
Thèse
présentée pour obtenir le grade de docteur

de l’Ecole nationale supérieure
des télécommunications

Spécialité : Electronique et Communications

Frédéric Guilloud

Architecture générique de décodeur
de codes LDPC

Soutenue le 02 juillet 2004 devant le jury composé de

Michel Jézéquel Président

Marc Fossorier Rapporteurs

Jean-Didier Legat

David Declercq Examinateurs

François Barbara

Emmanuel Boutillon Directeurs de thèse

Jean-Luc Danger

Ecole nationale supérieure des télécommunications

This page intentionally left blank.

j’ai longtemps hésité . . .
et puis maintenant il faut se décider ! faut choisir !

alors je mets quoi ?
d’ailleurs, je mets quelque chose ?

très envie de le crier, évidemment . . .
et puis en même temps pourquoi ?

je crois que je n’ose pas . . .
c’est pas grave, ca ne change rien, en vrai . . .

comme c’est tout le temps et partout, pourquoi ici plus qu’ailleurs ?

finalement je crois que j’ai osé . . .

iii (c) Frédéric Guilloud, Télécom Paris - July 2004

This page intentionally left blank.

Remerciements

Je tiens à remercier Emmanuel Boutillon et Jean-Luc Danger pour m’avoir permis de faire
cette thèse au sein du département COMELEC de Télécom Paris, et pour m’avoir encadré
avec sérieux et clairvoyance. J’ai pu bénéficier de leurs compétences complémentaires
et cette thèse est le résultat de cette étroite collaboration. Je tiens particulièrement
à remercier Emmanuel Boutillon qui, malgré la distance, a su se montrer très présent
aux moments des choix décisifs qui ont jalonné cette thèse, et dont la compétence et la
générosité ont grandement contribué aux résultats de ce travail.

J’exprime toute ma gratitude à Michel Jezequel pour avoir accepté de présider le jury
et je remercie Marc Fossorier et Jean-Didier Legat pour l’honneur qu’ils m’ont fait en
acceptant le rôle difficile de rapporteur. Merci également à David Declercq et François
Barbara d’avoir bien voulu examiner ce travail.

Je remercie très chaleureusement Mouhcine Chami sans qui le développement de la
plateforme ne serait pas aussi avancé. Son travail efficace sur la mise en oeuvre de la
plateforme m’a permis de réaliser les premières simulations sans trop de retard. Je remer-
cie aussi vivement Nicolas Lascar pour son étude complète et les développements qu’il a
menés autour de l’encodage des codes LDPC, ainsi que Cheng Ching qui l’a précédé dans
cette tâche.

Un grand merci aussi à Julien Viard dont les compétences en programmation orientée
objet m’ont permis de gagner un temps précieux lors du développement du logiciel de
décodage des codes LDPC. Merci aussi à Christophe Devaucelle qui a pendant son stage
de fin d’étude défriché les problèmes d’implantation du décodage des codes LDPC.

Je tiens enfin à rendre hommage à Jean-Claude Bic, responsable du département
COMELEC lorsque j’y ai débuté ma thèse, dont je garderai un souvenir ému.

../..

v (c) Frédéric Guilloud, Télécom Paris - July 2004

vi REMERCIEMENTS

Et pour ces trois années et demi de bonne ambiance ...

Merci au groupe Système d’Intégration Analogique Mixte qui a bien voulu héberger
un élément numérique dans leur locaux, et notamment à Elizabeth qui n’a pas réussi à
m’apprendre l’espagnol, malgré ces trois années à partager le même bureau, mais à qui
j’espère avoir appris que la fin normale du repas est constituée de fromage, de fruits et du
dessert (au chocolat de préférence !).

Un grand merci à Slim Chabbouh, David Gnaedig pour toutes les discussions que nous
avons pu avoir et les divers transports dans la lande bretonne ; merci à Christophe (Tophe),
Mouhcine, Nico et Gégé pour les pauses bien sympathiques qui ont agrémenté cette fin
de thèse ; merci à Chantal pour sa disponibilité et sa gentillesse ; merci à Van Tam, mon
partenaire de printemps, pour avoir soutenu après moi ; merci à Sabeur, Mohammed,
Karim, Bilal, Betch, David, Sonia, Richard, Reda, Sébastien, Ioannis, Maryam pour leur
contribution à la bonne ambiance de travail qui a baigné le cours de ma thèse.

Je remercie aussi ma famille, et en particulier mes parents, pour leur patience et la
compréhension dont ils ont fait preuve tout au long de mes études.

Et puis enfin un très grand merci à mon épouse Raphaëlle, qui m’a soutenu tout au
long de ce travail, et qui a su apporter avec talent et enthousiasme les touches finales à
ce manuscrit.

A vous tous je le dis de façon certaine : les études, cette fois ci, j’arrête vraiment ; j’ai
décidé d’en faire mon métier !

Paris, le 8 juillet 2004

(c) Frédéric Guilloud, Télécom Paris - July 2004

Résumé

Les codes correcteurs d’erreurs LDPC (Low Density Parity Check) font partie des codes
en bloc permettant de s’approcher de quelques fractions de dB de la limite de Shannon.
Ces remarquables performances associées à leur relative simplicité de décodage rendent
ces codes très attractifs pour les prochaines générations de systèmes de transmissions
numériques. C’est notamment déjà le cas dans la norme de télédiffusion numérique par
satellite (DVB-S2) qui utilise un code LDPC irrégulier pour la protection de la transmis-
sion des données descendantes.

Dans cette thèse, nous nous sommes intéressés aux algorithmes de décodage des codes
LDPC et à leur implantation matérielle. Nous avons tout d’abord proposé un algorithme
sous-optimal de décodage (l’algorithme lambda-min) permettant de réduire de façon sig-
nificative la complexité du décodeur sans perte de performances par rapport à l’algorithme
de référence dit à propagation de croyance (algorithme BP).

Nous avons ensuite étudié et conçu une architecture générique de décodeur LDPC, que
nous avons implantée sur une plateforme dédiée à base de circuits logiques programmables
FPGA. Ce décodeur matériel permet avant tout d’accélérer les simulations d’un facteur
supérieur à 500 par rapport à une simulation logicielle. De plus, par sa conception entière-
ment programmable, modulaire et générique, il possède de nombreuses fonctionnalités :
Il peut ainsi être configuré pour une large classe de codes, et en conséquence permet-
tre la recherche de codes efficaces ; par la généricité des opérateurs de calcul, il permet
aussi l’optimisation de la précision interne des calculs en vue d’une conception ASIC ;
et par sa modularité, différents algorithmes de calcul (dits processeur de noeuds) et de
séquencement peuvent être testés.

Enfin, notre travail nous a permis de dégager un cadre formel d’analyse et de synthèse
des architectures de décodeurs LDPC. Ce cadre englobe à la fois les chemins de données
(parallélisme, architecture des processeurs de noeuds) et le mode de contrôle associé aux
différents séquencements de décodage. Ainsi, cette formalisation nous permet de classer
les différentes solutions de l’état de l’art des décodeurs LDPC, mais aussi de proposer de
nouvelles architectures intéressantes non publiées à ce jour.

vii (c) Frédéric Guilloud, Télécom Paris - July 2004

This page intentionally left blank.

Abstract

The Low-Density Parity-Check codes are among the most powerful forward error cor-
recting codes, since they enable to get as close as a fraction of a dB from the Shannon limit.
This astonishing performance combined with their relatively simple decoding algorithm
make these codes very attractive for the next digital transmission system generations. It
is already the case for the next digital satellite broadcasting standard (DVB-S2), where
an irregular LDPC code has been chosen to protect the downlink information.

In this thesis, we focused our research on the iterative decoding algorithms and their
hardware implementations. We proposed first a suboptimal algorithm named the λ-min
algorithm. It reduces significantly the complexity of the decoder without any significant
performance loss, as compared to the belief propagation (BP) algorithm.

Then we studied and designed a generic architecture of an LDPC decoder, which has
been implemented on a FPGA based platform. This hardware decoder enables to acceler-
ate the simulations more than 500 times as compared to software simulations. Moreover,
based on an all-tunable design, our decoder features many facilities: It is possible to
configure it for a very wide code family, so that the research for good codes is processed
faster ; thanks to the genericity of the processing components, it is also possible to opti-
mize the internal coding format, and even to compare various decoding algorithms and
various processing schedules.

Finally, our experience in the area of LDPC decoders led us to propose a formal frame-
work for analysing the architectures of LDPC decoders. This framework encompasses
both the datapath (parallelism, node processors architectures) and the control mode as-
sociated to the several decoding schedules. Thus within this framework, a classification
of the different state-of-the-art LDPC decoders is proposed. Moreover, some synthesis of
efficient and unpublished architectures have been also proposed.

ix (c) Frédéric Guilloud, Télécom Paris - July 2004

This page intentionally left blank.

Preamble

Summary:

This preamble aims at giving the particular events which modified the initial

subject of my Ph.D., within the European SPRING project. The work and the

results presented in this thesis are the main part of my thesis. The first part

of my work, which will not be presented in this thesis is briefly presented in

this chapter, after some explanations on the particular context of this thesis.

The SPRING project

My thesis has been funded by the European Commission (Directorate-General Information
Society) within the a European research project named SPRING (project). The project
is coordinated by Schlumberger Industries (France), and three other academic partners
are implied the project:

• the Université Catholique de Louvain (UCL - Belgium),

• the Centro Nacional de Microelectronica (CNM - Spain),

• the Ecole Nationale Supérieure des Télécommunications (ENST - France).

This project proposes the creation of a research and training network gathering academic
partners (CNM, ENST, and UCL) and industry (Schlumberger) to build and exchange
knowledge. The network will focus on transfer of technologies between partners (through
Ph.D. thesis) and on the mutual and complementary training of all partners. The project
directly contributes to 3 key actions:

• Microelectronics,

• Peripherals, sub-systems and Microsystems,

• Technologies for and management of information processing, communications and
networks, including broadband, together with their implementation, and their ap-
plication.

xi (c) Frédéric Guilloud, Télécom Paris - July 2004

xii PREAMBLE

In the beginning of the project, the RMS Montrouge Technology Center (MTC), a
technical research center of Schlumberger located in Montrouge (France) was in charge
of the coordination of the project. Coordinators were in particular interested by remote
reading applications in the metering business. This topic has been the starting point of my
work. For one year, we have been studying some theoretical aspects of the communication
scheme used in this application, as described in the next section.

At the end of the first year, the TMC has been closed and the coordination of the project
moved to an another Schlumberger entity (OFS), located in Clamart, and working in the
oilfield services. After a work on the performance of the demodulation scheme, we decided
to study the channel decoder part. Our interest for LDPC codes decoding grew between
the transfer of the SPRING project from RMS to OFS (November, 2001), motivated by
two main reasons: the first reason is that these codes had very promising performance,
compared to turbo-codes; the second reason was that architectures for LDPC codes de-
coder were a new challenging interest of research in the algorithm architecture adequation
area.

Note that this thesis is part of the deliverables of the SPRING project. This is the
reason why this thesis will be written in English.

Contributions not cited in this thesis

As explained in the previous section, two important contributions of my work will not be
discussed in this thesis:

1. A first contribution of this work has been published at ICC 2002 (Guilloud, Boutil-
lon, and Danger 2002a). We calculated the bit error rate (BER) of a multiband non
coherent on-off keying (OOK) demodulation. The results of this theoretical study
fits perfectly with the simulations of the system. The influence of the filter and of
the decimation factor on the modulation performance have been performed thanks
to these results. We have also been able to optimize the system, by means of other
criteria (e.g. system complexity, jammer sensitivity) thus avoiding time consuming
simulations.

2. A second contribution is related to the parallel analog to digital conversion. A
specific attention has to be paid to the filter banks in hybrid parallel architectures,
in order to get a perfect signal reconstruction. In (Guilloud, Boutillon, and Danger
2002c), we proposed to study an alternative and original approach to the design of
such converters to relax the filter bank constraint by some digital processing on the
converted signal. We showed that for the moment, this original concept remains too
sensitive to the inaccuracy of the implementation.

(c) Frédéric Guilloud, Télécom Paris - July 2004

Contents

Remerciements v

Résumé vii

Abstract ix

Preamble xi

Contents xvi

List of figures xix

List of tables xxi

List of listings xxiii

Notations xxv

Introduction 1

1 Channel coding 5
1.1 Optimal decoding . 5

1.1.1 Shannon theorem for channel coding 5
1.1.2 Communication model . 6
1.1.3 Optimal decoding . 7

1.2 Performance of error correcting codes . 8
1.2.1 The Shannon bound . 8
1.2.2 The AWGN capacity . 10

1.3 Decoding of linear block codes . 12
1.3.1 Definitions . 12
1.3.2 Optimal decoding of binary block codes 15
1.3.3 The iterative algorithm . 19

1.4 Conclusion . 21

xiii (c) Frédéric Guilloud, Télécom Paris - July 2004

xiv CONTENTS

2 Low Density Parity Check codes 23
2.1 A bit of History . 23
2.2 Classes of LDPC codes . 24
2.3 Optimization of LDPC codes . 26
2.4 Constructions of LDPC codes . 28

2.4.1 Random based construction . 28
2.4.2 Deterministic based construction 31

2.5 Encoding of LDPC codes . 32
2.5.1 Lower-triangular shape based encoding 32
2.5.2 Other encoding schemes . 33

2.6 Performance of BPSK-modulated LDPC codes 34
2.7 Decoding of LDPC codes . 36

2.7.1 Scheduling . 37
2.7.2 Performance in iterative decoding 40

2.8 Conclusion . 40

3 A unified framework for LDPC decoders 43
3.1 Generalized message-passing architecture 43

3.1.1 Overview . 43
3.1.2 Shuffle network . 45

3.2 Node processors . 46
3.2.1 Generic node processor . 46
3.2.2 Variable and check node processors 50

3.3 Complexity analysis . 54
3.3.1 Computation requirements . 54
3.3.2 Message rate . 54
3.3.3 Memory . 55

3.4 Synthesis . 57
3.4.1 Flooding schedule (check way) . 58
3.4.2 Horizontal shuffle schedule . 60
3.4.3 Vertical shuffle schedule . 62
3.4.4 Memory comparison . 64

3.5 Existing platforms survey . 64
3.5.1 Parallel designs . 64
3.5.2 serial design . 65
3.5.3 Mixed designs . 65
3.5.4 Summary . 66

3.6 Conclusion . 68

(c) Frédéric Guilloud, Télécom Paris - July 2004

CONTENTS xv

4 λ−Min Algorithm 69
4.1 Motivations and state of the art . 69

4.1.1 APP-based algorithms . 70
4.1.2 BP-based algorithm . 71

4.2 The λ−Min Algorithm . 71
4.3 Performance of the λ−Min Algorithm . 73

4.3.1 Simulation conditions . 73
4.3.2 Algorithm Comparison . 74
4.3.3 Optimization . 76

4.4 Architectural issues . 77
4.4.1 PCP architecture . 77
4.4.2 Memory saving . 84

4.5 Perspectives . 84
4.6 Conclusion . 87

5 Generic Implementation of an LDPC Decoder 89
5.1 Overview . 89

5.1.1 About genericity . 89
5.1.2 Synoptic . 90
5.1.3 Architecture . 90

5.2 Memory Management . 93
5.2.1 Preliminaries . 93
5.2.2 Variable node memories . 94
5.2.3 Check node memories . 97
5.2.4 The memories A and S . 99
5.2.5 Migration to FPGA . 103

5.3 Shuffle network . 105
5.4 Description of the architecture . 108
5.5 Universality of the decoder . 110

5.5.1 Randomly designed LDPC codes 111
5.5.2 Preprocessing of existing LDPC codes 111

5.6 Conclusion . 114

6 The platform 115
6.1 Platform description . 115

6.1.1 Overview . 115
6.1.2 Intrinsic information processing . 118

6.2 Synthesis . 119
6.2.1 Illustration of the genericity . 119
6.2.2 Synthesis results . 122

6.3 Simulations . 122

(c) Frédéric Guilloud, Télécom Paris - July 2004

xvi CONTENTS

6.3.1 Simulation conditions . 122
6.3.2 On the BP algorithm . 122
6.3.3 On the λ−min algorithm . 124
6.3.4 Algorithm comparaison . 124
6.3.5 Intrinsic information computing . 126

6.4 conclusion . 129

Conclusion and Perspectives 131

A Minimum BER achievable by coded BPSK systems 133

B Log Likelihood Ratios and Parity Checks 135
B.1 Iterative expression . 135

B.1.1 2−variable rule . 135
B.1.2 Hardware efficient implementation 136
B.1.3 n−variable rule . 137

B.2 Expression of the LLR using the tanh rule 140
B.2.1 2−variable rule . 140
B.2.2 n−variable rule . 140

C Architecture of the node processors 141
C.1 Check Node Unit (CNU) . 141
C.2 Variable Node Unit (VNU) . 144

D Platform component architecture 149

E Listings 153

Bibliography 166

(c) Frédéric Guilloud, Télécom Paris - July 2004

List of Figures

1.1 Basic scheme for channel code encoding/decoding. 6
1.2 AWGN noise power spectral density . 9
1.3 The Shannon bound. 10
1.4 Capacity in bit per dimension for the AWGN channel. 11
1.5 Capacity in bit per dimension for the discrete-input AWGN channel. . . . 12
1.6 Different ways of describing the same code. 14
1.7 The notations related to the bipartite graph of a code. 15
1.8 Cycles in graphs. 16
1.9 Example for calculating total information. 20
1.10 Update rules in graph node processors. 22

2.1 Sum-product algorithm in a factor graphs. 24
2.2 Random constructions of regular LDPC codes 29
2.3 Random constructions of irregular LDPC codes 30
2.4 Shape of parity check matrices for efficient encoding. 32
2.5 Gap between AWGN and Bi-AWGN channel capacity. 35
2.6 Various thresholds for regular or irregular LDPC codes, for various rates . 35
2.7 Distance to the Shannon bound estimation using error probability curves. 36
2.8 Flooding and probabilistic schedule. 38
2.9 Shuffle schedule. 39
2.10 Horizontal Shuffle schedule. 40
2.11 Waterfall and error floor regions in iterative decoding. 41

3.1 Generalized design for message passing architecture decoders 44
3.2 Elementary switch . 46
3.3 A generic node processor . 46
3.4 Possible implementations for a generic node processor 48
3.5 The master/slave modes for node processors 49
3.6 The slow/fast modes for slave node processors 50
3.7 Possible positions of the interconnection network 52
3.8 Simple parity-check matrix example . 57

xvii (c) Frédéric Guilloud, Télécom Paris - July 2004

xviii LIST OF FIGURES

3.9 Illustration of the Flooding schedule (check way) 59
3.10 Illustration of the Horizontal shuffle schedule 61
3.11 Illustration of the vertical shuffle schedule 63

4.1 Shape of the function f . 72
4.2 Algorithm comparison on a regular LDPC code 75
4.3 Algorithm comparison on an irregular LDPC code 76
4.4 Influence of the offset value on the BER for the 3−min algorithm 78
4.5 Comparison between the BP and the Offset 3−min algorithm with (vs imax) 79
4.6 Comparison between the BP and the offset 3−min algorithm (vs Eb/N0) . 80
4.7 Description of a Parity Check Processor 80
4.8 Pre-processing block (3−min algorithm) 81
4.9 On the fly parity check scheme for λ = 3 82
4.10 LLR processing with the ?−operator (λ = 3) 82
4.11 Synthesis block. 83
4.12 Order of operations inside a PCP . 83
4.13 Extrinsic memory saving for λ−min algorithm 85
4.14 k=4 . 86
4.15 k=5 . 86
4.16 k=6 . 86
4.17 k=12 . 86

5.1 Synoptic of the decoder associated to the flooding scheduling. 91
5.2 System architecture of the decoder. 91
5.3 Didactic example for a parity check matrix 93
5.4 Dual-Port Block SelectRAM . 93
5.5 Variable Memory Filling . 94
5.6 Figure 5.3 after memory banks reordering 95
5.7 Reordering and addressing the parity check matrix for M/P = 3 and P = 5 95
5.8 Dataflow of variable information. 96
5.9 The principle of the first accumulation bit access. 97
5.10 Organization of the check node processor memories L and Pt. 98
5.11 How the information saved in the A-memory are used ? 102
5.12 Waksman permutation generator of order P 106
5.13 Some permutation generator of order N 6= 2r 107
5.14 Size of the shuffle address word. 107
5.15 The top-level architecture of the decoder 108
5.16 Top-level Finite State Machine . 109
5.17 Top-level waveforms . 110
5.18 An illustration of a random parity-check matrix 112
5.19 Row permutation for spreading the non-zero entries of H. 112

(c) Frédéric Guilloud, Télécom Paris - July 2004

LIST OF FIGURES xix

5.20 Column permutation for spreading the non-zero entries of H. 113
5.21 Using a “NOP” variable. 113

6.1 The block diagram of the platform for encoding and decoding LDPC codes. 116
6.2 The block diagram of the platform using the Nallatech evaluation board. . 116
6.3 The Ballyinx and the Ballyblue cards from Nallatech 117
6.4 Distribution of the intrinsic information In 119
6.5 Influence of the fixed point coding on the BP algorithm 123
6.6 Influence of the intrinsic information coding 124
6.7 Influence of the quantization on the λ−min algorithm (λ = 3). 125
6.8 Comparaison between the 3-min and the A-min* algorithm. 125
6.9 The intrinsic information is computed assuming a constant noise power . 127
6.10 The intrinsic information is computed to have a lower standard deviation 128

A.1 The binary-input gaussian-output channel (Bi-AWGN channel) 133
A.2 Minimum BER for coded BPSK modulations. 134

B.1 An XOR operation on 2 bits c1 and c2. 136
B.2 Example of architecture for the 2−input LLR operator 138
B.3 An XOR operation on n bits ci. 139

C.1 Parity Check Processor . 142
C.2 Waves of the PCP component . 143
C.3 Variable Processor . 144
C.4 Waves of the VP component for the IO state 145
C.5 Waves of the VP component for the ITER state 146
C.6 The dpram_accu component . 147
C.7 Example of a memory conflict (1). 147
C.8 Example of a memory conflict (2). 148

D.1 Architecture of the channel emulator component. 150
D.2 Architecture of the protocol component. 151

(c) Frédéric Guilloud, Télécom Paris - July 2004

This page intentionally left blank.

List of Tables

1.1 Reliable communications . 9
1.2 Channel parameters and Intrinsic information 18

2.1 Different classes of LDPC codes . 26
2.2 Summary of the different LDPC encoding schemes 34

3.1 Node processor operator as a function of the permutation network position. 53
3.2 Possible combinations for node control . 53
3.3 Memory requirements for the 3 different schedules 64
3.4 State of the art of published LDPC platforms 67

4.1 Different algorithm for extrinsic processing 73
4.2 Bit node distribution degree for code C2. 74
4.3 Check node distribution degree for code C2. 75

5.1 Listing of the shuffle network addresses for P = 3 100
5.2 Encoding the parity-check matrix in the A-memory 101
5.3 Memory size requirements . 103
5.4 FPGA RAM Block usage for several FPGA. 104

6.1 FPGA RAM Block usage for several examples. 121

xxi (c) Frédéric Guilloud, Télécom Paris - July 2004

This page intentionally left blank.

