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Abstract

Current and future digital communication standards highlight use of error correcting codes for

reliable information transmission. In modern telecommunication applications, it may be desirable

to have a �exible system able to support a variety of error correction standards or a variety of codes.

Particularly, in software de�ned radio (SDR) paradigm where �exibility is a fundamental property

of future receivers.

Thus in this thesis, we focused our research on the design of high performance �exible decoder

architectures. In recent years many research activities have emerged proposing multiprocessor

system on chip (MPSoC) implementations in order to achieve �exible and high throughput parallel

iterative decoding. In such parallel architectures two building blocks are: processing elements

(PEs) capable of supporting multiple codes and the interconnection network for iterative exchange

of extrinsic information across these PEs.

The aim of the thesis was two fold: �rstly to design and implement a low complexity �exible

PE supporting di�erent channel decoding algorithms (Viterbi, Turbo and LDPC) with maximum

hardware reuse. As a subset to this goal some sub-optimal methodologies for low power low cost

turbo decoder implementation were investigated. Furthermore, we presented a VLSI complexity

analysis of datapath sharing across di�erent FEC code families. In addition, we presented a novel

parallel implementation of check node computations ("Tree-Way") using Min-sum algorithm for

LDPC decoding, which is optimized for maximun reuse of turbo decoding kernel.

As the secondary goal interconnection network for iterative exchange of extrinsic information

across these PEs was evaluated within the paradigm of "Intra-IP" communication. As a case study

tra�c pattern of MPSoC based iterative decoder over a 2-D Torus/Mesh network on chip (NoC)

was evaluated to enable designers choose a right kind of NoC resources for achieving application

speci�c throughput requirement.

Finally our quest for low power, low cost architectural solutions led us to �nd ways for a faster

performance evaluation of sub-optimal choices we had to make. Given the multitude of options

to be tested, traditional error performance evaluation present a bottleneck in terms of their longer

simulation time contributing to signi�cant increase in �nal design time. For this purpose a new

metric for fast and e�cient performance evaluation of iterative decoding algorithms was investigated.

It was based on the estimation of distance like function between the a-posteriori probability (APP)

decoded symbol of optimal and suboptimal decoding algorithms.
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This thesis shall examine error control techniques from the point of view of VLSI designers;

that is the individual who wishes to design and implement these techniques on a hardware platform

for di�erent telecommunication applications. Digital communication systems bene�t from at least

one form of error correction coding algorithms. Forward Error Correction (FEC) coding improves

data reliability by introducing redundant information into a data sequence prior to transmission

or storage which enables a receiver to detect and possibly to correct errors without requesting

retransmission of the original information. There are many FEC codes widely used in wireless and

wired communications like Reed-Solomon (RS), product, convolutional, Turbo and LDPC. However
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4 Introduction and Overview

this thesis deals only with latter three, while viterbi decoding algoritms for decoding convolutional

codes have been used in communication systems for quite a long time due to their simple struture and

easy implementability, only in 1993 at the IEEE International Conference on Telecommunications,

C. Berrou and A. Glavieux presented a new scheme for channel codes: the turbo codes, and their

associated turbo decoding algorithm [Berrou et al., May 1993]. Turbo codes made possible to get

within a few tenth of dB away from the Shannon limit, for a bit error rate of 10−5. Beside the

major impact that turbo codes have had on telecommunication systems, they also made researchers

realize that other capacity approaching codes existed. Hence, the low-density parity-check (LDPC)

codes invented in the early sixties by Robert Gallager [Gallager, Jan. 1962], have been resurrected

in the mid nineties by David MacKay [MacKay and Neal, 1995]. Like turbo codes, LDPC codes

can also get very close to the Shannon limit by the mean of an iterative decoding. In the recent

years there has been a growing need for devices that have the �exibility to support multiple modes

in the emerging wireless standards. For example, the 802.16 standard supports high data rates with

a variety of channel coding options. The mandatory scheme is a convolutional code. Convolutional

turbo codes, turbo product codes, and in 802.16e, Low Density Parity Check (LDPC) codes are

optional [802.16e, 2004]. It is imporatant to note that the design cost, and the requirements of

the novel communication standards encourage the designers to exploit �exible structure which can

be easily adapted to di�erent working conditions. In the rest of this work, we will analyze and

design �exible architectures for high performance communications, in particular we will focus on

high performance channel decoders. Nevertheless, some basic consideration on the behavior of these

decoding algorithms are required in order to de�ne a uni�ed notation.

1.1 Overview of the Thesis

This introductory chapter will conclude in next sections with a detailed presentation of three main

error correction coding algorithm viz. convolutional, turbo and LDPC codes. SISO (Soft input

soft output) decoding algorithm which will be used throughout this thesis for turbo codes is also

derived using a real world example of codes used in WiMAX standard. On the decoding of LDPC

codes an overview is presented of used iterative decoding algorithms with special emphasis on low

complexity check node computations.

Chapter 2 will present the context of this research work in relation to the state of art in the

�eld of a �exible FEC decoder design. A problem space of �exible channel decoder design is explored

and contribution to the di�erent subset of this space are highlighted. The problem space deals with

not only the implementation issues rather it also incorporates algoritm design, optimization and

validation aspects.

Chapter 3 introduces the research work peformed in the domain of algorithm optimization

speci�cally on Turbo codes. The emphasis here is to analyze the performance area tradeo� by
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applying innovative optimization techniques on an already existing design of turbo decoder. Our

algorithm has a good performance complexity trade-o� since it signi�cantly reduces the complexity

of the extrinsic memories in turbo decoder implementations, while keeping the bit error rate close

to the optimal one.

Chapter 4 evaluates NoC (Network on Chip) for MPSoC (Multiprocessor System on Chip)

based iterative decoding architectures. As a case study, we evaluate the performance of our MPSoC

architecture for a 2-D Torus/Mesh interconnect topology. Evaluation results are presented based on

the communication centric parameters that include network latency, network size, message injection

rate etc. and can be extended to any other System on Chip (SoC) interconnect topology without

loss of generality.

Chapter 5 presents hardware reuse in processing elements of a �exible FEC decoder. As an

experimental work hardware reuse potential of di�erent existing implementation schemes for check

node processing in LDPC decoding is explored over a Max-Log-Map based turbo decoder datapath

architecture. Furthermore, we also derived a novel parallel implementation scheme("Tree-Way") for

check node processing, which �ts very well with underline turbo decoding architecture and results

in a faster check node computation.

Chapter 6 explores a new paradigm of performace evaluation of sub optimal iterative de-

coding algorithms. In this work a new metric for a quicker performance evaluation of iterative

decoding algorithms is proposed. It was based on the estimation of distance like function between

the a-posteriori probability (APP) decoded symbol of optimal and suboptimal iterative decoding

algorithm. We apply the notion of entropy to evaluate this function.

A conclusion and some future perspectives are �nally given at the end of this thesis.

1.2 Model of a Communication system

A simple model which emphasizes the role of error control in digital communication system is shown

in �g 1.1 This model consists of a digital source, an error-control encoder, a noisy channel, an error

control decoder and a sink or user, which are connected in cascade as shown. For this sytem all

information transferred between system blocks must be in digital form (usually "1" and "0") in

order for error control to be utilised in the manner shown. Since the output of the message encoder

must be suitable for input to the error-control encoder, this output must certainly be digital. Thus

if the message generator produces analog output, the message encoder must as a minimum posses

analog to digital capability. Once the message has been digitized we introduce redundancy in the

error control encoder. The redundancy is added at a �xed rate and in a known way which introduces

structure to the error-control encoder output in the form of block, convolutional or a combination

of these codes. The modulator maps the encoded digital sequences into a train of short analog

waveforms suitable for propagation. Modulation can be performed by varying the amplitude, the
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Figure 1.1: Model of Communication System

phase or the frequency of a sinusoidal waveform called the carrier.

Channels are transmission media used to carry or store information. Channel examples are wire

lines, microwave radio links over free space, satellite links, �ber optic channels, magnetic recording

media etc. Two major limitations of real channels are thermal noise and �nite bandwidth. In the

receiver, the demodulator typically generates a digital sequence at its output as the best estimates

of the transmited codeword. The channel decoder makes estimates of actually transmitted message.

The decoder process is based on the encoding rule and characteristics of the channel. The goal of

the decoder is to minimize the e�ect of channel noise.

One important categorization is usefull to make here is; if the demodulator makes hard decisions

and its output is a binary sequence; the subsequent channel decoding process is called hard decision

decoding. Hard decisions in the demodulator result in some irreversible information loss. An

alternative is to quantize the demodulator output to more than two levels or take samples of the

analog received baseband signal and pass it on to the channel decoder. The subsequent decoding

process is called soft decision decoding.

1.3 The Shannon limit

The aim of every digital communication system is to transmit more data as possible with little or

no error spending a reduced amount of power. The signal bandwidth is a measure of its speed. The

signals that change quickly in time have large bandwidth. On the other hand, every communication

system has a limited bandwidth due to capacitances and inductances which prevent instantaneous

change of signals. The system bandwidth B limits the speed of signal variations. For a given

channel, there is a upper limit on the data rate related to signal to noise ratio and the system
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bandwidth. In 1948 by Claude Shannon in his seminal work [Shannon, July 1948],[Shannon, Oct.

1948] proposed the concept of channel capacity C, as the maximum rate at which information can

be transmitted over a noisy channel. For an additive white gaussian noise (AWGN) channel C is

given by the formula

C = B · log2
(

1 +
S

N

)
bits/sec. (1.1)

Shannon's channel coding theorem guarantees the existance of codes that can achieve arbitarly

small probability of error if the data transmission rate rb is smaller than the channel capacity. This

fundamental result showed that noise sets a limit on the data rate but not on the error probability

as widely believed before and resulted in research of �nding explicit methods, called codes, for

increasing the e�ciency and reducing the net error rate of data communication over a noisy channel

to near the limit that Shannon proved is the maximum possible for that channel. These codes can

be roughly subdivided into data compression (source coding) and error-correction (channel coding)

techniques. In the latter case, it took many years to �nd the methods Shannon's work proved were

possible. While data compression removes as much redundancy as possible, an error correcting code

adds just the right kind of redundancy needed to transmit the data e�ciently and faithfully across

a noisy channel.

To conclude Shannon limit of a communication channel is the maximum rate supported by this

channel for information transfer. Since this discovery, many scientists and engineers have tried to

get as close as possible to this limit. Though the theorem does not indicate how to design speci�c

codes achieving maximum possible data rate at arbitarly small error probabilities, it motivated the

development of a number of error control techniques.

1.4 Convolutional code overview

Convolutional codes have been widely used in applications such as space and satellite communi-

cations, celluar mobile, digital broadcasting etc [MacWilliams and Sloane, 1978], [Roman, 1992].

Their popularity stems from their simple structure and availabilty of easily implementable maximum

likelihood soft decision decoding methods.

1.4.1 Structure of Convolutional codes

The two most important types of convolutional codes are the non-systematic (NSC) and the re-

cursive systematic convolutional (RSC) codes. In �gure 1.2 a simple example of a non-systematic

convolutional code is shown. A convolutional code takes k input bits and generates n output bits;

the code rate is de�ned as R = k/n. The output bits are linear combinations of the present input

bit and delayed input bits. The encoder has rate R = 1/2 because it uses one input bit and gener-

ates two output bits. The constraint length of the encoder is the number of bits that the encoder
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Figure 1.2: Non systematic convolutional code (NSC).

Figure 1.3: Recursive systematic convolutional code (RSC).

depends on. The encoder in the example below have constraint length k = 3. The second type of

convolutional codes is the recursive systematic convolutional code in �gure 1.3. One of the output

bits is systematic (y1), the parity bits (y2), depend on all previous input bits due to the feedback

loop in the encoder.

The inner state of the encoder is de�ned as the values of the memory cells. The simple encoders in

the examples above can take four di�erent states; 002, 012, 102 and 112. The transitions between

the di�erent states and the output from the encoder can either be described by a state diagram or

by a trellis. Figure 1.4 represent state diagram to describe the behavior of the NSC code in the

example above. It can be seen in the �gure that if current state is 002 and the input is 02, the next

state will be 002. Furthermore, from the state diagram the output can also be found; e.g. in this

particular case, the output is y1y2= 002.
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Figure 1.4: State diagram of the encoder.

Figure 1.5: Trellis diagram of the encoder.
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1.4.2 Trellis Diagram

A trellis diagram is derived from the state diagrams by tracing all possible input/output sequences

and state transitions. Figure 1.5 shows the trellis diagram for the encoder described by the state

diagram in Figure 1.4. There are two branches emanating from each state corresponding to two

di�erent symbols. There are also two branches merging into each state. The transitions caused by

an input symbol "0" are indicated by dotted lines while the transitions caused by an input symbol

"1" are indicated by continous lines. It should be noted that NSC encoder described above is one

of the base component in turbo code encoders which will be detailed in the next sections.

1.5 Turbo Codes and Decoding Algorithm

1.5.1 Turbo Encoder

A Turbo encoder is formed by concatenation of two RSC encoders separated by a random interleaver.

The concatenation could be either serial or parallel, however in this section we will talk about parallel

concatenation as in this thesis we have used extensively such kind of turbo codes. For more detail

on these two schemes interested readers are refered to [Boutillon et al., June 2007]. In parallel

concatenation two encoders operate on the same set of input bits, rather than one encoding the

output of the other, this encoding process is explained for turbo codes used in WiMax standard as

we will be dealing with them in our work. The encoder uses a double binary Circular Recursive

Systematic Convolutional (CRSC) code. The basic di�erence between binary and duo-binary turbo

codes is that in former each RSC component code has one input while in later it has two inputs. The

advantage of duo-binary turbo codes are better convergence of the iterative decoding, large minimum

distances (i.e. large asymptotic gains), less sensitivity to puncturing patterns, reduced latency, and

robustness towards the �aws of the component decoding algorithm [Berrou and Jezequel, Jan. 1999].

The encoder structure illustrated in the Figure 1.6 is Parallel Convolutional Concatenated Codes

(PCCC).

First, the encoder 1 (ENC1)(after initialization by the circulation state1 Sc1) is fed by the

sequence in the natural order with the incremental address i = 0 . . . N − 1. This �rst encoding is

called C1 encoding. Similarly encoder 2 (ENC2) (after initialization by the circulation state Sc2)

is fed by the interleaved sequence with incremental address j = 0 . . . N − 1. This second encoding

is called C2. In order to achieve various coding rate, puncturing is introduced to the mother code.

Puncturing is the process of removing some of the parity bits after encoding. This has the same

e�ect as encoding with an error-correction code with a higher rate, or less redundancy. However,

1Circular state is an alternative to tail bit method [Berrou et al., 2005]. For a given information block, there is one
and only one state Sc (circulation state) such as Sc = S0 = Sk. Although the tail bit method is easy to implement,
the transmission of additional bits is needed and initial and �nal states are singular states. Instead in circular state
approach coding rate remains unchanged and the trellis can be regarded as a circle without any singularity. However
a pre-coding step is required for the circular state.
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Figure 1.6: WiMaX encoder structure.

with puncturing the same decoder can be used regardless of how many bits have been punctured,

thus puncturing considerably increases the �exibility of the system without signi�cantly increasing

its complexity. The order in which the encoded bit shall be fed into the subpacket generation block

is:

A,B, Y1, Y2,W1,W2

=

A0, B0, .., AN−1, BN−1, Y1,0, Y1,1, .., Y1,N−1, Y2,0, Y2,1,

...

Y2,N−1,W1,0,W1,1, ..,W1,N−1,W2,0,W2,1, ..,W2,N−1

The encoding block size shall depend on the number of subchannels allocated and the modulation

speci�ed for the current transmission. Concatenation of a number of subchannels shall be performed

in order to make larger blocks of coding where it is possible, with the limitation of not passing the

largest block under the same coding rate (the block de�ned by 64-QAM modulation). For a com-

plete description see [802.16e, 2004]. This code guarantees better convergence, better performance,

especially at low SNR and high data rate. The polynomial characteristics for the encoder are (�gure

1.7):

G0(D) = 1 +D1 +D3 (1.2)
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Figure 1.7: WiMAX constituent encoder internal structure.

G1(D) = 1 +D2 +D3 (1.3)

G2(D) = 1 +D3 (1.4)

The equation 1.2 is for the feedback branch, the 1.3 is for the Y parity bit and the 1.4 is for W

parity bit. These three equations are useful for the calculation of the trellis of every encoder. As

explained in the �gure 1.8 each trellis contains eight initial states (000, 001, 010, 011 . . . etc) and

eight �nal states. Four arrows leave each state (corresponding input 00, 01, 10, 11) and four arrows

arrive in each �nal state. Inputs and outputs of the transition are represented along these arrows.

1.5.2 Interleaving

The channel interleavers that normally are included in communication system are used to spread out

burst errors of several FEC coding blocks in order to enable correction. The reason for interleaving

in turbo coding is to rearrange the input stream in a manner so that the correlation between the

rearranged and original data is minimized; i.e. the correlation of the parity bits from C1 and C2 is

minimized. There are several methods for interleaving and the way as it is performed in�uences the

noise performance of the turbo code. For the WiMAX standard the permutation law (interleaving

law) is given as follows:

for j=0 ... K-1

switch j mod 4:

case 0: P(j) = (P0j+1) mod K
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Figure 1.8: WiMaX CTC encoder trellis.
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Figure 1.9: WiMaX CTC logical decoding process.

case 1: P(j) = (P0j+1+K/2+P1)mod K

case 2: P(j) = (P0j+1+P2) mod K

case 3: P(j) = (P0j+1+K/2+P3) mod K

end

where P0, P1, P2 and P3 are constants related to block length of the code K (see [802.16e, 2004]).

This kind of algorithm is conceived to facilitate parallel implementation of interleavers.

1.5.3 Decoding process

In this section the decoding process is explained with reference to WiMaX convolutional turbo codes.

The soft input from the demodulator is initially de-punctured by padding zeros in the positions of

the punctured bits. The zeros added in the puncture/de-puncture are spread out in the parity

sub-blocks. The systematic bits are never punctured. The input data are then processed by the

SISO unit, which implements the BCJR algorithm [Bahl et al., Mar. 1974] (�rst half iteration), the

results called extrinsic information are interleaved according to the permutation law used in the

encoder and then processed by another SISO (second half iteration) as shown in Figure 1.9. The

input to the decoder is kept constant, the decoding is performed several times, and only extrinsic

informations are passed between the SISO. After the predetermined number of iterations, (typically
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SISO 

Figure 1.10: Generic SISO Decoder

4 − 8 depending on BER and FER requirement), a �nal decision is made by using the extrinsic

information from the two SISO decoders and the systematic soft bits from the demodulator. There

are also algorithms that use an early stopping criterion, which means the decoding is stopped

when certain rules are ful�lled, e.g. the same estimation of the output for two or three consecutive

iterations. Early stopping increases the throughput of the decoder however they will not be detailed

here as they are out of the scope of this thesis, interested reader can refer to [Matache et al., Aug.

2000], [Shao et al., 1999].

1.5.3.1 BCJR algorithm

The BCJR algorithm, used in SISO module, basically receives as input blocks of soft information

associated to each processed bit (LLR) and it is capable to re�ne them, generating as output new

reliable soft bits. To derive a basic understanding of how this algorithm works, a general struc-

ture of SISO is presented Fig.1.10 where u are the input symbols of the encoder while c are the

coded outputs. Moreover P(u; I) and P(c; I) are respectively, the estimations of the probability

distributions of the encoder input and output symbols; while P(u;O) and P(c;O) are the re�ned

values for these distributions after BCJR algorithm computations. These probability distributions

are related to the aforementioned extrinsic information reported in Figure 1.9. The basic equations

for calculating re�ned probability distributions in the original form are:

Pk(c;O) = Hc

∑
e:c(e)=c

Ak−1[sS(e)]Pk[u(e); I]Bk[sE(e)] (1.5)

Pk(u;O) = Hu

∑
e:u(e)=u

Ak−1[sS(e)]Pk[c(e); I]Bk[sE(e)] (1.6)

where:
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• Index k indicates the time step and runs on the whole transmission length, while symbol s

represents a code state;

• e is a generic trellis edge, while c(e) and u(e) are the output and input coder symbols associated

to the edge e;

• sS(e) and sE(e) indicate the starting and the ending states for the generic trellis edge e;

• Hu and Hc are normalization constants.

Ak−1 and Bk−1 are probability distribution accumulated (path metrics) in the forward and backward

direction along the trellis, according to the following updating relations:

Ak(s) =
∑

e:sE(e)=s

Ak−1[sS(e)]Pk[u(e); I]Pk[c(e); I] (1.7)

Bk(s) =
∑

e:sS(e)=s

Ak+1[sE(e)]Pk+1[u(e); I]Pk+1[c(e); I] (1.8)

It is clear from the direct inspection of these equations that their straightforward implementation

in a digital architecture would give rise to at least two serious problems:

1. The updating of the involved metrics implies that the whole sequence of transmitted data

(block) has been received and stored. This has the e�ect to increase the decoder memory.

2. A large number of multiply operations are involved, which has huge impact on overall decoder

complexity.

