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Major Concerns: Permanent Faults and Transient Faults
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Manufacturing variability

CMOS Aging
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Electromagnetic Interference



Size Shrinking in CMOS

Major Concerns for Electronics
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Source: M. Bohr, Intel, IRPS 2003
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Roadmap 2011 Edition
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International Technology Roadmap for Semiconductors 
2011 Edition

Major Concerns for Electronics
Requirement of Reliability
Computation on Unreliable Circuit

Ø The Reliability Issue becomes major concern to semiconductors. 

ØIn fact, with deep-micro or nanoscale:

Ø Error free component becomes more and more expensive
Ø More and more Transient Faults 
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Major Concerns for Electronics
Requirement of Reliability
Computation on Unreliable Circuit

Permanent/Transient Faults

Computing
Function

Result

Noisy
Channel

Encoder Decoder

u YES! According to Shannon’s theory (with a rate limit)  
Ref: Mathematical theory of communication, C. E. Shannon, 1948.

Data Decoded 
Data

u Can we make reliable communication?Noisy
Channel

u Can we make reliable computation?Data

u Uh, still an open question……

Question on Reliable Computation…
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Phases of Computation on Circuit
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Major Concerns for Electronics
Requirement of Reliability
Computation on Unreliable Circuit

Ø Phase 1: Reliable, Computation is Error-Free.

Error-Free

Computing
Function
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Phases of Computation on Circuit
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Major Concerns for Electronics
Requirement of Reliability
Computation on Unreliable Circuit

Ø Phase 2: Computation is Erroneous, recovering is Error-Free.

Computing
Function

Recovering
Unit

Permanent Faults
Transient Faults

Error-Free

Restored Data
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Phases of Computation on Circuit
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Major Concerns for Electronics
Requirement of Reliability
Computation on Unreliable Circuit

Ø Phase 3: Computation is Erroneous, recovering is Erroneous as well.

Computing
Function

Recovering
Unit

Permanent Faults
Transient Faults

Restored Data

Permanent Faults
Transient Faults
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Ø Approaches for reliable computation on unreliable circuit

Ø To design an efficient error-resilient architecture by ECC

Ø For contemporary logics and future nanoelectronic systems

Objective
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Major Concerns for Electronics
Requirement of Reliability
Computation on Unreliable Circuit
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Formal Model for the application of ECC
Four Solutions
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Formal Model for the application of ECC
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Formal Model for the application of ECC
Four Solutions

Data
x∈Ŝ

Result
g∈Ĝ

Operation
F(x)

Encoded Data
c = E(x) ∈Ĉ

Encoding function
E(x) Decoding function

D(y)

Operation
Fc(c) Received Data

y = Fc(c) ∈Ŷ

y should be a 
linear code
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Formal Model for the application of ECC
Four Solutions

Ø What’s a group Homomorphism?

Let (Ŝ, ★ star) and (Ĉ,﹡asterial) be two groups with an internal composition law.

A group homomorphism from (Ŝ, ★) and (Ĉ,﹡) is a morphism E: Ŝ→Ĉ such that ∀ (x1 , x2 ) ∈ Ŝ2, 

Solution 1: Group Homomorphism From E(x) and Fc(c)
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Formal Model for the application of ECC
Four Solutions

(E(x1), E(x2))∈Ĉ2

(x1, x2)∈Ŝ2

﹡

(x1 x2)∈Ŝ2
★

★

(E(x1)   E(x2))∈Ĉ2
﹡

E as a morphism
E: Ŝ→ Ĉ

According to the 
property of a group

homomorphism

Fc(c) = Group (Ŝ,    )★

Group (Ĉ,    )﹡

Operation

Operation

Ø A group Homomorphism

Solution 1: Group Homomorphism From E(x) and Fc(c)
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Formal Model for the application of ECC
Four Solutions

(x1=13, x2=29)∈[0,62]2 Result  g=42

Encoding function
moduli set (7, 9, 11)

Recovering 
function

D(y)

Addition
c1+c2 Received Data

y=[0, 6, 9]

Solution 1: Example – Residue Number System (RNS) 

Encoded Data

c1=(13 mod 7 = 6, 13 mod 9 = 4, 13 mod 11 = 2)

c2= (1, 2, 7)
∈ (7, 9, 11)