Listings

E.1 LDPC decoder VHDL package for constant definitions. 154
E.2 LDPC decoder VHDL package for constant definitions. 155
E.3 map summary for the synthesis 3400x1700x5. 156

xxiii (c) Frédéric Guilloud, Télécom Paris - July 2004

This page intentionally left blank.

Notations

LDPC codes notations

x : Encoder input of length K: x = (x1, · · · , xK).
c : Encoder output (sent codewords) of length N : c = (c1, · · · , cN)
C : A channel code, i.e. the set of all the codewords: c ∈ C.
AC : The alphabet of the code C.
y : Decoder input (received codewords) of length N : y = (y1, · · · , yN)
K : Number of information bits.
N : Number of variables.
M : Number of parity checks pcm : M = N −K.
R : Rate of the code C: R = K/N .
q : order of the Galois field GF (q).
H : a parity check matrix of size (N −K)×N of the code C
pcm : mth parity check of the parity check matrix H

vnn : nth variable node, attached to yn

cnm : mth constraint or check node attached to the single parity check pcm

dc : Maximum weight of the parity checks.
λi, λ̃i : Proportion of non-zero values of H in a column of weight i, proportion

of variable node of degree i.
dv : Maximum weight of the bits.
ρi, ρ̃i : Proportion of non-zero values of H in a row of weight i, proportion

of check node of degree i.
Mc→v,
Mv→c

: Check-to-variable and variable-to-check messages of a message pass-
ing decoder.

xxv (c) Frédéric Guilloud, Télécom Paris - July 2004

xxvi NOTATIONS

Mathematical expressions

.̂ : stands for the expectation of
(.)t : stands for transposition of vectors
|.| : stands for the cardinality of a set, or for the magnitude of a real value.

If the argument is a parity-check equation or a Tanner graph node,
it stands for the degree of the argument.

d.e, [.] : ceil and round operators.

Architecture notations

P : Number of memory blocks or Number of parity checks that will be
computed at the same time. P memory blocks will contain N/P

variables.
Q : Q = M/P : Number of passes to be done in each iteration.
Si : Series number i, i ≤ dc. A vector of P variables that are accessed

simultaneously in memory.
imax : Maximum number of decoding iterations.
λ : Number of minimum selected to update the parity checks.
Nb : Number of bits used to code data (magnitude only) at the output of

node processors. So data are coded using Nb + 1 bits.
w : Number of bits used to code the messages in a message passing de-

coder.
∆ : Dynamic range for magnitude values. Data are not clipped if they

between −∆ and +∆.
Db : Information bits throughput.
Re : Edge rate: number of edges processed by clock cycle.
MEM : Total memory size implemented in the decoder architecture.
NΠ : Number of elementary multiplexors (2 → 1) used in the shuffle net-

work.
fclk : Clock frequency.

(c) Frédéric Guilloud, Télécom Paris - July 2004

Introduction

A decade ago at the 1993 IEEE International Conference on Telecommunications,
C. Berrou and A. Glavieux presented a new scheme for channel codes decoding: the
turbo codes, and their associated turbo decoding algorithm. Turbo codes made possible
to get within a few tenth of dB away from the Shannon limit, for a bit error rate of 10−5.

Beside the major impact that turbo codes have had on telecommunication systems, they
also made researchers realize that other capacity approaching codes existed. Hence, the
low-density parity-check (LDPC) codes invented in the early sixties by Robert Gallager,
have been resurrected in the mid nineties by David MacKay. In fact, when LDPC codes
have been invented, their decoding was too complicated for the technology, and so they
have been forgotten. Like turbo codes, LDPC codes can get very close to the Shannon
limit by the mean of an iterative decoding.

An LDPC code is a linear block code defined by a very sparse parity-check matrix. The
decoding algorithm is easy to understand thanks to the factor graph representation of the
code: each symbol of the codeword is interrelated with the constraints that the symbols
must satisfy in order to form a valid codeword. During the iterative decoding algorithm
process, messages are exchanged between the symbols and the constraints on the edges
of the graph. These message are in fact the probabilities for a symbol or a constraint to
be a given value.

The asymptotic performance of LDPC codes, which are nowadays well understood, leads
LDPC codes to be used as serious competitors to turbo codes. The choice of an LDPC code
as a standard for the second Satellite Digital Video Broadcasting normalization (DVB-S2)
makes now the architecture of LDPC decoders a real challenge. Although the decoding
algorithm of LDPC codes is easy to understand, the design of an LDPC decoder is a real
challenge. It can be split into three part: the node processors, the interconnection network
and the memory management. The main bottleneck in the design of an LDPC decoder
lies in the memory requirement and in the complexity of the node processors. A first main
contribution of this thesis is a global framework which enables an analysis of the state
of the art. Our second main contribution is a sub-optimal algorithm and its associated

1 (c) Frédéric Guilloud, Télécom Paris - July 2004

2 INTRODUCTION

architecture which make possible to lower the memory requirement without any significant
loss of performance. The third main contribution of this thesis is a generic LDPC decoder
architecture within a platform for running fast simulations. These original contributions
will be proposed throughout this thesis which is organized as in the following.

The first chapter is a presentation of the error correcting code decoding in general
point of view. The iterative algorithm which will be used for LDPC code decoding is also
derived.

The second chapter is dedicated to the presentation of the LDPC codes. The different
parameters which characterizes the LDPC codes are presented. Then the encoding of
LDPC codes and their decoding performance are discussed. As the BPSK will be used
throughout this thesis, the particular case of the binary-input additive white gaussian
channel modulated capacity is also presented.

The third chapter gives an overview of the state of the art architectures within a new
unified view of the LDPC decoder architecture. Our contribution is a new theoretical
framework for LDPC decoder architectures which tries to encompass all the decoder
implementations, and which moreover illuminates new architectures, some of them being
of particular interest. These results are recent and have not been published yet. They
will hardly be used in the following chapters.

The fourth chapter presents a study of the check nodes and its associated memory.
From this work, we derived a new sub-optimal algorithm, named the λ−min algorithm.
This new algorithm aims at reducing both the complexity of the node processors and
the memory requirements used in non-parallel decoder architectures. Our algorithm has
a good performance complexity trade-off since it significantly reduces the complexity of
the check node processors, while keeping the bit error rate close to the optimal one. A
new architecture implementing the λ−min algorithm, and more generally the concepts of
compacting the edge-memory in non-parallel architecture are also presented.

The fifth chapter proposes a generic implementation of an LDPC decoder. We de-
signed and implemented an LDPC decoder which can be tuned for any LDPC code.
Moreover, once the synthesis has been performed, the decoder can also decode every
LDPC code of a given length and of a given minimum rate.

In the last chapter, a complete platform for LDPC codes and architecture studying
is presented. This platform is divided into two parts: a software part, which enables both
floating and fixed point simulation of any LDPC code, LDPC codes encoding using an
efficient low complexity encoder, and random generation of LDPC codes with a given

(c) Frédéric Guilloud, Télécom Paris - July 2004

INTRODUCTION 3

variable or checks degree distribution; the second part is made of a hardware generic
decoder implemented in a Virtex E 1000 FPGA from Xilinx, running on a Nallatech
evaluation board. This platform has already been used to validate some quantization
effects on the LDPC decoding performance, on the intrinsic information processing, and
finally on the λ−min algorithm as well as its implementation.

A conclusion and some perspectives are finally given at the end of this thesis.

(c) Frédéric Guilloud, Télécom Paris - July 2004

This page intentionally left blank.

Chapter 1

Channel coding

Summary:

This first chapter introduces the channel code decoding issue and the problem

of optimal code decoding in the case of linear block codes. First, the main

notations used in the thesis are presented and especially those related to the

graph representation of the linear block codes. Then the optimal decoding is

discussed: it is shown that under the cycle-free hypothesis, the optimal decod-

ing can be processed using an iterative algorithm. Finally, the performance of

error correcting codes is also discussed.

1.1 Optimal decoding

1.1.1 Shannon theorem for channel coding

Communication over noisy channels can be improved by the use of a channel code C, as
demonstrated by C. E. Shannon (Shannon 1948) for its famous channel coding theorem:

“Let a discrete channel have the capacity C and a discrete source the entropy
per second H. If H ≤ C there exists a coding system such that the output
of the source can be transmitted over the channel with an arbitrarily small
frequency of errors (or an arbitrarily small equivocation). If H > C it is
possible to encode the source so that the equivocation is less than H.”

This theorem states that below a maximum rate R, which is equal to the capacity of
the channel, it is possible to find error correction codes to achieve any given probability
of error. Since this theorem does not explain how to make such a code, it has been the
kick-off for a lot of activities in the coding theory community. When Shannon announced
his theory in the July and October issues of the Bell System Technical Journal in 1948, the
largest communications cable in operation at that time carried 1800 voice conversations.
Twenty-five years later, the highest capacity cable was carrying 230000 simultaneous

5 (c) Frédéric Guilloud, Télécom Paris - July 2004

6 1. CHANNEL CODING

Source ChannelEncoder C
K

K

x c ∈ C y

N N

N

ĉ

x̂

Decoder 1

Decoder 2

Figure 1.1: Basic scheme for channel code encoding/decoding.

conversations. Today a single optical fiber as thin as a human hair can carry more than
6.4 million conversations (Lucent 2004).

In the quest of capacity achieving codes, the performance of the codes is measured by
their gap to the capacity. For a given code, the smallest gap is obtained by an optimal
decoder: the maximum a-posteriori (MAP) decoder.

Before dealing with the optimal decoding, some notations within a model of the com-
munication scheme are presented hereafter.

1.1.2 Communication model

Figure 1.1 depicts a classical communication scheme. The source block delivers informa-
tion by the mean of sequences which are row vectors x of length K. The encoder block
delivers the codeword c of length N , which is the coded version of x. The code rate is
defined by the ratio R = K/N . The codeword c is sent over the channel and the vector
y is the received word: a distorted version of c.

The matched filters, the modulator and the demodulator, and the synchronization is
supposed to work perfectly. This is the reason why they do not appear on figure 1.1.
Hence, the channel is represented by a discrete time equivalent model.

The channel is a non-deterministic mapper between its input c and its output y. We
assume that y depends on c via a conditional probability density function (pdf) p(y|c).

We assume also that the channel is memoryless: p(y|c) =
N∏

n=1

p(yn|cn). For example,

if the channel is the binary-input additive white gaussian noise (BI-AWGN), and if the
modulation is a binary phased shift keying (BPSK) modulation with the 0 → +A, 1 →
−A mapping, we have:

p(yn|cn) =
1√

2πσ2
exp

(
−
(
yn − (−1)cn

√
Es

)2
2σ2

)
(1.1)

where Es = A2 is the energy of the symbol sent over the channel.

(c) Frédéric Guilloud, Télécom Paris - July 2004

1.1 Optimal decoding 7

On figure 1.1, two types of decoder are depicted: decoders of type 1 have to compute
the best estimation x̂ of the source word x; decoders of type 2 compute the best estimation
ĉ of the sent codeword c. In this case, x̂ is extracted from ĉ by a post processing (reverse
processing of the encoding) when the code is non-systematic. Both decoders can perform
two types of decoding:

Soft decoding: The output samples yn of the channel are not decided: they are the
inputs of the decoder. Using the channel specifications, the decoder computes the
probability for each yn to be each one of the code-alphabet element denoted ydi ∈
AC : {Pr (yn = ydi) , 0 ≤ i ≤ |C|}. Then, the decoding process will base its decisions
on the value of these probability. The output of the decoder is both the decided
word yd = (yd1, · · · , ydN), ydi ∈ AC , where AC denotes the alphabet of the code
symbols, and the probability of each decided symbol Pr (yn = ydn).

Hard decoding: The output samples yn of the channel are decided: each of them is
associated with the most probable code-alphabet element. Then a processing is
performed on yd = (yd1, · · · , ydN) to try to detect and correct the transmission
errors. This processing is made without using the knowledge of the probability set
{Pr (yn = ydi) , 0 ≤ i ≤ |C|}.

1.1.3 Optimal decoding

Optimal Word decoding

The aim of the decoder is to find the codeword ĉ which is the most probable to have been
sent over the channel, based on the channel output y, and on the knowledge of the code:

ĉ = arg
c′∈C

max Pr
(
c = c′|y

)
(1.2)

This is the word maximum a posteriori (W-MAP) decoder. The knowledge of the code
should appear in the conditional probabilities but will be omitted hereafter to simplify
the notations.

Using Bayes’ rule, the posterior probabilities Pr (c = c′|y) are expressed by:

Pr (c|y) =
p(y|c)Pr (c)

p(y)
=

p(y|c)Pr (c)∑
c∈C

p(y|c)Pr (c)
(1.3)

If the a priori probabilities Pr (c) are identical (the source is equally probable), (1.2) can
be expressed as:

ĉ = arg
c′∈C

max p(y|c = c′) (1.4)

which is named word maximum likelihood (W-ML) decoding. p(y|c) is called the likelihood
function when y is fixed and it is a conditional pdf when c is fixed.

(c) Frédéric Guilloud, Télécom Paris - July 2004

8 1. CHANNEL CODING

The only way to achieve an optimal W-MAP decoder is to test each codeword, i.e.
2K for a binary source for example.

The W-MAP and W-ML decoders are two equivalent and optimal decoders if the
source is equally probable. The Viterbi algorithm (VA) (Viterbi 1967; Forney 1973) is
an efficient W-ML decoder which eliminates many operations and leads to the best word
(frame) error rate (FER), providing that the code has a trellis representation and that
the source words are equally likely to happen.

Optimal Symbol Decoding

If the symbol (or bit) error rate (BER) is concerned, the bit maximum a posteriori (B-
MAP) decoder and the bit maximum likelihood (B-ML) decoders give an estimation of
the codeword symbols cn:

ĉn = arg
c′∈AC

max Pr
(
cn = c′|y

)
(1.5)

ĉn = arg
c′∈AC

max p(y|cn = c′) (1.6)

The BCJR algorithm (Bahl et al. 1974), also called Forward-Backward algorithm is
capable of computing a posteriori probabilities of the code symbols, providing that the
code has a trellis representation. It is a B-MAP decoder which leads to the best BER.
The Soft output Viterbi Algorithm (SOVA) (Hagenauer and Hoeher 1989) is a suboptimal
B-MAP algorithm which requires only a forward processing in the trellis.

1.2 Performance of error correcting codes

The performance of error correcting codes are compared with each other by referring to
their gap to the Shannon limit, as mentioned in section 1.1.1. This section aims at defining
exactly what is the Shannon limit, and what can be measured exactly when the limit to
the Shannon bound is referred to. It is important to know exactly what is measured since
a lot of “near Shannon limit” codes have been discovered now.

The results hereafter are classical in the information theory and may be found in a
lot of references. Yet, the first part is inspired by the work of (Schlegel 1997).

1.2.1 The Shannon bound

The Shannon capacity of the band-limited AWGN channel is given by (Shannon 1948):

C = B log2(1 + SNR) [bit/s] (1.7)

(c) Frédéric Guilloud, Télécom Paris - July 2004

1.2 Performance of error correcting codes 9

2−sided spectral density 1−sided spectral density

−B B B0

PN = B ×N0

N0N0/2 = σ2

Figure 1.2: AWGN noise power spectral density

Table 1.1: Reliable communications

RI < C reliable communication: lim
N→+∞

FER = 0.

RI > C unreliable communication.

where B is the channel bandwidth, and where SNR is the ratio between the transmitted

signal power PS and the channel noise power PN : SNR =
PS

PN
. Note that:

PN = N0B (1.8)

PS = RIEb (1.9)

where N0 is the one sided noise power spectrum density (figure 1.2) and where Eb is the
energy per information bit. The information rate RI is defined by:

RI =
R log2(M)

TS
[bit/s] (1.10)

where R is the code rate, M is the size of the constellation of the modulation and TS is
the symbol time duration.

Using equations (1.10) to (1.9) into (1.7) yields:

C = B log2(1 +
PS

PN
) [bit/s] (1.11)

= B log2(1 +
RIEb

N0B
) [bit/s] (1.12)

The Shannon theorem can be summarized as in table 1.1. But it can also be stated
using the spectral efficiency η:

η =
information rate

channel bandwidth
=

RI

B
(1.13)

Thus, the maximal information rate defines a maximum spectral efficiency ηmax:

ηmax =
RImax

B
(1.14)

(c) Frédéric Guilloud, Télécom Paris - July 2004

10 1. CHANNEL CODING

−2 0 2 4 6 8
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

E
b
/N

0
 [dB]

S
pe

ct
ra

l e
ffi

ci
en

cy
 η

 [b
it/

s/
H

z]
Unachievable region

(E
b
 / N

0
)

min
 = ln(2) = −1.59 dB

n ∼ 2.25 dB from the Shannon bound

Nominal point

E
b
/N

0
 = (2η−1)/η

Figure 1.3: The Shannon bound: the spectral efficiency versus Eb/N0 for AWGN channels

The maximal information rate is equal to the capacity (by definition). So, using (1.12),
it can be expressed by:

RImax = B log2(1 +
RImaxEb

N0B
) (1.15)

which yields to:

RImax

B
= log2(1 +

RImaxEb

N0B
) (1.16)

ηmax = log2(1 + ηmax
Eb

N0
) (1.17)(

Eb

N0

)
min

=
2ηmax − 1

ηmax
(1.18)

Equation (1.18) is called the Shannon bound and is plotted on figure 1.3, where an example
of a transmission scheme having a spectral efficiency of 4 [bit/Hz] at an Eb/N0 = 4 dB is
found to be about 2.25 dB away from the Shannon bound.

1.2.2 The AWGN capacity

The bandwidth efficiency is not very useful to study only the properties of error correcting
codes because it takes into account all the signals used in the transmission. According to
the Nyquist theorem, a real signal which has a bandwidth B can be sampled at a rate

(c) Frédéric Guilloud, Télécom Paris - July 2004

1.2 Performance of error correcting codes 11

−4 −2 0 2 4 6 8 10 12 14 16
0

0.5

1

1.5

2

2.5

3

3.5

4

Eb/N
0
 [dB]

C
ap

ac
ity

 C
d [b

it/
di

m
]

(Eb/N
0
)
min

 for rate−1/2 codes

E
b
/N

0
 = (22 Cd−1)/(2 Cd)

Unachievable region

n = 10 dB from capacity
Nominal point
rate−1/2 code

Figure 1.4: Capacity in [bit/dim] as a function of Eb/N0 for the AWGN channel. Example
of a 10 dB gap to capacity for a particular rate−1/2 code

of 2B samples per second without any inter-symbol interference. So the 2B samples are
“independent” and they are carried on 2B signal dimensions [dim] per second. The rate
per signal dimension is defined by RId = RI/(2B) [bit/dim] and its maximum by the
capacity Cd = C/(2B). Thus, (1.12) gives (Wozencraft and Jacobs 1965): 1

Cd =
B

2B
log2(1 +

2RIEb

2N0B
) (1.19)

=
1
2

log2(1 +
2RIdEb

N0
) (1.20)

=
1
2

log2(1 +
2CdEb

N0
) (1.21)

and thus:
Eb

N0
=

22Cd − 1
2Cd

(1.22)

This expression is depicted on figure 1.4, where an example of a 10 dB gap to capacity is
illustrated.

The capacity in expression (1.21) is by definition the maximization of the mutual
information between the input and the output of the AWGN channel over the input
channel probabilities. The maximum occurs for a gaussian distribution of the channel

1For a complex signal, the Nyquist theorem applies with B samples per second and hence: Cd =

log2(1 + Cd
Eb

N0
)

(c) Frédéric Guilloud, Télécom Paris - July 2004

12 1. CHANNEL CODING

−5 0 5 10 15 20 25
0

0.5

1

1.5

2

2.5

3

3.5

4

SNR (dB)

C
ap

ac
ity

 [b
it/

di
m

]
AWGN
BPSK
QPSK
4AM
8AM
8PSK
16QAM

−3 −2 −1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

0.5

1

1.5

2

2.5

3

3.5

4

Eb/No (dB)

C
ap

ac
ity

 [b
it/

di
m

]

AWGN
(Eb/No)

min
 = −1.59 dB

BPSK
QPSK
4AM
8AM
8PSK
16QAM

Figure 1.5: Constellation constrained capacity of an AWGN channel as a function of the
signal to noise ratio and of Eb/N0: SNR= 2R Eb

N0

input. So for the discrete-input gaussian-output channel, the capacity should not be
reached. A pseudo-capacity taking into account the discrete input coming from the binary
modulation can be derived so as to separate in the gap to C what is due to the code from
what is due to the discrete input. In (Ungerboeck 1982), a constellation-constrained
capacity of an AWGN channel is derived:

C∗
d = log2(M)− 1

M

M∑
k=1

E

{
log2

M∑
i=1

exp
(
−|a

k + w − ai|2 − |w|2

2σ2

)}
(1.23)

where the symbols of the input constellation are denoted by {a1, · · · , aM} and where E
denotes the expectation over the normally distributed noise variable w with variance σ2, if
w is real. Based on (Morelos-Zaragoza), these capacities have been numerically computed
and are plotted on figure 1.5.

1.3 Decoding of linear block codes

1.3.1 Definitions

A linear block code C defined over the Galois field GF (q) is a k-dimension vector subspace
of GF (q)N . The code C can be defined by the list of all the codewords:

C = {c(i), i ∈ {0, · · · , 2K − 1}}, (1.24)

which is unique. It can be alternatively defined by a vector base BC of K independent
codewords, {c(i), i ∈ {0, · · · ,K − 1}}, which is not unique.

The vector base BC has itself many useful and equivalent representations:

(c) Frédéric Guilloud, Télécom Paris - July 2004

1.3 Decoding of linear block codes 13

• its generator matrix G, whose rows are the vectors of the base BC (so G is an K×N

matrix): c ∈ C ⇔ ∃u ∈ GF (q)K/c = uG.

• its parity-check matrix H, which is a (N −K)×N matrix with elements in GF (q):
C = {c(i)/c(i).Ht = 0}. The parity check matrix is a concatenation of M = (N −K)
rows denoted by pcm. Each row pcm of H is a parity check equation on some bits
of the codeword. The bits implied in the parity-check pcm are the non-zero entries
of the m−th row of H. H is the orthogonal complement of C: GHt = 0.

• its Tanner graph (Tanner 1981). A Tanner graph is a bipartite graph. A bipartite
graph is a graph where the elements of a first class can be connected to the elements
of a second class, but not to the same class. In a Tanner graph for binary block
codes, the elements of the first class are the variable nodes denoted by vnn and the
elements of the second class are the check nodes denoted by cnm. Each variable node
vnn is associated with one code symbol cn and each check node cnm is associated
with the m-th parity check constraint pcm of H. A variable node vnn is connected
to a check node cnm if and only if H(m,n) has a non-zero entry.

Figure 1.6 resume the different ways of defining a block code with the example of the
hamming−[7, 4] code in GF (2).

The Tanner graph representation of error correcting codes is very useful since their
decoding algorithms can be explained by the exchange of information along the edges of
these graphs. The notations related to the Tanner and an important hypothesis will be
hereafter detailed.