The �rst problem is solved using an approximated version of the original algorithm, largely known

as sliding window BCJR algorithm [Blankenship et al., June 2005b]. In the sliding window approx-

imation, the block of data to be decoded is divided into a number of segments, or windows (length

NW ) and the decoding algorithm is applied to each of them in sequence. It has been proved that

with a good choice NW the performance loss due to this approximation is negligible. For the second

problem the usual solution is provided by re-formulating the algorithm in the logarithmic domain.

In fact, by processing logarithmic likelihood ratios (LLR's) rather than the original reliability met-

rics allows to replace multiplications with additions. Considering the logarithm of Pk(u;O) (and

the same for Pk(c;O) ) we can write log(Pk(u;O)) as:

πk(u(e);O) = const+ log(
∑

e:u(e)=u

expαk−1[sS(e)] expπk(c(e);I) expβk[sE(e)])

︸ ︷︷ ︸
a

(1.9)
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where:

• αk−1[sS(e)] = log(Ak−1[sS(e)])

• βk[sE(e)] = log(Bk[sE(e)])

• πk(c(e); I) = log(Pk[c(e); I]) (πk(u(e); I) = log(Pk[u(e); I]))

• πk(u(e);O) = log(Pk(u(e);O)) (πk(c(e);O) = log(Pk(c(e);O)))

Therefore the new BCJR equation obtained with this new transformation are based on a generic

function a. This operation is de�ned as:

a = log

[
n∑
i=1

exp(ai)

]
(1.10)

and for VLSI implementation requires a proper approximation [Masera, 2005]. The two most

widely known techniques to approximate equations 1.10 are max∗ and max. Recalling the Jacobian

operator, equation 1.10 can be evaluated recursively applying the new operator max∗ as:

log(exp(a1) + exp(a2)) = max∗ = max(a1, a2)− log(1 + exp(−|a1 − a2|)) (1.11)

The max∗ operator requires in general two sums and a look-up table. The look-up table size

depends on the required accuracy. However in the max approximation whole correction term can

be avoided, giving rise to a simpler and suboptimal version of the SISO (max-sum or max-log-MAP):

log(exp(a1) + exp(a2)) ≈ max(a1, a2) (1.12)

To compensate the e�ect of neglecting the look-up table several strategies are possible, like

scaling or o�setting the messages. These techniques are described in [Masera et al., Sept. 1999],

[Wu et al., April 2005]. Coming back to the equations we can consider that LLR′s = log Pi
Pj

and

therefore we can de�ne :

λk[u;O] = πk[u(e) = u;O]− πk[u(e) = ũ;O] = max
e:u(e)=u

∗ {b(e)} − max
e:u(e)=ũ

∗ {b(e)} − λk[u; I] (1.13)

where ũ is an input symbol taken as a reference (usually ũ = 00). With duo-binary three extrinsic

LLR's are produced, then in general the terms λk[u;O] and λk[u; I] are vectors. The term b(e) in
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1.13 is de�ned as:

b(e) = αk−1[sS(e)] + γk[e] + βk[sE(e)] (1.14)

γk[e] = πk[u(e); I] + πk[c(e); I] (1.15)

The πk[c(e); I] is computed by adding together the λk[c; I] produced by the soft demodulator as:

πk[c(e); I] =
nc∑
i

ci(e)λk[ci(e); I] (1.16)

where ci(e) is one of the coded symbols associated to e and nc is the number of bits forming a

coded symbol. On the other hand, we can write πk[u(e), I] as:

πk[u(e), I] =


0 if u(e) = (′0′,′ 0′),

λABk [u(e); I] if u(e) = (′1′,′ 0′),

λABk [u(e); I] if u(e) = (′1′,′ 0′),

λABk [u(e); I] if u(e) = (′1′,′ 1′)

For path metrics, the same method was adopted and the result obtained are:

αk[s] = max
e:sE(e)=s

∗ {αk−1[sS(e)] + γk[e]
}

(1.17)

βk[s] = max
e:sS(e)=s

∗ {βk+1[sE(e)] + γk+1[e]
}

(1.18)

where αk[sS(e)] and βk[sE(e)] are the forward and backward metrics associated to sS(e) and sE(e).

1.6 LDPC Coding and Decoding

Low Density Parity Check (LDPC) Codes, are a class of linear block codes, with parity-check

matrices H very sparse, i.e. the number of 1's are small percentage of the zero elements [Gallager,

Jan. 1962]. Moreover, "code dimensions" in terms of information word and codeword sizes may be

in the order of hundreds or thousands digits (from 600 up to 64000 bits). R. Gallager de�ned an
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Figure 1.11: Tanner Graph for LDPC code.

(N, m, n) LDPC code as a block code of length N having a small �xed number (m) of ones in each

column of the parity check matrix H, and a small �xed number (n) of ones in each rows of H. In

the Gallager's original LDPC code design, there is a �xed number of ones in both the rows (n) and

the columns (m) of the parity check matrix: it means that each bit is implied in m parity check

constraints and that each parity check constraint is the exclusive-OR (XOR) of n bits. This class

of codes is referred to as regular LDPC codes. On the contrary, irregular LDPC codes do not have

a constant number of non-zero entries in the rows or in the columns of H (e.g. WiMAX LDPC

codes).

1.6.1 Tanner Graph representation

An LDPC decoder architecture is strictly related to the Parity-Check Matrix H; in fact, due to the

sparseness of this matrix, the decoder can be represented in term of a bipartite graph called Tanner

Graph [Tanner, May 1981.]. A bipartite graph is a graph where the elements of a �rst class can

be connected to the elements of a second class, but not to the same class. In a Tanner graph for

binary LDPC codes (Fig. 1.11) there are two classes of Processing Elements (PEs) that are related

to the rows and columns of the H matrix.

The N nodes related to the rows, i.e. the length of the codeword also known as "code-block",

are usually reported, in LDPC notation, as Variable (or Bit) Nodes (VNs); on the other hand, there

are M = N -K nodes (K is the information word size), called Check Nodes (CNs) that are related

to the columns of the H matrix, i.e. the M parity check equations of the code. Moreover, an edge

eji on the Tanner Graph connecting a Variable Node VNj with a Check Node CNi (i.e. messages

exchanged between this two nodes) corresponds to a "1" in the H matrix between row j and column

i. The Tanner graph representation of error correcting codes is very useful since their decoding
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algorithms can be explained by the exchange of information along the edges of these graphs.

1.6.2 Optimal decoding Algorithm

From the Tanner graph representation of LDPCmatrix in the previous section the decoding of LDPC

codes can be easily explained. The VNs receive the intrinsic information λ from the channel and

update them depending on the results of the parity check equations compute at the CNs; this process

is iterate several times until a converge criterion is met. This criterion may be that a codeword was

decoded or that a maximum number of iterations were reached. Since a great number of messages

are exchanged among Variable and Check Nodes, this algorithm is also called "Two Phase Message

Passing" (TPMP), but since these messages are reliability information, it is better known as Belief

Propagation Algorithm (BPA). Analyzing in more details this algorithm, it can be seen clearly that

VNs receive likelihood functions (i.e probabilities) from the channel; moreover also the messages

from the CNs are reliability values that are also probabilities. This means that the updated versions

computed at the Variable Nodes are obtained by means of probability multiplications since this will

give information on how reliable were the received data. On the other hand CNs have to compute

parity checks; this means that CNs must sum up all the incoming messages from the VNs. Only

if the sum is zero then the data stored in the VNs are correct and a codeword was found. This

is basically the "Sum-Product" implementation of the Belief Propagation Algorithm, but recalling

that we avoid multiplications we have to work in logarithmic domain so multiplications becomes

additions and sums become more complex functions. Considering the kth iteration and a generic

Variable Node VNj that send a message Qji to a generic Check Node CNi on edge eji , the updated

outgoing message (Qji ) is obtained from the channel intrinsic information LLR λj and from the

messages (Rαj) from all the CNs connected to VNj excluding the one (Rij ) received on the same

edge eji (i.e. extrinsic information computation). This behavior is described by equation

Qji = λj +
∑

α∈C[j]/{i}

Rαj [k − 1] (1.19)

where C[j] is whole set of incoming edges for VNj and k is the iteration.

A generic Check Node CNi, on the other hand, receives messages Qγi from all the VNs that

are connected with it and computes a parity check equation. Then it sends back to the VNs some

reliability measures depending on the results of these parity checks. In particular it sends on the edge

eji a message (Rij) to the Variable Node VNj that depends on all the messages Qγi it has received

excluding the one (Qji) that was received on the same edge eji (i.e. other extrinsic information

computations). This message updating is described by eq.

Rij [k] = ψ−1

 ∑
γ∈R[i]/{j}

ψ (Qγi [k])

 • δij (1.20)
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where R[i] is the set of all messages received by the CNi from the all VNs connected to it.

The ψ(x) operator in equation 1.20 is an non-linear function which actually performs the CN

processing according to the Belief Propagation algorithm. Its general expression is shown by equa-

tion

ψ (x) = − ln
(
tanh

∣∣∣x
2

∣∣∣) (1.21)

Moreover, the term δij in equation 1.20 is obtained from the sign of all the incoming messages

Qi (excluding Qji) as in :

δij = (−1)E

 ∏
γ∈R[i]/{j}

sgn (Qγi [k])

 (1.22)

where E is the number of incoming edges at Check Node CNi (including, in this case, also Qji).

When the convergence criterion is met, then Variable Nodes can evaluate the corrected output

accordingly to equation:

Λj = λj +
∑
i

∈ C[j]Rij [k] (1.23)

where all the messages from CNs are taken into account; in fact to compute the decoded value all

the information from the CNs are needed since they are related to the result of the parity check

equations. The "hard decoded" output bit x̂j (an estimation of the actually coded bit x j) is obtained

from the sign of Λj as in eq:

x̂j = sgn (Λj) (1.24)

while |Λj | (magnitude of Λj) is its reliability [Hagenauer et al., Mar. 1996].

From above mentioned elaborations, the Belief Propagation Algorithm can be easily sketched:

VNs update the intrinsic information from the channel with the messages from the CNs and send

the new extrinsic information back to CNs. Check Nodes compute new parity check equations and

send to VNs new extrinsic informations that are the results of these parity checks. All this process

is applied iteratively until a convergence criterion is met and then the estimated codeword x̂j is

obtained taking the sign of the updated likelihood functions Λ computed at the VNs. Actually,

since data are represented in 2-complement notation, a positive value has a sign represented with

a binary digit '0' while negative ones as sign-digit equal to '1'. Since positive value are related to

a transmitted value equal to '1' and negative likelihood values represent code digit equal to '0',

then the sign of Λj have to be inverted via logic NOT to obtain the actual decoded bit x̂j . The

algorithm that we have brie�y described was proved to be a Maximum Likelihood algorithm under

the assumption that the Tanner Graph is "cycle-free" (or acyclic).

A graph is said to be acyclic if and only if there are no closed paths starting from a node and

ending on the same one (cycle). In actual codes, there are, however, some cycles of certain length 4:
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nevertheless it was also proved that if the length ("girth") of these cycles is greater than 4 (i.e. more

than 4 edges in a cycle), then BPA will still behaves closely to a Maximum Likelihood algorithm,

[MacKay, Mar. 1999]. Moreover, regularities in the code construction will lead to poorer decoding

performances since some limitations in the sparseness of the LDPC code are posed, [MacKay, Mar.

1999], [Richardson et al., Feb. 2001]. For these reasons, irregular codes have better error-correcting

properties rather than regular ones, even if this means that actual hardware implementations of

both encoder and decoder will have higher complexity due to this irregularity.

1.6.3 Sub-optimal decoding algorithm

Analyzing in more details equations 1.20 and 1.21 mentioned in previous section it can be seen

that the ψ(x) function is highly non-linear and a direct mapping into an hardware resource will

require the adoption of Look-Up Tables (LUTs). But since signi�cantly large number of bits are

necessary in order to cope with �nite precision issues, this will lead to the adoption of big LUTs

with lots of entries, a signi�cant cost in term of hardware complexity. To deal with �nite precision

issue reduction and at the same time the area requirements, di�erent solutions were proposed in

literature trying to avoid evaluations of the function. The simplest suboptimal check node algorithm

is the well known Min-Sum algorithm [Fossorier and Imai, May 1999]. Only the magnitude part of

the check node update rule di�ers from the iterative algorithm explained in previous section and is

give as following:

Rij [k] = min
γ∈R[i]/{j}

|Qγi [k]| • δij (1.25)

This is an important simpli�cation in the BP-based algorithm since the check node update is

replaced by a selection of the minimum input value. But this simpli�cation is made at the expense

of a substantial loss in performance. There are other similar approaches in this class, like λ-min

[Guilloud et al., Sep. 2003] or average min-sum [Axvig et al., Sep. 2008].

In [Mansour and Shanbhag, Aug. 2002], a di�erent approach is suggested: instead of applying

the classical BPA updating equations a Turbo-like solution is adopted. In particular Check Node

elaborations are computed by means of a modi�cations of the classical BCJR, [Bahl et al., Mar.

1974] algorithm. Mansour et al. proved that the adoption of a BCJR-like decoding scheme is able

to achieve remarkable error-correcting properties even when �nite precision is taken into account.

A parity-check matrix Hm×n of an LDPC code containing ri ones per row, i = 1, . . . ,m, can be

represented using m trellises corresponding to (ri, ri − 1)-SPC codes. Using this representation, it

is possible to describe an LDPC code using an alternative graph based on the bipartite graph of

the code. In this graph, a check node of degree ri is replaced by the trellis of an (ri, ri − 1)-SPC

code, while the bit nodes are removed. The edges incident on a check node in the bipartite graph

are connected to the appropriate sections of the trellis corresponding to that check node, and the

edges incident on a bit node are connected directly to each other. If two rows in H overlap in q
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Figure 1.12: Trellis representation of a portion of bipartite graph.

column positions, then their trellises are connected by edges at those overlapping positions. Figure

1.12 shows a portion of the bipartite graph represented using trellises connected through edges.

The bit-to-check and check-to-bit messages associated with the nodes of a bipartite graph are

replaced by a single type of message typical of turbo decoding. Each (ri, ri−1)-SPC code associated

to one row, processed in the SISO using the simpli�ed form of BCJR algorithm. This approach is

also known as forward backward method. The key equations of the algorithm for any section of

such trellis reduce to:

α
′
1 = ln(eα1 + eα1+λ) (1.26)

α
′
2 = ln(eα1+λ + eα2) (1.27)

β
′
1 = ln(eβ1 + eβ1+λ) (1.28)

β
′
2 = ln(eβ1+λ + eβ2) (1.29)

Λ = ln(eα1+β2 + eα2+β1)− ln(eα1+β1 + eα2+β2) (1.30)

where λ is the input prior and intrinsic channel reliability value of the code bit associated with

that trellis section, Λ is the updated output reliability of that code bit, and α, β are intermediate

forward and backward state metrics, respectively. Note that these equations are pretty similar to

equations used in BCJR algorithm for decoding of Turbo codes. The di�erence is that in Turbo case
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we can have trellis with 4, 8 or 16 states, here we have trellis with two states and also the length

of the trellis here is the number of bits per check node whereas for turbo it is the window size (in

the case of sliding window BCJR NW ). Equation 1.26, 1.27, 1.28, 1.29 can be approximated using

max∗.

1.6.4 Structured Codes and Scheduling

From the previous section it is evident that an LDPC code is completely speci�ed by its H matrix.

Thus a proper construction for this matrix is advisable for achieving signi�cant coding gains. These

matrices can be "constructed" according to some constraints. In particular, some codes are designed

in order to greatly simplify the decoder architecture. Most of these codes, in fact, are based on

blocks of sub-matrices obtained by permutations of the rows of Identity Matrices leading to the

so-called structured codes [Zhang and Parhi, Nov. 2001,]. These particular structures allows the

implementation of simpli�ed decoders since dispatching of messages from VNs to CNs could follow

some simple rules (like indices permutation). Adding some regularity, like structured matrices, may

degrade the code's decoding performance; thus particular care needs to be taken in selecting proper

constructing rules that allow remarkable error correcting capabilities.

In this section as an example of such codes, we discuss about LDPC codes used for WiMaX

application which we will be using extensively in our thesis. The entire H matrix is composed of

the same style of blocks with di�erent cyclic shifts, which allow structured decoding and reduces

decoder implementation complexity. The HBASE matrix de�ned as:

HBASE =



Π0,0 Π0,1 . . . Π0,N

Π1,0 Π1,1 . . . Π1,N

...
...

...
...

Πi,0 Πi,1 Πi,j Πi,N

...
...

...
...

ΠM,0 ΠM,1 . . . ΠM,N


is associated to a parity check matrix H. It has M block rows and N block columns. The HBASE

is expanded, in order to generate H matrix, by replacing each of its entries Πi,j with a Z -by-Z

permutation matrix, where Z is the expansion factor. The permutation matrix can be formed by

cyclically shifting right the Z -by-Z identity matrix. The set of shifts in the base matrix are used to

determine the shift sizes for all other code lengths of the same code rate.

Standard de�nes various code rates (eg. R=1/2, R=2/3, R=3/4). The base matrix is de�ned

for the largest code length (N = 2304) of each code rate. Table 1.1 collects some details about the

di�erent WiMaX LDPC codes.
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Table 1.1: HBASE parameters for di�erent WiMaX LDPC codes.

Code Rate 1/2 2/3 3/4

HBASE matrix 12× 24 8× 24 6× 24
Type irregular irregular irregular

Number of block rows [M] 12 8 6
Maximun row-column weight 7− 6 11− 6 15− 4

The scheduling of the BP algorithm for LDPC codes is the order in which the messages of the

graph should be propagated. For practical codes, whose graphs are not cycle-free, the �ooding

schedule is used. The most commonly used schedling in the literature are as follows:

1.6.4.1 Flooding Schedule

The �ooding schedule is the classical way of scheduling the BP algorithm. In this schedule, mode

of operation consists of two stages. At �rst all the variable nodes are processed to generate the

updated messages destined for check nodes and when all the messages are sent then the check nodes

are updated all together performing the parity check function [Kschischang and Frey, 1998]. The

update for a type of node can be made either one node at a time (serially) or in parallel without

any change in the output messages.

1.6.4.2 Shu�ed Schedule

In [Zhang and Fossorier, Nov. 2002] authors proposed a shu�e BP algorithm which converges faster

than the BP algorithm. The idea is to update the information as soon as it has been computed, so

that the next node processor to be updated could use a more up to date information. This schedule

operates along the variables: it means that all the variable node are processed one after the other,

hence it is also called vertical shu�e since the check node are processed in a shu�e order.

On the other hand, the authors in [Mansour and Shanbhag, Aug. 2002] introduced the concept

of Turbo Decoding Message Passing (TDMP, also referred as layered decoding in [Hocevar, Oct.

2004] or horizontal shu�e) where block of rows (check nodes) are seen as supercodes. This approach

is dealt with, in detail here, as we will be using it primarly in our work. Each constituent supercode

of the H matrix is an even parity-check code having support only in positions where there are non-

negative numbers in the corresponding HBASE matrix. The layered decoding algorithm decodes a

codeword iteratively in a number of sub-iterations which are equal to the number of supercodes, with

one sub-iteration per constituent supercode, using a constituent SISO decoder and an interleaver

similar to decoding a serially concatenated turbo code. The logical data�ow of the decoding process

is shown in Figure 1.13.

The SISO decoder accepts in a sub-iteration, intrinsic input reliability messages (denoted by λ)
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Figure 1.13: LDPC logical decoding �ow using TDMP algorithm.

generated from all other previous sub-iterations. Intrinsic λ-messages pertaining to the supercode

under consideration are excluded to minimize correlation between messages from di�erent sub-

iterations. The sum of all intrinsic λ-messages in addition to the channel values δ is denoted by γ

:

γ = δ +
∑

super−codes
λ (5)

The SISO generates as output updated extrinsic messages (denoted by Λ) corresponding to the

constituent supercode being decoded, as well as updated posterior messages (denoted by Γ). At the

end of a sub-iteration, these Λ and Γ-values are stored as λ and γ-values to be used as inputs in

the next sub-iteration. The next CN subset (supercode) will thus receive newly updated messages

which improves the convergence speed and therefore increases communications performance for a

given number of iterations.

1.7 Conclusion

The purpose of this chapter was to introduce the application domain in which this thesis is focussed

i.e. digital communication. We presented the di�erent elements playing a role in the digital trans-

mission over a channel and in particular element of channel decoding was detailed. Some of the

widely used channel code families were explored, including their coding and decoding algorithms
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in the context of real codes employed in WiMAX application. Challange of creating architecture

platforms, supporting all together these di�erent codes and their decoding, motivates us to explore

the �exible architecture paradigm which will be detailed in the next chapter with extensive study

of the related state of art.
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This chapter presents the motivation of the thesis work along with the state of art in the area of

di�erent subset of �exible channel decoder design space. A brief overview of the �exibility paradigm

is presented and then a problem space is de�ned for the �exible channel decoder architecture im-

plemetation. Each subset of this problem space is confronted with already existing solutions and

then at the end our contribution to them are highlighted.

