALYSIS OF A HIGH SPEED AWGN COMMUNICATION CHANNEL EMULATOR

Prof. Emmanuel Boutillon LESTER South Brittany University

emmanuel.boutillon@univ-ubs.fr

Cider Seminar, University of Toronto, August the 24th 2001

Laborative Althritiships du Systems T

Collaboration

1995: ENST Paris, UofT (Glenn Gulak)

2000-2001: ENST Paris (France), SUP'COM Tunis (Tunisia), LESTER, Lorient (France)

Outline

I Introduction

II Previous White Gaussian Noise Generator

III Proposed WGNG

IV Hardware architecture design

V Conclusion

3

Motivations

Design of a communication system...

...find the best complexity-performance trade-off

Motivation

Performance:

- BER
- Jammer rejection
- time of synchronization...

-...

Complexity: - area, power dissipation - time to market - ... - ... Complexity: algorithm ADC resolution, sampling frequency, fixed precision

A very complex problem...

Monte-carlo simulation

* Formal expression of the BER: refer to Proakis

- * In practice, estimation of the BER using Monte-carlo simulation
 - 1) Software model of emitter, channel, receiver
 - 2) Emulation of the transmission of N bits
 - 3) Estimation of the BER as Nb_errors/N

VERY FLEXIBLE

but...

TIME CONSUMMING: BER of 10⁻⁶ (+-3%) requires 10⁹ bits.

Software simulation

Three methods to reduce the simulation time:

a) code optimization

b) powerful computing

c) parallel computing (One Mbps for a turbo-decoder with a cluster of 16 PCs)

also use hardware emulation

Current methodology

Software Algorithm C programs Compilation Validation/optimization with long simulations

Fix specifications

Hardware

VHDL programs

Synthesis, place and route operations

Validation

Final prototype

UB5

Cider Seminar, University of Toronto, August the 24th 2001

Proposed methodology

Software Algorithm C programs Compilation Validation/optimization

Fix algorithm + Set of nonspecified parameters

Hardware

Generic VHDL programs, IP

Synthesis, place and route operations (on FPGA)

Hardware simulation/validation

Final prototype

Channel emulation

Type of communication channel:

- AWGN
- Rice

. . .

- Rayleigh

All those channels can be derived from Gaussian Noise (with ARMA filter, non-linear operators).

=> Need a White Gaussian Noise Generator (WGNG)

Specifications of the WGNG

Outline

I Introduction

II Previous White Gaussian Noise Generator

III Proposed WGNG

IV Hardware architecture design

V Conclusion

1001-1 12

Previous WGNG

0) Using thermal noise of a resistor (non deterministic)

1) Case of low ADC precision

2) Central limit theorem

3) Box-Muller method

Case of low ADC precision (1)

Emitter

N=4-Level ADC of the receiver

The probabilities $P(x=i, y_i)$ are known for a given SNR

Example:
$$P(b=+1, y_3) = 0,3$$
 $P(b=+1, y_2) = 0,5$
 $P(b=+1, y_1) = 0,15$ $P(b=+1, y_3) = 0,05$

Cider Seminar, University of Toronto, August the 24th 2001

THEFT

Central limit theorem

X is a real r.v. of mean m_x and standard deviation σ_x ,

$$X_N$$
 defined as: $X_N = \frac{1}{\sigma_x \sqrt{N}} \sum_{i=0}^{N-1} (x_i - m_x)$

tends towards N(0,1), when N tends towards infinity.

Let $U(q,N) = \text{sum of } N U^q$, (Uniform distribution over $\{0, \dots, 2^q-1\}$)

P.d.f. U(q=8,N=2)

Cider Seminar, University of Toronto, August the 24th 2001

Cider Seminar, University of Toronto, August the 24th 2001

P.d.f U(q=8,N=8)

Cider Seminar, University of Toronto, August the 24th 2001

Epsilon function

The convergence is very slow...

Cider Seminar, University of Toronto, August the 24th 2001

Box-Muller method

Method used in software program:

If x_1 and x_2 are two uniform r.v. over [0,1], then:

$$f(x_1) = \sqrt{-\ln(x_1)}$$
$$g(x_2) = \sqrt{2}\cos(2\pi x_2)$$
$$n = f(x_1)g(x_2)$$

give a sample n of the normal distribution

Efficient with a floating CPU unit, not with an FPGA

Outline

I Introduction

II Previous White Gaussian Noise Generator

III Proposed WGNG

IV Hardware architecture design

V Conclusion

Proposed method

Quantized version of Box-Muller method adapted to hardware implementation => rough distribution

Smooth the distribution using central limit theorem

Desire an accurate complexity model and an exact distribution

Cider Seminar, University of Toronto, August the 24th 2001

Non uniform quantization (1)

Let $s_1, s_2, ..., s_K$ be K independent r.v. of q bits (distribution U^q)

If $s_1 > 0$, use ROM f_1 , else if $s_2 > 0$, use ROM $f_2 \dots$ and so on... Result: the probability to draw segment *s* of rank *r* is 2^{-rq}

Pre-compute values of the ROMs

The quantized value associated with the ROM r at the address s is:

Remark: Probability to draw $f_r(s)$ is $P(f_r(s)) = 2^{-rq}$

Cider Seminar, University of Toronto, August the 24th 2001

Example of quantization of $f(x_1)$

Cider Seminar, University of Toronto, August the 24th 2001

Quantization of $g(x_2)$

Let us define *s*', a *q*' bit random variable $\Delta' = 2^{-q'}$ is the quantization step of segment [0,1/4] ROM *g*(*s*') is quantized as:

$$g(s') = \begin{bmatrix} 2^{m'}\sqrt{2}\cos\left(\frac{\pi\Delta'(s'+\delta')}{2}\right) \end{bmatrix} \quad (\times 2^{-m'})$$

1 bit • m' bits

$$\delta' \text{ relative position}$$

of the point in segment

$$[s'\Delta', (s'+1)\Delta']$$

The problem of sign is analyzed later

Cider Seminar, University of Toronto, August the 24th 2001

Example of quantization of $g(x_1)$

Half Box-Muller r.v.