Let N (m) be the set of bits which are implied in the m-th parity-check constraint:
N (m) = {cn|H(m,n) = 1}. Let N (m)\n denote the same set but with bit cn excluded.
Let also M(n) be the set of the parity check constraints in which the bit cn is implied:
M(n) = {pcm|H(m,n) = 1}. LetM(n)\m denote the same set but with parity check pcm

excluded. Hence cn is implied in |M(n)| parity check constraints. Let φn,k denotes the k-
th parity check constraint ofM(n) with bit cn excluded, k ∈ {1, · · · , |M(n)|}. Figure 1.7
resumes the different notations on a practical example. An important hypothesis related
to the Tanner graph representation is the cycle free hypothesis.

Hypothesis 1 (cycle free graph) The bipartite graph of the code C is cycle free. A
graph is cycle free if it contains no path which begins and ends at the same bit node
without going backward. When the graph is not cycle free, the minimum cycle length is
called the girth of the graph.

Figure 1.8 depicts an example of cycle free graph and an example of graph with girth 4
and 6. When a bipartite graph is cycle free, it has a tree representation: each variable
node and each check node appear exactly once in the tree.

(c) Frédéric Guilloud, Télécom Paris - July 2004

14 1. CHANNEL CODING

(a)

C =


0000000,0001011,0010110,0011101,

0100111,0101100,0110001,0111010,

1000101,1001110,1010011,1011000,

1100010,1101001,1110100,1111111



(b) G =


1 0 0 0 1 0 1
0 1 0 0 1 1 1
0 0 1 0 1 1 0
0 0 0 1 0 1 1

 (c) H =

 1 1 1 0 1 0 0
0 1 1 1 0 1 0
1 1 0 1 0 0 1



(d)
vn1 vn2 vn3 vn4 vn5 vn6 vn7

cn1 cn3cn2

Figure 1.6: Different ways of describing the same code. Example of the hamming−[7, 4]
code in GF (2): (a) the list of the codewords ; (b) an example of a generator matrix ; (c)
an example and of a parity check matrix ; (d) the bipartite graph based on the parity
check matrix of (c).

(c) Frédéric Guilloud, Télécom Paris - July 2004

1.3 Decoding of linear block codes 15

φ3,1 = {vn1 ⊕ vn2}

vn1

vn6 vn8 vn12 vn14 vn16

vn2

cn1

vn3

cn2

vn4 vn5

cn10cn9cn8cn7cn6cn5cn4cn3

vn7

vn10
vn9 vn11 vn13 vn15 vn17 vn21

vn20vn18
vn19

N (3)
= {vn2, vn6, vn7}

M(3)
= {cn1, cn5, cn6}

N (2)\1
= {vn4, vn5}

M(5)\2
= {cn9, cn10}

φ3,2 = {vn10 ⊕ vn11} φ3,3 = {vn12 ⊕ vn13}

Figure 1.7: The notations related to the bipartite graph of a code.

1.3.2 Optimal decoding of binary block codes

As mentioned is section 1.1.3, the best possible FER is reached using the VA: it requires a
trellis representation of the code. Although block codes have a trellis representation (Bahl
et al. 1974; Wolf 1978), the complexity of their trellis increases exponentially with the
size of the code. Since such representations lead to unrealistic algorithm implementations,
many suboptimal decoding algorithms have been proposed to reduce the codewords set
to be compared to.

In this thesis, only the optimal symbol error rate will be studied. Similarly, it could
be reached using the BCJR algorithm with a trellis representation of the code. But
here again, the trellis would be too complex for codes with many parity-check equations.
Hereafter, we derive equation (1.5) inspired by (Barry 2001), for binary block codes. So
the symbols will equivalently be named bits.

ĉn = 0 if Pr (cn = 0|y) > Pr (cn = 1|y)
ĉn = 1 if Pr (cn = 0|y) < Pr (cn = 1|y)

(1.25)

The received word y = (y1, · · · , yN) can be split into two sets: yn and (yn′ 6=n). Then the

(c) Frédéric Guilloud, Télécom Paris - July 2004

16 1. CHANNEL CODING

(a)

cn1 cn3cn2

vn1 vn2 vn3 vn4 vn5 vn6

vn5 vn6

vn4

cn2

cn3

vn1

vn2 vn3

cn1

(b)

cn1 cn3cn2

vn1 vn2 vn3 vn4 vn5 vn6

vn1

vn2

cn1 cn2

vn4

cn3

vn5 vn6

vn3 vn3

(c)

vn1 vn2 vn3 vn4

cn1 cn3cn2

vn1

cn1

vn2

cn2

cn3

vn4

vn3

cn2

Figure 1.8: Some graph (left side) and trees (right side) (a) without cycles, (b) with a cycle
of length 4, (c) with a cycle of length 6. Cycles are depicted with solid lines, whereas others
connections are depicted in dashed lines. The dotted lines are links between identical
nodes.

(c) Frédéric Guilloud, Télécom Paris - July 2004

1.3 Decoding of linear block codes 17

probabilities from (1.25) can be modified as in the following:

Pr (cn|y) = Pr
(
cn|yn, yn′ 6=n

)
(1.26)

=
p(cn, yn, yn′ 6=n)

p(yn, yn′ 6=n)
(1.27)

=
p(yn|cn, yn′ 6=n)p(cn, yn′ 6=n)

p(yn|yn′ 6=n)p(yn′ 6=n)
(1.28)

=
p(yn|cn)Pr

(
cn|yn′ 6=n

)
p(yn|yn′ 6=n)

(1.29)

because given cn, yn is independent of yn′ 6=n

Log-Likelihood Ratio

From equations (1.25), we have:

ĉn = 0 ⇒ Pr (cn = 0|y)
Pr (cn = 1|y)

> 1⇒ log
Pr (cn = 0|y)
Pr (cn = 1|y)

> 0 (1.30)

ĉn = 1 ⇒ Pr (cn = 0|y)
Pr (cn = 1|y)

< 1⇒ log
Pr (cn = 0|y)
Pr (cn = 1|y)

< 0 (1.31)

So an equivalent decision rule for optimal BER for binary block codes is to calculate the
sign of:

log
Pr (cn = 0|y)
Pr (cn = 1|y)

(1.32)

which give, using (1.30):

log
Pr (cn = 0|y)
Pr (cn = 1|y)︸ ︷︷ ︸

Tn

= log
p(yn|cn = 0)
p(yn|cn = 1)︸ ︷︷ ︸

In

+ log
Pr
(
cn = 0|yn′ 6=n

)
Pr
(
cn = 1|yn′ 6=n

)︸ ︷︷ ︸
En

(1.33)

where

• Tn is the overall information of the bit n. It is the logarithm of the ratio between
the two a-posteriori probabilities on the bit n. The sign of Tn enables the estimation
of cn and the magnitude of Tn is the reliability of the decision.

• In is the intrinsic information of the bit n. It is related to the received value yn

and to the channel parameters. Table 1.2 lists some examples for different channel
models when the BPSK modulation is used.

• En is the extrinsic information of the bit n. It is the improvement of information we
gain by considering the fact that the coded symbols respect the parity check con-
straints. This improvement does not necessarily mean an increase of the reliability
|Tn|.

(c) Frédéric Guilloud, Télécom Paris - July 2004

18 1. CHANNEL CODING

Table 1.2: Channel soft value for different channel parameters in the case of a BPSK
modulation.

Channel Parameter In

Gaussian noise variance σ2 2Esyn/σ2

Binary Symmetric cross-over probability p yn log((1− p)/p)
Laplace noise ν |y+A|−|y−A|

ν

Optimal decoding using cycle free hypothesis

The probability that cn = 1 is the probability that the parity of all the other bits implied
in the parity check is equal to one, so that the parity check equation could be satisfied
(even parity).

Pr
(
cn = 1|yn′ 6=n

)
= Pr

(
φn,1 = 1, · · · , φn,|M(n)| = 1|yn′ 6=n

)
(1.34)

Under the assumption of hypothesis 1, the events ”φn,k = 1” for k ∈ {1, · · · , |M(n)|}
are conditionally independent given yn′ 6=n. The same statement holds for the bits im-
plied in the parity checks φn,k. The interpretation of this independence in the graph is
that for cycle free graphs, the parity checks constraints φn,k are in disjointed trees. So
assuming hypothesis 1 and combining equation (1.34) with the expression of the extrinsic
information of bit n yield:

En = log

|M(n)|∏
k=1

Pr
(
φn,k = 0|yn′ 6=n

)
|M(n)|∏

k=1

Pr
(
φn,k = 1|yn′ 6=n

) (1.35)

=
|M(n)|∑

k=1

log
Pr
(
φn,k = 0|yn′ 6=n

)
Pr
(
φn,k = 1|yn′ 6=n

)︸ ︷︷ ︸
En,k

(1.36)

En is then the sum over k of the En,k which are the information given by each of the
parity-check constraints ∈ M(n) on the bit cn. Let cn,k,l be the l-th bit implied in the
parity check φn,k of degree |φn,k|. Then, applying equation (B.29) of appendix B.2 to the
parity check φn,k yields to:

En,k = 2 tanh−1

|φn,k|∏
l=1

tanh
1
2

log
Pr
(
cn,k,l = 0|yn′ 6=n

)
Pr
(
cn,k,l = 1|yn′ 6=n

) (1.37)

(c) Frédéric Guilloud, Télécom Paris - July 2004

1.3 Decoding of linear block codes 19

Hence, the total information of the bit cn is completely derived, provided the derivation

of log
Pr(cn,k,l=0|yn′ 6=n)
Pr(cn,k,l=1|yn′ 6=n) by:

Tn = In +
|M(n)|∑

k=1

En,k (1.38)

1.3.3 The iterative algorithm

The derivation of log
Pr(cn,k,l=0|yn′ 6=n)
Pr(cn,k,l=1|yn′ 6=n) of equation (1.37) is in fact the same problem as

the derivation of Tn, but considering the bits cn,k,l at the top of the subtrees resulting
from the erasure of bit cn. This recursion has to be processed until the leaves of the tree.

A summary of the operations using the practical example of figure 1.7 is depicted on
figure 1.9, where:

En,m = f(Tn,m′) = 2 tanh−1
∏

m′∈N (m)\m

tanh
Tn,m′

2
(1.39)

and where Tn,m denotes the information which is sent by a variable node vnn to its
connected check node cnm. Note also that:

Tn,m = Tn − En,m (1.40)

The partial results Tn,m and En,m are called messages, since they are transmitted from
nodes to nodes.

In this example, the total information T1 of the bit node vn1 is calculated in 4 steps,
corresponding to the depth between the leaves of the tree and the variable node consid-
ered. For the calculation of T3, some partial results of the calculation of T1 are reused.
The others are not replaced by different results but by messages in the opposite way.
This means that the calculation of T1 and T3, and by generalization all the Tn, can be
processed in parallel: the cycle free hypothesis let them be all independent.

Then, if one node of the graph is considered, as the N variables are processed at the
same time, this particular node will be implied in all the steps (in fact the even ones for
a variable node, and the odd ones for check nodes). But a complex problem would be:
when should node vnn or cnm process the information En,m or Tn,m ?

In order to simplify the problem, a general processing behaviour for the nodes is
to let them process all the messages all the time, i.e. at each time when one or more
incoming messages on the variable nodes vnn (resp. check node cnm) has changed, the
variable node (resp. check node) process all the possible outgoing messages. The nodes
behave like independent local processors: they don’t have to process conditionally to the
processing of other nodes. The check (resp. variable) node processing is also called check

(c) Frédéric Guilloud, Télécom Paris - July 2004

20 1. CHANNEL CODING

E1,1 E1,2

E3,5 E3,6

T3,1

T13,6 = I13

T13,6
T12,6

E1,2 = f(T2,1, T3,1)

E3,6 = f(T12,6, T13,6)

T1 = I1 + E1,1 + E1,2

T12,6 = I12

T3,1 = I3 + E3,5 + E3,6

T2,1

(a)

(b)

E1,1 E1,2

E3,5

T13,6
T12,6

T2,1

E3,1

T3,1

T1,1 = I1 + E1,2 = T1 − E1,1

E3,6

T3 = I3 + E3,1 + E3,5 + E3,6

= T3 − E3,1

step 1

step 2

step 3

step 4

step 0 (init)

1

2 3

10 11 12 13

1 2

5 6

1

1 2

2 3

12 13

5 6

Figure 1.9: Summary of operations on the graph of figure 1.7 for calculating (a) T1 and
(b) T3.

(c) Frédéric Guilloud, Télécom Paris - July 2004

1.4 Conclusion 21

(resp. variable) node update. The update rules are repeated until the total information
of each bit is computed. Each repetition is an iteration from the node point of view. It
is important to notice that an iteration exist here from the processor point of view. The
scheduling of the different processors does not affect the convergence of the algorithm.

The update rules are depicted on figure 1.10: the check node processors compute and
output check-to-bit messages from the incoming bit-to-check messages, and vice versa for
variable node processors. There are 2 possible cases, whether the bit-to-check messages
is the Tn,m information or the Tn information. In the first case, the total information In

is not calculated:

Iterative Algorithm 1 (BP) Propagation of Tn,m messages from variable node vnn to
check node cnm

Initialization: E(0)
n,m = 0

Variable node update rule: T (i)
n,m = In +

∑
m′∈M(n)\m

E
(i−1)
n,m′

Check node update rule: E(i)
n,m = 2 tanh−1

∏
n′∈N (m)\n

tanh
T

(i)
n′,m

2

Last Variable node update rule: Tn = In +
∑

m∈M(n)

E(i−1)
n,m

In the second case, the information En,m have to be subtracted in the check node processor
to the message Tn coming from the variable node vnn, but the variable node processors
have a more simple task.

Iterative Algorithm 2 (BP) Propagation of Tn messages from variable node vnn.
Initialization: E(0)

n,m = 0
Variable node update rule: T (i)

n = In +
∑

m∈M(n)

E(i−1)
n,m

Check node update rule: E(i)
n,m = 2 tanh−1

∏
n′∈N (m)\n

tanh
T

(i)
n′ − E

(i−1)
n′,m

2

1.4 Conclusion

Optimal decoding of error correcting codes is possible using an simple iterative algorithm
called belief propagation. The only hypothesis to assume is that the graph of the code
should not have any cycle. But such an hypothesis is hard to combine with good error
correcting codes, i.e. which are closed to the Shannon bound. LDPC codes are a class of
block codes which can be decoded with the belief propagation algorithm, as described in
the next chapter.

(c) Frédéric Guilloud, Télécom Paris - July 2004

22 1. CHANNEL CODING

Propagation of Tn,m messages from variables vnn to checks cnm

Check node update rule Variable node update rule

T
(i)
n|N (m)|,m

cnm

T
(i)
n1,m

T
(i)
nl,m

E
(i)
n1,m

E
(i)
n|N (m)|,m

E
(i)
nl,mcnm vnn

E
(i)
n,m1

E
(i)
n,m|M(n)|

E
(i)
n,ml

T
(i)
n|M(n)|,m

vnn

T
(i)
n1,m

T
(i)
nl,m

E(i)
n,m = 2 tanh−1

∏
n′∈N (m)\n

tanh
T

(i)
n′,m

2
T (i)

n,m = In +
∑

m′∈M(n)\m

E
(i−1)
n,m′

Propagation of Tn messages from variables vnn to checks cnm

Check node update rule Variable node update rule

cnm

T
(i)
n1

T
(i)
n|N (m)|

T
(i)
nl

E
(i)
n1,m

E
(i)
n|N (m)|,m

E
(i)
nl,mcnm vnn

E
(i)
n,m1

E
(i)
n,m|M(n)|

E
(i)
n,ml vnn

T
(i)
n

T
(i)
n

T
(i)
n

E(i)
n,m = 2 tanh−1

∏
n′∈N (m)\n

tanh
T

(i)
n′ − E

(i−1)
n′,m

2
T (i)

n = In +
∑

m∈M(n)

E(i−1)
n,m

Figure 1.10: The update rules of the check node and variable node processors at the ith
iteration.

(c) Frédéric Guilloud, Télécom Paris - July 2004

Chapter 2

Low Density Parity Check codes

Summary:

In this chapter, a brief history of LDPC codes is proposed. LDPC codes en-

compass a wide range of codes, defined by a wide range of parameters. The

design of LDPC codes consist in finding a specific set of parameters which

suit well to a particular communication scheme. Once the set of parameters

is designed, the constructions of a particular parity-check matrix can be built,

either by the means of random constructions, or using deterministic construc-

tions. The last 2 sections of this chapter deal with the performance of LDPC

codes under iterative decoding with the different possible schedules.

2.1 A bit of History

Low-density parity-check (LDPC) codes were invented by R. G. Gallager (Gallager 1963;
Gallager 1962) in 1962. He discovered an iterative decoding algorithm which he applied to
a new class of codes. He named these codes low-density parity-check (LDPC) codes since
the parity-check matrices had to be sparse to perform well. Yet, LDPC codes have been
ignored for a long time due mainly to the requirement of high complexity computation,
if very long codes are considered.

In 1993, C. Berrou et. al. invented the turbo codes (Berrou, Glavieux, and Thitima-
jshima 1993) and their associated iterative decoding algorithm. The remarkable perfor-
mance observed with the turbo codes raised many questions and much interest toward
iterative techniques.

In 1995, D. J. C. MacKay and R. M. Neal (MacKay and Neal 1995; MacKay and Neal
1996; Mackay 1999) rediscovered the LDPC codes, and set up a link between their itera-
tive algorithm to the Pearl’s belief algorithm (Pearl 1988), from the artificial intelligence
community (bayesian networks). At the same time, M. Sipser and D. A. Spielman (Sipser
and Spielman 1996) used the first decoding algorithm of R. G. Gallager (algorithm A) to
decode expander codes.

23 (c) Frédéric Guilloud, Télécom Paris - July 2004

24 2. LOW DENSITY PARITY CHECK CODES

RA GLD (Kalman Filtering)

State Spaces

(BCJR)
Trellises

LDPC

consituent code
block

Turbo Codes

consituent code
convolutional

(belief propagation)
Tanner Graphs

without hidden state

(sum-product)
Factor graphs

with hidden states

Figure 2.1: 3 classical decoding algorithms as a particular instance of the sum-product
algorithm in a factor graph.

The articles of MacKay and Neal have been the kick off of a great work in the field
of LDPC codes. Most of the main articles related to the LDPC codes are gathered in a
special issue of the IEEE’s Transactions on Information Theory (IEEE 2001): irregular
codes, density evolution, design of capacity approaching codes, ...

Meanwhile, turbo decoding of turbo codes is shown to be an instance of the Pearl’s
belief algorithm by McEliece et. al. (McEliece, MacKay, and Cheng 1998), collecting
under the same model (belief propagation) the last 2 best classes of codes. Graphs are
becoming a standard representation of error correcting codes: F. R. Kschischang denotes
by factor graphs (Kschischang and Frey 1998) a wide class of graph associated with the
sum-product algorithm, which aim at describing many different algorithms by the same
formalism (see figure 2.1). This work have its origin in the work of Tanner (Tanner 1981),
and N. Wiberg et. al. (Wiberg 1996; Wiberg, Loegliger, and Kötter 1995).

Hence, LDPC codes are at the confluence of two major revolutions in the channel cod-
ing community: the graph-based code-description, and the iterative decoding techniques.

2.2 Classes of LDPC codes

R. Gallager (Gallager 1962) defined an (N, j, k) LDPC codes as a block code of length N

having a small fixed number (j) of ones in each column of the parity check H, and a small
fixed number (k) of ones in each rows of H. This class of codes is then to be decoded by
the iterative algorithm described in chapter 1 (see section 1.3.3).

This algorithm computes exact a posteriori probabilities, provided that the Tanner
graph of the code is cycle free (see hypothesis 1 page 13). Generally, LDPC codes do
have cycles (Etzion, Trachtenberg, and Vardy 1999). The sparseness of the parity check

(c) Frédéric Guilloud, Télécom Paris - July 2004

2.2 Classes of LDPC codes 25

matrix aims at reducing the number of cycles and at increasing the size of the cycles.
Moreover, as the length N of the code increases, the cycle free hypothesis becomes more
and more realistic. The iterative algorithm is processed on these graphs. Although it is
not optimal, it performs quite well.

Since then, LDPC codes class have been enlarged to all sparse parity check matrices,
thus creating a very wide class of codes, including the extension to codes in GF (q) (Davey
and MacKay 1998) and irregular LDPC codes (Luby et al. 2001).

Irregularity

In the Gallager’s original LDPC code design, there is a fixed number of ones in both the
rows (k) and the columns (j) of the parity check matrix: it means that each bit is implied
in j parity check constraints and that each parity check constraint is the exclusive-OR
(XOR) of k bits. This class of codes is referred to as regular LDPC codes.

On the contrary, irregular LDPC codes do not have a constant number of non-zero
entries in the rows or in the columns of H. They are specified by the distribution degree
of the bit λ(x) and of the parity check constraints ρ(x), using the notations of (Luby et al.
1997), where:

λ(x) =
dv∑
i=2

λix
i−1 (2.1)

ρ(x) =
dc∑

i=2

ρix
i−1 (2.2)

λi (resp. ρi) denotes the proportion of non-zero entries of H which belongs to the columns
(resp. rows) of H of weight i. Note that by definition, λ(1) = ρ(1) = 1. If Γ denotes the
number of non-zero entries in H, λiΓ is the total number of ones in the columns of weight
i. So Γλi/i is the total number of columns of weight i, and

∑
i Γλi/i is the total number

of columns in H. So the proportion of the columns of weight i is:

λ̃i =
Γλi/i∑
j Γλj/j

=
λi/i∑
j λj/j

(2.3)

Similarly, denoting by ρ̃i the proportion of rows having weight i:

ρ̃i =
ρi/i∑
j ρj/j

(2.4)

Table 2.1 lists some classes of LDPC codes. For example, the original LDPC code of
R. Gallager (Gallager 1963) which is a regular (N = 20, j = 3, k = 4) LDPC code is in
the class L2(20, 3, 4) = L2(20, x2, x3).

(c) Frédéric Guilloud, Télécom Paris - July 2004

26 2. LOW DENSITY PARITY CHECK CODES

Table 2.1: Different classes of LDPC codes

Notation Description
Lq LDPC codes in GF (q)
L2 binary LDPC codes

Lq(M,N) LDPC codes in GF (q) of length N and of rate 1−M/N .
Lq(N,λ, ρ) LDPC of length N and degree distribution defined by λ(x)

and ρ(x).
Lq(N, j, k) regular LDPC code in GF (q) of length N and with λ(x) =

xj−1, ρ(x) = xk−1.