2.1 Introduction

Since the number of radio standards is growing increasingly fast and the diversity among the stan-

dards is increasing, there is a need for a processing solution capable of handling as many standards

as possible and at the same time not consuming more chip area and power than a single-standard

product. In the last few years, the technology market was dominated by the quest of even bet-

ter communication infrastructures. Typical example is the mobile phone market where non-voice

tra�c is becoming dominant over traditional voice communication. This led to the introduction of

29
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novel standards, like UMTS (3G) which is able to support higher data rates with higher reliabil-

ity. Beside mobile phone, novel data wireless networks, like Wireless Local or Metropolitan Area

Networks (WLAN or WMAN) are increasing their appeal to the �nal user that could have access

to data without being tethered to any static infrastructure. In a near future digital TV (DVB-H)

and the successor to 3G, Long Term Evolution (LTE) will also be included in feature rich handsets.

Furthermore the idea of software de�ned radio has thrilled many people over the last decades. SDR

promotes �exibility and hardware reuse which makes it very appealing for companies seeking to

implement �exible multi-standard radios in the future. Supporting all these di�erent standards, ob-

viously, should be achieved without any degradation in term of achievable data rate or transmission

reliability. In order to achieve the required �exibility to support all these standards and to reach

optimal solutions, �exible platforms are necessary.

In the last few years, the improvements in the micro-electronic technology have made conceiv-

able the integration on the same Integrated Circuit (IC) millions of MOS transistors and logic

gates. This makes possible the design of novel integrated architecture with enhanced capabilities

compared to those designed in the �rst years of the nineties. This revolution was partially driven

by the astonishing growth of the telecommunication market where the need of more services implies

higher bandwidth and data rates. To tackle with these requirements, novel telecommunication in-

frastructure should be investigated, even if they require augmented computation capabilities. These

capabilities could be achieved by means of the evolution of the micro-electronics circuits. The in-

creased integration density, in fact, allows to implement on the same silicon die, di�erent circuits.

However, these augmented possibilities requires novel design paradigms in order to catch all of

them. In particular the augmented design cost, and the augmented requirements of the novel com-

munication standards impose to exploit �exible structures able to easily adapt to di�erent working

conditions. Nevertheless, before analyzing these architectures, some brief analyses of this novel

design paradigm of �exibilty is necessary.

2.2 Flexibility as a Design Paradigm

Traditional Application Speci�c Integrated Circuit (ASIC) design �ows have always tried to max-

imize the circuits' operating frequencies, while keeping low the hardware complexity, intended as

the whole number of logic gates and the required circuit area. Moreover the augmented number of

battery-supplied portable devices impose taking into account also the power consumption leading

to more power-conscious design �ows. Summarizing, we can state that typical design constraints

are frequency, complexity and power. The improvements of the technology lead to MOS transistor

with minimum features that shrink to extremely short dimensions in the order of the nanometer

scale. Current gate length, for commercial technologies are in fact equal to 90 nm and 65 nm while

in the next generation it is foreseen that it will become equal to 45 nm or even less [ITRS, 2003].
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These minimum features allow integrating several millions of transistors on the same chip allowing,

at the same time, to design novel ASICs with increased computation capabilities, working at higher

frequencies and with limited area and power requirements.

Even if the current technologies enable the design of advanced architectures, they nevertheless

pose some severe limitations in the integrated circuit design too. In particular, Non-Recurrent Engi-

neering (NRE) costs related to design and masking costs have increased to such a point that ASICs

production become economically viable only for mass productions. Moreover, time-to-market is

shortening, reducing the design time and limiting the possibility of correct design errors in succes-

sive iterations. Additionally, in current telecommunication standards di�erent operating modes are

prescribed; thus, the more di�erent working conditions a single circuit can tackle, the more market

this circuit will gain and the more time it will be present (i.e. it will last) in this market. This means

that this circuit should be reusable without any changing in his internal architecture. This will also

extend is lifetime allowing mass production and the absorption of non-recurring costs. Thus, a novel

design paradigm, the �exibility puts aside the traditional ones in the design �ow [Benedetto et al.,

Sept. 2004.], [Masera and et al., Oct. 2004].

Hereinafter we will give a more formal de�nition of �exibility even if it can be hardly quan-

titatively measured in practical implementations. Flexibility is de�ned in terms of ability of the

hardware platform to adapt to the di�erent algorithms and its re-con�gurability towards di�erent

scale of an algorithm [Polydoros, Sept. 2008].

Figure 2.1: Performances vs. Flexibility of Di�erent Digital Circuits

Fig. 2.1 shows the diagram relating �exibility and performances for some digital architectures .

We can see that usually, the more �exible is an architecture the less performances it can achieve;

in fact, their internal structures are not optimized (i.e. customized) to any speci�c application.

A general purpose microprocessor (µP) is a digital computation unit able to perform di�erent
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task without any specialization. They are highly adaptable architectures, and their �exibility is

given by the code running on them. However this high �exibility comes at the cost of overall

performance. A Digital Signal Processor (DSP) is a particular kind of microprocessor with some

specialized unit and instruction dedicated to signal processing. Thus, these specialized units reduced

the overall �exibility since some instructions are optimized while the other are not, but allow better

performances when signal processing computations should be performed. Like µPs, also DSP are

adaptable circuits, since di�erent task can be performed simply varying the code running on them.

An Application Speci�c Instruction-set Processors (ASIP) is processor with some specialized

instructions and computational unit specialized for a speci�c task, [Coware]. Respect to DSP,

ASIPs are optimized for only a speci�c task, so they are less �exible than DSPs. Moreover also

their internal structure (bus width, arithmetic units and so on. . . ) are designed in order to

accelerate computations of the speci�c application. Thus, when an ASIP does elaborations related

to the application it was designed for, it could achieve high performances. However, there are still

some general purpose instructions and an ASIP could a�ord also di�erent elaboration even if the

obtainable performances are degraded.

FPGAs are recon�gurable circuits, since di�erent circuits (i.e. this is where the �exibility came

from) can be mapped rearranging the internal structure of the FPGAs themselves. On the other

hand Application Speci�c Integrated Circuits or ASIC is a digital circuit design and optimized

in order to perform a speci�c task (i.e. application)with best possible performances [Weste and

Eshraghian, 1992]. Typically, ASIC is tailored around a speci�c application and may not exhibit

any kind of �exibility.

2.3 Flexible Channel Decoding

As can be inferred from the previous analysis, a design �ow that take into account �exibility from

the beginning (i.e. from the de�nition of the problem that the architecture should tackle), will lead

to circuits that can be easily adapted to novel and di�erent working conditions. This is particularly

true in the case of the telecommunications where novel standards, with novel enhanced operating

modes are introduced. In particular, each new standard tries to increase the data rate, i.e. the

number of information transmitted in a second, while keeping low the occurrence of errors in the

transmissions. Moreover, depending on some external conditions, each standard provides di�erent

pro�les. Thus, an integrated circuit designed for telecommunication purposes has to exploit a certain

degree of �exibility in order to tackle all these pro�les. Multi-standard devices moreover, are able

to support di�erent telecommunication standards and they may exhibit a quite long life-cycle since

a single IC can be adapted to di�erent conditions. More �exible architectures can have also support

for future out-coming standards.

Among the di�erent functionalities of such standards, one of the most demanding operations



2.4. Problem Space Formulation 33

is channel decoding which is the central processing part in the outer modem of telecommunication

systems. Convolutional codes (CC), binary turbo codes (bTC), duo-binary turbo codes (dbTC),

and low-density parity-check codes (LDPC) are established channel coding schemes. Especially the

decoding algorithms of turbo codes and LDPC codes have a very high computational complexity.

It is shown in [Lin et al., 2006], [Pan et al., 2003] and [Hosemann et al., 2003] that channel decoding

contributes atleast 40 % to the total computational complexity of the physical layer of a wireless

system, depending on the implementation platform. However, multiple variations of these algo-

rithms are employed in standards. More speci�cally, every standard uses a di�erent con�guration

of an algorithm which makes it unique to that standard. For example, the Turbo coding algorithm

used in W-CDMA employs a di�erent polynomial, block size, coding rate and termination method

from that used in WiMAX. This translates to a further increase in complexity of a �exible channel

decoding plateform. In the recent years, novel decoding schemes, able to improve transmissions

close to the theoretical limits were presented and adopted in di�erent standards (UMTS, DVB-S2,

DVB-RCS, 802.16, . . . ). These decoding algorithms are able to achieve high performances also in

terms of data rate. However, novel codes with enhanced properties with better overall performances

are still investigated and these novel solutions might be adopted in future standards. Thus, �exible

architectures able to support as much options as possible seems the only viable solution for reducing

overall costs.

2.4 Problem Space Formulation
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Figure 2.2: Problem space of �exible channel decoder design
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The implementation of complex (iterative) channel decoding systems became essential to reach

the performances now required in term of quality of transmission. Dedicated hardware architec-

tures (i.e. ASIC) implementing parts of these systems are already tackled in several academic and

industrial research teams. However, the requirements of: very low error rate, very high through-

put and increased �exibility of the implementation, make the resort to adequate multiprocessor

architectures inevitable. In this context, Multi-Processor System-on-Chip (MPSoC) architectures

are being widely investigated these last years in order to accommodate the increasing throughput

and �exibility requirements of emerging wireless communication standards. MPSoC architectures

for iterative decoders are detailed in chapter 4 of the thesis. In multi-processor implementations

several independent data blocks can be simultaneously decoded on di�erent processors, this ap-

proach multiplies the costs (memories, area, and power consumption) along with the throughput.

Exploiting the inherent parallelism of the iterative decoding algorithms like turbo and LDPC en-

ables a far more e�cient partitioning of the decoding task. The block to decode can be divided

into several sub-blocks. Decoding each sub-block on an individual processor signi�cantly reduces

latency as a critical parameter in many communication applications, and also the memory overhead.

Here application speci�c processing element design capable of supporting di�erent channel decod-

ing algorithms and their di�erent scales constitute challaneging subset of �exible channel decoder

architecture design problem (shown in Figure 2.2). It can be seen that, other than the di�erent

supported codes, the system speci�cation requirement of the required decoder throughput is one of

the important factor to keep in mind while designing the processing element. The need to achieve

higher throughput pushes the demand for sub-optimal algorithms design of related code encoding

and decoding procedures for low latency implementation, which however need to be e�ciently vali-

dated for their error performance robustness. In addition a reuse of hardware resources (datapath,

memories) across di�erent decoding algorithm implementations needs to be explored while designing

a �exible proecessing element.

Furthermore due to the iterative exchange of data between processing elements each processor

working on the same data block has to communicate with each other, yielding only limited locality.

A communication network has to support the communication demands of the di�erent processing

elements without degrading the throughput of the overall system, which is again an additional

subset of the �exible decoder design problem space as seen in Figure 2.2. Conventional on-chip

buses become ine�cient in large systems and the nanotechnology integration issues (propagation

delay, crosstalk, etc.) make their use no more practical. In this context, Network-on-Chip (NoC)

has recently emerged as a new paradigm allowing to cope with these major design issues, and more

particularly with the on-chip interconnection issues, and to accommodate future onchip integra-

tion of several hundreds of components. However, incorporating NoC paradigm in �exible decoder

implementation is not straightforward, requirement of decoder throughput determines the network

size and the con�gurations of designed processing elements impacts the selection of right topology
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and e�cient routing algorithm for achieving application throughput. Designing of the processing

elements and the communication structure involve the exploration of several alternatives that need

to be investigated, functionally validated, characterized and compared in terms of cost and perfor-

mance, after all these steps only the �nal prototype can be obtained. In the following sections we

present state of art work for these di�erent subsets of problem space of �exible channel decoder

design.

2.4.1 Sub-Optimal Algorithms

Challanges of designing �exible processing elements include low power, low cost implementation

of individual decoding algorithm supported. Various suboptimal approaches are proposed in the

literatures for low power and low cost implementations of turbo and ldpc decoders. Memory being

dominant part of decoder implementations many e�orts have been focussed on reducing the memory

footprint. As explained in chapter 1 the optimal decoding algorithm for CTC is the iterative

decoding using the maximum a posteriori probability (MAP) algorithm [Bahl et al., Mar. 1974].

For convenience of implementation, all the computations are typicallly performed in logarithm

domain, which is known as log-MAP [Robertson et al., Jun 1995]. Research on the implementation

of log-MAP has focussed on power reduced memory orgnization [Schurgers et al., April 2001], [Wang

et al., Dec 2002], [Lee and Park, June 2006] and sub-optimal decoding methods such as Max-log-

MAP algorithm [Woodard, Nov 2000], enhanced Max-log-MAP [Vogt and Finger, Nov 2000], and

linear approximation [Hsiung et al., June 2008]. When CTC is extended from single binary to

Duo-binary, the basic decoding method remains the same, however more extrinsic informations are

generated at the receiver, increasing the memory requirement of extrinsic storage signi�cantly.

The size of the extrinsic memory, complexity of the interleaver, and the communication resources

of the network for these implementations, scale with the reduction in the bit width of the exchanged

extrinisic information. In addition to this, a reduced energy consumption is also achieved. There

have been previous e�orts in �nding out the optimal quantization of extrinisic information to be

exchanged. In [Montorsi and Benedetto, May 2001], [Jeong and Hsia, Sept 1999], [Castellon et al.,

May 2005] results for optimal quantization of extrinsic information were presented with the ob-

jective of complexity and memory size reduction of the processing element. In [Park et al., May

2008] an algorithm was proposed to decreases the necessary bit description width of the extrinsic

information by employing a pseudo �oating point representation. The work in chapter 3 furthers

this exploration by proposing a novel extrinsic bit-width reduction methodology.

Similar to turbo decoders various suboptimal LDPC decoding algorithm (Min-sum, λ-min, A-

min etc.) exists in literatures as mentioned in chapter 1. Quest of power e�cient architectures is

driving the research for �nding e�cient sub-optimal LDPC algorithms, however in thesis we do not

deal with them.
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2.4.2 Interconnection Network for Flexible decoder implementation

In the context of designing interconnection network for �exible decoder implementation it should

be noted that, MPSoC Architectures for iterative decoders present the Intra-IP communication

paradigm, which is signi�cantly di�erent from inter IP communication in heterogeneous SoCs [Vacca

et al., 2009]. E�cient NoC architectures like Mesh, Ring, Benes, hypercube etc. have been evaluated

for inter-IP communication in heterogeneous SoC paradigm where it is much easier to classify the

tra�c because of non uniformity and locality.

In parallel turbo decoding, extrinsic information is iteratively and concurrently exchanged be-

tween component decoders. For each iteration, these exchanges become more and more massive with

decoder level parallelism. In addition, the communication tra�c pro�le depends on the turbo code

interleaving rule. Since turbo code interleaving rule varies from one standard to another and/or one

mode to another; the requirement of a fully �exible on-chip communication network interconnecting

the two component decoders implies its ability to support the intensive interleaved memory accesses

induced by parallel turbo decoders and to convey any permutation from the network input ports

to its output ports. To that purpose, several application speci�c on-chip communication networks

were recently introduced. Topologies based on Benes, Butter�y, 2D Mesh, chordal ring, and de

Bruijn were explored, designed, and integrated for an MP-SoC decoder implementation [Moussa

et al., 2007], [Thul et al., 2002], [Moussa et al., May 2008].

Similarly to parallel turbo decoders, partially-parallel code-independent LDPC decoders, which

o�er the best compromise in terms of area, throughput, and �exibility [Masera et al., June 2007],

introduce a problem of con�icting accesses to the memories containing the exchanged messages. To

manage this issue, the authors in [Tarable et al., Sept. 2004] propose an e�cient algorithm which

can compute a collision-free memory mapping of interleaving laws with no constraint imposed on the

code itself. Thus, a versatile implementation requires for each supported code a pre-processing step

to recompute the corresponding memory mapping. Besides, considering the various block sizes and

codes rates increase signi�cantly the �exibility requirement. In addition, the computations being

relatively simple, implementation issues mainly come from the communication structure between

the VNPs and CNPs. Indeed, the communications rapidly become intensive because they depend

on the number of nodes, the node degrees and the number of iterations. In this situation, a �exible

on-chip interconnection network must be designed with the aim of fully exploiting the parallelism

of the LDPC/turbo decoder architecture by reducing the message latency, alleviating the memory

con�icts and e�ciently routing any permutation from the network input ports to its output ports.

However, none of these works deal with performance/complexity tradeo� of NoC versus di�erent

parallelism degrees, message injection rates and routing algorithms etc. used in MPSoC based

iterative decoder depending on the target throughput requirements. Such an analysis is needed for

minimizing the network area overhead for a target decoder throughput. The work in chapter 4
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provides such a case study using real life iterative decoders supporting WiMAX standard.

2.4.3 Hardware Reuse in Flexible decoder design

The problem of designing �exible processing elements also includes sharing of datapath and memo-

ries across di�erent forward error correction (FEC) decoder implementations as seen in Figure 2.2.

Since quite a long time, issues of �exible architectures for codes within a FEC family have been dealt

with in research. In [Muller et al., Mar. 2006] a �exible and high performance Application-Speci�c

Instruction-set Processor (ASIP) model for turbo decoding was proposed which can be con�gured

to support all simple and double binary turbo codes up to eight states. On design of �exible LDPC

decoder plateform in [Brack et al., Sept. 2006] a highly �exible LDPC decoder architecture capable

to process all speci�ed WiMaX LDPC codes was proposed.

In last few years however many research activities have emerged proposing implementations in

order to achieve �exible and high throughput decoder architectures for supporting the �exibility

across di�erent FEC code families. Few approaches combining the turbo and Viterbi decoding

have been reported. Bickersta� et al have proposed a uni�ed architecture designed for UMTS base

stations [Bickersta� et al., Nov. 2002], [Thomas et al., April 2003]. The main emphasis is on

the multi-channel aspect, and the �exibility in coding schemes has not been handled in this work.

Mainly the memories are shared between the turbo and Viterbi modes. In [Kreiselmaier et al.,

Feb. 2004], another combined architecture is suggested for wireless terminals. In this architecture

the datapath is shared as well as the memories. A MAP algorithm is used for decoding both

convolutional and turbo codes. This is, however, only possible when the throughput requirement

for Viterbi decoding is much lower than that of turbo decoding (e.g. 12.2 kbps for Viterbi and 384

kbps for turbo). In another e�ort to combine the two types of decoders soft Viterbi decoding is

used for the turbo iterations and hard output Viterbi decoding is used for convolutionally encoded

signals [Cavallaro and Vaya, April 2003]. A uni�ed decoder architecture for LDPC and turbo codes

has been presented in [Sun and Cavallaro, Oct. 2008] where multi-mode decoding is achieved by

employing a �exible add-compare-select (FACS) unit. By representing LDPC codes as parallel

concatenated single parity check (PCSPC) codes, they have tried to e�ciently reuse the turbo

decoding infrastucture for LDPC decoding functions.

In the later years when focus was shifted towards ASIP architecture authors like [Vogt and

Wehn, Mar. 2008.], have presented the FlexiTreP ASIP family which supports trellis based channel

codes, i.e., convolutional, binary and duo-binary turbo codes for various standards. In [Alles et al.,

Sept. 2008] a memory sharing across turbo and LDPC code in an application speci�c processor

(ASIP) was explored. The FlexiTreP core is merged with an LDPC ASIP core into a single ASIP,

named FlexiChaP, a �exible channel coding processor, which is capable to support convolutional

codes, binary/duo-binary turbo codes, and structured LDPC codes. It was shown that because

of the e�cient memory sharing across turbo and LDPC decoding area increases in FlexiChap
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(0.39mm2) only slightly compared to FlexiTrep ASIP (0.31mm2). However sharing of datapath

logic area (which is about 25% of the complete ASIP ) across these two families were considered

insigni�cant. Very recently in [Naessens et al., Oct. 2008] authors proposed the application-speci�c

instruction programmable architecture addressing in a uni�ed way the emerging turbo and LPDC

coding requirements of 3GPPLTE, IEEE802.11n, IEEE802.16(e) and DVB-S2/T2 where datapath

and memory reuse across di�erent FEC families has been used.

From the analysis of the state of the art in hardware reuse in �exible channel decoder design

two important points can be gathered. First, memory sharing across di�erent codes de�nitely is

the bigger player in overall reuse scenario, however datapath logic which could be up to 25% of the

whole decoder complexity do present an interesting area of exploration for hardware reuse, mostly

because of a multiplicity of ways to implement di�erent FEC decoding algorithm. Secondly, it can

be seen that a comprehensive analysis of datapath reuse providing the designer with the choice to

decide on the di�erent possible ways of implementing basic FEC computation units is still lacking.

The work in chapter 5 deals with some interesting aspects of such an analysis.

2.4.4 Performace Evaluation of Sub-optimal Iterative Decoding Algorithms

A large number of sub-optimal algorithms to be tested in quest of �exible, low power, low cost

implementation of iterative deocders. The problem of �nding a good performance-complexity trade-

o� is thus a complex task. Moreover, the evaluation of each con�guration generally requires a CPU

extensive Monte-Carlo simulation in order to have an accurate estimation of the BER. In order to

avoid such simulation, in [Boutillon et al., June 2007] authors propose an e�cient reduced monte

carlo simulation (RMCS) method which provides an improvement of simulation speed by a factor

of 103. The key steps of the proposed approach are as follows:

• step 1: De�ne the space of the search by de�ning the range of search for each parameter

of the decoder. De�ne a model of complexity for each parameter. De�ne also the maximum

allowable complexity of the design.