Addition
g=x1+x2
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c1= (6, 4, 2)

c1+c2 =(6+1 mod 7 = 0, 4+2 mod 9 = 6, 2+7 mod 11 = 9)

42=(42 mod 7 = 0, 42 mod 9 = 6, 42 mod 11 = 9)
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Formal Model for the application of ECC
Four Solutions

Solution 1:Contribution-RNS based Fault-Tolerant method 

Ø A contribution of this thesis work:
Ø An arithmetic fault-tolerant method
Ø Redundant Residue Number System, called BRRNS
Ø Fast computation & Error-resilience

Ø Yangyang Tang, Emmanuel Boutillon, Christophe Jégo, and Michel Jézéquel
“A new single-error correction scheme based on self-diagnosis residue number

arithmetic,” Design and Architectures for Signal and Image Processing (DASIP),
2010.
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Solution 2: Repetitions of Computation 
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Formal Model for the application of ECC
Four Solutions

Data
x∈Ŝ

Result
g∈Ĝ

Decoding function
D(y)

Received DataEncoded Data
(x, x,…x)∈Ŝn

n

Operation
F(x), x∈Ŝ

(F(x),…F(x))∈Ĝn

n
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Formal Model for the application of ECC
Four Solutions

Data
x∈Ŝ

Result
g∈Ĝ

Computing
Function

Computing
Function

Computing
Function

Data x
Data x
Data x

Voter

F(x)
F(x)
F(x)

Solution 2: Example – Triple Modular Redundancy (TMR) 

Ref: R. Lyons et al., IBM Journal, 1962
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Formal Model for the application of ECC
Four Solutions

Data
x∈Ŝ

Result
g∈Ĝ

Encoded Data
c = E(x) ∈Ĉ

Encoding function
E(x)

Decoding function
D(y)

Transmission Units
Received Data

Solution 3: Applying ECC Directly

c∈ĈTemporary: memory

Spatial: communications
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Solution 4: Function & Parity-Mapped Function & ECC 
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Formal Model for the application of ECC
Four Solutions

Data
x∈{0, 1}n

Result
g∈{0, 1}n

Decoding function

Received Data
(F(x), H•F(x))

Operation F(x) and
H defines the rules to 

generate the redundancy 
bits according to F(x)

D(F(x), H•F(x))
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Contributions
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Ø Contribution 1:
Ø A RNS based fault-tolerant method
Ø Fast computation & Error-resilience

Ø Contribution 2:
Ø Reliability-Efficiency Criteria
Ø Estimations on Reliability and Efficiency

Ø Contribution 3:
Ø A fault-tolerant system for computation
Ø Function & Parity-Mapped Function & ECC

Ø Contribution 4:
Ø A decoder against internal faults
Ø Efficient Error-correction in the

presence of high error rate noise

Formal Model for the application of ECC
Four Solutions

Data
(x1, x2)∈Ŝ2

Encoded Data

Result
g∈Ĝ

Encoding function
E(x), x∈Ŝ

c1=E(x1), c2=E(x2)

Decoding function
D(y)

Operation
Fc(c), c∈Ŝ Received Data

y∈Ŝ(c1, c2)∈Ĉ2
y = Fc(c1, c2)

Data
x∈{0, 1}n

Result
g∈{0, 1}n

Decoding function

Received Data
(F(x), H•F(x))

Operation F(x) and
H defines the rules to 

generate the redundancy 
bits according to F(x)

D(F(x), H•F(x))

Data
x∈Ŝ

Result
g∈Ĝ

Encoded Data
c = E(x) ∈Ĉ

Encoding function
E(x)

Decoding function
D(y)

Transmission Units
Received Data

c∈ĈTemporary: memory

Spatial: communications

Hardware Efficiency

Error Probability
Pareto Curves
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Ø Reliability-Efficiency Criteria (RE-Criteria)
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<Experimental Results
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Outline

Reliability-Efficiency Criteria (RE-Criteria)
A Fault-Tolerant System for Computation (cDMR)
A Decoder Against Internal Faults (MCD)
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l Reliable Electronics:
ü Designer objective in signal processing applications 
Efficiency = Number of operation / (Area unit  x Time unit)