Code rate

The rate R of LDPC codes is defined by R ≥ Rd
∆= 1− M

N where Rs is the design code rate
(Gallager 1962). Rd = R if the parity check matrix has full rank. The authors of (Miller
and Cohen 2003) have shown that as N increases, the parity-check matrix is almost sure
to be full rank. Hereafter, we will assume that R = Rd unless the contrary is mentioned.
The rate R is then linked to the other parameters of the class by:

R = 1−
∑

i ρi/i∑
i λi/i

= 1− j

k
(2.5)

Note that in general, for random constructions, when j is odd:

R = 1− M

N
(2.6)

and when j is even:

R = 1− M − 1
N

(2.7)

2.3 Optimization of LDPC codes

The bounds and performance of LDPC codes are derived from their parameters set. The
wide number of independent parameters enables to tune them so as to fit some external
constraint, as a particular channel, for example. Two algorithms can be used to design
a class of irregular LDPC codes under some channel constraints: the density evolution
algorithm (Richardson, Shokrollahi, and Urbanke 2001) and the extrinsic information
transfer (EXIT) charts (ten Brink 1999).

Density evolution algorithm

Richardson et al. (Richardson, Shokrollahi, and Urbanke 2001) designed capacity ap-
proaching irregular codes with the density evolution (DE) algorithm. This algorithm

(c) Frédéric Guilloud, Télécom Paris - July 2004

2.3 Optimization of LDPC codes 27

tracks the probability density function (pdf) of the messages through the graph nodes
under the assumption that the cycle free hypothesis is verified. It is a kind of belief prop-
agation algorithm with pdf messages instead of log likelihood ratios messages. Density
evolution is processed on the asymptotical performance of the class of LDPC codes. It
means that a infinite number of iterations is processed on a infinite code-length LDPC
code: if the length of the code tends to infinity, the probability that a randomly chosen
node belongs to a cycle of a given length tends towards zero.

Usually, either the channel threshold or the code rate are optimized under the con-
straints of the degree distributions and of the SNR. The threshold of the channel is the
value of the channel parameter (see table 1.2) above which the probability tends towards
zero if the iterations are infinite (and the code length also). Optimization tries to lower
the threshold or to higher the rate as best as possible.

In (Chung et al. 2001) for example, the authors designed a rate−1/2 irregular LDPC
codes for binary-input AWGN channels that approach the Shannon limit very closely (up
to 0.0045 dB). Optimization based on DE algorithm are often processed by the mean
of differential evolution algorithm when optimizations are non-linear, as for example in
(Hou, Siegel, and Milstein 2001) where the authors optimize an irregular LDPC code
for uncorrelated flat Rayleigh fading channels. The Gaussian approximation (Chung,
Richardson, and Urbanke 2001) in the DE algorithm can also be used: the probability
density function of the messages are assumed to be Gaussian and the only parameters
that has to be tracked in the nodes is the mean.

Hence, optimization for LDPC codes can be made under various type of channels, and
prove to be good alternatives to actual solutions for these channels:

• partial response channels (Li et al. 2002), (Thangaraj and McLaughlin 2002) (with
gaussian approximation), (Varnica and Kavcic 2003);

• frequency selective channel (OFDM, with Gaussian approximation) (Mannoni, De-
clercq, and Gelle 2002);

• multiple access channel (2 users, Gaussian approximation) (Amraoui, Dusad, and
Urbanke 2002) and joint multiple user decoding (de Baynast and Declercq 2002);

• a joint AWGN and Rayleigh fading channel approach, with Gaussian approximation
(Lehmann and Maggio 2003);

• bandwidth efficient modulation (Hou et al. 2003);

• minimum shift keying modulations (Narayanan, Altunbas, and Narayanaswami 2003);

• a multiple input multiple output channel with an OFDM modulation (Lu, Yue, and
Wang 2004).

(c) Frédéric Guilloud, Télécom Paris - July 2004

28 2. LOW DENSITY PARITY CHECK CODES

EXIT chart

Extrinsic information transfer (EXIT) charts (ten Brink 1999) are 2D graphs on which are
superposed the mutual information transfers through the 2 constituent codes of a turbo-
code. EXIT charts have been transposed to the LDPC code optimization (Ardakani and
Kschischang 2002; Narayanan, Wang, and Yue 2002; Ardakani, Chan, and Kschischang
2003).

2.4 Constructions of LDPC codes

By constructions of LDPC codes, we mean the construction, or design, of a particular
LDPC parity check matrix H. The design of H is the moment when the asymptotical
constraints (the parameters of the class you designed, like the degree distribution, the
rate) have to meet the practical constraints (finite dimension, girths).

Hereafter are described some recipes taking into account some practical constraints.
Two techniques exist in the literature: random and deterministic ones. The design com-
promise is that for increasing the girth, the sparseness has to be decreased yielding poor
code performance due to a low minimum distance. On the contrary, for high minimum
distance, the sparseness has to be increased yielding the creation of low-length girth, due
to the fact that H dimensions are finite, and thus, yielding a poor convergence of the
belief propagation algorithm.

2.4.1 Random based construction

The first constructions of LDPC codes were random ones (Gallager 1962; MacKay and
Neal 1995; MacKay and Neal 1996; Mackay 1999). The parity check matrix is the concate-
nation and/or superposition of sub-matrices; these sub-matrices are created by processing
some permutations on a particular (random or not) sub-matrix which usually has a col-
umn weight of 1. R. Gallager’s construction for example is based on a short matrix H0.
Then j matrices πi(H0) are vertically stacked on H0, where πi(H0) denotes a column
permutation of H0 (see figure 2.2).

Regular and irregular codes can be also constructed like in (Luby et al. 2001) where
the 2 sets of nodes are created, each node appearing as many times as its degree’s value.
Then a one to one association is randomly mapped between the nodes of the 2 sets, like
illustrated on figure 2.3. In (MacKay, Wilson, and Davey 1999), D. MacKay compares
random constructions of regular and irregular LDPC codes: small girth have to be avoided,
especially between low weight variables.

All the constructions described above should be constrained by the girth’s value. Yet,
increasing the girth from 4 to 6 and above is not trivial; some random constructions
specifically addresses this issue. In (Campello and Modha 2001), the authors generate a
parity check matrix optimizing the length of the girth or the rate of the code when M is

(c) Frédéric Guilloud, Télécom Paris - July 2004

2.4 Constructions of LDPC codes 29

id id id id

π1 π2 π5 π4

π3 π4 π2π1

=

π1 = {1, 3, 2} π4 = {3, 1, 2}
π5 = {3, 2, 1}

π3 = {2, 3, 1}
π2 = {2, 1, 3}

(b)

= + +

H H0 π1(H0) π2(H0)

(c)

π1 = {9, 8, 4, 1, 7, 2, 6, 5, 3}
π2 = {5, 4, 6, 8, 2, 9, 1, 3, 7}

= π1 = {1, 5, 9, 10, 11, 2, 6, 3, 7, 12, 4, 8}
π2(H0) =

π1(H0) =

H0 =

(a)

π2 = {1, 5, 9, 6, 7, 10, 2, 3, 11, 4, 8, 12}

Figure 2.2: Some random constructions of regular LDPC parity check matrices based
on Gallager’s (a) and MacKay’s constructions (b,c) (MacKay, Wilson, and Davey 1999).
Example of a regular (3, 4) LDPC code of length N = 12. Girths of length 4 have not been
avoided. The permutations can be either columns permutation (a,b) or rows permutations
(c).

(c) Frédéric Guilloud, Télécom Paris - July 2004

30 2. LOW DENSITY PARITY CHECK CODES

cn1 cn2 cn3 cn4 cn5 cn6 cn7 cn8

8 check nodes of degree 5

v
n

1
0

v
n

1
1

v
n

1
2

v
n

9

v
n

1

v
n

2

v
n

3

v
n

4

v
n

5

v
n

6

v
n

7

v
n

8

H =

of degree 3 of degree 4
8 variable nodes 4 variable nodes

Random Mapping

Figure 2.3: Random construction based on (Luby et al. 2001) of an irregular LDPC code

of size N = 12 and with (λ, ρ) = (3
5x2 + 2

5x3, x4). There are λ̃3 = 12
3/5
3

3/5
3

+
2/5
4

= 8 variable

nodes of weight 3 and λ̃4 = 12
2/5
4

3/5
3

+
2/5
4

= 4 variable nodes of weight 4. The variable nodes

are connected to M = 12
1
5

3/5
3

+
2/5
4

= 8 parity check nodes of weight 5. The mapping is

randomly chosen. The size of the example can not lead to a length-4 girth free design.

(c) Frédéric Guilloud, Télécom Paris - July 2004

2.4 Constructions of LDPC codes 31

fixed (N increases). In (Mao and Banihashemi 2001b), the authors study the histogram
of cycles length of randomly generated LDPC codes, based on MacKay’s construction 2
A and they select the best cycle-length histogram shape. In (Hu, Eleftheriou, and Arnold
2001) the graph of the LDPC code is generated edge by edge so as to avoid small girths.
Regular (N, j = 2, k) LDPC codes are built in (Zhang and Moura 2003) with girths of
size 12, 16 and 20 on a very structured graph. The girth is very high but each bit is
only protected by 2 parity check constraints. An irregular design of a given (λ, ρ) profile
is proposed in (Sankaranarayanan, Vasic, and Kurtas 2003) based on a regular LDPC
code. The parity check matrix is modified so as to obtain the given profile. The authors
of (Djurdjevic, Lin, and Abdel-Ghaffar 2003) use a trellis-based algorithm to design an
LDPC code with a high girth. Not all the small cycles have the same influence on the
performance of the code: in (Tian et al. 2003) only the penalizing small length cycles are
removed.

Another original construction in (Prabhakar and Narayanan 2002), implemented in
(Verdier, Declercq, and J.-M. 2002), is to use linear congruent sequences to generate the
position of non-zero entries in the parity check matrix. The advantage is that the memory
required to save H inside the decoder is significantly reduced.

2.4.2 Deterministic based construction

Random constructions don’t have too many constraints: they can fit quite well to the
parameters of the desired class. The problem is that they do not guarantee that the girth
will be small enough. So either post-processing or more constraints are added for the
random design, yielding sometimes much complexity.

To circumvent the girth problem, deterministic constructions have been developed.
Moreover, explicit constructions can lead to easier encoding, and can be also easier to
handle in hardware. 2 branches in combinatorial mathematics are involved in such de-
signs: finite geometry and Balanced Incomplete Block Design’s (BIBSs). They seem to be
more efficient than previous algebraic constructions which was based on expander graphs
(Lafferty and Rockmore 2000; Rosenthal and Vontobel 2001; MacKay and Postol 2003).
In (MacKay and Davey 2000) the authors designed high rate LDPC codes based on Steiner
systems. Their conclusion was that the minimum distance was not high enough and that
difference set cyclic (DSC) codes should outperform them, as in (Lucas et al. 2000) where
they are combined with the one step majority logic decoding. In (Kou, Lin, and Fos-
sorier 2001), the authors present LDPC code constructions based on finite geometry, like
in (Johnson and Weller 2003a) for constructing very high rate LDPC codes. Balanced
incomplete block designs (BIBDs) have also been studied in (Ammar et al. 2002; Vasic
2002; Johnson and Weller 2003b; Vasic, Djordjevic, and Kostuk 2003).

The major drawback for deterministic constructions of LDPC codes is that they exist
with a few combinations of parameters. So it may be difficult to find one that fits the
specifications of a given system.

(c) Frédéric Guilloud, Télécom Paris - July 2004

32 2. LOW DENSITY PARITY CHECK CODES

0

M
M1

M −M1

(a)

N −M M

M
A

C D

B

E

N

g

N −M g

M − g

M − g

0

T(b)

Figure 2.4: Shape of parity check matrices for efficient encoding, by MacKay et al.
(MacKay, Wilson, and Davey 1999) (a) and Richardson et. al. (Richardson and Ur-
banke 2001) (b)

2.5 Encoding of LDPC codes

The weak point of LDPC codes is their encoding process: a sparse parity check matrix does
not have necessarily a sparse generator matrix. Moreover, it appears to be particularly
dense. So encoding by a G multiplication yields to an N2 complexity processing. A first
encoding scheme is to deal with lower triangular shape parity check matrices. The other
encoding schemes are mainly to deal with cyclic parity check matrices.

2.5.1 Lower-triangular shape based encoding

A first approach in (MacKay, Wilson, and Davey 1999) is to create a parity check matrix
with an almost lower-triangular shape, as depicted on figure 2.4-(a). The performance is
a little bit affected by the lower-triangular shape constraint. Instead of computing the
product c = uGt, the equation H.ct = 0 is solved, where c is the unknown variable. The
encoding is systematic:

{c1, · · · , cN−M} = {u1, · · · , uN−M} (2.8)

The next M1 ci are recursively computed by using the lower-triangular shape:

ci = −pci × (c1, · · · , ci−1)
t, for i ∈ {N −M + 1, · · · , N −M + M1} (2.9)

(c) Frédéric Guilloud, Télécom Paris - July 2004

2.5 Encoding of LDPC codes 33

The last M −M1 ci, i ∈ {N −M + M1 + 1, · · · , N} have to be solved without reduced
complexity. Thus, the higher M1 is, the less complex the encoding is.

In (Richardson and Urbanke 2001) T. Richardson and R. Urbanke propose an efficient
encoding of a parity check matrix H. It is based on the shape depicted on figure 2.4-(b).
They also propose some “greedy” algorithms which transform any parity check matrix H

into an equivalent parity check matrix H ′ using columns and rows permutations, mini-
mizing g. So H ′ is still sparse. The encoding complexity scales in O(N + g2) where g is
a small fraction of N .

As a particular case the authors of (Bond, Hui, and Schmidt 2000) and (Hu, Elefthe-
riou, and Arnold 2001) construct parity check matrices of the same shape with g = 0.

2.5.2 Other encoding schemes

Iterative encoding

In (Haley, Grant, and Buetefuer 2002), the authors derived a class of parity check codes
which can be iteratively encoded using the same graph-based algorithm as the decoder.
But for irregular cases, the codes does not seem to perform as well as random ones.

Low-density generator matrices

The generator matrices of LDPC codes are usually not sparse, because of the inversion.
But if H is constructed both sparse and systematic, then:

H = (P, IM) and G = (IN−M , P t)

where G is a sparse generator matrix (LDGM) (Oenning and Moon 2001): they corre-
spond to parallel concatenated codes. They seem to have high error floors (Mackay 1999)
(asymptotically bad codes). Yet, the authors of (Garcia-Frias and Zhong 2003) carefully
chose and concatenate the constituent codes to lower the error floor. Note that this may
be a drawback for applications with high rate codes.

Cyclic parity-check matrices

The most popular codes that can be easily encoded are the cyclic or pseudo-cyclic ones. In
(Okamura 2003), a Gallager-like construction using cyclic shifts enables to have a cyclic-
based encoder, like in (Hu, Eleftheriou, and Arnold 2001). Finite geometry or BIBDs
constructed LDPC codes are also cyclic or pseudo-cyclic (Kou, Lin, and Fossorier 2001;
Ammar et al. 2002; Vasic 2002). Table 2.2 gives a summary of the different encoding
schemes.

(c) Frédéric Guilloud, Télécom Paris - July 2004

34 2. LOW DENSITY PARITY CHECK CODES

Table 2.2: Summary of the different LDPC encoding schemes

Encoding scheme Description Comments

Generator matrix
product

H ⇒ G ; c = uGt Use sparse generator ma-
trices (LDGM). Bad error
floor

Triangular system
solving

Solve Hct = 0 using as much
back-substitution as much as
possible

High complexity post pro-
cessing

Iterative encoding Solve Hct = 0 using the some
product algorithm

Such iterative encodable
codes seem to have weak
performance.

Cyclic encoding Multiplications with a shift reg-
ister

Few constructions

2.6 Performance of BPSK-modulated LDPC codes

The BPSK capacity

The gap to the AWGN capacity has been presented in section 1.2.2. Hereafter, only BPSK
modulations will be used. In this case the constellation size is equal to M = 2 and hence
the information rate is equal to the bit rate RId = R. The AWGN capacity constrained
by the BPSK input is as farther from the AWGN capacity as the rate increases toward
its asymptotic value Rmax = 1. For a fixed capacity, the difference between the Eb/N0

of the both cases is depicted on figure 2.5 in both linear and logarithmic scales. For
example, for the AWGN channel, (Eb/N0)RId=0.5 = 0 dB whereas for the BPSK-input
constrained AWGN channel, (Eb/N0)RId=0.5 = 0.188 dB. The difference between these
two Eb/N0 is used to measure the gap to the capacity of a given class of codes. For
example in (Chung et al. 2001), the author designed a class of rate−1/2 LDPC codes
which are within 0.0045 dB from the capacity C∗

d . In (Boutros et al. 2002), the authors
designed a class of rate−1/3 turbo code which are within 0.03 dB from the capacity C∗

d .
These designs are optimized using density evolution or its approximation: it is the only
algorithm which gives a threshold for the code. Figure 2.6 scatters the threshold of various
regular and irregular LDPC classes found in the literature.

Practical performance

The threshold is usually not known for finite length code designs. In that case, the gap
to the capacity is measured between the BER of the code and the BER of the fictitious
code of the same rate achieving the Shannon capacity (see figure A.1 in annexe A) for a

(c) Frédéric Guilloud, Télécom Paris - July 2004

2.6 Performance of BPSK-modulated LDPC codes 35

0 0.5 1
0

1

2

3

4

5

6

D
is

ta
nc

e
to

 th
e

A
W

G
N

 C
ap

ac
ity

 (E
b/

N
o

[d
B

])

Code Rate (BPSK modulation)
0 0.5 1

10
−4

10
−3

10
−2

10
−1

10
0

10
1

D
is

ta
nc

e
to

 th
e

A
W

G
N

 C
ap

ac
ity

 (E
b/

N
o

[d
B

])

Code Rate (BPSK modulation)

Figure 2.5: Difference between the Eb/N0 of an AWGN channel and of a BPSK input
AWGN output channel for a given capacity Cd

Bi−AWGN capacity
AWGN capacity

Hou/Siegel 2001 Irreg

Lehmann (PhD) Reg
Chung (PhD) Irreg

Richardson/Urbanke 2001 Irreg

Chung (PhD) Reg

 0

 0.2

 0.4

 0.6

 0.8

 1

−1 −0.5 0 0.5 1 1.5 2 2.5 3 3.5

Eb/N0 [dB]

C
d

[b
it
/d

im
]

Figure 2.6: Various thresholds for regular or irregular LDPC codes, for various rates

(c) Frédéric Guilloud, Télécom Paris - July 2004

36 2. LOW DENSITY PARITY CHECK CODES

−2 0 2 4 6 8

10
−4

10
−3

10
−2

10
−1

Eb/No [dB]

B
it

E
rr

or
 R

at
e

Uncoded BPSK
Shannon R=0.35
(3,4)−Gallager 15x20

∆ = 6.44 dB @ BER = 10−3

∆ = 7.76 dB @ BER = 10−4

(E
b
/N

0
)

min
 (R=0.35) = −0.433 dB

(E
b
/N

0
)

min
 (3,4)−LDPC = 0.957 dB

Figure 2.7: An approximate measurement of the distance to the Shannon bound on the
error probability graphs

given BER value. The FER curves should be used but for large block codes, the FER
can be computationally expensive to estimate. Usually, the gap is measured at a BER
of 10−5, such as in (Nickl, Hagenauer, and Burkert 1997), where the authors designed
a turbo-code within 0.24 dB of the Shannon’s capacity, at a BER= 10−5. Figure 2.7
depicts the gap-to-capacity measurement on the BER curves for the practical example of
the regular (3, 4)−LDPC code of length N = 20, with rate R = 0.35 (K = 7) since H is
not full rank, which has been originally designed by Gallager (Gallager 1962). . Such a
measurement does not have a very precise meaning as compared to the distance to the
Shannon limit. In (Battail and Magalhães De Oliveira 1993), the authors took up again
Shannon computations of error probability, without any approximations. They derived
exact and approximate FER as a function of the code parameters, for a Gaussian chan-
nel. But there is no exact expression for the error probability as mentioned in (Dolinar,
Divsalar, and Pollara 1998), where bounds of code performance as a function of the code
length and of the code rate are studied.

2.7 Decoding of LDPC codes

Decoding of LDPC codes is processed by applying the optimal iterative decoding algorithm
described in section 1.3.3. The optimality is lost since the graph of the code has cycles, but
the good performance achieved yields to use it as a good approximation. This algorithm

(c) Frédéric Guilloud, Télécom Paris - July 2004

2.7 Decoding of LDPC codes 37

is called the belief propagation (BP) algorithm.

2.7.1 Scheduling

The scheduling of the BP algorithm is the order in which the messages of the graph should
be propagated. In the cycle-free case of section 1.3.3, this scheduling does not affect the
convergence of the algorithm. But for implementation purpose, two schedules have been
distinguished (Kschischang and Frey 1998):

• Two way scheduling: is a serial-oriented schedule, where only the relevant messages
are processed and passed, according to the description in figure 1.9.

• Flooding schedule: is a parallel-oriented schedule, where all the nodes are processed
according to the description in figure 1.10. A incoming message acts as a trigger for
the node processor.

For practical codes, which graphs are not cycle-free, the flooding schedule is used: the
behaviour of each node processor is much more simplified. Yet, there is another question:
in what order should the node processor compute their output messages ? when should
they be activated ? This order, also referred to as schedule, will affect the convergence
performance because of the cycles in the graph. Three schedules can be found in the
literature:

Flooding schedule

The flooding schedule will denote hereafter the classical way of scheduling the BP algo-
rithm. The meaning of flooding might have been changed from the original meaning of
(Kschischang and Frey 1998). In this flooding schedule, the nodes of the same type are
all updated and then the nodes of the other type are also all updated (see figure 2.8-(a)).
The update for a type of node can be made one node at a time (serially) or in parallel :
it does not change the output messages.

Probabilistic schedule

The authors of (Mao and Banihashemi 2001a) described a probabilistic schedule. The first
idea to get rid of auto-confirmation messages induced by the cycles of the graph: they
avoid their propagation by sometime not activating node processors, when they should
be in the flooding schedule.

Let gn be the girth (Mao and Banihashemi 2001b) of the variable node vnn: it means
the length (number of edges) of the smallest cycle that passes through vnn. Let also gmax

be the maximum size of girths gn, n ∈ {1, · · ·N}. The smallest number of iterations
avoiding the auto-confirmation of information of the variable node vnn on itself is then
gn/2, since one iteration is a 2 edge-long data path. So each variable node vnn should

(c) Frédéric Guilloud, Télécom Paris - July 2004

38 2. LOW DENSITY PARITY CHECK CODES

Step 1

Step 2Step 2

Step 1

(b) Probabilistic schedule

of the check nodes
activation
serial or paralle

Pr () = gi/gmax

of the bit nodes:
(serial or parallel)
Probabilistic activation

of the bit nodes

serial or parallel
activation

of the check nodes
activation
serial or parallel

(a) Flooding schedule

Figure 2.8: (a) Flooding and (b) probabilistic schedule steps at each iteration i. Updating
node processors are filled

be updated only if iteration i < gn/2. Then it is idled (see figure 2.8-(b)). When more
than gmax/2 iterations have to be processed, the variable nodes are all updated at itera-
tions kgmax/2, k being an integer, and then the same activation rule applies on vnn by
comparing i mod (gmax/2) to gn/2.

The author of (Mao and Banihashemi 2001a) implemented a slightly different schedule
than this one. The activation is probabilistic (hence the name probabilistic shuffle): for
iterations i > 1, each variable node vnn is activated with probability pn = gn/gmax.