• step 2: De�ne the "worst case" con�guration by individually setting the parameters to the

value that degrades performance most.

• step 3: Using this con�guration, perform a Monte Carlo simulation at the SNR of interest.

Each time a received codeword fails to be decoded, store the codeword (or information to

reconstruct it, i.e., the seeds of the pseudo random generators) in a set S. Stop the process

when the cardinality of the set S is high enough (typically around 1000). Note that this

operation can be very CPU consuming but it has to be done only once.

• step 4: Perform an optimization in order to �nd the set of parameters that minimize the BER

(or the FER) over the set S with the constraint that the overall complexity of the decoder
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remains below a given value.

• step 5: Perform a normal Monte Carlo simulation in order to verify a posteriori the real

performance of the selected parameters. Go to step 1 with a di�erent scenario of optimization

if needed.

It can be seen that the method is an intelligent adaptation of traditional MC simulation method

and gives faster evaluation as a result of its operation on smaller set of codewords. However it

essentially operates on BER domain and from APP to BER, a huge quantity of information is

suppressed. This observation leads us to a question of whether it is possible to utilise this APP

information for speeding up the performance evaluation of iterative decoders of di�erent complexity?

The work in chapter 6 explores possible answers to this question.

2.5 Contribution of the Thesis

Based on above classi�cation of subsets in the problems space of �exible channel decoder design our

contribution can be summarized as following:

• Suboptimal algorithms: The methodology for bit-width reduction of extrinsic information

was developed which not only reduces memory also it has imact on complexity of permutation

network which are used to piggback extrinsic information between iterations in a turbo decoder

[Singh et al., Sept 2008].

• Interconnection Network: Evaluation of NoC parameters for MPSoC based Turbo and

LDPC decoder architectures is done. By a detailed tra�c analysis we not only showed that the

overall processing throughput is impacted by the network's limited communication bandwidth,

in addition choice of parallelism degree and design of processing unit also play an important

role [Scarpellino et al., August 2008].

• Hardware Reuse: Design and implementation of a �exible FEC kernel which supports the

various channel decoding algorithm used in current wireless standards viz. Viterbi, Turbo and

LDPC [Singh et al., 2010].

• Performace Evaluation: Developement of a new metric for fast and e�cient performance

evaluation of iterative decoding algorithms [Singh et al., July 2009].

2.6 Conclusion

In this chapter, we have tried to explore �exible channel decoder design problem space. This space

features various subsets related not only with algorithm design and their validation methodologies,
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but architectural choices and their e�cient implementation aspects are also dealt with. This clas-

si�cation of subsets help to describe di�erent dimensions of the complexity of the �exible decoder.

The combinations of the di�erent components of this model enables us to describe the state of the

art �exible channel decoder architectures and methods and also build the motivation for di�er-

ent contributions of the thesis. The chapter then presents these contributions, which will be fully

detailed in the following chapters.
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Soft Input Soft Output (SISO) decoders iteratively exchanging intermediate results (extrinsic

information) between themselves lie at the core of turbo decoder architectures. In this chapter, �rst

a brief overview of two kinds of turbo codes: serial concatenated convolutional code (SCCC) and

parallel concatenated convolutional code (PCCC) is presented along with their decoding aspects.

Then various implementation architectures of these codes are categorized as either serial, parallel

or network on chip (NoC) based. For each of these categories role of the extrinsic information's

41
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bit-width on implementation complexity is analyzed. Finally a technique for bit-width reduction

of exchanged extrinsic information in turbo decoders is presented and the impact of it for di�erent

implementation architectures is analyzed. The methodology is investigated over turbo decoding

system based on the Max-Log-MAP algorithm. The material of the second part has been partly

presented during the Turbo Symposium conference [Singh et al., Sept 2008].

3.1 Introduction

Extrinisic information in typical turbo decoding indicates a degree of con�dence associated with

each bit. There have been previous e�orts in �nding out the optimal quantization of extrinisic

information to be exchanged. In [Montorsi and Benedetto, May 2001], [Jeong and Hsia, Sept 1999]

and [Castellon et al., May 2005] results for optimal quantization of extrinsic information were

presented with the objective of complexity and memory size reduction of the processing element.

In [Park et al., May 2008] an algorithm was proposed to decrease the necessary bit description

width of the extrinsic information by employing a pseudo �oating point representation. Instead, we

explore a new approach for optimal quantization of exchanged extrinsic metrics, where the underline

assumption is that optimal �xed point representation has already been obtained for the component

decoder's internal signals. We propose a technique in which most signi�cant bit (MSB) clipping

combined with least signi�cant bit (LSB) drop (at transmitter) and append (at receiver) is used as

a way for bit-width reduction across the communication structure.

3.2 Turbo Codes and Decoding

This section presents a brief description of the two classes of turbo codes, SCCC and PCCC along

with a general structure of their encoding and decoding architecture. These codes are introduced

here as the bit-width optimization methodology on extrinsic information will be evaluated for their

decoder implementations.

3.2.1 Parallel Concatenated Convolutional Codes

The concept of parallel concatenation (PC) traces back its origin to the introduction of turbo codes

in 1993. A general structure of PCCC encoder and decoder is shown in Figure 3.1. In PCCC

the message to be transmitted is encoded two times: �rst encoder processes the information in its

natural order, while the other encoder processes it in the interleaved order. Analyzing Fig. 3.1.a it

appears clear that in PCCC encoders the two constituent codes work on the same set of input data

u even if it they are a "scrambled version" for the second RSC block.

The decoder of PCCC processes LLRs at their inputs λ( ; I ) and outputs λ( ; O)(see Figure

3.1.b. Each SISO decoder computes the extrinsic LLRs related to information symbols λ( u1 ;
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Figure 3.1: Turbo codes: (a).Parallel Concatation Convolutional Code Encoder (b).Parallel Con-
catation Convolutional Code Decoder

O) and λ( u2 ; O), using the observation of the associated systematic and parity symbols coming

from the transmission channel λ( c1 ; I ) and λ( c2 ; I ), and the a priori LLRs λ( u2 ; I ) and λ(

u1 ; I ). Since no a priori LLRs are avalaible from the decoding process at the beginning of the

iterations, they are then set to zero. For the subsequent iterations, the extrinsic LLRs coming from

the other decoder are used as a priori LLRs for the current SISO decoder. The decisions can be

computed from any of the decoders. In the PC case, the turbo decoder structure is symmetrical

with respect to both constituent decoders. The decoder structure is symmetrical with respect to

both constituent decoders. The two SISO processes execute in sequential fashion, for example, after

SISO1 processing is �nished, SISO2 starts the processing and so on [Masera, 2005] or could work in

parallel in interleaved and natural domain [Juntan and Fossorier, Feb. 2005]. In the latter approach

also known as "shu�ed decoding" nevertheless, to preserve BER performance, additional iterations

are required.

3.2.2 Serial Concatenated Convolutional Codes

Figure 3.2 shows the general structure SCCC encoder-decoder pair. As shown in Fig. 3.2.a the

output of the outer encoder (co) becomes the input of the subsequent inner encoder (ui). It is

evident that the decoding structure is no more symmetrical. The inner SISO decoder computes

extrinsic LLRs λ(ui;O) related to the inner code information symbol, using channel information

λ(ci;I ) and extrinsic LLR coming from other SISO decoder (ui;I ). The outer SISO decoder uses
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extrinsic LLRs provided by the inner decoder and computes the extrinsic LLRs (co;O). The outer

SISO decoder computes the decisions related to information symbols as a posteriori LLRs (uo;O).

3.3 Turbo Decoding Architectures

In this section turbo decoder implementation architectures are classi�ed into three broad categories:

serial implementations, parallel implementations with deterministic interleavers and network on chip

based parallel implementations. The impact of the extrinsic information's bit-width on implemen-

tation complexity is also analyzed for each of them.

3.3.1 Serial Architecture

The simplest decoding architecture to decode a block of codeword is based on the use of a single

SISO decoder, which alternatively processes both constituent codes. This serial architecture requires

three storage units: a memory for the received data at the channel and decoder outputs (LLRin

memory), a memory for extrinsic information at the SISO output (EXT memory), and a memory

for the decoded data (LLRout memory). An instantiations of this architecture in the PCCC case is

shown in Figure 3.3. In the PCCC scheme, the decoding architecture is the same for both component

codes, since they play the same role in the overall decoding process. The SISO decoder decodes code

1 or 2 using the corresponding channel data from the LLRin memory and the a priori information
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stored in the EXT memory at the previous half-iteration. The resulting extrinsic information is

stored in the EXT memory and then used as a priori information at the SISO input when the other

code is processed, at the next half-iteration. The decoded data are written into the LLRout memory

at the last half-iteration of the decoding process. In the SCCC scheme, the architecture elements

are same however they are used in the slightly di�erent fashion for inner and outer code processing

[Boutillon et al., June 2007].

The important thing to note in both kinds of turbo-code decoding architectures is that the

extrinsic memory has an implementation complexity proportional to the number of bits to be

stored. Bit width reduction of extrinsic information not only results in memory area saving, a

reduced energy consumption is also achieved, as memory power dissipations consititutes a major

part of total turbo decoder power consumption budget depending on implemented architecture. For

example in [Schurgers et al., April 2001] authors presented memory power dissipatation to be 50%

of the total power consumption of their implemented architecture.

3.3.2 Deterministic Permutation Network Based Parallel Architecture

For high throughput application, parallel architectures of turbo decoders are required. The block

of data to be decoded of frame size K is sub divided into P sub-blocks, of size M. Each of the

sub-blocks is processed by P independent SISO processing units (see Figure 3.4). Access of any

memory bank is facilitated by the use of its associated address generator (AG). The extrinsic

informations are exchanged across multiple SISO processing units using a permutation network.

Some of the most commonly used network for this purpose are Benes and De-brujin. An appropriate

initialization is required for the forward fm and backward bm metrics [Blankenship et al., June 2005a],

[Giulietti et al., Feb. 2002]. It can be observed that in the deterministic permutation network based

parallel implementation, permutation network has an implementation complexity proportional to

the number of bits to be routed. Reduction of bit width of exchanged extrinsic not only reduces
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the memory bank size, it also signi�cantly reduces the complexity of the permutation network.

Furthermore, as a result of reduced memory size, corresponding column read/write hardware of

memory is also reduced.

3.3.3 Network on Chip based Parallel Architecture

In [Neeb et al., May 2005] networks-on chip capable of resolving access con�icts at run-time is

detailed to support arbitrary interleavers without any pre-processing. Such an approach o�ers

great �exibility with respect to implementing various permutation patterns for standard compliant

decoders. NoC based architectures are treated with great detail in chapter 4. In this section as a

brief in Figure 3.5 the general NoC based parallel turbo decoder architecture is shown, where each

processing element (PE) is a SISO processing unit with corresponding memories. The extrinsic

information exchange across di�erent PEs is facilitated by the NoC. Choice of the interconnect

topology determines the achievable decoding throughput. In [Scarpellino et al., August 2008] it was

Figure 3.5: Turbo decoder NoC based implementation
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shown that for a given interconnect topology, due to the limitation of routing resources (switching

and interconnect wires), accepted tra�c by the network tends to saturate after a certain value of

injection load, resulting in reduced decoding throughput. Reducing the bit-widths of exchanged

extrinsic information is an e�ective way to allocate more communication resources and increase the

accepted tra�c saturation point, thus increasing the decoding throughput.

3.3.4 Special Case of Duo-Binary CTC

In the context of impact of extrinsic information's bit-width on implementation complexity, the

special case of Duo-Binary CTC needs to further detailed. Duo-Binary CTC decoder can be imple-

mented using any of the three architectures mentioned above, however important thing to note here

is that 3 LLRs per symbol are generated and iteratively passed acrossed component decoders. In

the three architectures mentioned above employing duo-binary CTC decoding extrinsic bit-width

reduction will result in higher complexity reduction ( by a factor of 3) than respective architecures

for binary turbo codes.

3.4 Bit-Width optimization

The problem of �xed-point implementation is important as hardware complexity increases linearly

with the internal bit width representation of the data. The trade-o� between hardware complexity

and error correcting e�ciency leads to the minimum bit width internal representation that results

in an acceptable degradation of performance. However, in this work we assume that the internal bit

width representation of the data has already been derived for minimal performance degradation. We

investigate another paradigm where we focus our e�orts to decrease the bit width of the extrinsic

information sent over the communication structure between component decoders, without much

degradation in BER performance of the decoder. With a C based simulator which is capable

of simulating whole operation of data transmission for turbo encoding and decoding some results

were obtained to estimate the distribution pattern of the extrinsic information exchanged between

inner and outer siso. The simulator starts from data creation, goes on with encoding, puncturing,

transmission in a noisy channel, de-puncturing, to �nish with the whole decoding process, including

parallel siso-decoding and interleaving/de-interleaving. Table 3.1 provides the parameters of the

simulated model. The serial code used is from the implementation of a very high speed (1Gbps)

adaptive coded modulation modem for satellite applications [Benedetto et al., April 2005]. Figure

3.6 shows the distribution pattern of extrinsic information in SCCC turbo decoder, where parameter

"Frequency" measures the number of extrinsic informations for a given value. The distribution plots

shows the Gaussian nature of the extrinsic values as observed in [Isukapalli and Rao, Nov. 2003].

The evolution is gradual with number of iterations.
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Table 3.1: Parameters for Extrinsic Distribution Simulations.

Parameters Value

Block size 510
Permutation size 768(RateOuter : 0.662338)

Code size 1540(RateInner : 0.499350)
Rate 0.331

Number of symb. 770
Modulation 4PSK
Spectral e�. 0.662

Es/N0 0.80dB
Iterations 8
Bits EXT 8

Figure 3.6: Extrinisic distributation over iterations with parameters given in Table 3.1
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Figure 3.7: Bit-width Optimization Process

Our goal is to obtain the BER performance results using smaller bits to represent the extrinsic

information (originaly represented by 8 bits) taking into consideration their Gaussian distribution

and the evolution of the pattern over iterations. As the extrinsic distribution evolution from one

iteration to other is not uniform any linear bit-width reduction strategy will result in signi�cant

performance degradation. Thus a need of adaptable methdods arises, some of such strategies are

discussed in the following sections.

3.4.1 MSB clipping and LSB drop-append

We analyze the impact of MSB clipping and LSB drop-append across the communication structure

and resulting impact on the error performance. In Figure 3.7 a Uni�ed Modeling Language (UML)

based activity diagram model of our methodology is presented. A parallel implementation is con-

sidered with a network for extrinsic information exchange across multiple SISO units. After the

�rst half iteration, extrinsics with bit-width B are generated at the transmiter SISO decoder which

are then reduced to b bits (B > b) and sent across the network. At the input of the receiver SISO

decoder, b bits are coverted back to the original B bit-width for SISO processing. The methodology

can be equally applied to serial implementation architectures of the turbo decoder mentioned in the

previous section without loss of generality. In this case, the network block in Figure 3.7 is replaced

with extrinsic memory EXT.

3.4.1.1 MSB Clipping

The MSB bits are clipped at the transmitter component decoder and sign extension is done at

the receiver component decoder. Let xB (with B bit-width) be the extrinsic information at the

output of the transmitter component decoder. Clipping is applied to cut M MSBs, mapping xB
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into (xB)
M , which is sent across the network. At the input of the receiver component decoder,

(xB)
M is transformed back to B bits as x̂B, which is fed to the component decoder for processing.

The transformation can be formalised as Algorithm 1.

Algorithm 1: MSB Clipping

xB =⇒ (xB)M =⇒ x̂B
If
{
|x| <

(
2(B−N−1) − 1)

)}
(xB)M = xB
ElseIf {xB ≥ 0}

(xB)M =
(
2(B−N−1) − 1

)
Else
(xB)M = −2(B−N−1)

EndIf
x̂B = (xB)M ;

3.4.1.2 LSB Drop-Append

Certain number of LSB bits at the transmitter are dropped and zeros are appended at the receiver

component decoder. Let xB (with B bit-width) be the extrinsic information at the output of the

transmitter component decoder. LSB dropping is applied to remove L LSBs and mapping xB into

(xB)L, which is sent across the network. At the input of the receiver component decoder, N zeros

are appended to obtain the original bit-width of B, mapping (xB)L into x̂B, which is fed to the

component decoder for processing. The transformation can be formalised as Algorithm 2, where

bxc represents the integer part of x.

Algorithm 2: LSB Drop Append

xB =⇒ (xB)L =⇒ x̂B
(xB)L = bxB

2N c
x̂B = (xB)L × 2N

3.4.2 Error Performance Analysis

Applying the methodology of previous section, extensive simulations were performed to evalute the

error correction performance of the turbo decoder with reduced word size allocated for exchange of

extrinisic information. Di�erent wireless communication services have di�erent requirements on the

transmission quality, e.g., for speech-services a BER of approximately 10−3 is su�cient, whereas

for data-services BERs down to 10−6 are necessary in applications where data is delay sensitive.

Therefore, the performance in the area of these functional points is of particular interest. The

characteristics of the evaluation system are given in Table 3.2.



3.4. Bit-Width optimization 51

Table 3.2: Simulation Parameters. (SCCC and WiMAX PCCC Turbo codes)

Code K R Modulation Channel Extrinsic Bits

SCCC 1022 0.332 4PSK AWGN 8
PCCC 960 0.333 BPSK AWGN 8

0.8 1 1.2 1.4 1.6 1.8
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Eb/N0 dB

B
ER

Max−Log.Map, SCCC, R=0.332,K=1022

8bit
1MSB
2MSB
2LSB
3LSB

Figure 3.8: Separate MSB clip and LSB drop-append (SCCC Code at the end of 7 iterations)

The received channel values are 6 bit quantized with 5 bit for the integer part and 1 bit for the

sign information. To improve the performance of the Max-Log-Map algorithm a correction term

implemented as a look-up table is used for max function calculation [Benedetto et al., April 2005].

Figure 3.8 shows the BER performance (1010 bits simulated) for di�erent bit-width choices at iter-

ation 7. It can be observed that MSB clipping of 2 bits starts to give performance degradation of

more than 0.1 dB at a BER of 10−5 and greater. Instead, there is more tolerance to LSB drop and

append strategy. We can reduce 2 LSB bits without signi�cant degradation in BER performance.

For SNR higher than 1.25 dB, the LSB drop and append strategy of 2 bits provides a slight per-

formance gain over the conventional system. We can hypothesize that this behaviour is related to

the optimality of the extrinsic information. To decode Low Density Parity Check (LDPC) codes,

in the O�set Min-Sum (OMS) algorithm [Chen and Fossorier, Mar. 2002], a multiplied or additive

correction factor is directly applied to the check-node output of the original Min-Sum algorithm in

order to improve the decoding performance. Inherently, the impact of drop-append technique could

be compared to the o�set value of OMS algorithm, however in drop-append technique the o�set is

not �xed and depends on the value of extrinsic information.

Figure 3.9 shows the BER results for di�erent combinations of MSB clip and LSB drop-append

strategies. At a BER of 10−4 opting 2 MSB clip and 2 LSB drop-append we get less than 0.1 dB

performance degradation with respect to original 8 bit wordsize case. At higher BER this encoding
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Figure 3.9: Combined MSB clip and LSB drop-append (SCCC Code at the end of 7 iterations)

starts to give greater loss, however the loss can be contained well within the 0.1 dB by switching to

1MSB clip and 3 LSBs drop-append strategy. Such a switching can be actuated based on the SNR

information available at the receiver, resulting in a 50 percent reduction of the extrinisic information

bit-width.

Figure 3.10 shows the BER performance (109 bits simulated) for di�erent bit-width optimization

for duo-binary codes used in the WiMax standard. The characteristics of evaluation system are given

in Table 3.2. To improve the performance of the Max-Log-Map algorithm a scaling factor of 0.75

is used for the extrinsic scaling at each iteration. The BER values are at the end of iteration 7.

The recieved channel values are 6 bit quantized with 3 bits for the fractional part and 2 bits for

the integer part. The MSB represents the sign of the channel information. It is evident from the

results that MSB clipping is not an option for wimax codes, but LSB (drop-append) methodology is

e�ective. At a BER of 10−6 a 3 bit reduction in bit-width is possible if the loss of 0.2 dB is tolerable.

Considering the fact that in duo binary turbo decoder three extrinsic information are passed on

between component decoders, combined bit-width reduction is signi�cant. It can be observed that

the proposed technique provide good result on very diferent cases, such as a duo-binary PCCC and

a binary SCCC. Thus this technique is not an ad-hoc trimming of the decoding algorithm, rather a

general method to optimize turbo decoder implementations.

3.4.3 Memory and Power Consumption Reduction

As explained in section 1.3 memory area dominates the total implementation area of the turbo

decoder and the decoder contains three main memories. They are dedicated respectively to soft

input information, the soft extrinsic information, and state metrics. The width of the extrinsic

information memory is K× xB bits. In the SCCC decoder case, for a block size K = 1024, a
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Figure 3.10: WiMax Bit-Width optimization at the end of 7 iterations

reducton of 4 bits of extrinsic bit width corresponds to a memory size reduction from 1 KBytes

down to 0.5 KBytes. In the case of a WiMAX PCCC decoder, as the extrinisic information vector

contains three extrinsic information related to the decoded symbol, the memory saving is more

visible. For example, for a block length of 2400 couples, a reducton of 3 bits of extrinsic bit width

corresponds to a memory size reduction of 7 KBytes downto 4.4 KBytes.