Reliability-Efficiency Criteria (RE-Criteria)
A Fault-Tolerant System for Computation (cDMR)
A Decoder Against Internal Faults (MCD)

Contribution 2: Reliability-Efficiency Criteria (RE-Criteria) 

Ref: Y. Tang et al., SiPS, 2011

Hardware Efficiency

Error Probability
Pareto Curves
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Hardware Efficiency

l Unreliable Electronics: (Occurrence of transient errors)   
ü New designer objective

Compromise of Efficiency to Reliability (Error Probability)
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Ø Model of Error (Worst-Case)

FunctionFunction

Error-Free 
Input Output (P)

pe

Hypothesis 1 – Isotropy: an overall “unitary” error probability pe  as constant 
(in an unity area during one clock cycle) 

Hypothesis 2 – Contamination:   All errors lead to an output error. 

Reliability-Efficiency Criteria (RE-Criteria)
A Fault-Tolerant System for Computation (cDMR)
A Decoder Against Internal Faults (MCD)

Contribution 2: Reliability Criterion

Hypothesis 3 – Irreversibility:   Two successive errors cannot lead to a     
correct result. 
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e.g., logical mask is not considered.

Reliability-Efficiency Criteria (RE-Criteria)
A Fault-Tolerant System for Computation (cDMR)
A Decoder Against Internal Faults (MCD)

Contribution 2: Worst-Case hypothesis

Hypothesis 2 – Contamination:   
All errors lead to an output error is not always true
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Hypothesis 2 – irreversibility:   
Two successive errors cannot lead to a correct result. 
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Ø Model of Error

• A function of a unity area requiring t clock 
cycles to generate an output

• Probability that Output is correct: 

FunctionFunction

Error-Free 
Input Output (P)

pe

• “unitary” error probability pe  (in an unity area during one clock cycle) 

Reliability-Efficiency Criteria (RE-Criteria)
A Fault-Tolerant System for Computation (cDMR)
A Decoder Against Internal Faults (MCD)

Contribution 2: Reliability Criterion

(1 )a t
ep ⋅−
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Ø Model of Error

• A function of a unity area requiring t clock 
cycles to generate an output

• Probability that Output is correct: 

FunctionFunction

Error-Free 
Input Output (P)

pe

• “unitary” error probability pe  (in an unity area during one clock cycle) 

Reliability-Efficiency Criteria (RE-Criteria)
A Fault-Tolerant System for Computation (cDMR)
A Decoder Against Internal Faults (MCD)

Contribution 2: Reliability Criterion

(1 )a t
ep ⋅−

• Resulting error probability

( , ) 1 (1 )a t
a t eP p ⋅= − −
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Contribution 2: Example of Formal Derivation of P(a,t)
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Ø A pipeline Moving Average (MA) filter is considered as a case study.   

x(n) y(n)
MAMA

0

( ) ( )
N

i
y n x n i

=

= −∑

Reliability-Efficiency Criteria (RE-Criteria)
A Fault-Tolerant System for Computation (cDMR)
A Decoder Against Internal Faults (MCD)
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Ø A pipeline Moving Average (MA) filter is considered as a case study.   

Reliability-Efficiency Criteria (RE-Criteria)
A Fault-Tolerant System for Computation (cDMR)
A Decoder Against Internal Faults (MCD)

Contribution 2: Example of Formal Derivation of P(a,t)

Voter

OutputInput

Output (PS-TMR)

(PMA)

Pe
Pe

MA

MA

MA

Input

Input

Output (PMA)

Output (PMA)

Spatial-TMR based MA filter structure
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Reliability-Efficiency Criteria (RE-Criteria)
A Fault-Tolerant System for Computation (cDMR)
A Decoder Against Internal Faults (MCD)

Contribution 2: Example of Formal Derivation of P(a,t)

Voter

OutputInput

Output (PS-TMR)

(PMA)

Pe
Pe

MA

MA

MA

Input

Input

Output (PMA)

Output (PMA)

1-(1- )MA

a t
eP p ⋅=

• By Hypothesis: 

• Let PMA be the error probability in a single module of size a that   
performs a computation in t cycles. 
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Reliability-Efficiency Criteria (RE-Criteria)
A Fault-Tolerant System for Computation (cDMR)
A Decoder Against Internal Faults (MCD)