Vertical shuffle scheduling

The authors of (Zhang and Fossorier 2002) proposed a shuffle BP algorithm which con-
verges faster than the BP algorithm. The idea is to update the information as soon as
it has been computed, so that the next node processor to be updated could use a more
up to date information. This schedule operates along the variables: it means that all the
variable node are processed on after the other. So it is also called vertical shuffle since
the check node are processed in a shuffle order.

Figure 2.9 illustrates on a example the first steps of an iteration i. The scheduling
of an iteration i is serial: the check nodes implying the first variable are processed (step
1) and the first variable node is updated (step 2). Then the check nodes implying the
second variable are processed (step 3) and the second variable node is updated (step 4)
and so on until all the variable nodes have been updated. During an iteration, each
check node processor cnm is activated as much as |N (m)| times. In (Zhang and Fossorier
2002), the authors have rewritten the updates rules so that the check nodes processors
should not re-process the overall calculations each time it should be activated, using a
forward-backward strategy. But this solution still requires the saving of the trellis state.

To overcome the low rate implied by the serial processing of the variable nodes, the
authors finally suggest to process the shuffle scheduling on groups of N/G variables. Inside

(c) Frédéric Guilloud, Télécom Paris - July 2004

2.7 Decoding of LDPC codes 39

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

Step 7

Step 8

update of the
variable node vn1

update of the
check nodes
cnm ∈M(1)

update of the
variable node vn2

update of the
check nodes
cnm ∈M(2)

update of the
variable node vn4

update of the
check nodes
cnm ∈M(4)

update of the
variable node vn3

update of the
check nodes
cnm ∈M(3)

Figure 2.9: First steps of the shuffle schedule at iteration i. Updating node processors are
filled.

each group, the flooding schedule is used.

The major drawback of this scheduling should be that the girths of the graph are not
considered: if applied on small girths, the acceleration of the information could decrease
the performance of the decoding algorithm.

Horizontal shuffle scheduling

The authors of (Yeo, Nikolić, and Anantharam 2001) proposed in a serialized architecture
a staggered scheduling which consist in processing serially the parity-checks processors.
The information sent to the check node under process, say check node cnm, takes into
account the information of the previous iteration and the information of the current
iteration which have been updated by all the previous check node cnm′ , m′ < m. But
this scheduling is associated to the APP algorithm and does not perform well under the
iterative algorithm.

In (Mansour and Shanbhag 2002b), the authors also designed an horizontal shuffle
scheduling. As in the vertical shuffle, the convergence is also accelerated, and the major
drawback of this scheduling should also be that the girths of the graph are not considered.
Figure 2.10 describes the steps of an iteration i: for all the constraints nodes cnm, update
the processor and then update all the variable processors vnn which are connected to
cnm. As in (Zhang and Fossorier 2002), the serial processing can be accelerated by
grouping some check node constraints and processing for a group of M/G nodes a flooding
scheduling.

(c) Frédéric Guilloud, Télécom Paris - July 2004

40 2. LOW DENSITY PARITY CHECK CODES

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6
update of the
variable node
vnn ∈M(1)

update of the
variable node
vnn ∈M(2)

update of the
variable node
vnn ∈M(3)

check nodes cn1

update of the

check nodes cn2

update of the

check nodes cn3

update of the

Figure 2.10: Steps of the horizontal shuffle schedule at iteration i. Updating node pro-
cessors are filled.

2.7.2 Performance in iterative decoding

The error rate of iteratively decoded codes has a typical shape such as sketched on figure
2.11 in two cases. Three regions can be distinguished on the solid line curve:

• the first region is where the code is not very efficient, below the convergence thresh-
old. Even if the number of iterations is increasing, the performance is not improved;

• the waterfall region is where the error rate as a huge negative slope, which increases
as the number of iterations increases.

• the error floor region is where the error rate slope is lower than in the waterfall
region. The error floor is due to the minimum hamming distance of the code. For
LDPC codes, it is also caused by near codewords (MacKay and Postol 2003), also
called pseudo-codewords by (Koetter and Vontobel 2003).

As illustrated by the dashed line curve, there is often a trade-off to be made between
the performance of the code in the waterfall region and in the error floor region. The
performance achieved by the different scheduling and the different algorithms will be
discussed in the next chapter.

2.8 Conclusion

LDPC codes have been discovered a long time ago and rediscovered after the invention of
the turbo-codes. These two codes are the actors of the revolution of the error correcting
codes theory, which combined iterative decoding algorithms and codes based on graphs.

(c) Frédéric Guilloud, Télécom Paris - July 2004

2.8 Conclusion 41

threshold

Convergence
threshold

Error floor

region
WaterfallNo convergence

region
Error floor region

Eb/N0

Error probability

Figure 2.11: Typical regions in an error probability curve of iterative decoding algorithms:
the waterfall region and the error floor region are illustrated on a factious performance
curve (solid line). The trade off between these two regions is illustrated by the second
curve (dashed line) which has lower error floor at the expense of a higher convergence
threshold.

An important advantage is that they offer a high degree of freedom for the LDPC code
optimization: it is possible to design an LDPC class of codes which fit to some channel
specifications. The main drawback in using LDPC codes is their encoding complexity. But
some cyclic or pseudo-cyclic encodable LDPC codes may solve this issue, even if the set
of parameters is reduced. Note also that another class of channel codes named Repeat-
Accumulate codes which can be viewed as LDPC codes have a very simple encoding
scheme, as described explicitly through their name. The overall performance of LDPC
codes is the major reason why LDPC decoders are being implemented for about four years
now. This state of the art is studied in the next chapter.

(c) Frédéric Guilloud, Télécom Paris - July 2004

This page intentionally left blank.

Chapter 3

A unified framework for LDPC

decoders

Summary:

In this chapter, a unified framework for describing and designing the archi-

tecture of LDPC decoders is presented. A set of parameters is defined to

characterize the parallelism factor. The generic node processors are classified

as a function of their data flow, their control and the position of the inter-

connection network. The combination of the different instantiation enables to

derive an architecture of an LDPC decoder for many decoding schedules. A

complexity analysis is also performed: three parameters specifying completely

the complexity of an LDPC decoder architecture are proposed. Then a syn-

thesis of this framework is applied on three important examples: a classical

one (flooding schedule), a recent one (horizontal shuffling) and also a new one

which has not been published yet, implementing a vertical shuffle efficiently.

Finally, an overview of the existing LDPC platforms is proposed.

3.1 Generalized message-passing architecture

3.1.1 Overview

A generalized architecture of a message passing architecture is depicted on figure 3.1.
We will hereafter assume to simplify the notations and without loss of generality that a
regular (j, k)-LDPC code is concerned. The first descriptions of such architectures can
be found in (Boutillon, Castura, and Kschischang 2000; Mansour and Shanbhag 2002a;
Zhang and Parhi 2002). It is composed of a direct and a reverse shuffle network, in the
center of the figure. On each side of the shuffle networks, the node processors are in charge
of the processing of the update rules of the iterative algorithms:

43 (c) Frédéric Guilloud, Télécom Paris - July 2004

44 3. A UNIFIED FRAMEWORK FOR LDPC DECODERS

Variable
Processors

Processors
Parity check

Spatial
Permutations
(shuffle
network)

Memory
Banks

Memory
Banks

Control

· · ·PCP1 PCP2 PCPP−1 PCPP

MB’1 MB’2

· · · · · ·

· · ·· · ·

shuffle−1shuffle

Mv→c

Mc→v

· · ·VP1 VPPk′/j′

· · ·MB1 MBPk′/j′

j′ = j/β

k′ = k/α

MB’PMB’P−1

Figure 3.1: Generalized design for message passing architecture decoders

(c) Frédéric Guilloud, Télécom Paris - July 2004

3.1 Generalized message-passing architecture 45

• there are P check node processors, or parity check processors (PCP). Each of them
can process k′ = dk/αe inputs per clock cycle, k′ being a positive integer. If α = 1,
the k inputs of the PCP are processed at the same time (parallel PCP). If α = k,
only one input is processed per clock cycle in the PCP (serial PCP).

• There are also P dk
′

j′
e variable node processors (VP). Each of them can process

j′ = dj/βe inputs per clock cycle, j′ being a positive integer. If β = 1, the j inputs
of the VP are processed at the same time (parallel VP). If β = j, only one input is
processed per clock cycle in the VP (serial VP). If the variable processors are based
on single port access memories, j′ = 1 and then there are k′×P variable processors.

Each of these processor is associated with memory banks which will be described in section
3.4. More details about node processors will be given in section 3.2.

In such an architecture, P check nodes out of M are performed simultaneously. This
is repeated Q times, QP = M , Q being an integer, to complete an iteration. Varying the
parameter α, β and P values enables to describe all the possible architectures ranging
from the whole parallel one (α = 1, β = 1, P = M) to the whole serial one (α = k, β = j,
P = 1), as far as regular (j, k)−LDPC codes are concerned. A mixed architecture will
refer to neither a parallel nor a serial architecture.

In the following, we denote by Mc→v the message which is sent from the check node
processor to the variable node processor through the direct shuffle and by Mv→c the
message which is sent from the variable node processor to the check node processor through
the reverse shuffle.

3.1.2 Shuffle network

The edges of the bipartite graph are wired between the check nodes and the variable node
through a permutation network. A message passing decoder architecture features also an
interconnection network whose complexity depends on the code itself and on the type of
message passing structure.

The particular cases of the whole serial or whole parallel designs do not use any
switches: in the parallel case, the switches are hard wired directly, leading to routing
problems; in the serial case, the permutation is replaced by a control on the reading
addresses to pick up the messages concerned by the current update rule (time shuffling).

For mixed serial-parallel architectures, the interconnection network takes place partly
in the time shuffling and partly in the spatial shuffling. The time shuffling is realized by
the random bit reading in the memory banks. The spatial shuffling is implemented in a
shuffle network. The evaluation of the complexity of the shuffle network is done by using
the number (NΠ) of the elementary switches depicted in figure 3.2. In general, LDPC
codes are designed so as to lower the complexity of the shuffle network, using rotations
for example.

(c) Frédéric Guilloud, Télécom Paris - July 2004

46 3. A UNIFIED FRAMEWORK FOR LDPC DECODERS

0 1 0 1

i1 i2

o1 o2

a
o1 o2

i1 i2

o1 o2

i1 i2

a=0 a=1

a

o1 o2

i1 i2

Switch symbol Possible configuration Implementation

Figure 3.2: Elementary switch

d edges

Node processor

ed

e2
e1

ei

sj

⊗
sj =

⊗
i 6=j ({ei})

Figure 3.3: A generic node processor

3.2 Node processors

3.2.1 Generic node processor

Data flow

Node processors can be described with the same generic model depicted on figure 3.3. The
node processor is defined by its degree d, which is the number of edges connected to it, and
by the generic commutative operator denoted by

⊗
. The processor has d different input

messages denoted ei and computes d output messages denoted sj using the
⊗

operator.
The output message on the ith edge is a function of the d− 1 messages input on the d− 1
other edges:

sj =
⊗
i6=j

ei (3.1)

There are three main possible implementation of equation (3.1) inside a generic node
processor: the direct implementation, the trellis implementation and the total sum first
implementation if the

⊗
operator is invertible. These possible implementations are de-

scribed below and their associated architectures are depicted on figure 3.4. Note that
both parallel and serial architectures are possible.

Direct implementation: the d output messages sj can be computed using d times
equation (3.1). So this direct implementation features d times the implementation of
equation (3.1). This implementation is only efficient for small values of the degree d.

(c) Frédéric Guilloud, Télécom Paris - July 2004

3.2 Node processors 47

This solution has been already implemented check or variable node processors by (Levine,
Taylor, and Schmit 2000; Zhang and Parhi 2003).

Trellis implementation: the d output messages sj can also be computed using a sys-
tolic trellis-based implementation. A forward-backward processing is performed to process
the d output messages. Such an example is proposed by (Boutillon, Castura, and Kschis-
chang 2000) for the check node processors. Note that a similar solution is also provided
by (Mansour and Shanbhag 2002a) to decode parity check equation based on their trellis.

Total sum first implementation: if we consider the two expressions (3.1) solved to
compute the outputs sj1 and sj2 , we see that only one variable has changed (resp. sj2

and sj1). So another possible processing is to replace equation (3.1) by:

sj = inv⊗ (ej)⊗

(⊗
i

ei

)
(3.2)

which is allowed if and only if
⊗

is an invertible operator: then, inv⊗ (ej) denotes the
inverse of ej for the

⊗
operator. In other words, ej

⊗
inv⊗ (ej) is equal to the iden-

tity. Note that this solution requires the storage of the input meanwhile processing the
whole summation. But it is well suited to serial implementations. The total sum first
architecture has been proposed for check node processor implementations by for example
(Howland and Blanksby 2001a; Yeo, Nikolić, and Anantharam 2001; Blanksby and How-
land 2002; Kim, Sobelman, and Moon 2002; Hocevar 2003; Chen and Hocevar 2003) and
also for variable node processor implementations by for example (Boutillon, Castura, and
Kschischang 2000; Yeo et al. 2001; Howland and Blanksby 2001a; Yeo, Nikolić, and Anan-
tharam 2001; Blanksby and Howland 2002; Kim, Sobelman, and Moon 2002; Mansour and
Shanbhag 2002a).

Control

By control on the generic node processor, we mean to explain how the processor is ac-
tivated. The processor has d inputs and outputs, so the control of such a processor is
in fact the schedule of the input and output messages. We define two modes of control
(figure 3.5): the master mode and the slave mode.

1. In the master mode, the processor will first ask for its d input messages at a time
T1. After the processing latency, the processor will output its d processed messages.

2. In the slave mode, a processor will be asked by a master mode one to output a
messages at time T1. It will be asked also to take into account a new incoming
messages after a given latency.

(c) Frédéric Guilloud, Télécom Paris - July 2004

48 3. A UNIFIED FRAMEWORK FOR LDPC DECODERS

FIFO size d
delay
op_1

op_1

s1

sd

...

s2

⊗
⊗
⊗
⊗

a) Direct Implementation

e1

e2

...

ed

: unused
⊗u

: dummy
⊗d

⊗⊗
⊗

⊗⊗
⊗

⊗⊗
⊗

s2

e2 e3

s3 s4

e4

⊗

e1

s1

⊗ ⊗d
u d

u0
0

inv⊗ (.)

⊗ ⊗
e1 · · · ed s1 · · · sd

...

...

⊗
⊗
⊗

sd

s1

si

...

...

· · · · · ·⊗

inv⊗ (.)

inv⊗ (.)

inv⊗ (.)

...

...

e1

ei

...

...
ed

(parallel)

(serial)

re
gi

st
er

b) Trellis Implementation

c) Total sum first Implementations

Figure 3.4: Possible implementations for a generic node processor

(c) Frédéric Guilloud, Télécom Paris - July 2004

3.2 Node processors 49

· · ·

Master node

e2
e1

ed

· · ·

Master node

s2
s1

sd

TimeT1

d slave nodes d slave nodes

T1 + latency
= T2

Figure 3.5: The master/slave modes for node processors

From a graph node point of view, the master mode is a parallel mode, and the slave mode
is a serial mode. We would rather use the words master and slave so as to avoid any
confusion between the control mode and the architecture of the node processor, which
can be serial or parallel as well. For example, a master node processor can be serially
implemented (one input/output port).

Some more details about the slave mode are now given. We define two kinds of
processing for the slave mode: slow loop or fast loop.

1. In the slow loop mode, all the input messages are used to prepare the output of
the next iteration.

2. On the contrary, the fast loop means that every input message modifies the next
output messages of the same iteration. Thus, there is no need to wait for the next
iteration to propagate the information, hence the fast loop.

So the loop mode indicates how fast the information is updated. Note that the speed
can also be in between, when the information is not updated as fast as for the fast loop,
but is updated before the end of an iteration, says for example twice within an iteration.
The memory requirements are not the same whether the node processor is to be fast-loop
slave or slow-loop slave, as depicted on figure 3.6. In the slow loop mode, the information
related to the output of the current iteration and to the next iteration are to be saved,
whereas in the fast loop, this information is updated within the iteration, in a single
memory. This will be illustrated in section 3.4 by some practical examples.

(c) Frédéric Guilloud, Télécom Paris - July 2004

50 3. A UNIFIED FRAMEWORK FOR LDPC DECODERS

input

Fast Loop

input

odd eveniteration

even odd

M
em

or
y

1

M
em

or
y

2

Slow Loop

M
em

or
y

1

output

Slave node

output

Slave node

Figure 3.6: The slow/fast modes for slave node processors

3.2.2 Variable and check node processors

Sign-magnitude processing

For all the different iterative algorithms, the variable update rule is an addition function.
It is expressed by (see iterative algorithm 1):

T (i)
n,m = In +

∑
m′∈M(n)\m

E
(i−1)
n,m′ (3.3)

The check node update rule can be separated into the sign and the magnitude processing,
as derived hereafter. The check node update rule is expressed by (see iterative algorithm
1):

E(i)
n,m = 2 tanh−1

∏
n′∈N (m)\n

tanh
T

(i)
n′,m

2
(3.4)

We have then from (3.4):

tanh
E

(i)
n,m

2
=

∏
n′∈N (m)\n

tanh
T

(i)
n′,m

2
(3.5)

Replacing Tn′,m by sign
(
Tn′,m

)
×
∣∣Tn′,m

∣∣ in (3.5) yields:

sign
(
E(i)

n,m

)
=

∏
n′∈N (m)\n

sign
(
T

(i)
n′,m

)
(3.6)

tanh
∣∣∣E(i)

n,m

∣∣∣ /2 =
∏

n′∈N (m)\n

tanh
∣∣∣T (i)

n′,m

∣∣∣ /2 (3.7)

(c) Frédéric Guilloud, Télécom Paris - July 2004

3.2 Node processors 51

Let f(x) be defined by:

f(x) = − ln
(
tanh

(x

2

))
= ln

ex + 1
ex − 1

(3.8)

Then, taking the logarithm of the inverse of both side of (3.7) yields:

− ln tanh
∣∣∣E(i)

n,m

∣∣∣ /2 = − ln
∏

n′∈N (m)\n

tanh
∣∣∣T (i)

n′,m

∣∣∣ /2 (3.9)

f
(∣∣∣E(i)

n,m

∣∣∣) = −
∑

n′∈N (m)\n

ln tanh
∣∣∣T (i)

n′,m

∣∣∣ /2 (3.10)

=
∑

n′∈N (m)\n

f
(∣∣∣T (i)

n′,m

∣∣∣) (3.11)

And because f (f(x)) = x, (3.12)∣∣∣E(i)
n,m

∣∣∣ = f

 ∑
n′∈N (m)\n

f
(∣∣∣T (i)

n′,m

∣∣∣)
 (3.13)

Note that equation (3.13) can also be written:∣∣∣E(i)
n,m

∣∣∣ = f
(
Mm − f

(∣∣∣T (i)
n,m

∣∣∣)) (3.14)

where
Mm =

∑
n′∈N (m)

f
(∣∣∣T (i)

n′,m

∣∣∣) (3.15)

So the iterative algorithms 1 can be written with separate sign and magnitude processing,
yielding the following iterative algorithm:

Iterative Algorithm 3 (BP) with the sign-magnitude processing.
Initialization: E(0)

n,m = 0
Variable node update rule: T (i)

n,m = In +
∑

m′∈M(n)\m

E
(i−1)
n,m′

Check node update rule: E(i)
n,m =

∏
n′∈N (m)\n

sign
(
T

(i)
n′,m

)

×f

 ∑
n′∈N (m)\n

f
(∣∣∣T (i)

n′,m

∣∣∣)


Last variable node update rule: Tn = In +
∑

m∈M(n)

E(i−1)
n,m

with f(x) = ln
ex + 1
ex − 1

From the iterative algorithm 3, the magnitude processing can be decomposed into 3
steps: first a scale change (the function f in the iterative algorithm 3) puts the messages
into a check domain representation, then an addition operation is processed and finally
another scale change to get back into the variable domain representation.

(c) Frédéric Guilloud, Télécom Paris - July 2004

52 3. A UNIFIED FRAMEWORK FOR LDPC DECODERS

∑
f(x) f−1(x)

1
2

magnitude

sign

×

∑ variable node
processor

check node
processor

4
3

Possible
positions

network
permutation
of the

Variable nodes

Check nodes

Figure 3.7: The variable and check node processor functions depend on the interconnection
network position.

Variable and check node processor configurations

The combination of the check node and of the variable node update rules, separating the
sign and magnitude processing is depicted on figure 3.7, where the 4 possible positions of
the interconnection network are symbolized by 4 different dashed numbered lines. The
position number 1 is the classical one. It yields to have all the messages being represented
in the variable domain. The position number 2 (resp. 3) yields to have the input (resp.
output) of the node processors be in their own representation domain, while their output
(resp. input) are represented in the other domain. An advantage to these positions is
that the node processors have nearly the same architecture, except for the sign processing.
The position 2 has been used by (Zhang, Wang, and Parhi 2001). The position number
4 yields to have only check node domain messages between the node processors. This
is a new node processor architecture and it fits perfectly with the horizontal schedule of
section 3.4.

The operator inside the generic node processor
⊗

associated with the variable and
with the check node processors depends on the choice of the position of the interconnection
network. Table 3.1 summarizes the nature of the operator as a function of the position
of the interconnection network. The sign processing is independent from the magnitude
processing in the check node update rule, so it has been considered as a whole node
processor. Note that in the position number 1, it is also possible to use the ?-operator,
defined in annexe B.1 by the equation (B.6). An implementation of this operator is
illustrated on figure B.2.

Control mode combinations

The combinations between the different controls of the node processors is illustrated in
table 3.2. These different combinations are associated to different schedule such as de-

(c) Frédéric Guilloud, Télécom Paris - July 2004

3.2 Node processors 53

Table 3.1: Node processor operator as a function of the permutation network position.

Processor
Node

Variable

⊗Operator

Generic

Processor
Node
Check

M
ag

ni
tu

de
Si

gn
Permutation Network Position

2 3 4

f ◦
∑ ∑

◦f−1 f ◦
∑
◦f−1

1∑
∑∑

◦ff−1 ◦
∑

f−1 ◦
∑
◦f?

× (Sign product)

Table 3.2: Possible combinations for node control

loop
Slow

Fast
loop

Master

Check

Slave

Slave

Fast loopSlow loop

Variable

Master

Flooding
(check way)

Shuffle
(Horizontal)

Flooding
(2 ways)

Shuffle

Flooding

(Vertical)

edge

controled

(var. way)

(c) Frédéric Guilloud, Télécom Paris - July 2004

54 3. A UNIFIED FRAMEWORK FOR LDPC DECODERS

scribed in section 2.7.1. The flooding scheduling is divided into three schemes, depending
on the order the different processors are activated: the check way flooding schedule means
that the check node processors are successively activated; symmetrically, the variable way
flooding schedule means that the variable node processors are successively activated. In
these two flooding cases, the slave mode is the slow loop one: an iteration has to be com-
pleted so as to propagate the information as in the classical flooding schedule. If the slave
mode is the fast loop one, the information is updated as the master nodes are activated:
it is the shuffle schedule. When both check and variable node processors are controlled in
slave mode, the schedule is along the edge. It means that one iteration is controlled by
an edge list. This enables to chose exactly the schedule in a given parity-check matrix.
More details related to the main schedules are given through the section 3.4.