Static (leakage) power P lkg is becoming a dominant source of power dissipation in next genera-

tion integrated circuits. It can be de�ned as :

Plkg = VDD × Ilkg

where VDD and I lkg denote the power supply voltage and the leakage current respectively. Leakage

power dissipation depends on the memory size and increases exponentially with submicron tech-

nologies [Mamidipaka et al., Sep. 2004]. Bit width reduction also reduces the amount of switched

capacitances inside the memory device and on the driven bus lines, resulting in reduced dynamic

power dissipation. Hence a reduction of the memory size has also a signi�cant impact on the total

power consumption of the turbo decoder.

3.5 A Further E�ort at Bit-width Reduction

As an extension to our previous approach of bit-width reduction, some other algorithms were pro-

posed and their impact on BER performance was evaluated. The new approaches were focussed on

reducing bitwidth of extrinsic information in WiMAX duo-binary turbo decoder as three extrinsic

information LeA, LeB, LeC are exchanged across SISO decoders, thus giving us a bigger scope for

reducing overall extrinsic memory size. In the proposed approaches instead of dealing with extrin-
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sic information LeA, LeB, LeC individually, we try to perform optimization on the whole extrinsic

vector. The idea is to sort LeA, LeB, LeC and then assign more number of bits to highest value

and lesser bits for remaining. So if EXT1, EXT2, EXT3 are the three extrinsic in the decreasing

order of value, then for extrinsic vector of 16 bit:

Scheme 1:

• 3 Bits for : Sorting Information of LeA, LeB, LeC .

• 2 Bits for : Sign Information of LeA, LeB, LeC.

• 5 Bits for : EXT1

• 3 Bits for : EXT2

• 3 Bits for : EXT3

Scheme 2:

• 3 Bits for : Sorting Information of LeA, LeB, LeC.

• 2 Bits for : Sign Information of LeA, LeB, LeC.

• 5 Bits for : EXT1

• 3 Bits for : EXT1-EXT2

• 3 Bits for : EXT2-EXT3

The above mentioned schemes can be better explained using an example. Assuming LeA =-27,

LeB=78, LeC=12, then after sorting, EXT1=78, EXT2=12 and EXT3=-27. All di�erent possible

sorting results can be calculated as 3! = 6, which could be depicted by 3-bit binary representation.

Now to represent the sign information of these ordered three elements EXT1, EXT2, EXT3 we

actually need 2 binary bits, as there would be only 4 possible cases: "+,+,+", "+,-,-", "-,-,-" and

"+,+,-". Our example corresponds to fourth case i.e. "+,+,-". Now we can see that 5 bits are

used-up to store sorting and sign information of three extrinsics. Given a target bit-vector of 16

bits we have 11 remaining bits to actually represent the magnitude of these three extrinsic. In the

�rst scheme we try to assign more bits for extrinsic with higher value, while for the second scheme

di�erent bits are assigned to highest extrinsic and to di�erential extrinsic values as shown above.

The extrinsic vector is transmitted using above mentioned one of the two schemes, across SISO half

iterations, and before starting the new half iterations LeA, LeB and LeC are reconstructed using

EXT1, EXT2 and EXT3 as well as the sign and sorting information.

Simulation for these two schemes were performed using a entropy inspired distance (EID) metric

for performance evaluation of iterative decoders presented in chapter 6, for quicker observations.
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Table 3.3: EID Metric Simulation for WiMAX PCCC Turbo codes)

Sub-optimal Cases EID Distance

1 LSB drop-append 936
2 LSB drop-append 1434
3 LSB drop-append 1938

Scheme1 2677
Scheme2 3341

Results obtained are summarized in Table 3.3 along with corresponding results of drop-append

strategy mentioned in previous section for a comparative analysis (results correspond to a simulation

set of N=10000 codewords at SNR of 1.47 dB). As can be seen from the results that proposed

schemes seem to degrade the error performance of the decoder signi�cantly (presented distance

values correspond to more than 0.5 dB degradation in BER scale). One of the possible explaination

to such behaviour could be derived from the extrinsic distribution shown in Figure 3.6 especially

their variation across iterations. A more dynamic algorithm needs to be formulated taking into

account the extrinsic spread across iterations.

3.6 Conclusion

A methodology for extrinsic message size reduction was proposed which results in bit-width reduc-

tion of 8 downto 4 bits for SCCC code with less than 0.1 dB performance loss at BER of 10−6. For

the WiMax CTC code bit-width reduction of 8 downto 5 bits is possible if loss of 0.2 dB at BER of

10−6 is tolerable [Singh et al., Sept 2008]. Cost, area and energy consumption of the turbo decoder

implementation scales with the bit-width of extrinsic information. The presented results show that

there exists a de�nite scope for memory size reduction by using suitable quantization algorithms

for extrinsic information, without serious degradation of the bit-error performance.
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This Chapter explores Turbo and LDPC decoding application modelling over a NoC based

Multi Processor SoC (MPSoC) platform. An overview of NoC paradigm is presented along with

associated parameters. Then as a case study the performance evaluation of MPSoC architecture of

a WiMAX (802.16e) based turbo and LDPC decoder for a 2-D Torus/Mesh interconnect topology

is explored. Evaluation results are presented based on the communication centric parameters that

include network latency, network size and can be extended to any other System on Chip (SoC)

interconnect topology without loss of generality. The material of the second part has been partly

presented in the ISSSTA symposium [Scarpellino et al., August 2008].

57
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4.1 Background

In many telecommunication applications, it may be desirable to have a �exible system able to

support a variety of error correction standards or a variety of codes, particularly in software de�ned

radio (SDR) paradigm where �exibility is a fundamental property of future receivers. In recent

years many research activities have emerged proposing multiprocessor implementations in order to

achieve �exible and high throughput parallel iterative decoding. In order to obtain architectures

that achieve both high throughput and �exibility, MPSoC is an e�ective solution. Together with

�exible and high throughput processing elements, a MPSoC architecture must also include a �exible

and high throughput interconnection network. The Network-on-Chip (NoC) approach has been

proposed to interconnect processing elements in iterative decoder architectures designed to support

multiple standards [Muller et al., Mar. 2006] [Brack et al., Sept. 2006].

4.2 MPSoC based Turbo Decoder architecture

A parallel turbo decoder can be modeled as P processing elements that need to read from and write

to memories. Each processing element, often referred to as soft-in-soft-out (SISO) module, performs

the BCJR algorithm [Bahl et al., Mar. 1974], whereas the memories are used for exchanging the

extrinsic information among the SISOs. MPSoC based turbo decoder architectures are based on

block level parallelism. Data blocks are divided into a certain number of windows that are processed

sequentially. All the SISO decoders work in parallel on di�erent windows of bits. Decoding of a

block of data is done in iterative fashion. In the �rst half iteration estimates of decoded bits are

calculated and send it over for further processing in the second half iteration. This sending over

between iterations is called interleaving as data are sent in interleaved order. As the demand of high

throughput is increasing from such kind of decoders, degree of parallelization is increasing, i.e. blocks

are sub divided into sub blocks and each sub block then being processed by independent processing

elements. With the increase in degree of parallelization a question of concurrent interleaving comes

into the picture. Which is crucial given the improved performance of such decoder is mainly due to

presence of interleaving aspect. In order to support arbitrary interleaving law, NoC seems to be an

interesting solution [Boutillon et al., June 2007].

The upper half of the Figure 4.1 shows how the block is subdivided and processed independently

by di�erent processing elements (PEs). All the processing elements are same in their behavior i.e.

they are running the same processing algorithm. As a reference a detailed MPSoC based parallel

implementation of turbo decoder is presented in [Martina et al., April 2008], where in order to

achieve high decoding throughput, a parallel architecture has been designed with 4 SISO decoder

units.

As depicted in the lower half of the Figure 4.1 in the whole decoding �ow following parameters
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can be classi�ed:

• Processing Start Time (PELAT ): It is the time which processor takes to perform internal

processing before starting to emit messages to permutation network (SISO Latency in the

above example). It should be noted that for the duration of one half iteration time, occurrence

of PELAT is just once.

• Sending Period(R) : It is the time interval at which each message (corresponding to each

data of the sub block under consideration) is injected in the network. In the best case it is

equal to the average number of cycles per calculated data on a PE. After the Time (PELAT ),

total number of messages sent across the network with a periodic interval of (R) is equal to

the sub block length. It is worth noting that at each interval (R) packet destinations are

di�erent and are dependent on the interleaving law.

• Network Latency (NL) : It is the extra amount of time (Interleaving Latency in the above

example) which a processing element has to wait so that all the expected messages are written

on respective memory location before it can start the next cycle of processing.

4.2.1 Throughput Modelling

To quantify network tra�c, we �rst estimate the data rates originating from interleaving tra�c for

turbo case with respect to a single processing unit. Given clock frequency (F ), number of iterations

(It) and processing unit latency (PELAT ), the time employed by a processing unit to complete the

sending of K processed messages can be estimated as:

TSISO =
It

F
(K ×R+ PELAT ) (4.1)

where R is the average number of cycles per calculated data on a node processor and K is the

turbo block length. The simplest solution to implement decoder is to use one processing unit that

performs in two half iterations. Given the single processing unit architecture we can estimate its

throughput (D), as the number of decoded bits over the time employed to actually decode them

(2TSISO:

D =
s×K
2TSISO

=
s×K × F

2× It(K ×R+ PELAT )
(4.2)

where s represent the size of the symbol and s = 1 for binary codes while s = 2 for double

binary codes. In case of Parallism of P and with the assumption that the interconnection structure
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(permutation network) latency is negligible TSISO becomes:

TSISO =
It

F

(
K

P
×R+ PELAT

)
(4.3)

and the throughput (D) is given by:

D =
s×K × F × P

2× It (K ×R+ PELAT × P )
(4.4)

A similar treatment of MPSoC based LDPC decoder architectures is presented in the next section.

4.3 MPSoC based LDPC Decoder architecture

A LDPC decoder is de�ned by its parity check matrix H of M rows by N columns. Each column

in H is associated with one bit of the codeword or Variable Node (VN), and each row corresponds

to a parity check equation or Check Node (CN). LDPC codes are decoded in an iterative way by

using the sum-product algorithm or belief propagation algorithm involving CN and VN updates

[Gallager, Jan. 1962]. However this two phase decoding has recently given way to the so called

layered or shu�ed decoding [Hocevar, Oct. 2004], [Mansour and Shanbhag, Aug. 2002] which

results in approximately two times faster convergence of the algorithm. The key point of which is

the overlap of the traditional VN and CN phase, as a result of which each iteration can be viewed as

the concatenation of several layered sub iterations. After the layered sub iteration reliability of the

bit in the received codeword is immediately available to the next layer, which will work on this new

information. However across each layered sub iterations CN update messages are shu�ed through a

network . In order to support arbitrary parity matrix NoC solutions are emerging as an interesting

solution.

The Figure 4.2 shows how the parity check matrix is subdivided into di�erent layers (supercodes)

and certain number of check nodes (1 in the example) are processed independently by di�erent

processing elements (PEs) (4 in the example). All the processing elements are similar in their

behavior i.e. they are running the same processing algorithm. Each data of the sub block after

processing is send across the network. The important thing to note here is that mode of LDPC

decoding application is constituted of di�erent communication sub modes (equal to the number of

super codes), as the messages are sent across the network at the boundary of two super codes and

the pattern of such tra�c is di�erent at di�erent boundaries and is governed by parity matrix.
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Figure 4.2: MPSoC Architecture LDPC data processing �ow.
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4.3.1 Throughput Modelling

As shown in Figure 4.2, the parity check matrix H is a class of architecture aware LDPC codes

(AA-LDPC) and can be represented as a block matrix HBASE (Base Model Matrix) of size mb×nb
as described in chapter 1. Each element in HBASE matrix is a z× z circular shifted identity matrix

or zero matrix. The following parameters can be de�ned for such a matrix:

• Code Length: N = nb × z;

• Parity Check equations: M = mb × z;

• k: Check Node Degree.

• PELAT : Average number of cycles taken by each node processor to calculate the �rst output

data (VN extrinsic value). In a check node centric LDPC decoder architectures this value is

dependent on k of the code under consideration.

In presence of P processing elements, the number of cn executed in each processor is equal to z/P .

With the assumption that the interconnection structure latency is negligible, for each check row

processing, given clock frequency (F ), and processing unit latency (PELAT ), the time employed by

the processing unit to obtain (z/P )× k messages can be estimated as:

TDECODING =
It×mb × PELAT

F
(4.5)

Throughput (D) can be estimated as the number of decoded bits (N −M) over the time employed

to actually decode them (TDECODING):

D =
N −M

TDECODING
=

(N −M)× F
It×mb × (PELAT )

(4.6)

4.4 Network on Chip (NoC)

Network-on-Chip (NoC) is an emerging paradigm for communications within large VLSI systems

implemented on a single silicon chip. In a NoC system, modules, such as processor cores, memories

and specialized IP blocks exchange data using a network as a "public transportation" sub-system for

the information tra�c. A NoC is constructed from multiple point-to-point data links interconnected

by switches, such that messages can be relayed from any source module to any destination module

over several links, by making routing decisions at the switches. A NoC is similar to a modern
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telecommunications network, using digital bit-packet switching over multiplexed links. The wires in

the links of the NoC are shared by many signals. A high level of parallelism is achieved, because all

links in the NoC can operate simultaneously on di�erent data packets. Therefore, as the complexity

of integrated systems keeps growing, a NoC provides enhanced performance (such as throughput)

and scalability in comparison with previous communication architectures (e.g., dedicated point-to-

point signal wires, shared buses, or segmented buses with bridges). Of course, the algorithms must be

designed in such a way that they o�er large parallelism and can hence utilize the potential of NoC.

The adoption of NoC architecture is driven by several forces: from a physical design viewpoint,

in nanometer CMOS technology, interconnects dominate both performance and dynamic power

dissipation, as signal propagation in wires across the chip requires multiple clock cycles. NoC

links can reduce the complexity of designing wires for predictable speed, power, noise, reliability,

etc., thanks to their regular, well controlled structure. From a system design viewpoint, with the

advent of multi-core processor systems, a network is a natural architectural choice. A NoC can

provide separation between computation and communication, supports modularity and IP reuse via

standard interfaces, handles synchronization issues, serves as a platform for system test and hence

increases engineering productivity.

4.4.1 Classi�cation of Interconnection Network

Based primarly on network topology, interconnection networks are classi�ed into four major classes:

Shared-medium networks, direct networks, indirect networks and hybrid networks [Jantsch and

Tenhunen, 2003]. Figure 4.3 re�ects this classi�cation along with some examples of network beloging

to respective categories.

In shared-medium networks , the transmission medium is shared by all communicating devices.

It is the least complex interconnect structure of all, only one device is allowed to use the network

at a time. A suitable arbitration mechanism is needed to determine the mastership of the shared-

medium network. They are simple to implement however limited bandwidth and non scalability are

a botteleneck in high throughput application.

Direct Networks or point to point networks are a highly scalable network architecture. They

consists of a set of nodes, each one being directly connected to small subset of other nodes in the

network. A common component of these nodes is a router which manages message �ow across the

nodes that is why these are also known as router based networks. These networks are characterized

by topology, routing and switching. Topology de�nes how the nodes are interconnected. For topolo-

gies in which packets may have to traverse some intermediate nodes, a routing algorithm decides

the path selected by the message to reach its destination. The switching mechanism determines how

the network router resources are allocated for message transmission. All these elements determine

the network performance however they are not independent to each other.

Indirect networks are another class of interconnection networks also known as switch based net-
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Clos Networks
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Hyperbuses, Hypermeshes etc.

Hybrid Networks

Figure 4.3: Classi�cation of Interconnection Network
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Figure 4.4: Structure of interconnection with 16 processing element and routing elements.

work as instead of providing a direct connection between two nodes, the communication between two

nodes has to be fecilitated by a switch. Similar to direct networks, an indirect network is also de�ned

by topology, routing and switching, The topology de�nes how the switches are interconnected.

Hybrid networks combine mechanism from shared medium networks and direct or indirect net-

works. The result is a higher bandwidth with respect to a shared medium network and smaller

distance between nodes with respect to direct and indirect networks. However for very high perfor-

mance, hybrid networks are limited by scalability.

4.4.2 2-D torus Network

In this section we will talk in more detail about 2-D torus network which is a direct interconnec-

tion type network, as we will use this topology to evaluate impact of NoC on iterative decoders

performance, largly due to its highly regular structure. 2-D torus topology is an extension of the

2-D Mesh topology where each node of the network is connected to four other nodes, in the east,

west, north and south directions. In �gure 4.4 the structure of interconnection with 16 processing

elements is depicted.

In our experiment, each router implements O1TURN routing algorithm [Seo et al., June 2005],

it is selected because of its low design complexity and good average-case through-put. The idea of

this routing algorithm is quite simple: in the whole network, each packet is allowed to turn only

once. Therefore, if we consider a 2-D Mesh topology, there are only two ways for each packet to

reach its destination, one taking �rst the X axis of the network and then taking the Y axis (X-Y

way) or the second way which takes �rst the Y axis and then the X axis (Y-X way) (�gure 4.5),

though both ways are equivalent in distance. This policy can be extended to a 2-D torus topology.

Theoritically, four ways are possible with this topology, with two (X-Y, Y-X) pairs. Yet we can

simplify this by taking only the (X-Y, Y-X) pair which is smaller in distance.
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Figure 4.5: XY and YX ways for the 2-D Mesh topology

For better understanding of the O1TURN routing algorithm (useful for simulation results pre-

sented in later sections), �rst we work with directions (east, west, north and south) instead of using

virtual channels, and then we choose for each (source-destination) pair only one (X-Y, Y-X) pair in

the torus topology. When data is sent by a processor into the network the X-Y mode or the Y-X

mode is selected randomly. Let us consider an example with the node number 5, when it receives

a packet whose X-Y mode is enabled:

• If the destination address is 0, 4, 8 or 12, node 5 will output this packet through its eastern

port.

• If the destination address is 2, 3, 6, 7, 10, 11, 14 or 15, node 5 will output this packet through

its western port.

• If the destination address is 1, node 5 will output this packet through its northern port.

• If the destination address is 9 or 13, node 5 will output this packet through its southern port.

• If the destination address is 5, the packet will be sent to the memory associated with the node.

These choices are represented by the left part of �gure 4.6, while the case of Y-X mode is described

by the right half of the diagram.

The resultant routing table for node 5 is presented in table 4.1. The routing table of other nodes

can be derived in the similar manner.

4.5 Case Study using 2D-Torus/Mesh NoC

In [Scarpellino et al., August 2008], a processing element capable of performing Turbo and LDPC

decoding functionality for WiMAX codes is presented. To evaluate the impact of NoC on MPSoC

architectures based iterative decoders, we use such PEs as the building blocks and evaluate the
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Figure 4.6: Elaboration of the routing tables : Determination of X-Y and Y-X ways.

Table 4.1: Node 5 routing tables.

Destination X-Y way Y-X way

0 W N

1 N N

2 E N

3 E N

4 W W

5 − −
6 E E

7 E E

8 W S

9 S S

10 E S

11 E S

12 W S

13 S S

14 E S

15 E S

behaviour of NoC for its parameters. We believe that such an analysis can be a basis for SoC

designer for choosing a network on chip topology for high performance decoders. In our parallel

architecture NoC is the medium to carry out exchange of extrinsic-information values and extrinsic

VN values between processors. They are important because of their capability to sustain any type

of permutation law. However such a �exibility comes with costs, primarly the overhead involved

in message delivering through the network and secondly each element connected to the network

needs interface. Next section describes some of the characteristics of processing unit architecture

to provide clarity on the system model used for our experiments.
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Figure 4.7: Recon�gurable Processing Unit Architecture.

4.5.1 Processing Unit Architectural Overview

Figure 4.7 shows the overall architecture of the recon�gurable processing element. It consists of

the SISO-CN Processor, data memories, TURBO/LDPC assignment logic unit, processor control

unit and an interleaving and deinterleaving logic connected to a network routing logic. Data is

exchanged through the packet based network. Before designing the processing element supporting

both turbo and LDPC decoding, general design choices had to be made. In the case of LDPC

decoding the parity-check matrix H is seen as a concatenation of c parity-check matrices H 1, . . .,H c,

corresponding to supercodes [Mansour and Shanbhag, Aug. 2002]. This in turn enables us to

decompose the interconnection network de�ned by the overall matrix into smaller networks or

interleavers that connect together adjacent supercodes. This step transforms the LDPC decoding

problem into a turbo decoding problem, with the supercodes acting as constituent codes, thus

facilitating the reuse of a hardware platform meant for turbo decoding in the LDPC case.