Contribution 2: Example of Formal Derivation of P(a,t)

Voter

OutputInput

Output (PS-TMR)

(PMA)

Pe
Pe

MA

MA

MA

Input

Input

Output (PMA)

Output (PMA)

1-(1- )MA

a t
eP p ⋅=

• By Hypothesis: 

• Let PMA be the error probability in a single module of size a that   
performs a computation in t cycles. 
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Reliability-Efficiency Criteria (RE-Criteria)
A Fault-Tolerant System for Computation (cDMR)
A Decoder Against Internal Faults (MCD)

Contribution 2: Example of Formal Derivation of P(a,t)

Voter

OutputInput

Output (PS-TMR)

(PMA)

Pe
Pe

MA

MA

MA

Input

Input

Output (PMA)

Output (PMA)

• By Hypothesis: 

• Event of probability V: voter is faulty and av as the area unit of voter. 

1-(1- ) .va
eV p=
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Reliability-Efficiency Criteria (RE-Criteria)
A Fault-Tolerant System for Computation (cDMR)
A Decoder Against Internal Faults (MCD)

Contribution 2: Example of Formal Derivation of P(a,t)

Voter

OutputInput

Output (PS-TMR)

(PMA)

Pe
Pe

MA

MA

MA

Input

Input

Output (PMA)

Output (PMA)

• Event of probability P>1: at least two faulty modules 

2 3
>1

2
3

MAMA MAP P P P 
= ⋅ ⋅ + 

 
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Reliability-Efficiency Criteria (RE-Criteria)
A Fault-Tolerant System for Computation (cDMR)
A Decoder Against Internal Faults (MCD)

Contribution 2: Example of Formal Derivation of P(a,t)

Voter

OutputInput

Output (PS-TMR)

(PMA)

Pe
Pe

MA

MA

MA

Input

Input

Output (PMA)

Output (PMA)

• Event of probability: only one faulty module and voter is faulty

>1V P⋅

• Event of probability P>1: at least two faulty modules 

2 3
>1

2
3

MAMA MAP P P P 
= ⋅ ⋅ + 

 

>1 >1P +V P⋅
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x(n)
MAMA

MAMA
x(n) DetectorDetector

Replay

Replay

y(n)

Dual Modular Redundancy (DMR) based ARQ Modulo operation detecting based ARQ

Reliability-Efficiency Criteria (RE-Criteria)
A Fault-Tolerant System for Computation (cDMR)
A Decoder Against Internal Faults (MCD)

Contribution 2: Strategy of Error-Correction for MA Filter 

x(n)
MA

Simplified
MA

Detector

Replay

Replay

y(n)

Modulo
Modulo
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Ref: S. LIn et al., IEEE Mag., 1984
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Filter implemented in RNS arithmetic with a BRRNS based decoder

Integer
to RNS

Converter

Integer
to RNS

Converter

RNS
to Integer
Converter

RNSRNS
to Integerto Integer
ConverterConverter

x(n)

RNS Filter mod m1

RNS Filter mod m2

RNS Filter mod mk

RNS Filter mod mk-1

BRRNS
Based

Decoder

BRRNS
Based

Decoder
y(n)

Reliability-Efficiency Criteria (RE-Criteria)
A Fault-Tolerant System for Computation (cDMR)
A Decoder Against Internal Faults (MCD)

Contribution 2: Strategy of Error-Correction for MA Filter 

Ref: Y. Tang et al., DASIP, 2010
Ref: Y. Tang et al., SiPS, 2011
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Contribution 2: Experimental Results – Pareto Curves 
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Original design

Reliability-Efficiency Criteria (RE-Criteria)
A Fault-Tolerant System for Computation (cDMR)
A Decoder Against Internal Faults (MCD)

ARQ based design

Hardware Efficiency

Error Probability

Pareto Curves
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10.3

BRRNS based

S-TMR design

0

-20

-10

5
10log10 [dB]

0.8

Ø Trade-off
Efficiency Vs. 