3.3 Complexity analysis

Three parameters will measure the complexity of an LDPC decoder architecture: the
edge rate, Re, the amount of memory required and the complexity of the shuffle network,
NΠ. The latter has been defined in section 3.1.2. The other two parameters are described
hereafter.

3.3.1 Computation requirements

A non-zero entry in the m-th row and the n-th column of the parity-check matrix corre-
sponds to an edge of the bipartite graph connecting the variable n to the check node m.
Each connection in the bipartite graph requires the processing of the two messages Mv→c

and Mc→v. As seen in section 3.2.2, each Mv→c message requires roughly 2 additions
and each Mc→v message requires roughly either 2 LUTs and 2 additions when using the
tanh−rule, or 3 ?-operators. An iteration is over when all the edges of the graph have
been so processed. Some schedules may not process all the edges for all iterations, such
as in (Mao and Banihashemi 2001a) (see Probabilistic scheduling in section 2.7.1). Such
algorithms will not be considered hereafter: all the edges are supposed to be processed in
the two ways during one iteration. So the number of non-zero entries in the parity-check
matrix is proportional to the processing complexity of an iteration. Let Γ denotes the
number of non-zero entries in the parity check matrix of an LDPC code. For regular
(j, k)−LDPC codes, we have: Γ = jN = kM .

3.3.2 Message rate

Γ is proportional to the amount of elementary operations that are to be processed during
one iteration. It is linked to the code and to the BP algorithm. We define the edge rate
Re as a measurement of the processing power; it is defined as the number of edge per

(c) Frédéric Guilloud, Télécom Paris - July 2004

3.3 Complexity analysis 55

clock cycle that are to be processed to fit the specifications of the decoder. So it depends
on Γ and on the specifications under which the decoder has to be run:

• the size K of the information bits,

• the information throughput Db in bit/s,

• the number of iterations imax,

• the clock frequency fclk.

Note that imax can also be the average number of iterations when input and output buffers
are used as in (Martinez and Rovini 2003). According to these specifications, the number
of variables (or bits) that have to be process every clock cycle is:

Db

R
[bit/s] × 1/fclk [s/cycle] =

Db

fclkR
[bit/cycle] (3.16)

Moreover, there are Γ× imax [edges] to process in order to decode N [bits] , i.e.:

Γimax

N
[edges/bits] (3.17)

So the number of edges processed every clock cycle is equal to:

Re =
Db

fclkR
[bit/cycle] × Γimax

N
[edges/bits] =

ΓimaxDb

Kfclk
[edge/cycle] , (3.18)

where K = RN is the number of information bits.
If Re is high, it means that the processing power required is high: a lot of edges per

clock cycle should be processed. In that case, a highly parallelized architecture would have
to be designed to fit the specifications. Note that (Re)max = Γ: the maximum number of
edges that can be processed in one clock cycle is the number of edges itself. Re is a lower
bound on the parallelism factor P , which is the number of check node processors running
in parallel. Re is thus also linked to the minimum number of memory blocks which have
to be accessed simultaneously. Note that using the notations of the generalized message
passing architecture of section 3.1, the edge rate is given by:

Re = P × k

α
(3.19)

3.3.3 Memory

The memory used in a message passing decoder is specified by its size and also by the
number of different blocks required for simultaneous access. The latter one is given by
the edge rate Re.

The minimum memory which is needed for LDPC decoders implementing the BP
algorithm is used to:

(c) Frédéric Guilloud, Télécom Paris - July 2004

56 3. A UNIFIED FRAMEWORK FOR LDPC DECODERS

• save the intrinsic information In (memory I). (N×w bits) are needed, if we assume
that the data is coded using w bits.

• save the variable-to-check messages Mv→c (or equivalently the check-to-variable mes-
sages Mc→v). (Γ×w bits) are then used to save the messages related to the Γ edges.

The minimum memory size is enough for whole parallel decoders (α = 1, β = 1, P = M).
But mixed architectures (P < M), the memory banks associated with the node processors
feature additional memory. It is used to avoid to many access to the edge memory. More
details about this memory will be given in the practical examples of section 3.4.

(c) Frédéric Guilloud, Télécom Paris - July 2004

3.4 Synthesis 57

1

2

3

MB2 MB3MB1

is used 3 times
each node processor

Figure 3.8: Simple (3, 4)−parity-check matrix with (P = 3). A square stands for a non-
zero entry and a dot for a zero. The memory banks are denoted MBi.

3.4 Synthesis

In sections 3.1 and 3.2, we have proposed respectively a generic message passing architec-
ture and a generic node processor description. These descriptions enable to encompass
many the architectures of LDPC decoders which are in the state of the art, nowadays, and
even to derive some new interesting architectures. The complexity parameters proposed
in section 3.3 can quantify the complexity of these architectures.

In this section, a synthesis of these generic parameters is performed and some practical
examples are proposed which illustrate the framework. So an LDPC decoder architecture
is specified by:

• the parameters set (α, β, P) of the message passing architecture,

• the interconnection network position,

• the control mode of the node processors,

• the architecture of the node processors (data path, serial or parallel implementation).

Theoretically, all the combinations are possible. Since there is a high number of possible
combinations, three of the main schedules (flooding (check way), horizontal and vertical
shuffle) will be described hereafter, based on a practical example.

We assume first that a mixed architecture (α, β, P) is chosen to decode a simple
(3, 4)−parity-check matrix such as depicted on figure 3.8.

(c) Frédéric Guilloud, Télécom Paris - July 2004

58 3. A UNIFIED FRAMEWORK FOR LDPC DECODERS

3.4.1 Flooding schedule (check way)

To illustrate the flooding schedule (check way), we give hereafter a particular example
from the state-of-the-art decoder of (Boutillon, Castura, and Kschischang 2000). The
choice of the different parameters of this example is resumed in the table on the top of
figure 3.9. In this decoder architecture, P = 3 check node processors are controlled in a
master mode and perform simultaneously. So there are P = 3 check node processors in the
decoder architecture. Since α = 1 and β = 3, there are also P × β/α = 12 variable node
processors. Note that the edge rate is thus Re = 12 [edge/cycle] . As we will see below,
there is no need of memory banks MB’i in the check node processors. But 12 memory
banks MBi are required with the variable node processors. Each of them features the
information related to Nj′

Pk′ = N/12 variables in the code of length N .
The check node processor dataflow is a trellis architecture within a parallel implemen-

tation. At a time T1, they are fed with d (d = k = 4 on the figure) input messages Tn,m,
by the variable node processors. The variable node processors are controlled in a slave
mode. After a latency T2 − T1, the output messages En,m of the check node processors
are fed to the variable node processors. The data flow of the variable node processors is
a total-sum first architecture within a serial implementation. The slow-loop mode of the
slave control is illustrated by the requirement of 2 memory blocks: the extrinsic memory
of the previous iteration Eold and the extrinsic that are being accumulated Eacc. An
example of one variable node processor and of one check node processor is depicted in the
middle of figure 3.9.

During an iteration, all the check node processors are controlled so as to perform
successively. For example, at time T1, the check node processor perform the 3rd check
node and then at time T ′1 it performs the 6th check node of the graph, as depicted at the
bottom of figure 3.9

When the iteration is over, the Eacc memory is dumped into the Eold memory and
initialized to zero. Another solution is to swap the memories as depicted on figure 3.9 by
the dots line. During this next iteration, the Mc→v messages which have been processed
in the previous one will be propagated.

Note that in this architecture, the En,m messages are saved on the variable node side of
the shuffle network. They can also be saved on the check node side, as depicted with dots
and dashed lines on figure 3.9, such as in (Chen and Hocevar 2003; Guilloud, Boutillon,
and Danger 2003b).

For this architecture, the amount of memory required is equal to the sum of Γw (Mc→v memory)
and 3Nw(I, Eacc and Eold memories), if w bits are used to code the messages.

(c) Frédéric Guilloud, Télécom Paris - July 2004

3.4 Synthesis 59

Parameter value

Message passing architecture (α = 1, β = j = 3, P = 3)
Shuffle network position 1

Variable Node
control Slave, slow loop
data path Total sum first, serial

Check Node
control Master
data path Trellis, parallel

?

TIME

T1 T2

Master node processor latency

T ′2

Master node processor latency

T ′1

(k = 4 messages)
t = T ′1

t = T2

(k = 4 messages)
t = T ′2

(k = 4 messages)

(k = 4 messages)

t = T1

3 PCP are processing simultaneously

12 VP can process simultaneously

= a(T2)
a(T1)

Tn,m(T1)

En,m

In

∑
m En,m

∑
m En,m

Slow Loop

En,m(T1)

Tn(T1) Tn,m(T1)

En,m(T2) En,m(T2)

I Eacc

Mc→v

0

Sh
uffl

e
ne

tw
or

k
(d

ir
ec

t)
Sh

uffl
e

ne
tw

or
k

(r
ev

er
se

)

0

Eold b(T1)
= b(T2)

Figure 3.9: Illustration of the Flooding schedule (check way)

(c) Frédéric Guilloud, Télécom Paris - July 2004

60 3. A UNIFIED FRAMEWORK FOR LDPC DECODERS

3.4.2 Horizontal shuffle schedule

The second example illustrates the vertical shuffle schedule. This schedule was first pro-
posed by (Mansour and Shanbhag 2002b) in a specific particular case and is now patent
pending (Boutillon, Tousch, and Guilloud 2003) in the United States. The choice of the
different parameters of this example is resumed in the upper part of figure 3.10. In this
architecture, there are also P = 3 check node processor which are controlled in a master
mode. Since α = 4 and β = 3, there are also P = 3 variable node processors and the edge
rate is now Re = 3 [edges/cycle] . As in the flooding schedule, 4 memory banks MBi are
required with the variable node processors. Each of them features the information related
to Nj′

Pk′ = N/3 variables in the code of length N .
The check node processor and the variable node processor data flow are a total-sum

first architecture within a serial implementation. At a time T1, the check node processor
is serially fed with d = 4 input messages Tn,m, by the variable node processors. The
variable node processors are controlled in a slave mode. After a latency T2−T1, the output
messages En,m of the check node processors are fed to the variable node processors. The
fast-loop mode of the slave control is illustrated by the requirement of only 1 memory
block: the Eacc memory block. The sum of the extrinsic messages is updated as soon
as a new input message arrives in the variable processor. This schedule is depicted in
the middle of figure 3.10, where only the variable processor is detailed. The check node
processor is replaced by its generic representation. Note the possibility for the message
memory Mc→v to be on both sides of the shuffle network, as in the first example.

As for the flooding schedule, all the check node processors are controlled in a master
mode. They perform successively during an iteration. For example, at time T1, the check
node processor start to perform the 3rd check node and then at time T ′1 it starts to
perform the 6th check node of the graph, as depicted at the bottom of figure 3.10.

For the horizontal schedule, the information is propagated as soon as the parity-check
has been processed. Only one more kind of memory is then needed: the information that
is being updated. The amount of memory required is equal to Γw + Nw: avoiding the
use of the Eold and the In memory saves 2Nw bits as compared to the flooding schedule.

(c) Frédéric Guilloud, Télécom Paris - July 2004

3.4 Synthesis 61

Parameter value

Message passing architecture (α = k = 4, β = j = 3, P = 3)
Shuffle network position 1

Variable Node
control Slave, fast loop
data path Total sum first, serial

Check Node
control Master
data path Total sum first, serial

En,m(T2)

Sh
uffl

e
ne

tw
or

k
(r

ev
er

se
)

Sh
uffl

e
ne

tw
or

k
(d

ir
ec

t)
En,m(T1)

Eacc

In +
∑

m En,ma(T1)
= a(T2)

En,m b(T1)
= b(T2)

Mc→v

Fast Loop

Tn,m(T1)

En,m(T2)− En,m(T1)

with
⊗

=
∑

|.| sign (.)

Tn,m(T1)

processor
Generic node

serial

with
⊗

= ×

processor
Generic node

serial

Mc→v

En,m

Master node processor latency Master node processor latency

T ′2T ′1 + 3T ′1 T ′2 + 3T2T1 + 3T1 T2 + 3· · · · · · · · · · · ·

k = 4 messages

k = 4 messages

k = 4 messages

TIME

k = 4 messages

3 PCP are processing simultaneously

3 VP can process simultaneously

Figure 3.10: Illustration of the Horizontal shuffle schedule

(c) Frédéric Guilloud, Télécom Paris - July 2004

62 3. A UNIFIED FRAMEWORK FOR LDPC DECODERS

3.4.3 Vertical shuffle schedule

The third example illustrates the vertical shuffle schedule. This schedule was first pro-
posed by (Zhang and Fossorier 2002) but we have not been aware of any associated
architecture published yet in the literature. The vertical schedule applies the same idea
as the horizontal. The difference is that the progression is proceeded along the variable
instead of the parity checks. The choice of the different parameters of this example is
resumed in the upper part of figure 3.11. In this architecture, there are also P = 3 check
node processor but they are controlled in a slave mode. Since α = 4 and β = 3, there are
also P = 3 variable node processors and the edge rate is the same as in the horizontal
schedule example. The variable node processors are controlled in a master mode. In this
case, there is only one memory I in the memory banks MBi, whereas in the check node
processors, 2 memories are required in the memory banks MB′i, to save the input messages
(Mv→c) and also the accumulation of Mm, defined by equation (3.15).

The check node processor and the variable node processor data flow are a total-sum
first architecture within a serial implementation. At a time T1, the variable node processor
is serially fed with d = j = 3 input messages f(En,m), by the check node processors. The
check node processors are controlled in a fast loop mode. After a latency T2 − T1, the
output messages f(Tn,m) of the variable node processors are fed serially to the check node
processors. The fast-loop mode of the slave control is illustrated by the requirement of
only 1 memory block in the check node processor: the Mm memory block. The sum of the
input messages is updated as soon as a new input message arrives in the check processor.
This schedule is illustrated in the middle of figure 3.11, where the variable node processor
has been replaced by its generic representation. Also in the check node processor, the

⊗
operator has been used to simplify the figure. It should be replaced by the

∑
operator

for the magnitude processing and by the × operator for the sign processing. Note also
the possibility as in the two previous architectures to place the message memory Mv→c

on the both sides of the shuffle network.

On the contrary of the horizontal schedule, all the variable node processors are con-
trolled in the master mode. They perform successively during an iteration. For example,
at time T1, the variable node processor start to perform the 6th variable node and then at
time T ′1 it starts to perform the 9th variable node of the graph, as depicted at the bottom
of figure 3.11.

For the vertical schedule, the same number of memory blocks as for the horizontal one
are used but the amount of memory required is equal to Γw + (2−R)Nw: only M words
are to be saved in the Mm memory, but the intrinsic memory can not be accumulated in
the accumulation memory. So RNw more bits are needed as compared to the horizontal
schedule.

(c) Frédéric Guilloud, Télécom Paris - July 2004

3.4 Synthesis 63

Parameter value

Message passing architecture (α = k = 4, β = j = 3, P = 3)
Shuffle network position 4

Variable Node
control Master
data path Total sum first, serial

Check Node
control Slave, fast loop
data path Total sum first, serial

j = 3 messages

j = 3 messages

f

f−1 |.|

sign

⊗

⊗serial
Generic node

processor
with

⊗
=
∑

⊗
= × for signs
=
∑

for magnitudes

TIME

Master node processor latency Master node processor latency

T2· · ·T1 · · · · · ·T ′1 T ′2 · · ·

j = 3 messages

j = 3 messages

T1 + 2 T2 + 2 T ′1 + 2 T ′2 + 2

3 PCP can process simultaneously

3 VP are processing simultaneously

|.|

sign

En,m(T1) ⊗

Sh
uffl

e
ne

tw
or

k
(r

ev
er

se
)

Sh
uffl

e
ne

tw
or

k
(d

ir
ec

t)
b(T1) f(Tn,m)

⊗
Mm c(T1)

Fast Loop

Mv→c

In a(T1)

I

= a(T2)
= b(T2)

= c(T2)

f |(En,m|)(T1)

⊗f(|Tn,m|)(T2)

Figure 3.11: Illustration of the vertical shuffle schedule

(c) Frédéric Guilloud, Télécom Paris - July 2004

64 3. A UNIFIED FRAMEWORK FOR LDPC DECODERS

Table 3.3: Memory requirements for the 3 different schedules

Schedule Memory size
Numerical Application

Rate 1/3 Rate 1/2 Rate 9/10
Flooding (check way) Γw + 3Nw 6Nw

Horizontal Γw + Nw 4Nw

Vertical Γw + (2−R)Nw 4.67Nw 4.5Nw 4.1Nw

3.4.4 Memory comparison

A memory comparison of the 3 different schedules of the sections 3.4.1, 3.4.2 and 3.4.3 is
presented in table 3.3. We assume that an LDPC code of length N has an average variable
degree of javerage = 3. Then Γ = javerageN = 3N . We also assume that all the words
are coded using the same fixed-point format on w bits. We can see that the horizontal
and the vertical schedules have smaller memory requirements than the flooding schedule,
check way. The horizontal schedule has the lowest required memory size. The vertical
schedule memory size is a function of the code rate: for high code rates, it is possible to
use almost the same amount of memory as for the horizontal schedule. However, we can
see that the main part of the memory is used to save the edge messages. This issue will
be addressed in chapter 4.

3.5 Existing platforms survey

We present in this section a survey of the existing and published platforms or designs of
LDPC decoders.

3.5.1 Parallel designs

The Parallel architectures for message passing decoders achieve the constraints given
by the smallest memory size and the highest edge rate Re. Some implementations in
ASICs can be found in the literature together with parallel node processors (Howland
and Blanksby 2001a; Howland and Blanksby 2001b; Blanksby and Howland 2002). Their
node processors are not very complex: the variable node processor have j = 3, 6, 7, 8
inputs and their check node processor have k = 6, 7 inputs. The average variable node
degree is dv = 3.25. So there are Γ = Ndv = 1024 × 3.25 = 3328 edges in the graph.
Of course, such an architecture is very fast: a throughput up to Db/R = 1 Gb/s can be
reached (information bits and redundant bits), within 64 iterations and at a clock rate of

(c) Frédéric Guilloud, Télécom Paris - July 2004

3.5 Existing platforms survey 65

64 MHz. So the edge rate is:

Re =
ΓDb/Rimax

K/Rfclk
=

3328 [edges] × 1/0.5 [Gb/s] × 64 [iter]
1024/0.5 [bits] × 64 [MHz]

(3.20)

= 3328 [edges/cycle] (3.21)

= Γ = (Re)max (3.22)

This is coherent with this whole parallel architecture. Note that for this numerical exam-
ple, we assumed that 1 [Gb/s] = 1024.103 [Gb/s] , since the giga notation is not detailed
in the reference. If we assume that 1 [Gb] = 230 [bits] then Re is a little bit higher than
(Re)max and if we assume that 1 [Gb] = 109 [bits] then Re is a little bit smaller than
(Re)max.

The main difficulty for such a design comes from the routing work of all the wires
between check nodes and variable nodes. The messages are coded on 4 bits. So an
amount of 3328 edges × 4 bits × 2 paths = 26624 wires has to be routed on 5 metal
levels. This yielded to lose 50% of the chip surface. In (Thorpe 2002), the authors address
the problem of routing complexity by designing random regular LDPC codes with a trade-
off between the code performance and the interconnect complexity. If the interconnection
is simple, the girth is low and hence the performance is low. On the contrary, if the girth
has to be higher, the interconnect complexity should be higher as well. Another drawback
of parallel architecture is that the decoder is not tunable. The code is hardwired and can
not be changed.

Introducing serial processing can circumvent these drawbacks, as described in the next
section.

3.5.2 serial design

In (Levine, Taylor, and Schmit 2000; Bhatt, Narayanan, and Kehtarnavaz 2000), there is
only one check node processor instantiation and only one variable processor instantiation.
Both of them is controlled in the master mode. Three RAM memory blocks are used
to save intrinsic information In, the check-to-variable messages Mc→v and the variable-
to-check messages Mv→c. In this case, there is no routing congestion. But the price
to pay is the long time required to achieve one iteration decoding and which increases
as the number of nodes increases. The amount of memory required is also even much
more important than in the design example of section 3.4.1 implementing the check-way
flooding schedule since it is given by Nw+2Γw instead of 3Nw+Γw and because Γ > 2N .

3.5.3 Mixed designs

Mixed designs seem the most popular architectures in the literature for LDPC decoders.
For example in (Zhang and Parhi 2002), the authors designed a mixed parallel architecture
for a length N = 9216 regular (3, 6)−LDPC code. A throughput of 56 Mb/s is obtained

(c) Frédéric Guilloud, Télécom Paris - July 2004

66 3. A UNIFIED FRAMEWORK FOR LDPC DECODERS

for 18 iterations. So one iteration requires:

9216 bits
56 Mb/s× 18 iter

× 56 MHz = 512 cycles (3.23)

yielding an edge rate of:

Re =
3× 9216

512
= 54 edges / cycles (3.24)

The check node processors are controlled in a master mode, and the variable processors
in a slave mode, with slow-loop information propagation.

3.5.4 Summary

The formalism proposed in this chapter enables to describe also the existing platforms
published in the literature. They have been summed up in table 3.4. The entries of the
table are described below:

Target describes the chip target of the decoder. Synthesis means that the design has
not been further.

Authors refers to the corresponding references in the bibliography.

Architecture is divided into four entries:

1. decoder specifies whether the decoding is parallel, serial or mixed and gives
also the parameters (P, α, β);

2. data path is for the node processor data path (Direct, trellis or Total sum);

3. control is for the node processor control (Master, slave slow-loop or slave
fast-loop);

4. perm. pos. is for the position of the permutation network, which defines the
node processor operators;

LDPC Code Type gives the main parameters of the LDPC code.

Data (bits) is the number of bits of the fixed-point format implemented in the decoder;

clk (Mhz) is the clock rate.

rate (106 bits/sec) is the throughput of the decoder (information bits and redundant
bits).

i max is the maximum number of decoding iterations.

(c) Frédéric Guilloud, Télécom Paris - July 2004

3.5 Existing platforms survey 67

Table 3.4: State of the art of published LDPC platforms

�
���

�

r
a
t
e

(
M
b
/
s
)

c
l
k

(
M
H
z

)

D
a
t
a

(
b
i
t
s
)

��
��

	

�
�

� �
��

a
r
c
h
i
t
e
c
t
u
r
e

A
u
t
h
o
r
s

T
a
r
g
e
t

p
r
o
f
i
l
e

R
M

N
p
e
r
m
.

�
���

c
o
n
t
r
o
l

� �
� �

��
�
�

d
e
c
o
d
e
r

P
a
l
p
h

a
b
e
t
a

c
h
e
c
k

v
a
r
.

c
h
e
c
k

v
a
r
.

1
0

4
5
0

8

�
�
�
�

� �
�

0
.
2
5

9
0
0

1
2
0
0

1

��
��
��
�
��
�

���

!
	