In the turbo case, corresponding to each block size K, certain number of processing elements

(maximum 16 in our implementation) for decoding are activated. Each block is divided into a

number of windows I and the size of each windows is W. Accordingly, the same number of windows

are processed by each processing element [Blankenship et al., June 2005a]. Before processing, the

con�guration of all sub-blocks is done by the processor control unit (PCU). PCU asserts signals

according to block size, �rst or second half iteration, number assigned to each processor, in addition

supercode number for LDPC case, thus taking care of di�erent decoding scenarios to function

correctly.

Data memories consists of memory blocks for the storage of extrinsic/VN values, channel llr, α-β

values, λ values and hard decoding results in case of turbo decoding. The design choices previously

explained make sure sharing of the maximum amount of memories between the LDPC and turbo
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decoding; this comes at the cost of an increased complexity of interfaces between the processing

core (SISO-CN Processor) and the memory blocks.

Turbo/LDPC assignment logic unit is responsible for the selection of inputs based on the selected

decoding. In addition it performs reordering of variable node values for the LDPC case before

assigning it to the SISO-CN processor. Reordering of VN is necessitated by the fact that VN values

coming from the network are not in the proper sequence.

SISO-CN processor architecture is typical of a turbo decoding SISO as explained in [Martina

et al., April 2008] and the blocks are reused for the LDPC decoding case. It computes and updates

the extrinsic information for each subiteration in turbo case. Suitable modi�cations were made to

incorporate the LDPC decoding case, as trellis has a di�erent structure than the turbo decoding

case [Mansour and Shanbhag, Aug. 2002]. In LDPC case it computes and updates the intrinsic

information.

Interleaving and deinterleaving logic generates destination addresses for the extrinsic information

for turbo case according to selected half iteration and permutation law. While for LDPC case, it

generates addresses to read from the data memories, variable node values involved in the supercode

under consideration. The destination addresses are sent with the data to network routing logic,

which interfaces processing element with the network. This unit according to the destination address

is able to understand if the data should be sent through the network to another processor or should

remain in the same processor based on the permutation law or the check node allocation map for

turbo and LDPC case respectively.

4.5.2 Impact of NoC on Decoder performance

Assuming that an iterative decoder is being implemented as a parallel architecture using the pro-

cessing elements mentioned in previous sections and the interleaving operation (turbo case) or CN

update (LDPC case) message shu�ing is mapped to a network on chip. The problem of performance

evaluation can be modeled as e�cient deployment of a real application over ad/hoc NoC. Now look-

ing at the Figure 4.1 and Figure 4.2 it is evident that to have a higher decoding throughput the

expression PELAT + NL should be minimized. PELAT is dependent on the processing hardware,

thus for a given R the NoC optimization goal would be in the direction of reducing the NL for

achieving the higher throughput.

4.5.2.1 System Simulation using Network on Chip Simulator

In order to evaluate the tra�c pattern of the iterative decoder over a NoC we used NoC Simulator,

NNSE [LU et al., April 2005]. NNSE allows the user to analyze the performance impact of NoC

con�guration parameters. It allows not only to con�gure a network with respect to topology, �ow

control and routing algorithm etc., also to con�gure various regular and application speci�c tra�c
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patterns. The network can be evaluated with the tra�c patterns in terms of latency and throughput.

The main component of this tool are as follows:

• Simulation kernel: The tool logically consists of a NoC simulation kernel wrapped with

a graphical user interface (GUI). The kernel provides a layered network simulation engine.

Following ISO's OSI model, the kernel implements �ve layers, namely, the physical layer, the

data link layer, the network layer, the transport layer and the application layer. The transport

layer provides transaction-level communication primitives such as read() and write() to enable

communication via channels between application processes. Each layer may be con�gured with

a set of parameters that represents its characteristics.

• Network con�guration: A network is characterized by topology, �ow control scheme and

routing algorithm etc. Each of them has a large design space on its own. With the tool, all

of these characteristics are parameterized. The tool at present realizes only a limited set of

con�gurations, like 2D mesh and 2D torus topologies and wormhole routing and de�ection

routing algorithms.

• Tra�c con�guration: One important aspect in NoC design is that the chosen network

should be customized for applications, i.e. application-speci�c. In addition to customize the

network parameters, the network should be evaluated extensively with various regular and

application-speci�c tra�c patterns since the network selection is an architectural decision

and thus should be relatively stable. The regular tra�c patterns consist of uniform and

locality tra�c. The uniform tra�c is distributed over the network nodes uniformly. With

locality tra�c, one can specify the locality index which controls the communication probability

between nodes at di�erent distances. The application-speci�c tra�c is based on per channel

and can be used to con�gure application-speci�c, irregular tra�c. One can specify explicitly

the communication characteristics of each channel. The former is dynamic while the latter is

static. With both types of tra�c patterns, one can specify message temporal behavior and

message sizes.

• Performance evaluation: After con�guring a network and a tra�c pattern, one can evaluate

the network with the tra�c pattern. The evaluation is based on the kernel simulation results.

The main performance measures are latency and throughput. Typical �gures include average

latency, throughput etc.

For our experiment patterns of the messages over network for both turbo and LDPC decoding

were obtained using MATLAB software. The tra�c generator of the simulator was adapted to

provide the same tra�c pattern obtained from MATLAB software and simulation was performed

over the 2D Torus/Mesh infrastructure provided by the simulator. In the simulations all packets

are assumed to have a constant length. All resource contention is handled without bias, such that
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Figure 4.8: Percentage reduction of the number of sent messages in the realistic case with respect
the two approximations.

granting of resources to packets is done on a �rst come, �rst-serve basis. The tool was modi�ed to

provide X -Y routing for the Torus/Mesh topologies.

The tool proposes various tra�c pattern options, for example periodic sending where all generators

send data into the network at the same time periodically or random sending where they all send data

randomly. We choose the �rst tra�c pattern as it is closer to the functioning of a iterative decoder

implemented over multiprocessor architecture. Since the tool is designed for more heterogenic

general purpose NoC application it presents some limitations for simulating a iterative decoding

tra�c pattern, e.g. the simulation scenarios where one processor may want to write in its own

associated memory is not taken into account. This has an impact on the results because in that

case real number of message sent over the network are less than the entire block size. The percentage

reduction of the packets sent over the network in one half iteration are depicted in �gure 4.8, as can

be seen that for block size 24 and 36 there are no message in the network as number of PE is one

while for higher block length number of PEs varies from 2 to 16.

We resolved this issue by using two step approximations:

• First step: when a processor has to write in his own memory, it sends the packet towards a

neighbor processor.

• Second step: when a processor has to write data in its own memory, it sends packet towards

a random destination.

The �rst case is less realistic, as it results in congestion in the network between two neighbors PEs.

If the tra�c pattern is localised, they should exchange many messages and this would lead to an

unjusti�ed increase of latency values obtained. In the second approximation this does not happen
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Figure 4.9: Number of messages exchanged on the network during LDPC decoding.

therefore, this approximation represents a more realistic scenario.

One of the important thing to mention here is that in case of LDPC decoding initial mapping

of the VN values on the processor memories has great impact on the tra�c patterns obtained.

During the MatlabTM simulations, we have observed that an average 65 percent of the messages

are exchanged implicating a high amount of tra�c on the underlying mesh network. Figure 4.9

shows the number of messages exchanged between processors before the SISO-CN PROCESSOR

processing for a given super-code, from the values thus observed it is recommended to perform a

further exploration in the direction of optimal mapping methods.

4.5.2.2 Network latency

Each packet sent over the network su�ers latency. We can observe that, reducing the sending period

below a certain threshold, the network latency increases. In the simulations, for the turbo decoder

case the �rst half iteration (interleaving law) has been considered. For each packet sent over the

network, two possible latencies values are recorded during the experiment:

• NLMAX : Maximum Network latency su�ered by an information packet.

• NLAV G: Average Network latency su�ered by an information packet.

Figure 4.10 shows the maximum latency (NLMAX) values of the network obtained during the

simulations, for the tra�c of each half iteration by varying sending period(R) in case K = 2400 and

K = 120,using the �rst step approximation proposed previously. Instead in �gure 4.11 the similar

results for K = 2400 is presented however with the second step approximation. As can be seen
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Figure 4.10: NLMAX vs sending period in the �rst step approximation.

from the �gures, for the same sending period and the same K there is a reduction in the maximum

latency values. Reducing the sending period, the latency on the network increases, similar behaviour

is observed in the simulations for the LDPC decoder case. Figure 4.12 shows such a variation for one

of the sub-iteration during LDPC decoding with Z=64. This implies that no matter how e�cient

is our PE to decode the data at faster rate (thus lesser R), available network bandwidth would be

a limitation on obtainable maximum performance.

Figures 4.13 and 4.14 shows maximum and average latency values of the network in case of LDPC

decoder, respectively obtained during the simulations for the tra�c of each sub-iteration using

Network on Chip simulator. Tra�c patterns are di�erent for each sub-iteration and are obtained

through MatlabTM simulations of the PE architeture mentioned previously.

4.5.2.3 Throughput

Here it would be interesting to see the impact of NL on throughput equations 4.4 and 4.6. Impact

of network latency on overall decoder throughput for di�erent message sending period can be best

described by a timing diagram model of message exchange between two processing elements in

MPSoC architecture. In Figure 4.15 such a model for two possible scenarios is depicted. First

scenario corresponds to sending period (R) greater than or equal to the network latency (NL), for

such a scenario time to exchange k messages across network would be k × R +NL, while in other

case where R is less than NL time to exchange k messages becomes k×NL+R. Considering that,

TSISO in turbo decoding case becomes :
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Figure 4.11: NLMAX vs sending period in the second step approximation.
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Figure 4.12: NLMAX vs sending period in LDPC decoder at Sub-Iteration 6.
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Figure 4.13: Maximum latency values during each sub-iteration in the LDPC decoding.
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Figure 4.14: Averege latency values during each sub-iteration in the LDPC decoding.
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Figure 4.15: Timing Diagram Model for message exchange across network.

TSISO =
It

F

(
K

P
×max(R,NL) + PELAT + min(R,NL)

)
(4.7)

while the corresponding average throughput(based on average latency su�ered by packets) and

worstcase throughput(based on maximum latency su�ered by a packet)are given as:

DAV G =
s×K × F × P

2× It (K ×max(R,NLAV G) + PELAT × P + min(R,NLAV G))
(4.8)

DWORST =
s×K × F × P

2× It (K ×max(R,NLMAX) + PELAT × P + min(R,NLMAX))
(4.9)

Based on these formulas, throughput values for di�erent number of PEs and di�erent R have

been calculated (network has a strong impact in the total achievable throughput). In Figure 4.16

throughput results are presented for WiMax turbo code of block length 2400 with the network,

considering F=200 MHz, number of iterations equal to 8 for di�erent sending periods. D repre-

sents the throughput in case of negligible network latency, DWORST and DAV G are the obtainable

throughput in the presence of a Torus/Mesh network. We can observe that the accepted tra�c by

the network depends on the rate at which the each SISO element is injecting data into the network.

Ideally accepted tra�c should increase linearly with this injection load (lesser sending period) as

in the scenario of without network case D. However, due to the limitation of routing resources

(switches and interconnect wires), it saturates below a certain value of R resulting in a reduced

decoding throughput.

In LDPC case considering NMSG being the number of messages received by each node processor
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Figure 4.16: Throughput variation with di�erent sending periods.

during a sub-iteration from network, TDECODING becomes:

TDECODING =
1
F

(PELAT +NMSG ×max(RNET , NL) + min(RNET , NL)) (4.10)

Modi�ed throughput expression becomes:

DAV G =
(M −N)× F

It×mb (PELAT +NMSG ×max(RNET , NLAV G) + min(RNET , NLAV G))
(4.11)

DWORST =
(M −N)× F

It×mb (PELAT +NMSG ×max(RNET , NLMAX) + min(RNET , NLMAX))
(4.12)

In the Table 4.2 throughput results are presented for turbo and LDPC case with the network,

considering F=200 MHz, number of iterations equal to 8 (10 in LDPC case) and sending period=4

for two block sizes K (three block sizes for rate 1/2 in LDPC case). Throughput values obtained are

lower for LDPC case than turbo case as the CN update process is more complex in LDPC decoding

than extrinsic calculation in turbo. As a result the PE latency (PELAT ) in LDPC case, associated

to each variable node that must be processed is high.
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Table 4.2: Throughput summary table in case of Turbo and LDPC.

Block Size Turbo/LDPC D DMAX DAV G

[Mbit/sec] [Mbit/sec] [Mbit/sec]

120 Turbo 45.4 16 19.1
2400 Turbo 322.6 39 86.5
1344 LDPC 32.9 6.76 10, 27
1440 LDPC 35.3 7.19 11.06
1536 LDPC 37.6 8.63 11.2
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Figure 4.17: Throughput versus Network Size versus Injection Load

4.5.2.4 Network Size

From expressions 4.8 and 4.11 shown in previous section we can observe that increasing the number

of processing elements increases the obtainable decoding throughput. However such an increase is

not linear. With the network simulations it was observed that the network latency increases with

increase in the network size (increase in P). In the Figure 4.17 impact of increase in processing

elements at di�erent injection rates on decoder throughput is depicted in three dimensional space.

It can be inferred that there exists a optimal choice in terms of number of processing units required

capable of generating data at a given rate to achieve a certain decoding throughput. The plot

is drawn based on maximum latency o�ered by the network for turbo code of block length 2400,

similar reasoning can be extended for the LDPC codes.
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4.6 Conclusion

In this chapter, we have detailed the MPSoC architecture for two kinds of iterative decoder viz.

Turbo and LDPC. For high-throughput decoding, we used multi-processor platform (MPSoC) as a

natural transition to parallel decoding. As the inter-processor communication becomes the bottle-

neck for high degrees of parallelization, we presented a case study that analyzes the tra�c pattern of

these iterative decoding algorithms over a 2-D Torus/Mesh Network on Chip. By a detailed tra�c

analysis we showed that the overall processing performance is impacted by the networks limited

communication bandwidth.
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In this chapter, we explore datapath reuse possibilities across some important FEC families like

convolutional, turbo and low density parity check (LDPC) codes. At �rst, design of a reduced

complexity trellis network for shu�ing the updated state metrics in Viterbi and Turbo decoding

kernel is presented. Then in the following sections hardware reuse potential of di�erent existing

implementation schemes for check node processing in LDPC decoding is explored over such a FEC

kernel architecture. In the last part, we propose a novel parallel implementation approach("Tree-

Way") for check node processing, which �ts very well with underline FEC Kernel architecture.

Implementation results are presented showing that the proposed scheme, provides signi�cant speed-

up in terms of required clock cycles without signi�cant increase in combined datapath area compared

to existing approaches.
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5.1 Introduction

Sharing of datapath and memories across di�erent forward error correction (FEC) decoder imple-

mentations are important in �exible wireless communication system design. In recent years many

research activities have emerged proposing multistandard ASIPs implementations in order to achieve

�exible and high throughput decoder architectures for these codes. In [Alles et al., Sept. 2008] a

memory sharing across turbo and LDPC codes in an application speci�c processor (ASIP) was

explored while datapth reuse gains were considered insigni�cant. In [Naessens et al., Oct. 2008]

authors proposed a recon�gurable ASIP supporting di�erent codes across FEC families like convo-

lutional, turbo and LDPC codes where datapath reuse across di�erent FEC families has been used

however at a macroscopic level of decoding structure.

As mentioned previously in chapter 2, in the present literatures, a comprehensive analysis of

datapath reuse providing the designer with the choice to decide on the di�erent possible ways of

implementing basic FEC computation units is still lacking. This chapter is an e�ort in analyzing

possible hardware reuse scenarios across di�erent algorithms. The analysis explores the VLSI imple-

mentation complexity of this joint datapath supporting di�erent block length, code rates, constraint

length and polynomials proposed in emerging wireless standards like WiMAX 802.16e, 3GPP LTE,

DVB-S2/T2 etc.

5.2 Multistandard FEC System

As already discussed before, wireless standards incorporate decoders from one or more of the four

following code families: Reed-Solomon (RS), convolutional, Turbo, and LDPC. Some preliminary

observations on resource sharing for combined decoder designs results from the analysis of the data-

path structure and complexity of the corresponding decoder. For example, RS requires very di�erent

operation compared to other code families, so it is very di�cult to �nd any sensible combination in-

corporating hardware resource sharing for this code family. On the other hand, convolutional, Turbo

and LDPC decoding involve processing segment containing a parallel processing array performing

similar basic computations as detailed in later sections, thus it is interesting to explore datapath

reuse possibilities acorss these algorithms. Figure 5.1 shows the block diagram of a generic FEC

decoder; the decoding algorithm is partitioned into two segments: control and the processing seg-

ment. Even though the �gure represents a serial decoder implementation, in our work parallel

implementations are addressed as described in chapter 3. The need to incorporate viterbi decoder,

turbo decoder (single and duo-binary), and LDPC decoder inside a single hardware demands a

judicious sharing of logic and memory units. Sharing of memory has been explored extensively in

[Alles et al., Sept. 2008] and [Naessens et al., Oct. 2008] where it was established that signi�cant

reuse of memory resource is possible across these algorithms, however in this work our focus is on
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Figure 5.1: Multistandard FEC Decoder.

the datapath logic reuse.

5.3 A FEC Kernel for Turbo and Viterbi decoding

By analyzing the concepts and the architectures of the convolutional and the turbo code decoders,

some circuits sharing techniques are applied to merge the main functions into one decoder. As

explained in previous chapters in turbo decoding the processing steps are the basic Soft Input

Soft Output (SISO) decoders which implement the BCJR algorithm. Decoding of the binary and

duo-binary turbo codes is performed using either Log-Map or the Max-Log-Map version of BCJR

algorithm. In the Log-MAP algorithm, the function used to compute the forward (Ak), backward

(Bk) and log-likelihood ratio (LLR) output metric is given as:

f(a, b) = max(a, b) + ln(1 + e−|a−b|). (5.1)

On the other hand Max-Log-MAP algorithm is a simpler sub-optimal version of Log-MAP and

could be obtained simply by discarding the correction factor in equation 5.1. Untill now some

approaches combining the Turbo and Viterbi decoding have been reported [Huang et al., May 2004],

[Kreiselmaier et al., Feb 2004]. The fundamental fact utilised in these work about the datapath

sharing between Turbo and Viterbi decoding is that both hard-output Viterbi and Max-Log-Map

algorithms work with add-compare-select (ACS) operations. Fig. 5.2 depicts the architecture of

a multistandard turbo kernel which is quite similar to the one proposed in [Muller et al., Mar.

2006]. We have followed multiprocessor approach to implement recon�gurable FEC kernel where

each processor performs state computation operation. Moreover, within a particular type of channel

coding, the code rates and polynomials are also variable, this translates to a need of high �exibilty
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Figure 5.2: Multistandard FEC Kernel for Turbo and Viterbi Decoding.

inside the trellis kernel.

The kernel consists of 8 processing units named Double-ACS (D-ACS) as the basic building

block of Max-Log-MAP algorithm implementation. Each of these units contains 4 adders and 3

compare select (CS) elements. The kernel performs all the forward and backward state metric (SM)

computation and certain stages of LLR calculation (partial LLR) involving similar add-compare-

select operations. The architecture can process binary turbo codes directly or reusing duo-binary

trellis, thanks to trellis compaction [Black and Meng, Dec. 1992]. One D-ACS unit is assigned to

each state (2 states for binary codes) and the interconnection between these units is established by

means of a network (ACS Network) that maps multiple trellis diagrams for di�erent turbo codes.

Each D-ACS unit caters to 4 trellis transitions. Hence the maximum trellis transition parallelism is

32, which very well supports the requirement of current standards as shown in Table 5.1 and Table

5.2.

For a more e�cient reuse of the computing resources, for lower states code(4,8) forward and back-

ward recursions are performed in parallel. The most critical factor that a�ects the processing
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Table 5.1: FEC Kernel Parameters in di�erent standards for CC coding

Standard Code Rate Constraint Length States Throughput (Mbps)

UMTS 1/2, 1/3 9 256 0.064

CDMA 2000 1/2, 1/3 9 256 0.038

DVB 1/2 7 64 32

DAB 1/4 7 64 1.1

WiLAN 1/2 7 64 54

GSM 1/2 5 16 0.0096

Table 5.2: FEC Kernel Parameters in di�erent standards for Turbo coding

Standard Code Type Constraint Length States Throughput (Mbps)

WiMAX 802.16e DUO-BINARY 4 8 70

DVB-RCS DUO-BINARY 4 8 31

UMTS BINARY 4 8 2.3

CDMA 2000 BINARY 4 8 2

3GPP2 BINARY 5 16 -

e�ciency is the communication scheme of moving data between D-ACS units. Since the recon�g-

urable platform supports di�erent communication standards, multiple trellis states with di�erent

communication requirements needs to be supported. Furthermore the kernel is reused for Partial

LLR computation (to perform certain stages of ACS operations of LLR computation), such a reuse

necessisates extra connections on the ACS network element of the kernel.