For a given triple (*s*,*r*,*s*'), n^+ (Half Box Muller) is computed as:

$$n^{+} = \left\lfloor \frac{f_r(s) \times g(s')}{2^{m+m-b}} \right\rfloor \quad (\times 2^{-b}) \tag{(*)}$$

Let S_n be the subset of $\{0, ..., 2^q-1\}x\{1, ..., K\}x\{0, ..., 2^q'-1\}$ of all triples (s, r, s') that give n^+ using (*)

 $P(f_r(s), g(s')) = 2^{-(rq+q')}$ $P(HBM = n^+) = \sum_{(s,r,s') \in S_n} P(fr(s), g(s'))$ The exact probability density function of *HBM* can be computed

Construction of HBM

```
scaling = pow2(m_f + m_g - b);
for s=1:pow2(q_f)-1
  for r=1:K
    for u=1:pow2(q_g)
    n=floor((rom_f(s,r)*rom_g(u)/scaling);
    HBM(n+1) = HBM(n+1) + pow2(-(r*q_f + q_g));
    end;
    end;
end;
end;
```


Box_Muller r.v.

From a binary r.v. sign, Box-Muller p.d.f. is obtained

The exact p.d.f. of BM can also be computed

Example of distribution

Parameters:

b=6 bits after dot K=5 f_r ROMs q=4 (16 words ROM for f_r) q'=8 (256 words ROM for g) m=7 (3+m=10 bit-word for f_r) m'=6 (1+m'=7 bit-word for g) $\delta=0.36 \quad \delta'=0.5$ Complexity: 5 ROMs 16x10 for f_r 1 ROMs 256x7 for g5x4 + 8 +1 = 29 binary r.v. 10 bits x 7 bits multiplier

L.E.S.T.E.R

Large variations around N(0,1) due to quantization effects

Epsilon function

Need to smooth the variation with central limit theorem

Use of central limit theorem

Cider Seminar, University of Toronto, August the 24th 2001

Distribution BM_4

Performance results

Maximum relative error $\xi_X(x)$ between the ideal gaussian distribution and BM_A

Max $\xi X(x) * 10^{-3}$		A			
betw	ween 0 and 4 σ	2	3	4	5
	1 $\delta=0.44$	0.65	0.08	0.15	0.29
	2 $\delta = 0.453$	11.5	1.96	0.93	0.43
	3 δ =0.445	20.2	2.12	0.56	0.34
b	4 $\delta = 0.467$	64.6	5.4	0.71	0.31
	5 δ =0.467	57.3	5.4	1.12	0.69
	6 $\delta = 0.467$	71.9	5.8	1.38	0.93
	7 $\delta = 0.467$	237	8.4	0.68	0.28
	8 $\delta = 0.467$	503	26.5	1.76	0.26

b : number of bits after decimal point

A : number of accumulations

q=4, *K*=5, *q*'=8

L.E.S.T.E.I

Cider Seminar, University of Toronto, August the 24th 2001

Outline

I Introduction

II Previous White Gaussian Noise Generator

III Proposed WGNG

IV Hardware architecture design

V Conclusion

Global architecture

Architecture complexity = f(parameters)

Cider Seminar, University of Toronto, August the 24th 2001

1001-1

Generation of binary variables

A LFSR of length l can generate a binary "random like" sequence of periodicity 2^{l} -1

The periodicity of all LFSRs should be relatively prime in order to maximize the periodicity of the WGNG

=> Choice of *l* so that 2^{l} -1 is a prime number

Cider Seminar, University of Toronto, August the 24th 2001

Optimization for FPGA

LCELL of the FPGA:

=> q=4, in order to use LCELL for ROMs f_r

=> Use LFSR performing X⁴ⁿ mod P[X] instead of Xⁿ mod P[X]: - 4 bits generated per cycle instead of 1 bit Same bardware complexity

- Same hardware complexity

Cider Seminar, University of Toronto, August the 24th 2001

Synthesis results

Parameters $\begin{cases} A = 4 \\ b = 6 \\ LFSR \text{ length} = 22,21,20,17,13,7,15 (G, Fr and sign) \end{cases}$										
FPGA device	cells	memory block	clock rate	Output rate						
10K100AR C240-1	434	1	74MHz	18.5MHz						
10K100EQ C240-1	437	0.5	98MHz	24.5MHz						

Less than 10% of FLEX10K100 resources

Experimental results

Theoretical distribution = measured distribution

Outline

I Introduction

II Previous White Gaussian Noise Generator

III Proposed WGNG

IV Hardware architecture design

V Conclusion

Cider Seminar, University of Toronto, August the 24th 2001

1001-1

Conclusion

Parameterizable low complexity WGNG

Quality can be fixed

Undergoing work to extend WGNG to Rayleigh Noise generator