�
�
�

�

u
n
k
n
n
o
w
n

s
e
r
i
a
l

L
e
v
i
n
e

�
� �
�
� �

2
0
0
0

s
y
n
t
h
e
s
i
s

1
1

1

0
.
5

��
��
�
�
� "

��
��
�
�
� "

�
#�
!

T
M
S
3
2
0
C
6
2
0
1

B
h
a
t
t

�
� �
�
� �

2
0
0
0

2
0
0

1
0
0

�
�
�
�

� �
$

1
6

2
0
0

0
.
1
3
3

6
4

1
0
0
0

6
4

4

�
�
�&%
$&%
' %
(

�

� �
$&%
'

5
1
2

1
0
2
4

M
a
s
t
e
r

)

� �
�
�*
�

p
a
r
a
l
l
e
l

B
l
a
n
k
s
b
y

�
� �
�
� �

2
0
0
2

+#,
�

- �
.$
*
�

�
' �
/
�'
�0 �
��

M
1

1

1
8

5
4

5
6

5
�
�
�
�

� �
$

4
6
0
8

9
2
1
6

3
m
a
s
t
e
r

m
a
s
t
e
r

d
i
r
e
c
t

t
r
e
l
l
i
s

m
i
x
e
d

Z
h
a
n
g

�
� �
�
� �
1
-

0
2

2�3
+
4�
�� �
�

5�
��
�
� !
6
1
$-
-

3
k

1
1

1
1
6
0
0

1
2
5

4
1
0
2
4

2
0
4
8

1

s
l
a
v
e

f
a
s
t
-

l
o
o
p

m
a
s
t
e
r

T
o
t
a
l

s
u
m

t
r
e
l
l
i
s

m
i
x
e
d

M
a
n
s
o
u
r

�
� �
�
� �

��
��
1
--
�

+#,
�

- �
.(
*
�

(
3
.
1
x
4
.
2

s
q
.
m
m
)

6
4

1
1

1
0

1
9
2

2
0
0

5
i
r
r
e
g
u
l
a
r

17
�

1
5
3
6

2
3
0
4

m
i
x
e
d

M
a
n
s
o
u
r

�
� �
�
� �

�
�
	 �

1
--
�

+#,
�

- �
.(
*
�

�8
�

�
.
�0 �
��

6
4

1
1

2
5

6
i
r
r
e
g
u
l
a
r

0
.
5

4
0
4
4

8
0
8
8

s
l
a
v
e

s
l
o
w
-

l
o
o
p

m
a
s
t
e
r

)

� �
�
�*
�

m
i
x
e
d

�
� ��
�

9 �

�
� �
�
� �

2
0
0
3

2�3
+
4�
�� �
�

V
i
r
t
e
x
-
I
I

8
0
0
0

4
4

8
0

+#,
�

- �
..
*
�

�
1 �
$.
�0 �
��

2
4

1
j

2
1
2

3
7
6

(c) Frédéric Guilloud, Télécom Paris - July 2004

68 3. A UNIFIED FRAMEWORK FOR LDPC DECODERS

3.6 Conclusion

In this chapter, we have laid out a framework which unifies the architectures of LDPC
decoders. This framework features a generic description of the message passing architec-
ture and a generic description of the node processors. It also features three parameters
which describe completely the complexity of the decoder. The combinations of the dif-
ferent generic parameters of these models enables to describe the state of the art LDPC
decoder architectures. Moreover, we also found a new interesting architecture associated
to the vertical shuffle schedule, which has not been published yet. Finally, a survey of the
published platforms using the BP algorithm has been made and described as instantia-
tions of our generic framework. From this framework, it appears that a major milestone
of LDPC decoder designs is the management of the memory: even for parallel decoders,
a considerable amount of memory is required for storing the edge messages. A solution
to this issue would be to search toward approximations of the BP algorithm.

(c) Frédéric Guilloud, Télécom Paris - July 2004

Chapter 4

λ−Min Algorithm

Summary:

In the previous chapter, the architectures of LDPC codes decoder based on

the BP algorithms have been studied. It appeared that despite some differ-

ent scheduling, the amount of memory required for such algorithms is very

important because all the edge information (Mc→v or Mv→c messages) have

to be saved until the next iteration. Some simplifications can also be made

to lower the complexity of the BP algorithm, and particularly the complexity

of the check node update rule. A trade-off is then to be decided between the

simplifications of the algorithm, and the loss of performance.

In this chapter, a new algorithm, named λ−Min algorithm, for updating ex-

trinsic information is proposed as a performance-versus-complexity trade off

between the BP algorithm and the BP-based algorithm. Simulation results

show that good performance can be achieved, and which can even be improved

by the addition of an offset. The architecture of a check node processors im-

plementing the λ−min algorithm is also studied.

The material of this chapter has been published partly in (Guilloud, Boutillon,

and Danger 2003b) and partly in (Guilloud, Boutillon, and Danger 2003a) and

is patent pending (Boutillon, Tousch, and Guilloud 2003) in the United-States.

4.1 Motivations and state of the art

There are 2 classes of suboptimal iterative algorithm: hard one and soft one. The most
famous hard decoding algorithms are based on the Gallager’s algorithm A (Gallager 1963)
and the various bit-flipping algorithms. These algorithm are very fast and can be imple-
mented for optical communications for example (Djordjevic, Sankaranarayanan, and Vasic
2004, and references therein). Iterative hard decoding algorithms will not be addressed
here.

69 (c) Frédéric Guilloud, Télécom Paris - July 2004

70 4. λ−MIN ALGORITHM

Iterative soft decoding however performs better than the hard one. The aim of this
chapter is to reduce both the complexity of the node processors and the amount of memory
needed to store the edge messages. A new algorithm called the λ−min algorithm is
proposed as a solution to this issue. Note that in the following, only the flooding schedule
is considered.

4.1.1 APP-based algorithms

The first idea for solving the memory bottleneck of the BP algorithm is simply to get rid
of the edge memory. This idea is applied in an algorithm used in the staggered schedul-
ing, studied by (Yeo, Nikolić, and Anantharam 2001) but first developed by (Fossorier,
Mihaljević, and Imai 1999) where it is denoted by APP algorithm and APP-based algo-
rithm. We denote this algorithm APP-variable because the approximation appears in the
variable node update rule:

Iterative Algorithm 4 (APP-variable) The edge message E
(i−1)
n,m of the previous it-

eration is removed from the variable node update rule of the iterative algorithm 1
Initialization: E(0)

n,m = 0
Variable node update rule: T (i)

n = In +
∑

m∈M(n)

E(i−1)
n,m

Check node update rule: E(i)
n,m = 2 tanh−1

∏
n′∈N (m)\n

tanh
T

(i)
n′

2

Symmetrically, the same approximation can also be made in the check node update
rule. We denote this algorithm as the APP-check algorithm.

Iterative Algorithm 5 (APP-check) The edge message of the previous iteration E
(i−1)
n,m

is removed from the variable node update rule of the iterative algorithm 1.
Initialization: E(0)

n,m = 0
Variable node update rule: T (i)

n,m = In +
∑

m′∈M(n)\m

E
(i−1)
n,m′

Check node update rule: E(i)
n,m = E(i)

m = 2 tanh−1
∏

n∈N (m)

tanh
T

(i)
n,m

2

During the first iterations, these two algorithms perform well. But the performance is
not much improved if the number of iterations is higher. In fact the convergence behaves
as if the girth of the graph would be 2 instead of 4, with the loop (cnm → vnn → cnm)
for the APP-variable iterative algorithm, and with the loop (vnn → cnm → vnn) for the
APP-check iterative algorithm.

(c) Frédéric Guilloud, Télécom Paris - July 2004

4.2 The λ−Min Algorithm 71

4.1.2 BP-based algorithm

Another approximation for the BP algorithm exist in the literature: the BP-based algo-
rithm from (Fossorier, Mihaljević, and Imai 1999). The approximation used is analog to
standard approximation of the Max-Log-MAP of (Hagenauer, Offer, and Papke 1996):

Iterative Algorithm 6 (BP-Based) Only the magnitude part of the check node update
rule differs from the iterative algorithm 3:

Initialization: E(0)
n,m = 0

Variable node update rule: T (i)
n,m = In +

∑
m′∈M(n)\m

E
(i−1)
n,m′

Check node update rule: E(i)
n,m =

∏
n′∈N (m)\n

sign
(
T

(i)
n′,m

)
× min

n′∈N (m)\n

∣∣∣T (i)
n′,m

∣∣∣
Last variable node update rule: Tn = In +

∑
m∈M(n)

E(i−1)
n,m

There is an important simplification in the BP-based algorithm since the check node
update is replaced by a selection of the minimum input value. The memory and the
complexity reduction is significant since no more LLR are to be computed and since only
two messages need to be saved for each parity-check equation. Moreover, there is no need
to estimate the noise variance σ2 to compute the intrinsic information In, thanks to the
use of the min operator only. But this complexity reduction is made at the expense of a
substantial loss in performance.

In (Chen and Fossorier 2002), an improvement is made to the BP-based algorithm by
using a correction factor in the check node update rule. It is denoted by offset BP-based
algorithm when the correction factor is subtracted to the minimum value, or normalized
BP-based algorithm when it is multiplied by the correcting factor. The result of the check
node update equation, which is over-estimated for the BP-based algorithm, is then closer
to the result obtained with the BP algorithm. However, the offset or the normalized
BP-based algorithm do not seem to achieve good performance for irregular LDPC codes
with long length (Chen 2003).

4.2 The λ−Min Algorithm

In the BP algorithm, the magnitude processing is run using the function f defined in
equation (3.8) by: f : x 7→ − ln tanh(|x/2|). It is depicted on figure 4.1. The f−function
shape yields f(x) to be large when x is small, and to be small when x is large. So∑

x f(x) is mainly dictated by the smallest values of x. The proposed algorithm called
λ−min algorithm takes into account in the check node processing the λ inputs which have
the minimum magnitude.

(c) Frédéric Guilloud, Télécom Paris - July 2004

72 4. λ−MIN ALGORITHM

 0

 0.5

 1

 1.5

 2

 2.5

 3

−10 −5 0 5 10

f(x) = − ln tanh(|x/2|)

Figure 4.1: Shape of the function f .

Let Nλ(m) = {n0, · · · , nλ−1} be the subset of N (m) which contains the λ bits of the
parity check cnm which LLR have the smallest magnitude. The λ−min algorithm is then:

Iterative Algorithm 7 (λ−min) Only the magnitude part of check node update rule
differs from the iterative algorithm 3:

Initialization: E(0)
n,m = 0

Variable node update rule: T (i)
n,m = In +

∑
m′∈M(n)\m

E
(i−1)
n,m′

Check node update rule: E(i)
n,m =

∏
n′∈N (m)\n

sign
(
T

(i)
n′,m

)

×f

 ∑
n′∈Nλ(m)\n

f
(∣∣∣T (i)

n′,m

∣∣∣)


Last variable node update rule: Tn = In +
∑

m∈M(n)

E(i−1)
n,m

with f(x) = ln
ex + 1
ex − 1

Two cases occur:

1. if the bit vnn belongs to the subset Nλ(m), then the E
(i)
n,m are processed over the

λ− 1 values of Nλ(m)\n

2. if the bit vnn does not belong to the subset Nλ(m), then the E
(i)
n,m are processed

over the λ values of Nλ(m).

So the check node update rule is processed only λ+1 times: for the λ bits which belong to
Nλ(m) and one more processing which is sent to all the other bits. Note that the 2−min

(c) Frédéric Guilloud, Télécom Paris - July 2004

4.3 Performance of the λ−Min Algorithm 73

Table 4.1: Comparison between the outputs of the BP, BP-based and λ−min algorithms
(λ = {2, 3, 4})

inputs Outputs
(LLR values) BP-based 2−min 3−min 4−min BP

0.26296 -0.31502 -0.31502 -0.08775 -0.02555 -0.00088
0.31502 -0.26296 -0.26296 -0.07342 -0.02138 -0.00074
-0.57686 0.26296 0.04085 0.04085 0.01190 0.00041
-0.59992 0.26296 0.04085 0.01146 0.01146 0.00040
-0.67982 0.26296 0.04085 0.01146 0.00334 0.00035
0.85523 -0.26296 -0.04085 -0.01146 -0.00334 -0.00029
1.04061 -0.26296 -0.04085 -0.01146 -0.00334 -0.00024
1.22983 -0.26296 -0.04085 -0.01146 -0.00334 -0.00021

algorithm (λ = 2) differs only from the BP-based algorithm by the approximation of E
(i)
n,m

in the case where n /∈ N2(m) = {n0, n1}.
Some LLR computed with different algorithms on the same channel input are given

in table 4.1, where the input are listed in the ascending order of their magnitude, for a
check node processor of degree 6. We can observe that all the approximations of the BP
algorithm are over-evaluated. Of course, when λ increases, the approximation is improved.

4.3 Performance of the λ−Min Algorithm

4.3.1 Simulation conditions

A C++ program has been written for simulating various kind of matrices with various
kind of algorithm.

There is no encoding program so the decoder generates noisy samples from the all-zero
codeword. The received bit are decided by comparing the total information to zero. The
bit is considered to be wrong The Random Number Generators for the simulation of the
AWGN channel comes from (Press, Teukolsky, and Vetterling 1992), to be portable and
secure on the randomness point of view.

All the simulations are specified with:

• the (Eb/N0)dBstart, (Eb/N0)dBstop and (Eb/N0)dBstep;

• the maximum number of iterations imax. The syndrome is computed at each itera-
tion. If the syndrome is equal to zero, the iterations are stopped.

• the maximum number of errors (bit or word) to be reached before increasing the
(Eb/N0)dB value.

(c) Frédéric Guilloud, Télécom Paris - July 2004

74 4. λ−MIN ALGORITHM

Table 4.2: Bit node distribution degree for code C2. Actual distribution is computed for
a length N = 2000 code. Another constraint is that the number of different bit degree
should be a multiple of 4.

λ(x) =
∑

λix
i−1 (specified)

i λi

3 11.5897 %
4 17.8648 %
8 16.1923 %
9 6.20557 %
20 13.574 %
22 3.25932 %
32 7.01215 %
67 14.4807 %
74 0.24826 %
81 2.92047 %
101 6.65273 %

λ(x) =
∑

λix
i−1 (actual for N = 2000)

i λi Number of bits
3 11.8721 % 624
4 18.2648 % 720
8 16.6413 % 328
9 6.39269 % 112
20 13.6986 % 108
22 3.34855 % 24
32 7.30594 % 36
67 15.2968 % 36
74 0 % 0
81 2.05479 % 4
101 5.1243 % 8

• the maximum number of words that are to be generated for each (Eb/N0)dB.

Unless specified, all the simulations ends when 500 erroneous codewords are detected or
when a maximum of 105 codewords have been generated. A bit is said to be wrong if the
intrinsic information In is negative, and it is said to be right if it is positive. Since only
floating point operations are considered in this section, the zero case has an extremely
low probability.

Codes used for simulations

The code C1 is taken from the MacKay’s online database (Mackay). It is a regular
(5, 10)−LDPC code of length N = 816. The code C2 has been randomly designed based
on the variable degree distribution from Urbanke’s online program (Urbanke). It is an
irregular LDPC code of length N = 2000 and code rate R = 0.85. The distribution
variable degree are listed on the tables 4.2 and 4.3. As the length of the code is not high
enough, the actual edge distribution degree is not exactly the same as the specified on.

4.3.2 Algorithm Comparison

An comparison between the λ−min algorithm, the BP-based and the BP algorithm is
depicted on figure 4.2 for a regular code C1 and on figure 4.3 for an irregular code C1.
Two conclusions can be made for this comparison:

(c) Frédéric Guilloud, Télécom Paris - July 2004

4.3 Performance of the λ−Min Algorithm 75

Table 4.3: Check node distribution degree for code C2. The constraints are to have only
2 different distribution degree and that the number of different check node degree should
be a multiple of 4.

ρ(x) =
∑

λix
i−1 (specified)

i ρi

42 100 %

ρ(x) =
∑

ρix
i−1 (actual)

i ρi Number of checks
52 43.5312 % 132
53 56.4688 % 168

2 3 4 5
10−6

10−5

10−4

10−3

10−2

10−1

i
max

 = 2

E
b
/N

0

B
E

R

BP based
3−min
BP
BPSK

2 3 4 5
10−6

10−5

10−4

10−3

10−2

10−1

i
max

 = 50

E
b
/N

0

B
E

R

BP based
2−min
3−min
4−min
BP
BPSK

Figure 4.2: Performance of λ−Min algorithm with λ = {2, 3, 4} for code C1.

(c) Frédéric Guilloud, Télécom Paris - July 2004

76 4. λ−MIN ALGORITHM

3.5 4 4.5 5 5.5

10−4

10−3

10−2

10−1

i
max

 = 2

E
b
/N

0

B
E

R

BP based
2−min
3−min
4−min
BP
BPSK

3.5 4 4.5 5 5.5

10−4

10−3

10−2

10−1

i
max

 = 50

E
b
/N

0

B
E

R

BP based
2−min
3−min
4−min
BP
BPSK

Figure 4.3: Performance of λ−Min algorithm with λ = {2, 3, 4} for code C2.

1. First, the performance loss for all the cases is increasing with the maximum number
of iterations. And the differences between the suboptimal algorithm performance is
also increasing.

2. The performance of the λ−min algorithm is very closed to the performance of the
BP algorithm for λ ≥ 4. It is as more noticeable that for the code C2, the check
nodes are of degree 52 and 53. So the performance of the λ−min algorithm is not
really a function of the proportion between λ and the maximum check node degree.

4.3.3 Optimization

As shown in the previous section, the λ−min algorithm improves the performance com-
pared to the BP-based algorithm but there is still a degradation compared to the BP
algorithm. This degradation can be reduced by the addition of an offset, as proposed by
(Chen and Fossorier 2002) in the case of BP-Based algorithm: the offset compensates the
over estimation of extrinsic information.

Iterative Algorithm 8 (Compensed λ−min) Only the magnitude part of check node
update rule differs from the iterative algorithm 7:

(c) Frédéric Guilloud, Télécom Paris - July 2004

4.4 Architectural issues 77

Initialization: E(0)
n,m = 0

Variable node update rule: T (i)
n,m = In +

∑
m′∈M(n)\m

E
(i−1)
n,m′

Check node update rule: E(i)
n,m =

∏
n′∈N (m)\n

sign
(
T

(i)
n′,m

)

×max

αf

 ∑
n′∈Nλ(m)\n

f
(∣∣∣T (i)

n′,m

∣∣∣)
− β, 0


Last variable node update rule: Tn = In +

∑
m∈M(n)

E(i−1)
n,m

with f(x) = ln
ex + 1
ex − 1

and 0 < α ≤ 1, β > 0

The optimization of the value of the parameters α and β can be proceeded by using
the density evolution algorithm (Chen and Fossorier 2002). The parameters are then
optimized for the threshold of the code. For a practical case (finite code length and finite
number of iterations), the optimization can be made to get the best bit error rate for
example. The optimal value of β can then be simply found through simulations. Figures
4.4 depicts the evolution shape of the BER as a function of β, for several SNRs and for
several max iteration number. The maximum number of word errors is only 50, within a
maximum of 105 transmitted codewords. One can note that the offset 3−min algorithm
outperforms the BP algorithm. This is explained by a faster convergence; when the
number of iterations increases (figure 4.5), the two algorithm perform almost identically.
A comparison between the BP, the 3−min and the 3 − min with an offset β = 0.35 is
depicted on the figure 4.6. On the BER curves (left side), we can observe that the 3−min
outperforms the BP algorithm when an optimized offset is chosen. But the error floor on
the FER (right side) which is introduced by the 3−min algorithm does not outperform
the BP algorithm beyond Eb

N0
= 4 [dB] .

4.4 Architectural issues

This section is related to the architecture of the parity check node processor (PCP) for
an efficient implementation of the λ−min algorithm.

4.4.1 PCP architecture

Description

The implementation is based on a serial parity check processor using the ? operator,
defined in annexe B.1 by the equation (B.6), with message propagation as in iterative
algorithm 2. A synoptic of the architecture of the PCP is depicted on figure 4.7. It is
assumed that each PCP has to process Q successive parity checks, as described in the
mixed decoder architecture of section 3.1.

(c) Frédéric Guilloud, Télécom Paris - July 2004

78 4. λ−MIN ALGORITHM

0 0.5 1
10

−4

10
−3

10
−2

10
−1

Offset

B
E

R

Code C
1
, 50 iterations

0 0.5 1
10

−4

10
−3

10
−2

10
−1

Offset

B
E

R

Code C
1
, SNR = 3 dB

1 iteration
2 iterations
5 iterations
10 iterations
50 iterations
respective BP BER

2 dB
2.5 dB
3 dB
respective BP BER

Figure 4.4: Influence of the offset value on the BER for the 3−min algorithm, for several
SNRs and several max iteration number, for C1. The BER obtained with the BP algorithm
is represented with a dashed line.

(c) Frédéric Guilloud, Télécom Paris - July 2004

4.4 Architectural issues 79

10
0

10
1

10
2

10
3

10
4

10
−3

10
−2

Maximum Number of iterations

B
E

R

3−min algorithm ,offset = 0.35
BP algorithm

Figure 4.5: Code C1: comparison between BP algorithm and offset 3−min algorithm as a
function of the number of iterations for a fixed SNR of 3 dB.

Each PCP in iteration i works in 5 steps which are pipelined:

1. Synthesis block #1: The edge message information is uncompressed from the FIFO
memory and sent to the subtractor.

2. Generation of the T
(i)
n,m values: during the first |N (m)| clock cycles, the PCP associ-

ated to the parity check cnm received serially the T
(i)
n , n ∈ N (m), from an external

memory. At cycle n, the E
(i−1)
n,m of the previous decoding iteration are retrieved from

an internal memory of the PCP and subtracted to T
(i)
n in order to generate T

(i)
n,m

according to (1.40).

3. Preprocessing: The pre-processing block is depicted on the figure 4.8 (where λ = 3).
It features a serial sorting of incoming |T (i)

n,m| value. Every clock cycle, the current
value of |T (i)

n,m| is compared to the λ previous lowest ones, which are stored with
their index in a register file of size λ. According to the result of the comparators,
the new value is inserted in the sorting order in the register and the highest value is
forgotten. When all the |N (m)| input values have been preprocessed, 3 sets of data
are output:

• the set Ω(i)
λ = {|T (i)

n0,m|, · · · , |T (i)
nλ−1,m|} which features the λ lowest magnitude

of |T (i)
n,m|.

(c) Frédéric Guilloud, Télécom Paris - July 2004

80 4. λ−MIN ALGORITHM

2 2.5 3 3.5 4 4.5
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

i
max

 = 50

E
b
/N

0

B
E

R

2 2.5 3 3.5 4 4.5
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

i
max

 = 50

E
b
/N

0

W
E

R

3−min + offset 0.35
3−min without offset
BP
BPSK

3−min + offset 0.35
3−min without offset
BP
BPSK

Figure 4.6: Code C1: comparison between BP algorithm and offset 3−min algorithm as
a function of the Eb

N0
for imax = 50. Note 5.105 words have been generated for the last 2

points.