For Viterbi decoding case, 2 states are mapped to one D-ACS unit. The platform is capable of

handling upto 16 states CC as fully parallel architecture, for the states higher than 16 viz. 32-256

large number of states are mapped to one D-ACS following the approach mentioned in [Min, June

1991]. Similar to [Min, June 1991] the de-brujin network connectivity for the 16 states is further

used to emulate the metric updating of higher state codes. N states are partitioned over 8 D-ACS

with V consecutive states in each of them. The number of steps required in one decoding cycle will

be V/2 as two states are treated in one step. For minimizing the time of one step, D-ACS should

be able to read simultaneously from local memory two state metrics for updating in parallel and

then simultaneously write the results into memory. For this purpose, metrics accessed together are

in separate physical memories (SM1 and SM2 in �gure 5.2). The memory module is organized in

two separate banks such that one stores the metrics of local states with even parity and the other,

those with odd parity; simultaneous access of two metrics can be achieved. Once the metric is read

from each bank, the new metric can be written at that place. The �gure 5.3.a shows such a memory

organization. The methodology can be explained with an example of V=8: at decoding step j=0

�gure 5.3.b shows the switch position as well the control signal. At step j=1 the metrics to be read

are 010 and 011 thus simultaneous read from two memory modules is e�ectuated with CTRL set

to 1 forcing the switch to be at cross position, as shown in �gure 5.3.c. At the end of step j=1 as
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shown in �gure 5.3.d locations are free for writing in the two memories however values written are

not of the same state. Thus the addressing mechanism needs to be such that for the next decoding

cycles correct state metrics are read at the beginning of each step. With elaboration it can be seen

that each state changes its address in memory every decoding cycle and comes back to its original

position after log2V decoding cycles. The �gure 5.4 shows the generation of such control mechanism

for memory. The sequence of addresses can be derived from the repeated left cyclic shift of step j.

5.3.1 ACS Network Reuse

As mentioned in previous sub-section, interconnection between D-ACS units is established accord-

ing to trellis diagram of the code. As shown in Table 5.1 and Table 5.2, in mobile and wireless

communication systems the constraint length of convolutional codes varies typically between (5-

9) implying states to be supported as 16-256. Convolutional codes are used as component codes

for turbo codes used in emerging wireless standard. Here the constraint length typically varies

between 3-5, implying states to be supported as 4-16. In addition to this, WiMax(802.16e) and

DVB standards use duo-binary turbo codes where each state in the trellis has four incoming and

four outgoing branches. Since the recon�gurable platform supports di�erent communication stan-

dards, multiple trellis states with di�erent communication requirements need to be supported. The

simplest solution to support this �exibility would be a fully interconnected network as designed

in [Muller et al., Mar. 2006], which however would occupy signi�cant area. For our kernel design

interconnection between 16 outputs of kernel which are fed back to the 32 inputs based on trellis



88 Multistandard FEC Kernel

Table 5.3: ACS Interconnection scenarios

Identi�er Interconnection Scenario

? 16 and higher State CC

1 8 state Duo-Binary turbo forward trellis

2 8 state Duo-Binary turbo backward trellis

3 16 state Binary turbo forward trellis

4 16 state Binary turbo Backward trellis

5 8 state Binary turbo forward/backward trellis

6 4 state Binary turbo forward/backward trellis

7 16 state Binary turbo LLR computation

8 8 state Duo-Binary turbo LLR computation

9 16 state Binary turbo LLR computation

+ 4 state Binary turbo LLR computation

structure, a fully interconnected network will require (32x15=480) 2-1 multiplexers. For a more

judicious use of hardware resoure we propose to map di�erent possibile communication scenarios

resulting from the need to support di�erent standards; such scenarios are classi�ed in Table 5.3.

The Kernel is reused for Partial LLR computation (to perform certain stages of ACS operations

of LLR computation), such a reuse necessitates extra connections on the ACS network element

of the kernel. For the forward recursion network layout is organized as De-brujin graph [Min,

June 1991]. Such a layout for state 4,8,16 binary turbo code is implemented, similary the layout

derived for backword recursion is also implemented. Further more for duo binary turbo code 8

state forward and backword trellis interconnection layout is also implemented. Figure 5.5 shows the

interconnection map for all the trellis recursion for di�erent scenarios under consideration, while

Figure 5.6 shows the interconnection map when LLR computations are also taken into account.

D-ACS inputs are along rows and outputs are mapped along columns.

As can be seen our manual mapping approach results in common interconnection between dif-

ferent scenarios of the codes being implemented providing a sign�cant hardware reduction. Taking

into account forward and backward trellis computations for all the codes supported in standards

under consideration and possibility of reuse of kernel for partial LLR computation, the designed net-

work still occupies 70 % less area in terms of mulitplexers used as compared to fully interconnected

network as designed in [Muller et al., Mar. 2006].

5.4 FEC Kernel Reuse for LDPC decoding

As described in chapter 1 LDPC decoder is de�ned by its parity check matrix H of M rows by

N columns. Each column in H is associated with one bit of the codeword or variable node (VN),

and each row corresponds to a parity check equation or check node (CN). A multistandard LDPC

decoder requires great amount of �exibility to support varying parameters mentioned in emerging
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  out1 out2 out3 out4 out5 out6 out7 out8 out9 out10 out11 out12 out13 out14 out15 out16 MUX(2-1) 

in1 *123456                               0 

in2   4 *1356   2                       2 

in3         1       24               1 

in4             1     4     2       2 

in5 24       *356       1               2 

in6   4     2   *356       1           3 

in7                 24       1       1 

in8                   4     2   1   2 

in9 126 5 4           *3               3 

in10   6 1 45 2           *3           4 

in11         1   6   2   4           3 

in12             1 6       4 2       3 

in13 26   4     5     1       *3       4 

in14   6   4 2     5     1       *3   5 

in15             6   2   4   1       3 

in16               6       4 2   1   3 

in17 1 *3 2   4       5               4 

in18     1 *3   4 2     5             4 

in19         1           2   45       2 

in20             1             45 2   2 

in21     2   4 *3     15               3 

in22           4 2 *3   5 1           4 

in23                     2   145       1 

in24                           45 12   1 

in25 1   2       4     *3 5           4 

in26     1       2 4       *35         3 

in27         1           2       45   2 

in28             1               2 45 2 

in29     2       4   1   5     *3     4 

in30             2 4     1 5       *3 4 

in31                     2   1   45   2 

in32                             12 45 1 

                  

                  

Figure 5.5: ACS Interconnection Matrix for trellis computation with D-ACS inputs mapped across
rows and outputs along columns
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 out1 out2 out3 out4 out5 out6 out7 out8 out9 out10 out11 out12 out13 out14 out15 out16 MUX(2-1) 

in1 *123456789+                               0 

in2 78 4 

*13569

+   2                       3 

in3 8   7   19+       24               3 

in4 8   7       19+     4     2       4 

in5 24   8   *3567       19               3 

in6   4 8   27   *356       19           4 

in7     8       7   24       19       3 

in8     8       7     4     2   19   4 

in9 126 59+ 4   8       *37               4 

in10   6 1 459+ 28       7   *3           5 

in11         18 9+ 6   2   47           4 

in12         8   1 69+     7 4 2       5 

in13 26   4     5 8   1 9     *37       6 

in14   6   4 2   8 5     1 9 7   *3   8 

in15             68   2   4   1 9 7   5 

in16             8 6       4 2   17 9 5 

in17 1 *37 2   4       589+               4 

in18   7 1 *3   4 2   89+ 5             6 

in19       7 1       8   29+   45       4 

in20       7     1   8   9+     45 2   5 

in21     2   4 *37     15   8   9       5 

in22           47 2 *3   5 18   9       4 

in23               7     28   145   9   3 

in24               7     8     45 129   3 

in25 1   2       4     *379+ 5   8       5 

in26     1       2 4   79+   *35 8       5 

in27         1           2 79+ 8   45   4 

in28             1         79+ 8   2 45 4 

in29     2       4   *1   5     *379 8   5 

in30             2 4     1 5   79 8 *3 6 

in31                     2   1   458 79 3 

in32                             128 4579 1 

                  

                  

Figure 5.6: ACS Interconnection Matrix for trellis and Partial LLR computation with D-ACS inputs
mapped across rows and outputs along columns
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Table 5.4: FEC Kernel Parameters in Di�erent Standards for LDPC decoding

Standard Code Rates CN degree VN Degree

WiMax 802.16e 1/2 to 5/6 6 to 20 2 to 6

WiFi 802.11n 1/2 to 5/6 7 to 22 2 to 12

DVB-S2 1/4 to 9/10 4 to 30 2 to 13

Figure 5.7: State Metric (turbo) and Check Node (LDPC) processing implementations

wireless standards as shwon in Table 5.4. Since we are targeting a check-node-centered computation

scheme, VNs are reduced to storage places and all computations are carried out by the CN processing

unit [Fossorier and Imai, May 1999]. The LLRs a CN needs to produce for all connected VNs can

e�ciently be computed by applying the di�erent sub-optimal check node approximations of low

complexity as shown in right half of the Figure 5.7.

Frequency domain computation kernel [Hagenauer et al., Mar. 1996] involves addition operation

and look up table (LUT) and is far away from turbo kernel's ACS operations, thus it will not be

considered in this work. The forward-backward (FB) way and 2 Value approachs are described in

following sub sections while the proposed Tree way approach will be dealt with in detail in later

sections .

5.4.1 FB Way

The forward backward (FB) way is similar to turbo processing on a 2 state trellis and was �rst

proposed by [Mansour and Shanbhag, Aug. 2002]. The LLRs values received by the CNj from

connected VNs are used as input metrics Ii, with i = 1· · · dc(check node degree of CNj). The

LLR (ei) produced for connected VNs are then computed by taking the appropriate state metric

from the forward and backward recursion, αi and βi, respectively, as shown in Figure 5.8. When

using min-sum (which is similar as Max-Log-Map from implementation perspective) for FB way
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Figure 5.8: Forward Backward LDPC CN processing

[Priewasser et al., Oct. 2008] the basic function used for LLR computation is given as following:

f(a, b) = min(|a| , |b|) · sgn(a) · sgn(b). (5.2)

Additionally, the boundary conditions need to be set at αi =+∞ and βi=+∞ for the �rst element

of the forward and the backward recursion, respectively.

While reusing the turbo decoding kernel for LDPC decoding utilising FB way, 8 check node compu-

tation can be processed in parallel, each of them mapped onto separate D-ACS unit. Incorporating

LDPC functionality in the turbo kernel results in increased complexity of the basic D-ACS unit. For

example Fig. 5.9 shows a check node architecture utilising the FB computation approach, where

turbo D-ACS unit is reused for α, β and LLR calculation. The inputs AN_OUT corresponds to up-

dated state metric values routed through ACS network in turbo decoding case. It can be seen that

multiplexers units, AND gates and one additional compare-select units are introduced in D-ACS

while supporting the LDPC functionalities.

5.4.2 2 Value Way

2 values calculation method �rst proposed in [Fossorier and Imai, May 1999] exploits the fact that

in min-sum decoding out of all CN LLRs of a CN only two magnitudes are of interest, since only

the minimum (MIN) and the second minimum magnitude (MIN1) with index value of the minimum

(MINDEX) are used to produce LLRs for connected VNs. It is the natural way to compress data in

memory and normally results in signi�cant memory saving in CN kernel. For example when check

node degree is 30 this approach saves roughly a factor of 10 in memory space when we only store
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Figure 5.9: LDPC check node processor (FB) reusing the turbo D-ACS unit

those 3 numbers. Figure 5.10 shows the proposed implementation strategy for the CNP employing

min-sum approximation. For each check node with degree dc it performs following operations:

1. Computation of the exclusive or (XOR) of all hard bits output by the connected variable

nodes (as determined by the signs of the output log-likelihood ratios), except the jth one

(j=1,2,...,d c). A cheap way in hardware to compute all the d c xor results is to compute the

XOR of all d c input bits using sign accumulator block. The XOR of all d c input bits except

one can be calculated by taking the XOR of the aforementioned total and then taking the

XOR with the input bit (sign of MV2C) under consideration.

2. MIN and MIN1 values of the inputs are computed in serial based on algorithm shown in 5.11

and requires only 2 compare select logic elements and few multiplesxers in the hardware. New

check to variable messages (MC2V)are computed using the index of the MIN, sign vector and

a compare-select unit.

For further details of the implementation aspects of 2 Value check node architectures, readers are

referred to [T. Bhatt and McCain, May 2006].

While reusing the turbo decoding kernel for LDPC decoding utilising 2 value computation

approach, 8 check node computations can be processed in parallel, each of them mapped onto

separate D-ACS unit. Fig. 5.12 shows the D-ACS units with both turbo/viterbi and LDPC(2-

Value) functionalities compared to only turbo/viterbi functionality. Turbo/viterbi D-ACS unit is

reused for MIN and MIN1 calculation by the min-�nder block. The inputs AN_OUT corresponds

to updated state metric values routed through ACS network in case of turbo decoding. The data�ow

for implementing the min �nder algorithm is highlighted by the the dotted lines. It can be seen that
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Figure 5.10: 2 MIN LDPC CN processing

Figure 5.11: 2 MIN LDPC Min Finder Scheme
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Figure 5.12: LDPC check node processor (2 values computation) reusing the turbo D-ACS unit as
min �nder block.

extra multiplexers units (Level 2 and 3 MUXs) are introduced in turbo D-ACS while supporting the

min �nder functionality of LDPC decoding, which doesnt utilises the Level 1 adder units. An e�ort

on the reuse of Level 1 adders for accomplishing the addition operations in check node processor

outside the min �nder block results in lesser area gain and in some cases an increase in area possibily

because of increase in the control logic for handling the di�erent cases. Implementation results are

summarized in Table 5.6 presented in next section.

5.5 Tree-Way Implementation Scheme

In this section we present a parallel implementation scheme of check node updates, developed

keeping in mind the trellis computation kernel of turbo decoding. Fig 5.13 shows a simple graphical

representation of the approach. For check node degree d c = 6, each VN (i1,i2, ...i6) is represented

as a leaf node and tree is traversed performing min calculation at branch nodes untill VN extrinsics

are derived at the root nodes (e1, e2, ...e6). One of the key contributions of this work is that for a

parallel check node architecture we generalize the tree network connectivity and the data �ow for

any value of d c and present a fairly simple control mechanism for it. For the sake of architecture

uniformity odd d c values are considered as their even counterpart with extra VN intrinsic value

initialized at +∞ (i.e. d
′
c=d c if d c is even; else d

′
c=d c+1 ).

Fig 5.14 shows the di�erent stages of VN extrinsic calculation for proposed "Tree-Way" scheme,

other than sign accumulation which is performed by separate XOR tree (not shown in �gure), VN

extrinsic calculation consists of following stages:
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Figure 5.13: Parallel Tree-Way Calculation of VN extrinsics

Figure 5.14: Generalization of Tree-Way Scheme
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Table 5.5: Clock Cycle requirement and Shift Permutation.
dc NCC Permutation dc NCC Permutation

5,6 4 1 19, 20 7 1, 2, 4, 8
7,8 5 1, 2 21, 22 7 1, 2, 4, 8
9,10 5 1, 2 23, 24 8 1, 2, 4, 8, 10
11,12 6 1, 2, 4 25, 26 7 1, 2, 4, 8
13,14 6 1, 2, 4 27, 28 8 1, 2, 4, 8, 12
15,16 7 1, 2, 4, 6 29, 30 8 1, 2, 4, 8, 12
17,18 6 1, 2, 4 31, 32 9 1, 2, 4, 8, 12, 14

5.5.1 Direct VN comparison (DVC) stage

As seen in Fig 5.14 for d
′
c=8, the intrinsic values (i1,i2, ...i8) are fed parallely to two D-ACS units

that are con�gured as 4 CS units. For all values of d c there is only one direct comparison stage.

The output of DVC and each subsequent stage is passed on to next stage through ACS network

(AN_OUT) as well as stored in state metric memory (see Fig 5.2) for use in later stages.

5.5.2 Multiple Shu�ed comparison (MSC) stage

Shu�ed comparison stage could be compared to the trellis computation stages in BCJR algorithm

for turbo decoding. The shu�e network implements a circular shifting permutation, which can be

easily mapped on to acs network without signi�cant hardware cost. The rotational shift depends on

d
′
c and the substage of the shu�ed comparison stage. There are multiple shu�ed stages depending

on d
′
c and equal to N cc-3 where (Ncc) is the required number of clock cycles for check node update.

For di�erent values of d c Table 5.5 provides the information on N cc values and shift associated with

each su�ed stage. These permutations are stored in similar way as trellis con�guration in case of

turbo decoding for di�erent codes.

As can be seen from Fig 5.14 the input to the shu�e network is either the output from the

immediate previous stage or output of a much earlier stage stored in the state metric memories.

The connections are shown for output of earlier stages stored in the state metric memories. Some

of the empty coulmns signify that for those values of d
′
c input to the shu�e network is the output

from the immediate previous stage for all the subsequent stages. For a given stage, the address to

be accessed in SM memory depends on d
′
c value and can be derived using a relatively simple control.

Fig 5.15 shows the memory access pattern for d
′
c up to 32. Vertical binary level '10' represent DVC

stage output, while '100' and '1000' represent �rst two MSC stage outputs stored in SM memory.

The bottom horizontal row shows the binary representation of the value d
′
c-2. For a given d

′
c the

address can be derived directly from corresponding binary value in the bottom layer. For example

for d
′
c=16, corresponding binary representation of d c-2 = 1110 i.e. 1000+100+10, thus address for

memory access during the shu�e stage corresponds to value at binary level of 100 and 10.

At this point it is interesting to evaluate the hardware complexity of the MSC shu�ed network.
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Figure 5.15: Memory Access During Shu�e Stage

Figure 5.16 shows the interconnection map for all the permutation for di�erent check node degrees

shown in Table 5.5 over a 32x16 matrix. It can be seen that designed network occupies 70 % less

area in terms of multiplexers used as compared to fully interconnected network. From the perspec-

tive of reusing the ACS-Network of Turbo/Viterbi kernel for LDPC decoding these connection are

mapped over the interconnection matrix for Turbo/viterbi case shown in Table 5.6. The resultant

interconnection map is shown in Table 5.17 where 'x' corresponds to extra connection needed for

Turbo/Viterbi fucntionality. As can be seen our manual mapping approach results in common in-

terconnection between these two scenarios providing a sign�cant hardware reduction. The designed

network still occupies 50 % less area in terms of mulitplexers used as compared to fully intercon-

nected network as designed in [Muller et al., Mar. 2006] and supports turbo, viterbi and LDPC

decoding functionalities.

5.5.3 Extrinsic Calculation(EC) stage

The last two stages for any value of d
′
c are extrinsic calculation stage. As seen in Fig 5.14 input to

these stages is the output from the last MSC stage and the shifted VN intrinsic values. This shift

is circular over d
′
c and equal to 1 and 2 for EC stage 1 and 2 respectively.

5.5.4 D-ACS unit implementation and ASIC Synthesis Results

Fig. 5.18 shows the D-ACS units with both turbo/viterbi and LDPC(Tree-way) functionalities

compared to only turbo/viterbi functionality. It can be seen that, this �exibility comes at the cost

of introduction of multiplexers and logic gate layers in the architecture. Level 1 AND gates and

Level 3 MUX are driven by the choice of FEC decoding algorithms (i.e. Turbo-binary/Turbo-duo

binary/ LDPC), while level 2 MUXs are supporting inputs from di�erent stages of "Tree-Way"
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  out1 out2 out3 out4 out5 out6 out7 out8 out9 out10 out11 out12 out13 out14 out15 out16 MUX(2-1) 

in1                                 0 

in2                                 7 

in3                                 0 

in4                                 7 

in5                                 0 

in6                                 5 

in7                                 0 

in8                                 6 

in9                                 0 

in10                                 6 

in11                                 0 

in12                                 7 

in13                                 0 

in14                                 8 

in15                                 0 

in16                                 9 

in17                                 0 

in18                                 9 

in19                                 0 

in20                                 10 

in21                                 0 

in22                                 11 

in23                                 0 

in24                                 12 

in25                                 0 

in26                                 12 

in27                                 0 

in28                                 11 

in29                                 0 

in30                                 9 

in31                                 0 

in32                                 5 

                   

                    

Figure 5.16: ACS Interconnection Matrix for Tree computation with D-ACS inputs mapped across
rows and outputs along columns
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  out1 out2 out3 out4 out5 out6 out7 out8 out9 out10 out11 out12 out13 out14 out15 out16 MUX(2-1) 

in1                                 0 

in2 x                               8 

in3 x   x   x       x               4 

in4 x           x           x       10 

in5 x       x       x               3 

in6   x                             6 

in7     x       x   x       x       4 

in8     x       x     x     x   x   11 

in9 x x x           x               4 

in10       x x           x           9 

in11         x   x       x           3 

in12         x           x x x       11 

in13 x   x     x     x x     x       6 

in14             x         x x       11 

in15             x   x   x   x x x   6 

in16             x x         x   x   13 

in17 x x x   x                       4 

in18                 x               10 

in19       x x       x   x   x       5 

in20                 x           x   12 

in21     x   x x     x       x       5 

in22                   x x           13 

in23               x     x   x   x   4 

in24                     x       x   14 

in25 x   x       x     x             4 

in26                       x x       14 

in27         x           x x x   x   5 

in28                         x       12 

in29     x       x   x   x     x     8 

in30                           x x   11 

in31                     x   x   x   3 

in32                             x x 7 

                   

                    

Figure 5.17: ACS Interconnection Matrix for Kernel computation with D-ACS inputs mapped across
rows and outputs along columns

implementation.