Reliability

Ø Estimations 
on Efficiency 

and Error 
Probability

Ø Pareto 
Curves

Ø Model of Error 
(3 hypotheses)



Proposed Work
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Ø Contribution 3:
Ø A fault-tolerant system for computation
Ø Function & Parity-Mapped Function & ECC

Reliability-Efficiency Criteria (RE-Criteria)
A Fault-Tolerant System for Computation (cDMR)
A Decoder Against Internal Faults (MCD)
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Contribution 3: Coded Dual Modular Redundancy (cDMR) 
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• The original logic function F(u) is composed with a block ECC 
code to create the parity-mapped function P • F(u). 

Need to avoid 
correlated errors

Ref: C. Winstead et al., TCAS-II, 2009

Ref: Y. Tang et al., ISCAS, 2012
Ref: Y. Tang et al., ISTC, 2012

Ref: Y. Tang et al., ISCAS, 2013

Reliability-Efficiency Criteria (RE-Criteria)
A Fault-Tolerant System for Computation (cDMR)
A Decoder Against Internal Faults (MCD)
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= Two-bit Adder

Traditional design, ‘*’ symbol indicates the 
occurrence of an error.

Contribution 3: Traditional Design

Reliability-Efficiency Criteria (RE-Criteria)
A Fault-Tolerant System for Computation (cDMR)
A Decoder Against Internal Faults (MCD)
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= Two-bit Adder

Contribution 3: Cross-Bar Technique

Crossbar design suitable for some 
nanoelectronic device families.

Reliability-Efficiency Criteria (RE-Criteria)
A Fault-Tolerant System for Computation (cDMR)
A Decoder Against Internal Faults (MCD)
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Contribution 3: Coded Dual Modular Redundancy (cDMR) 
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Need to avoid 
correlated errors

Requiring A 
Robust Decoder

Reliability-Efficiency Criteria (RE-Criteria)
A Fault-Tolerant System for Computation (cDMR)
A Decoder Against Internal Faults (MCD)
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Contribution 4: Muller C-element based Decoder (MCD)
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Ø Contribution 4:
Ø A decoder against internal faults
Ø Efficient Error-correction in the presence of high error rate noise

Data
x∈{0, 1}n

Result
g∈{0, 1}n

Decoding function

Received Data
(F(x), H•F(x))

Operation F(x) and
H defines the rules to 

generate the redundancy 
bits according to F(x)

D(F(x), H•F(x))

Data
x∈Ŝ

Result
g∈Ĝ

Encoded Data
c = E(x) ∈Ĉ

Encoding function
E(x)

Decoding function
D(y)

Transmission Units
Received Data

c∈ĈTemporary: memory

Spatial: communications

Reliability-Efficiency Criteria (RE-Criteria)
A Fault-Tolerant System for Computation (cDMR)
A Decoder Against Internal Faults (MCD)
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Related Work - Message Passing Decoding Method
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Formal Model for the application of ECC
Four Solutions

Check Node Processing

+fi

y1

fi = ⊕ yk, k≠i

yk
ydc

Variable Node Processing

f0 =

f1

yk

f2

fdv

yk= f0 if (fi, i≠k) disagree,   
f1 elsewise

Gallager-A Decoder
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Ref: message-passing decoding, T. Richardson and R. Urbanke, 2001.



Contribution 4: Muller C-element based Decoder (MCD)

46

• Cn-1 denotes the state maintained
via weak feedback.

A B C
0 0 0

0 1 Cn-1

1 0 Cn-1

1 1 1

C-element

CMOS Implementations 
of binary C-element 

Truth-Table of Binary 
C-element

Reliability-Efficiency Criteria (RE-Criteria)
A Fault-Tolerant System for Computation (cDMR)
A Decoder Against Internal Faults (MCD)
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Ref : D. E. Muller and W. S. Bertky, 1959



Contribution 4: C-element – Error-Resilience in Nature

47

A B C
0 0 0

0 1 Cn-1

1 0 Cn-1

1 1 1

C-element
Truth-Table of Binary 

C-element

Error-Resilience
in Nature

A

B

C

• Initializing the 
state memory.