Upper half of the Table 5.6 shows the comparison of ASIC synthesis results for di�erent check

node architectures mapped onto turbo decoding kernel. At the D-ACS unit level FB approach is

the most promising as it shows a datapath area saving of 17.2 % compared to sum of two dedicated

architectures for turbo and LDPC decoding. On the other hand lower half of the table shows

the comparison of ASIC synthesis results at a higher level of hierarchy of FEC kernel. It can

be seen that though LDPC kernel with tree way approach occupies larger area than its FB and

2MIN counterparts, the shared kernel architecture complexity remains almost the same for all three

approaches, thanks to the reuse of turbo ACS network in case of "Tree-Way" approach. It should

be noted that, FB and 2MIN approaches being inherently serial, take longer time for check node

updates, while "Tree-Way" approach parallizes the check node computation and results in lesser

clock cycles as shown previously in Table 5.5.
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Figure 5.18: D-ACS unit with LDPC (Tree-way) functionalities.

Table 5.6: Synthesis Comparison Results[Logic Gates].(0.13µm at 300MHz)
Cost of FEC D-ACS Unit H/W

Independent Architectures Combined Architectures

TC LDPC Sum of Two Architectures Shared Architecture
FB 2MIN Tree FB 2MIN Tree FB 2MIN Tree

405 309 396 342 714 801 747 591 687 625
(-17.2%) (-14.2%) (-16.0%)

Cost of FEC Kernel H/W

TC LDPC Sum of Two Architectures Shared Architecture
FB 2MIN Tree FB 2MIN Tree FB 2MIN Tree

7691 2472 3168 4803 10163 10859 12494 8628 9396 8901
(-15.0%) (-13.4%) (-27.2%)
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5.6 Conclusion

We presented a VLSI complexity analysis of datapath sharing across three important FEC code

families viz. convoluional, turbo and LDPC. A reduced complexity network was designed to realise

trellis structures for di�erent Turbo and convolutional codes used in various wireless communication

systems. Furthermore, various implementation possibilities of check node architectures in LDPC

decoding over a Turbo Max-Log-MAP core were explored. In addition to this, we presented the �rst

parallel implementation of check node computations using Min-sum algorithm for LDPC decoding,

which is optimized for maximun reuse of turbo decoding kernel (-28.7 % less area compared to two

independent turbo and LDPC kernel) and is highly e�cient in terms of clock cycles required for

check node computations.
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In this chapter, a new metric for fast and e�cient performance comparison of iterative sub-

optimal decoding algorithms is proposed. It is based on the estimation of a function between the

A-Posteriori Probability (APP) decoded symbol of optimal and suboptimal decoding algorithms.

We apply the notion of entropy to evaluate this function. The metric is tested on data sets from

the di�erent sub optimal algorithms for the duo binary turbo codes used in WiMax(802.16e) ap-

plication and a (251,502) Galois Field (26) low density parity check (LDPC) code. Experimental

results show that the values of the proposed metric correlate well with the BER performance of the

suboptimal implementation of the iterative decoding algorithm. The work has been published in

IEEE communications letter [Singh et al., July 2009]
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6.1 Background

As shown in previous chapters, e�cient implementations of iterative decoding algorithm with em-

phasis on small area, low power consumption and high throughput are of emerging importance.

The achievement of such requirements often implies the adoption of sub-optimal choices and sim-

pli�cations that a�ect code performance. Due to the large number of options to be tested, e�cient

methods for performance evaluation are of great interest.

The principle of Bit Error Rate (BER) or Frame Error Rate (FER) estimation with the Monte-

Carlo (MC) simulation is well known: �rst �x the SNR of the simulation to determine the value

of the standard deviation of the white gaussian noise in the channel, then generate a modulated

codeword, add the white gaussian noise and perform the iterative decoding algorithm to compute

the APP of the codeword symbols. Finally, based on APP, take a decision on the decoded symbols.

If uncoded and decoded codewords di�er, compute the number of errors. This process is iterated

a given number of time. If one looks at the set of �nal APP distributions before decision and

the �nal BER (or FER), a huge amount of information has been discarded. The question arises if

it is possible to take into account the information before decision to improve the BER (or FER)

estimation?

In [Hoeher et al., Sept. 2000] it was shown that the use of APP distribution o�ers practical

advantage of numerical stability over the conventional MC simulations. In this paper, we propose to

use the value of APP before decision in a di�erent application. Our approach is closely related to the

�Role Model� realm proposed in [Sayir, sept. 2008]. APP of symbols at the end of a given number

of iterations in case of an optimal version of algorithm is considered as the knowledge available to

the role model while APP of symbols for the cases of sub optimal versions of algorithm is considered

as the knowledge available to ourself. Averaged distance between APP distribution of symbols for

above mentioned two cases could be an e�ective and quick method to determine the performance

of the sub optimal version relative to the optimal one. In this work our aim is to �nd a metric for

such a distance calculation, so that metric and performance degradation are well related.

6.2 Classical Distribution Distances

In many science and engineering �elds, the similarity between two features is determined by com-

puting the distance between them using a certain distance metric. Many information-theoretic

divergence measures between two probability distributions have been introduced and extensively

studied [Ali and Silvey, 1996],[Johnson, 1979],[Kullback and Leibler, 1951]. Let a discrete distribu-

tion have probability function pk and a second discrete distribution have probability function qk.

For a divergence measure d(pk, qk) to be classi�ed as a distance following conditions should be

satis�ed:
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Figure 6.1: Euclidean and Manhattan Distances

1. d(pk, qk)= 0 if and only if pk =qk (Identity of indiscernibles).

2. d(pk, qk)= d(qk, pk) (Symmetry).

3. d(pk, rk) ≤ d(pk, qk) + d(qk, rk) (Triangle inequality).

Some of the most commonly used divergence metrics are discussed in the following subsections.

6.2.1 Euclidean distance

In computer vision as well as some other areas, the Euclidean distance or SSD ( L2 - sum of the

squared di�erences) is one of the most widely used metrics. However it is most e�ective when it

is assumed that the data have a Gaussian isotropic distribution. In mathematics, the Euclidean

distance or Euclidean metric is the "ordinary" distance between two points that one would measure

with a ruler, and is given by the Pythagorean formula as shown in Figure 6.1. For two discrete

distribution with probability function pk and qk it is de�ned as:

SSD =
√∑

k

(pk − qk)2 (6.1)

6.2.2 Manhattan distance

Another common natural distance measure between probability distributions is the L1 norm (or the

Manhattan distance), de�ned as,

SAD =
∑
k

|pk − qk| (6.2)

as shown in Figure 6.1 it is the sum of the (absolute) di�erences of the coordinates of two points

under consideration. L1 norm is a distance measure satisfying all the metric properties, including

triangle inequality.
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6.2.3 Kulbiek Luber distance

The KL distance is an information-theoretic distance measure between probability density functions

[Kullback and Leibler, 1951]. The relative entropy of p with respect to q, also called the Kullback-

Leibler distance, is de�ned by:

KLD =
∑
k

log2

(
pk
qk

)
(6.3)

Although KLD(p,q) 6= KLD (q,p), so relative entropy is therefore not a true distance metric, it

satis�es many important mathematical properties.

6.3 Entropy Inspired Distance

As explained in previous section from a maximum likelihood perspective, it is well known that the

SSD is justi�ed when the feature data distribution is Gaussian while the Manhattan distance or

SAD is justi�ed when the feature data distribution is Exponential (double or two-sided exponential).

Therefore, one can determine which metric to use if the underlying data distribution is known or well

estimated. Finding a suitable distance metric becomes a challenging problem when the underlying

distribution is unknown and could be neither Gaussian nor Exponential. For this reason the task of

�nding a signi�cant distance metric between two symbol APP distributions is not trivial. Classical

distribution distances do not give any signi�cant correlation with BER (or FER) estimation of MC

simulations. For example, use of a Manhattan distance between two APP distributions does not

lead to a signi�cant correlation. This can be explained by the fact that, from a decoding point of

view, probabilities of a symbol value of 10−6 and 10−12 are rather di�erent, which is not the case

when Manhantan distance is used. These considerations bring us to search a metric that takes into

account both absolute di�erence and ratio of magnitude. At this point, a metric derived from the

entropy de�nition of Shannon [Shannon] was tested with success. The information entropy H(X)

of a discrete random variable X that can take on possible values x1, . . . , xn is given as:

H(X) = −
n∑
i=0

p (xi) log2p (xi) (6.4)

where p(xi) = Pr(X = xi) is the probability mass function of X and entropy relates to the repre-

sentation of information by quantifying its uncertainty.

In the following section, we �rst de�ne quality criteria which allows us to measure if there exist a

direct quantitative correlation between the proposed entropy inspired distance EID metric and the

BER degradation of a sub-optimal decoding algorithm. EID metric is then de�ned and is compared

with several classical distances in later sections.
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6.3.1 De�nition of Quality Criteria

For a given SNR, we de�ned ∆BER as ∆BER = log10 (BERsub/BERopt). It corresponds to the BER

degradation between the sub-optimal algorithm (BERsub) and the optimal algorithm (BERopt).

Our �rst objective (Case 1 ) is to de�ne a metric EID (to be de�ned later) between optimal and

sub-optimal algorithm that respects the relation order between ∆BER and EID. This means that if

two design choices 1 and 2 result into suboptimal algorithms with performance given by ∆BER1<

∆BER2, then de�nition of EID will calculate an higher distance for choice 2. If the computational

complexity to compute EID is low compared to BER estimation through MC simulation, then EID

can be an e�cient tool to perform design choices. Note that the ideal situation (Case 2 ) is to �nd

a monotonic function ζ so that ∆BER = ζ(EID) in a interval of interest for making design choices:

in that case, no more MC simulation is required to evaluate the BER.

6.3.2 EID de�nition

In a Non-binary iterative decoding algorithm (Turbo or LDPC code) exchanged messages can be

represented as LLR vectors. A q element probability vector P = (p0, p1, . . . , pq−1) is a vector of

real numbers such that pi > 0 for all i and
∑q−1

i=0 pi = 1. The LLR vector associated to P is

Λ = (λ0, λ1, . . . , λq−1) with λi = log pi

p0
, i = 0, . . . , q − 1. Symbol probability as a function of LLR

values is expressed as follows:

pi =
eλi

eλ0 + eλ1 + · · · · · ·+ eλq−1
(6.5)

In the experimental setup shown in Figure 6.2, the encoded data (a set of M codewords of length K,

i.e. a total of N = M ×K q-ary symbols) is modulated (Binary Phase Shift Keying in our example)

and sent over a noisy channel (Additive White Gaussian Noise in our example). At receiver after

demodulation, intrinsic probabilities of the received symbols are computed (Database T in). The

M received codewords of Tin are then fed to the optimal and to the suboptimal decoders. The

N output of the optimal decoder are used to generate database Topt. The nth element of Topt is

an APP vector of size q denoted as Pn = (pni )i=0,1,···q−1. Similarly, the output of the sub-optimal

algorithm is used to generate database Tsub. Tsub is composed of APP vector P̃n = (p̃ni )i=0,1,···q−1.

Extending the entropy equation 6.4 we de�ne distance EID in the form :

EID(Topt, Tsub) =
∑N−1

n=0

∑q−1
i=0 (|pni − p̃ni |) (log2 |pni − p̃ni |)∑N−1

n=0 −H(Pn)
(6.6)
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Figure 6.2: Model for Distance Evaluation System.

6.4 Experimental Results

Previously mentioned quality criteria Case 1 and Case 2 are subsequently veri�ed for the proposed

metric in the following experiments. A duo binary turbo code used in WiMax(802.16e) application

(block length K=960 and rate=1/3) and a (251,502) Galois Field (26) LDPC code are used.

6.4.1 WiMax Turbo Optimal Quantization of Channel Input

Fixed point arithmetic and quantization result in additional noise in the turbo decoding system.

As the rounding o� noise is �xed for a given structure, increasing the signal level to quantizer could

result in better performance. However it cannot be increased too much because it may cause over�ow

as the dynamic range of quantizer is exceeded. Thus a optimal scaling factor α for received symbol

needs to be found which results in the best error performance of the decoder [Wu and Woerner,

May 1999]. The system model is shown in Figure 6.3. In order to validate the performance of

the EID metric we evaluate ∆BER varying the scaling factor α. Similar experiment is performed

with conventional metrics used for distance evaluation like SSD (Sum of the Squared Di�erences or

Euclidean distance), SAD (Sum of the Absolute Di�erences or Manhattan distance), KLD (Kullback

Leibler distance or Relative entropy). To numerically obtain the ∆ BER we use channel input

representation with large number of bits, thus making it a near �oating point representation. BER

values obtained for this �oating point representation of the algorithm is used as the reference value

(BERopt ).

Figure 6.4 shows the variation of distance calculated using the conventional metrics and the

proposed metric with scaling factor α. Databases T opt and T sub are created with M = 100 frames
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Figure 6.3: System Model for Optimal Quantization of Channel Input

successfully decoded at the end of 7 iterations. Di�erent distances are scaled with di�erent factors

to make sure all curves �t in the same plot. Signi�cant performance degradation is expected at both

lower and higher values of α and optimal performance should be obtained somewhere in the middle.

It can be observed that conventional metrics fail to capture the expected performance degradation

variation with scaling factor α.

Figure 6.5 illustrates the variation of couple (∆BER, EID) for di�erent scaling factors α. The

value of α varies from 0.6 to 2.4 with step 0.2. The correlation curves are plotted for di�erent

Eb/N0 and di�erent code rates. The BER values are of the order of 10−3 and 10−4 for the Eb/N0

values of 0.77dB and 0.87dB respectively. It can be seen that the couple (∆BER, EID) gives the

same optimal value of scaling factor α at 1.6 for code rate R = 1/3 and at 1.2 for R = 1/2, thus

validating the Case 1 mentioned previously.

6.4.2 WiMax Turbo Extrinsic BitWidth Optimization

In serial, deterministic interleaver based or network on chip (NOC) based implementation of turbo

decoders, size of the extrinsic memory, complexity of the interleaver and the communication re-

sources of the network on chip greatly increases with the bit width of the extrinisic information.

In [Singh et al., Sept 2008] it was shown that least signi�cant bit (LSB) drop-append combined

with most signi�cant bit (MSB) clipping can be an useful method for countering these e�ects. We

utilise this bit width optimization method to establish the correlation between BER performance

and proposed distance metric. The suboptimal database corresponds to symbol probabilities in

LSB drop-append and MSB clipped version of the algorithm, while algorithm with 8 bit �xed point

representation for the extrinsics is assumed to be optimal.

The correlation plots between ∆BER and distance metric for suboptimal algorithms (shown by
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Figure 6.4: Variation of Di�erent Distance Metrics with α.
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Figure 6.6: Correlation between ∆BER and Distance for Suboptimal algorithms LSB drop-append
and MSB clip

the dots in the curves) corresponding to 1, 2 and 3 LSBs drop append and 1, 2 MSB clip respectively

is presented in Figure 6.6. The two curves correspond to di�erent Eb/N0. The number of bits N

used for distance metric simulations are lesser by a magnitude order of 100 compared to the Monte

Carlo simulations to obtain the BER values. We can observe that for a given Eb/N0 the correlation

order is always respected between the bit width optimized sub optimal algorithms, that is, ∆BER

and distance both increase with increase in sub optimality. The correlation order also holds true

across di�erent Eb/N0.

6.4.3 LDPC GF(26) Case

The experiments were performed over a rate 1/2 LDPC code (251,502) in GF (64). The optimal

algorithm is the well known belief propagation algorithm over a non-binary LDPC code [Declercq

and Fossorier, April 2007]. The sub-optimal algorithm is the Extended Min-Sum (EMS) proposed

by [Voicila et al., June 2007]. In EMS, only the highest nm probabilities of the message are consider

in the decoding process, remaining (64-nm) lower probabilities are simply discarded. Since nm

is signi�cantly lower than 64, both memory and computational complexity are saved thanks to

this approximation. Using the optimal algorithm, we have generated Topt with M = 100 frames

successfully decoded with 20 iterations. Then, several databases Tsub have been created with the

EMS algorithm for values of nm ranging from 6 to 32. The FER values are of the order of 2× 10−4

and 2 × 10−6 for the SNR values of 1.4dB and 1.6dB respectively for the optimal algorithm. In

Figure 6.7 correlation between ∆FER and EID for these suboptimal algorithms (shown by the dots

in the curves) is depicted. Approximately linear slope of the curves in a wide FER range validates

the second quality criteria (Case2) mentioned previously for the proposed EID metric.
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6.5 Conclusion

We presented a novel error performance assessment metric for sub optimal iterative decoding algo-

rithms. It takes into account APPs measured at the end of certain iteration to estimate how far

is the APP distribution of the symbol in case of suboptimal version of algorithm from the optimal

version. We extended the concept of entropy to evaluate this distance. Experimental results show

that the values of the proposed metric correlate well with corresponding BER performance analysis

of the sub optimal iterative algorithms, giving a signi�cant improvement in terms of simulation

speed. The work provides us a practical tool to quickly compare and assess the performance of

suboptimal iterative decoding algorithms.

We know that other tools of the information theory can be used for our project (like mutual

information, EXIT chart and so on) but we didn't �nd yet a useful way of using it for our problem.

This question is still open.



Chapter 7

Conclusion and Future Perspectives

The aim of this thesis was to analyze the methods and practical architectures for high performance

�exible channel decoders. In particular, we focused on architectures which are able to easily adapt to

di�erent current and future standard requirements. By developing the understanding of �exible de-

sign paradigm we established the fact that we required �exible architectures in order to tame design

cost, specially Non-Recurrent Engineering Cost and at the same time to support with a single cir-

cuit, most of the di�erent operative mode required by the current and upcoming telecommunication

standards.

However before focussing on new solutions, we conducted a study on digital communication

and in particular on three important families of channel codes, the convolutional, turbo and LDPC

codes. We have studied their structures and algorithms for their decoding. Study and analysis of

various state of art implementation of turbo code decoders led to proposition of a methodology

for extrinsic message size reduction. Cost, area and energy consumption of the turbo decoder

implementation scales with the bit-width of extrinsic information. The presented results showed

how the optimization potential through communication centric paradigm can be fully exploited

without serious degradation of the bit-error performance.

Further analysis of utilised degree of parallism of iterative decoding algorithm and their imple-

mentation on MPSoC plateform led us to the problem of collisions in memory access and exploration

of NoC paradigm was performed to fully understand this issue. As the inter-processor communi-

cation becomes the bottleneck for high degrees of parallelization, we presented a case study that

analyzes the tra�c pattern over a 2-D Torus/Mesh Network on Chip. By a detailed tra�c analysis

we not only showed that the overall processing throughput is impacted by the network's limited

communication bandwidth, in addition choice of parallelism degree and design of processing unit

also plays an important role.

After the analyses of interconnection network, we turned our attention to a �exible processing

element design supporting di�erent codes. We investigated various possibilities of hardware reuse

across datapath. We presented a VLSI complexity analysis of datapath sharing across two FEC
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code families viz. turbo and LDPC. Various implementation possibilities of check node architectures

in LDPC decoding over a Turbo Max-Log-MAP core were explored. In addition to this, this work

presented a parallel implementation of check node computations using Min-sum algorithm for LDPC

decoding, which is optimized for maximun reuse of turbo decoding kernel (-28.7 % less area compared

to two independent turbo and LDPC kernel) and is found to be e�cient in terms of clock cycles

required for check node computations for maximum operating frequency of 300 MHz.

As can be inferred, the main focus of this work was to investigate architectures with an inherent

high �exibility. However, given the multitude of sub-optimal algorithms to be evaluated for their

error performance to arrive at the right choice for low power, low cost implementation, a need of

quicker error performance methods than the conventional Monte Carlo method was felt. In this

context, we presented a novel error performance assessment metric for sub optimal iterative decoding

algorithms. It takes into account APPs measured at the end of certain iteration to estimate how far

is the APP distribution of the symbol in case of suboptimal version of algorithm from the optimal

version. We extended the concept of entropy to evaluate this distance. Experimental results show

that the values of the proposed metric correlate well with corresponding BER performance analysis

of the sub optimal iterative algorithms, giving a signi�cant improvement in terms of simulation

speed. The work provides us a practical tool to quickly compare and assess the performance of

suboptimal iterative decoding algorithms.

Given the multifaceted nature of our work, lot of scope for future enhancement of proposed

contributions are possible. Some of the key future work which we have foreseen include but are not

limited to; Decreasing the extrinsic message bandwidth over the network for increased performance

of a MPSoC based iterative decoder. Especially for duo-binary turbo codes a non-uniform quantiza-

tion of extrinsic message using clustering algorithm approach is envisioned. Further more message

bandwidth reduction methodology needs to be evaluated for MPSoC based LDPC decoders. On

the development of �exible FEC platform further work is required for e�cient memory sharing

across di�erent channel decoding algorithm supported. For faster and e�cient error performance

assessment of iterative decoding algorithm we know that other tools of the information theory can

be used for our project (like mutual information, EXIT chart and so on) but we didn't �nd yet a

useful way of using it for our problem. This question is still remains open.
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