Reliability-Efficiency Criteria (RE-Criteria)
A Fault-Tolerant System for Computation (cDMR)
A Decoder Against Internal Faults (MCD)
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State Memory

Contribution 4: C-element – Error-Resilience in Nature

48

Static Gate

Ø Monte Carlo Simulation in 
Cadence Virtuoso Spectre

Reliability-Efficiency Criteria (RE-Criteria)
A Fault-Tolerant System for Computation (cDMR)
A Decoder Against Internal Faults (MCD)
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Noisy Parameter of Error Injection 

Error Probability

Gain in Error-resilience
thanks to the feedback

Ref : Y. Tang et al., ISCAS, 2013.



Contribution 4: Muller C-element based Decoder (MCD)
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Diagram of process 
for message-passing

decoding method

Reliability-Efficiency Criteria (RE-Criteria)
A Fault-Tolerant System for Computation (cDMR)
A Decoder Against Internal Faults (MCD)

Ref: Y. Tang et al., ISCAS, 2012
Ref : Y. Tang et al., ISTC, 2012.
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A Decoder Against 
Internal Faults

• Message-Passing 
Decoding Method 

• Inherent error-
resilience C-element C-element



Contribution 4: Variable Node in MCD Phase 0

50Basic Error-Correction Unit Cascaded C-elements, dv=4 

Phase 0
Forward Channel 

Message

Reliability-Efficiency Criteria (RE-Criteria)
A Fault-Tolerant System for Computation (cDMR)
A Decoder Against Internal Faults (MCD)

Check Nodes

XORs
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f0 = [s r]
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Contribution 4: Variable Node in MCD Phase 1

Basic Error-Correction Unit Cascaded C-elements, dv=4 

Phase 1
Initialization Phase

0

0

0

Reliability-Efficiency Criteria (RE-Criteria)
A Fault-Tolerant System for Computation (cDMR)
A Decoder Against Internal Faults (MCD)
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Check Nodes

XORs
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Contribution 4: Variable Node in MCD Phase 2

Basic Error-Correction Unit Cascaded C-elements, dv=4 

Iterative Phase 2
Driven by C-element

Reliability-Efficiency Criteria (RE-Criteria)
A Fault-Tolerant System for Computation (cDMR)
A Decoder Against Internal Faults (MCD)
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Contribution 4: MCDfb – feedback mechanism 

MCD’s variable-node 
architecture, dv=4 

MCDfb’s variable-node 
architecture, dv=4 

A feedback mechanism employed to suppress internal fault event.

Reliability-Efficiency Criteria (RE-Criteria)
A Fault-Tolerant System for Computation (cDMR)
A Decoder Against Internal Faults (MCD)
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Message-Passing Decoder with Space-Time Redundancy 
Technique. For instance, the Majority unit can be a 3-of-5 voter.

Significantly Improve the 
capacity of error-resilience

Contribution 4: Space-Time Technique – Improving BER

Reliability-Efficiency Criteria (RE-Criteria)
A Fault-Tolerant System for Computation (cDMR)
A Decoder Against Internal Faults (MCD)

Ref : Y. Tang et al., ISTC, 2012.
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<Introduction

<Formal Models of Embedded ECC

<Proposed Approaches

<Experimental Results
Ø MCD’s BER Performance Under a Faulty Process
Ø Comparisons Between MCD and GBF
Ø The Improvement of Decoding Performance by Space-Time Technique 
<Conclusion & Future Perspectives

Outline

MCD’s BER Performance Under a Faulty Process
Comparisons Between MCD and GBF
The Improvement of Decoding Performance by Space-Time Technique 
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Error Model
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Ref : L. Varshney, Trans. I.T., 2011.

MCD’s BER Performance Under a Faulty Process
Comparisons Between MCD and GBF
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MCD’s BER Performance Under a Faulty Process
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Ø Gallager Bit-Flipping Decoding Method (GBF)

Ø MCD

MCD’s BER Performance Under a Faulty Process
Comparisons Between MCD and GBF
The Improvement of Decoding Performance by Space-Time Technique 
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Ø Injected into critical path in RTL



MCD’s BER Performance Under a Faulty Process
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MCD’s BER Performance Under a Faulty Process
Comparisons Between MCD and GBF
The Improvement of Decoding Performance by Space-Time Technique

MCD

Error occurred in Function

Simulation Results for rate (3,6) LDPC codes based on 
MCD architecture, 2 iterations. 

Single Hard-Error 
Injection 

Internal Fault Injection
(Error Rate 10-5) 
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magnitude in gain
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Comparisons Between MCD and GBF, (3,6) LDPC codes N=64
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Internal Fault Injection: Alpha

Error occurred in Function: Epsilon

MCD’s BER Performance Under a Faulty Process
Comparisons Between MCD and GBF
The Improvement of Decoding Performance by Space-Time Technique

Ref : Y. Tang et al., ISTC, 2012.
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Comparisons Between MCD and GBF, (3,6) LDPC codes N=64
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MCD’s BER Performance Under a Faulty Process
Comparisons Between MCD and GBF
The Improvement of Decoding Performance by Space-Time Technique

• Gallager-A performance worsens with increased 
iterations when internal faults rate is high. 

• But MCD does not exhibit 
this degradation. 
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Decoding Performance Improvement by Space-Time Technique
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MCD’s BER Performance Under a Faulty Process
Comparisons Between MCD and GBF
The Improvement of Decoding Performance by Space-Time Technique

WITH Space-Time 
Redundancy

• Internal Fault Injection: Alpha
• (3,6) LDPC code of length 64 over a BSC parameter of Epsilon

Ref : Y. Tang et al., ISTC, 2012.
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Decoding Performance Improvement by Space-Time Technique
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MCD’s BER Performance Under a Faulty Process
Comparisons Between MCD and GBF
The Improvement of Decoding Performance by Space-Time Technique 

WITH Space-Time 
Redundancy

• Internal Fault Injection: Alpha
• (3,6) LDPC code of length 64 over a BSC parameter of Epsilon

• The majority voter significantly improves the 
decoder’s BER performance. 

• Feedback-Mechanism is 
helpful as well. 
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Conclusion

Conclusion
Future Perspectives

64

Ø Objective : to design an efficient error-resilient architecture by ECC
Ø Contribution :
Ø An arithmetic method (Fast computation & Error-resilience)

Ø Reliability-Efficiency Criteria

Ø A fault-tolerant system for computation

Ø A decoder against internal faults

Hardware Efficiency

Error Probability
Pareto Curves

A Decoder Against 
Internal Faults

• Message-Passing 
Decoding Method 

• Inherent error-
resilience C-element 
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Future Perspectives

Ø For MCD, high code rate, such like a (3,4) code, would be worth to try.

Ø Moreover, simulating a 3-of-5 voter based space-time technique.

Ø Approaching the proposed reliability criterion as a precise error model.

Ø Implementation of the cDMR & MCD & Space-Time Technique.

Conclusion
Future Perspectives

65
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Future Directions

Conclusion
Future Perspectives
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Ø Collaboration (2011. June - 2012) with LEFT-Lab directed by 
Dr. Chris Winstead, Utah State University, Logan, Utah, USA.

Ø Continued Work – Application of an ANR Project on this subject

– Collaboration with, LEFT-Lab, Dr. Winstead
– Ongoing thesis work, Pr. Jégo

– Asynchronous Decoder to decrease power consumption
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(3,6) LDPC code of
length 64 under 

2 iterations

Back-Ups: FERs by Applying cDMR



Threshold of channel parameter over BSC for GBF (Gallager’s Bit-
Flipping method) and MCD, if the decoder process is error-free.

ε : BSC Channel 
Parameter  

Back-Ups: Threshold Determinations

MCD



Tab. 3 Maximal Parameter        and Maximal Parameter        are determined 
when it is beneficial to use the decoder under a faulty decoder process. 

ε*α*

α :

ε :

Decoder’s Internal Transient Error Rate  

BSC Channel Parameter  

Back-Ups: Threshold Determinations

MCD



Good Candidate for the ECC of cDMR: Error-Free Process
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MCD’s BER Performance Under a Faulty Process
Comparisons Between MCD and GBF
The Improvement of Decoding Performance by Space-Time Technique
Good Decoder Candidate for the ECC of cDMR

Ref : Y. Tang et al., ISCAS, 2013.dash lines for 2-iteration, 
solid lines for 20-iteration.
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Good Candidate for the ECC of cDMR: Erroneous Process
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MCD’s BER Performance Under a Faulty Process
Comparisons Between MCD and GBF
The Improvement of Decoding Performance by Space-Time Technique
Good Decoder Candidate for the ECC of cDMR

Ref : Y. Tang et al., ISCAS, 2013.

Error occurred in Function

Gain
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An Arithmetic Fault-Tolerant Method (BRRNS)
Reliability-Efficiency Criteria (RE-Criteria)
A Fault-Tolerant System for Computation (cDMR)
A Decoder Against Internal Faults (MCD)

Solution 4: A Reliable Way to Implement S-T Technique

D D D D

Majority D

D

Micro-Scale Circuit

Parasitic Passive
Low-Pass Filter

Parasitic Passive
Low-Pass Filter

This approach may be implemented, for instance, with the native R-C 
parasitics in a large-size output buffer.

Easy Implementation for 
Space-Time Redundancy Unit
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Formal Model for the application of ECC
Four Solutions
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Ref: C. Winstead et al., TCAS-II, 2009

=

XOR operation

EQ Module

Ref: V. Gaudet et al., E.L., 2003

Solution 4: Example – LDPC-coded Fault Compensation Technique (LFCT) 

Correlate
d Errors



Contribution 2: Experimental Results – Pareto Curves 
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Synthesis Results from XILINX Virtex 5 in Terms of [Slice(#)/Clock Freq.(mhz)]. 
(N: order of filter, l: bit length of input)

• a unity area 
• t clock cycle = 1 (due to the pipeline design)

Reliability-Efficiency Criteria (RE-Criteria)
A Fault-Tolerant System for Computation (cDMR)
A Decoder Against Internal Faults (MCD)
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Solution 1: RRNS – Single Error-Correction 
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An Arithmetic Fault-Tolerant Method (BRRNS)
Reliability-Efficiency Criteria (RE-Criteria)
A Fault-Tolerant System for Computation (cDMR)
A Decoder Against Internal Faults (MCD)

• Redundant  RNS (RRNS)
ó RNS + Redundancy 

+

4, 5, 7,  9, 11

1, 1, 0, 3, 10 +

Redundant Moduli

Redundant Residues

3,   0,   1, 0

3 + 0*5 + 1*5*7 =

• Consistent-Checking (Detecting)

(a4=0?)

Error-Free

1,
a1, a2, a3, a4

21 17

1, 2, 3, 8, 6

2, 3, 3, 2, 5

1, 3, 3, 2, 5

38

| Error-Correction and Carry-Free properties |



Five Iterations at worst is 
needed to locate the error

Solution 1: RRNS – High Latency
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An Arithmetic Fault-Tolerant Method (BRRNS)
Reliability-Efficiency Criteria (RE-Criteria)
A Fault-Tolerant System for Computation (cDMR)
A Decoder Against Internal Faults (MCD)

• Redundant  RNS (RRNS)
ó RNS + Redundancy 

+

4, 5, 7,  9, 11

1, 1, 0, 3, 10 +

Redundant Moduli

Redundant Residues

3,   0,   1,

Soft-Error

• Consistent-Checking (Detecting)

(a4=0?)1,
a1, a2, a3, a4

21 17

1, 2, 3, 8, 6

2, 3, 3, 2, 5

2, 3, 3, 2, 6

| Error-Correction and Carry-Free properties |



Solution 1: Proposed Work – Bidirectional RRNS (BRRNS) 
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An Arithmetic Fault-Tolerant Method (BRRNS)
Reliability-Efficiency Criteria (RE-Criteria)
A Fault-Tolerant System for Computation (cDMR)
A Decoder Against Internal Faults (MCD)

1, 1, 0, 10, 8

4, 5, 7,  11, 13

+ 1, 2, 3, 6, 4

a1, a2, a3, a4

Integer X

Residue Vector ri

Moduli Set mi

Consistent-Checkings

(a4=0 ?)
1,  3,   3,  1

a1, a2, a3, a5

1,  3,   3,   3
(a5=0 ?)

Recover Integer X from 
“Information”           or      “Redundancy”

1 + 3*4 + 3*4*5 = 

+21 17

Soft-Error
2, 3, 3, 5, 12

1, 3, 3, 5, 12

73 5 + 3*11 = 38

Bi-Directional

a1, a2, a3 a4, a5

4, 5, 7,  9, 11

• (RRNS)

a1, a2, a3, a4, a5

Four of them for 
each checking