Synthesis #1

FIFO
Pre−processing

Synthesis #2

calculation
extrinsic

S
(i−1)
λ

n

Q

Tn

E
(i−1)
n,m

T
(i)
n,m

E
(i−1)
λ

N
(i−1)
λ

n

λ + 1

n′

E
(i)
λN

(i)
λ

E
(i)
n′,m

S(i)N
(i)
λ Ω(i)

λ

Figure 4.7: Description of a Parity Check Processor

(c) Frédéric Guilloud, Télécom Paris - July 2004

4.4 Architectural issues 81

Min 0

Min 1

Min 2

FIFO
size:

XOR

XOR

n0

n1

n2

|N (m)|
p
(i)
m

sign
(
T

(i)
n,m

)

bits

S(i)(m)

T
(i)
n,m, n

|T (i)
n,m|, n

Parity

Ω(i)
λ (m), N

(i)
λ (m)

Figure 4.8: Pre-processing block (3−min algorithm)

• the set N
(i)
λ = {n0, · · · , nλ−1} which features the index n associated to the set

Ω(i)
λ .

• the set S(i) which features the signs of all the E
(i)
n,m. The incoming signs of T

(i)
n,m

have been saved in a FIFO memory and an XOR loop computed the parity
p
(i)
m . Then the set S(i) is computed by an XOR operation between p

(i)
m and the

signs saved in the memory.

4. Processing: The processing can be designed in two different ways: the values can be
either processed on-the-fly, or processed once and then a synthesis block generates
the extrinsic information of each variable:

• On-the-fly extrinsic generation: the extrinsic values are computed on the fly,
one at each clock cycle, from the |Nλ(m)| values stored in the register file.
Figure 4.9 depicts an example of a possible realization for λ = 3. When the
current cycle corresponds to a value of Nλ(m), the corresponding boolean ti is
set to select +∞ in order to bypass the ? operator. Meanwhile, the messages
are compressed and sent to the FIFO memory to be saved for the next iteration.

• Pipelined extrinsic generation: the extrinsic values are computed once with
the ?−operator for example, as depicted on figure 4.10. Then they are saved
and uncompressed by the synthesis block #2.

5. FIFO saving: a word of the FIFO saves:

• the index of the λ lowest extrinsic magnitude : N (i)
λ (m)

• the set E
(i)
λ (m) of the λ + 1 LLR computed

(c) Frédéric Guilloud, Télécom Paris - July 2004

82 4. λ−MIN ALGORITHM

?

?

t1

∞
FIFO

...

t2

∞

∞

t0
T

(i)
n0,m

T
(i)
n1,m

T
(i)
n2,m

∣∣∣E(i)
n,m

∣∣∣ sign
(
E

(i)
n,m

)

∏
n∈N (m)

sign
(
T (i)

n,m

)

Figure 4.9: On the fly parity check scheme for λ = 3. When the reading phase is over,
λ values are saved and are addressed via t0, · · · , tλ−1 by the writing phase for on-the-fly
LLR computing.

?

bypass

∣∣∣T (i)
n0,m

∣∣∣∣∣∣T (i)
n1,m

∣∣∣∣∣∣T (i)
n2,m

∣∣∣

∣∣∣E(i)
n0,m

∣∣∣∣∣∣E(i)
n1,m

∣∣∣∣∣∣E(i)
n2,m

∣∣∣∣∣∣E(i)
n,m

∣∣∣ n /∈ {n0, n1, n2}

Figure 4.10: How to compute the λ + 1 different λ−min results using the ?−operator
(example of λ = 3)

(c) Frédéric Guilloud, Télécom Paris - July 2004

4.4 Architectural issues 83

Smn

Eλ

S

∣∣∣E(i)
n,m

∣∣∣
E

(i)
n,m

n Nλ

n ∈ Nλ
?

n = n0 n = n1

· · ·

· · · n /∈ Nλ

Figure 4.11: Synthesis block.

Synthesis #1

Pre−Processing

Synthesis #2

Processing

q − 1 q q + 1
|N (m)|
cycles

Tc < |N (m)|

Figure 4.12: Order of operations inside a PCP

• the set S(i)(m) of the |N (m)| signs of the Mc→v messages

in the stack of size Q so as to recover the E
(i)
n,m in the iteration i + 1.

Figure 4.11 depicts the synthesis blocks #1 and #2 of the figure 4.7 which uncompress
the extrinsic information of all the bit nodes. The bit node index are compared to the
index of the set N (i)

λ (m). The result of the comparison enables to choose which value to be
sent among the λ+1 values of the set E

(i)
λ (m); It is then multiplied by the corresponding

sign of the set S(i)(m).

Flow of operations

The chronogram depicted in the figure 4.12 describes the flow of operations in a PCP
during the processing of the qth macrocycles. Each operation last |N (m)| cycles, except
for the calculation one which can last Tc = λ + 1 cycles. The non-blocking constraint
for a pipe-lined dataflow is that the calculation time should not last more than |N (m)|
cycles, i.e. the time needed by the other operations. As far as the irregular codes are
considered, one just have to process the parity checks in the ascending order of their
weight; otherwise, the k−th operation of the macrocycle q might not be over when having
to start the k−th operation of the macrocycle q + 1.

(c) Frédéric Guilloud, Télécom Paris - July 2004

84 4. λ−MIN ALGORITHM

4.4.2 Memory saving

The λ−min algorithm aims at saving the memory required to store the edge messages.
At the expense of a little performance degradation, we will see hereafter that the memory
saved is important

Let Nb + 1 denotes the number of bit used to code the information (Nb for magnitude
and 1 bit for the sign). For the BP algorithm, we have to save |N (m)| messages E

(i)
n,m

which are coded on Nb +1 bits. Hence, (Nb +1)|N (m)| bits have to be saved for the next
iteration for each parity check.

The simplification brought by the λ−min algorithm enables to reduce this amount of
memory inside the PCP. The synthesis block of figure 4.7 is in charge of the decompression
of this memory. The amount of memory needed for the λ−min algorithm for each parity
check is detailed as follows:

• λ + 1 1 different log-likelihood ratios to compute (magnitude only), i.e. (λ + 1)Nb

bits.

• λ addresses on λ elements of the set Nλ(m) i.e.:
λ log2 (|Nλ(m)|) bits

• |N (m)| signs and one parity p
(i)
m , i.e.: |N (m)|+ 1 bits.

The ratio between the two memory sizes saving the extrinsic information in the case of
the λ−min algorithm and the BP algorithm for the parity cnm is:

(λ + 1)Nb + λ log2 (|Nλ(m)|) + |N (m)|+ 1
(Nb + 1)|N (m)|

. (4.1)

Figure 4.13 depicts the shape of this ratio as a function of λ and |N (m)|.
For example, in the case of a check cm with a weight |N (m)| = 20 and for the 2−min

algorithm, the memory needed to save the extrinsic memory is as much as 30% of the
memory that would be needed with the BP algorithm.

4.5 Perspectives

Another algorithm called Approximate-min* or A-min* has been recently published by
(Jones et al. 2003):

Iterative Algorithm 9 (A-min*) The check node update rule is approximated for all
the incoming messages except for the one with the smallest magnitude for which there is
no approximation.

1only if λ > 2 because if λ = 2 there is only one LLR to compute

(c) Frédéric Guilloud, Télécom Paris - July 2004

4.5 Perspectives 85

10 20 30 40

0.2

0.4

0.6

0.8

1

|N(m)|

M
em

or
y

re
du

ct
io

n
fa

ct
or

λ = 4
λ = 3
λ = 2
BP−Based

Figure 4.13: Proportion of the memory used to save extrinsic information in the λ−min
algorithm, depending on the parity check degree, for several λ value. Nb = 5 bits

Initialization: E(0)
n,m = 0

Variable node update rule: T (i)
n,m = In +

∑
m′∈M(n)\m

E
(i−1)
n,m′

Check node update rule: Let n0 = arg minn∈N (m)

∣∣∣∣T (i)

n′,m
2

∣∣∣∣
if n = n0,

E(i)
n0,m = 2 tanh−1

∏
n′∈N (m)\n0

tanh
T

(i)
n′,m

2

if n 6= n0,

E(i)
n,m = 2 tanh−1

∏
n′∈N (m)

tanh
T

(i)
n′,m

2

Last Variable node update rule: Tn = In +
∑

m∈M(n)

E(i−1)
n,m

The approximation is quite similar to the APP-check algorithm (iterative algorithm 5),
but has remarkable performance. The same check node update rule is applied for all the
variable but the one whose reliability is the lowest. For this one, the check node update
rule of the BP algorithm is applied. This approximation is also quite similar to the 2−min
algorithm, with the difference that the LLR of all the variable is sent back as the default
value, instead of the LLR of the λ lowest reliable one.

(c) Frédéric Guilloud, Télécom Paris - July 2004

86 4. λ−MIN ALGORITHM

0 0.5 1 1.5
10

−3

10
−2

10
−1

10
0

input LLR

ou
tp

ut
 L

LR

BP
APP−check
A min
BP−based
L min

Figure 4.14: k=4

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
10

−3

10
−2

10
−1

10
0

input LLR

ou
tp

ut
 L

LR

BP
APP−check
A min
BP−based
L min

Figure 4.15: k=5

0 0.5 1 1.5 2 2.5
10

−2

10
−1

10
0

input LLR

ou
tp

ut
 L

LR

BP
APP−check
A min
BP−based
L min

Figure 4.16: k=6

0 0.5 1 1.5
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

input LLR

ou
tp

ut
 L

LR

BP
APP−check
A min
BP−based
L min

Figure 4.17: k=12

The figures 4.14 to 4.17 depict the value of E
(i)
n,m versus the value of T

(i)
n,m respectively

for 4 different parity check degree. 4 check node update rules are compared:

• the BP algorithm,

• the APP-check algorithm,

• the λ−min algorithm,

• the BP-based algorithm.

The comparison is only made for some fixed random values, corresponding to an
(

Eb
N0

)
dB

=
0dB. But it is quite representative of the behaviour of the different check node update
rules. On these figures, we can clearly see that the BP-based and the λ−min algorithms

(c) Frédéric Guilloud, Télécom Paris - July 2004

4.6 Conclusion 87

both over-estimate the extrinsic information whereas the A-min and the APP-check both
under-estimate the extrinsic information.

In figure 4.14, the degree is only 4. The 3−min algorithm is then quite competitive
since λ is almost the same as the degree of the check constraint. But as the degree of the
check node is increasing, the difference between the BP and the λ−Min becomes larger
than the difference between the BP and the A-min* algorithm. The power of the A-min*
algorithm is that the least reliable bit is perfectly estimated and the worst one almost
as well. Note that this better approximation is made at the expense of an increased
processing complexity.

4.6 Conclusion

In this chapter, a new sub-optimal algorithm, named λ−Min algorithm, for updating
extrinsic information has been proposed. The λ−Min algorithm offers a performance-
versus-complexity trade off between the BP algorithm and the BP-based algorithm: the
complexity of the check node processor and the memory required to save the edge messages
are reduced, at the expense of no significant performance loss. Moreover, the addition of
an offset increases the convergence speed of the λ−min algorithm: for a given number of
iterations, it can outperform the BP algorithm.

An original architecture implementing the λ−min algorithm in a serial mode has been
also discussed. This hardware realization of the λ−min algorithm enables a reduction up
to 75% of the extrinsic memory information, with high rate LDPC codes. This architecture
can be very easily transposed to the A-min algorithm, which seems also to be very efficient.

The λ−min algorithm and its associated architecture have been published in two
papers and are patent pending in the USA.

(c) Frédéric Guilloud, Télécom Paris - July 2004

This page intentionally left blank.

Chapter 5

Generic Implementation of an

LDPC Decoder

Summary:

Simulations for studying the behaviour of LDPC codes under iterative de-

coding algorithms are time consuming. The time needed for simulating is

multiplied by 10 when the target BER is a decade lower.

In this chapter, a generic implementation of an LDPC code decoder is pre-

sented. The aim of this implementation is to run on a FPGA evaluation

board so as to simulate various type of LDPC codes faster than it would be

on a personal computer. This generic decoder should also be used to compare

different architecture implementations of some specific blocks. This generic

decoder should be used as a performance meter tool for LDPC codes and for

their implementation. So the genericity is an important feature of this imple-

mentation and a real challenge for a LDPC code decoder design. The VHDL

language has been chosen to describe the architecture.

After an overview of the decoder architecture, the management of the differ-

ent memories is detailed. Then the shuffling problem is discussed and the

top-level architecture is described. A more detailed description of the main

component of the architecture is given in annexe C. Finally, the genericity of

the architecture is discussed.

5.1 Overview

5.1.1 About genericity

The main specification of the LDPC decoder that will be described in this chapter is the
genericity. The meaning of genericity is double:

89 (c) Frédéric Guilloud, Télécom Paris - July 2004

90 5. GENERIC IMPLEMENTATION OF AN LDPC DECODER

• The decoder should be generic in the sense that it should be able to decode any
LDPC code, providing that they have the same size as the one fixed by the param-
eters of the architecture. It means that any distribution degree of the variable and
check nodes should be allowed, given N,M and P .

• The decoder should also be generic in the sense that a lot of parameters and com-
ponents could be modified: for example the parity-check matrix size, the decoding
algorithm (BP, λ−min, BP-based), the dynamic range and the number of bits used
for the fixed-point coding. But the modifications of these parameters should require
a new hardware synthesis.

Both of these goals are very challenging since LDPC decoders have been so far always
designed for a particular class of parity-check matrix. Moreover, genericity for architecture
description increase the complexity level.

Our motivation to design such a decoder is the possibility to run simulations much
faster on a FPGA than on a PC. Simulations give, at the end, the final judgement about
the comparison of the codes and of their associated architecture.

5.1.2 Synoptic

The figure 5.1 depicts the synoptic of the decoder for the flooding scheduling (see section
3.4). There are 2 main phases: the input/output one and the decoding one. The input
of a new word to decode and the output of the word that has been decoded are done
simultaneously. At the end of each decoding phase, the memories related to the variable
information are swapped. The information propagation is the heart of the decoding
process. There are 3 phases which are pipelined inside an iteration:

• Information reading (variable node processing)

• Information processing (check node processing)

• Information writing (accumulation, variable node processing)

5.1.3 Architecture

A first answer to genericity is to describe a mixed architecture, as detailed in section
3.1. Using the notations of the generalized architecture described in section 3.1, the
parameters of the architecture are α = k, β = j, and thus Re = P × k/α = P . This
yields to a serial implementation of the node processors. The serial processing of the node
processors relaxes the constraints on the memory organization. The λ−min algorithm
will be implemented to decrease the memory requirements. The flooding scheduling has
been chosen for the iterative decoding because we were not aware of the other schedules
when we started the design.

(c) Frédéric Guilloud, Télécom Paris - July 2004

5.1 Overview 91

M/P times (pipelined)

(total and extrinsic)
new bit information

write and accumulate

(new extrinsic)
compute P parity checks

(total and extrinsic)
read bit information

imax times

Propagate Information

Decode word n Output word n

Input word n+1

Input word n

Output word n-1

Swap Memories

Figure 5.1: Synoptic of the decoder associated to the flooding scheduling.

Variable Address
swap

Edge Data

minima selection Data bus
Address bus

(Input)

swap
Memories
Extrinsic

LLR Value Check size

N bits codeword

(Output)N bits codeword Bit access

Intrinsic

parity check processing

(A)

P blocks

pointer (Pt) Min 2

Min λ

Min 1

P blocks P blocks

(E1 and E2)

(L) (S)

P blocks

(V)

Memories (I)

Figure 5.2: System architecture of the decoder: memories are split into P blocks (in this
example, P = 3).

(c) Frédéric Guilloud, Télécom Paris - July 2004

92 5. GENERIC IMPLEMENTATION OF AN LDPC DECODER

The figure 5.2 depicts the system-oriented architecture of the decoder with P = 3,
where 8 different memory blocks are to be defined. These memories can be divided into 3
categories, according to the type of information which is saved in. The information may
be related to:

1. the parity-check matrix of the LDPC code: this information is used to control
the decoder.

• A: memory for variable addresses; Γ/P words are saved in the A-memory.
Each word is split up into P +1 parts: P address for the bits (timing shuffling)
and 1 address for the shuffle network (spatial shuffling).

• S: memory for parity check size; this is where the weight of each parity check
is saved. This enables to process irregular parity-check matrices.

2. the variable node processor: all these memories are split into P blocks, so that
it is possible to access P data at the same time:

• I: memory for intrinsic values.

• E1.sel = 1|E2.sel = 0: memory for actual extrinsic values that are being
accumulated.

• E1.sel = 0|E2.sel = 1: memory for former extrinsic values that are being
used to process parity check calculation.

• V : memory for the first accumulation flag; one bit for each variable is used
in V to remember whether a variable have already been involved in a parity
check or not, during each iteration. This enable the first accumulation to be
made with an all zero word.

To be more efficient, the two extrinsic memories are swapped after each iteration.
So the actual extrinsic information becomes the former one during the next iteration
more easily. This is controlled by the sel signal.

3. the check nodes processor: all these memories are also split into P block.

• Pt: memory for extrinsic pointer: this is where an address of the L-memory is
saved for each bit. A memory word is made of the address and the sign of the
bit.

• L: memory for computed LLR values; this is where the pointer of the extrinsic
values points.

The memory management will be described in the following example, illustrated by
a practical example, and particularly: how the memories are accessed ? How they are
organized ?

(c) Frédéric Guilloud, Télécom Paris - July 2004

5.2 Memory Management 93

H =

Figure 5.3: Didactic example for a parity check matrix

A B

enbena

Read Write

Figure 5.4: Dual-Port Block SelectRAM

5.2 Memory Management

As it has been introduced in section 5.1.3 that a lot of different memories is used in the
decoder. In this section, a didactic example will explained step by step how the main
memories are used.

5.2.1 Preliminaries

A practical example

The parity check matrix of figure 5.3 will be taken as an example. It is a (3, 4)−LDPC
code of length N = 12. It means that α = k = 4. The edge rate Re = P is set to P = 3 for
the example. The parity checks are associated with one of the P parity-check processor
available. A whole decoding iteration is processed in Q = M/P = 3 phases (q = 0, q = 1,
q = 2).

Memories of the FPGA

Although the design is intended to be generic, it is necessary to know the target imple-
mentation, particularly for FPGA implementations, since the resources (memories, ports,
clock frequency) can be different. Since memories are a crucial point in the decoder de-
sign, it is necessary to take into account their specifications. The FPGA Xilinx Virtex
XCV1000-E for example features 96 blocks of True Dual Port RAM. Each RAM block
has 4096 bits. All the memories will be assumed to be true dual port memories here-
after, since nowadays almost all the FPGA feature such memories. Figure 5.4 depicts the
symbol of a dual RAM block used in this manuscript. By convention, the “A” side will
be used for reading and the “B” side for writing. Such dual port RAM can be inferred

(c) Frédéric Guilloud, Télécom Paris - July 2004

94 5. GENERIC IMPLEMENTATION OF AN LDPC DECODER

y0 y3 y6 y9 y1 y4 y7 y10 y2 y5 y8 y11

MB1 MB3MB2

one received codeword (N bits) to decode

saved in P intrinsic memory blocks

y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11

Figure 5.5: Variable Memory Filling

by the synthesis tool. Only the A-memories containing the variable address will be used
for writing one side “A” and for reading on both sides. Note that despite the specific
kind of memory used here, the genericity is kept by the VHDL configurations description:
the memory description is embodied in a generic component which is target independent.
For other targets, only this elementary RAM block inside the generic memory component
would have to be redescribed. Thus we have been able to take advantage of the inference
capabilities of the synthesis tool (Leonardo Spectrum).

5.2.2 Variable node memories

The variable memories I, E1, E2 and V are the memories which are directly linked to
the variable processors. The variable or bit information is the intrinsic and the extrinsic
information. They are saved in the I, E1 and E2−memories. The memory V is the first
accumulation flag memory and it will be described at the end of this section.

Organization

The variable information are saved in memory following the time of arrival order of the
channel output: P variables are waited for and then saved in the P different memory
blocks. The way these memories are filled is described in figure 5.5. This method enables
to speed up the throughput since P data can written at the same time. The parity-check
matrix can be represented using the variable intrinsic memory order instead of the natural
order. This yields to the parity-check matrix of figure 5.6 which is the same as figure 3.8
used in section 3.4.

Dataflow

The dataflow of information during the different decoding phases is illustrated on figure
5.8.

The first step before decoding is to save the N variables of the received codeword
(STATE set to IO). They are saved in the intrinsic memory I. Meanwhile, one of the two

(c) Frédéric Guilloud, Télécom Paris - July 2004

5.2 Memory Management 95

1

2

3

MB2 MB3MB1

is used 3 times
each node processor

Figure 5.6: Didactic example for a parity check matrix after reordering as in the memory
banks

1

2

3

t1 t2 t3
t3

t1 t2t3t4

t4

MB1 MB2 MB3

t1

t1

t2

t2t3

t4t3

t1

t1t2

t2

t3

t3

t4

t4

t4t2t1

t2t4t1
t4

t3

t2 t1t3 t4

is used 3 times
each node processor

Figure 5.7: Parity check matrix : reordering and addressing into M/P = 3 passes and
P = 3 memory blocks. The non-zero entries of the matrix are replaced by ti, which are
the times when the bit are accessed: t1 < t2 < · · · < t9.

extrinsic memory E1 or E2, depending on the sel signal value, is initialized to zero. Note
also that the last decoded codeword is output in parallel.

As depicted in figure 5.1, the decoding phase consists of the reading and the accumu-
lation of the messages and also of the swap phase. The sel signal is complemented during
the SWAP state. This signal is used to control and exchange the role of the 2 extrinsic
memories E1 and E2. The intrinsic memory and the extrinsic memory of the previous
iteration are read and their output are summed. Then, the edge message is subtracted as
described in the parity-check processor, section 4.4.1. Finally, the output of the parity-
check processor is accumulated in the secondary extrinsic memory. The role of the 2
extrinsic memory is then swapped for the next iteration.

The init_select signal is used to control whether the accumulation has to be done
or not. If not, the accumulation is processed with the all-zero word. It is used to avoid
the initialization of the memory before the first accumulations. This information related
to each bit is saved in the first accumulation flag memory V . The generation of the
init_select is depicted on figure 5.9. N/P words of one bit are saved in the memory V .
This memory is depicted as a component with 2 sides A and B. For each side, the input
ports are the data input (.in) and output (.out), the address (a or b) and the write
enable signal (.en). The enable port are also depicted and always set to ’1’. Let assume

(c) Frédéric Guilloud, Télécom Paris - July 2004

96 5. GENERIC IMPLEMENTATION OF AN LDPC DECODER

01

0 01

0

1

PCP

PCP

BA

A B A B A B

1 1

I E1 E2State

I E1 E2State

1 1 0 0 1

A B A B A B

ITERATE

IO

IO

ITERATE

sel Value

sel = 1

sel = 0

sel = 1

sel = 0

sel Value

E
(i)
n,mT

(i)
n

In

In

∑
m E

(i−1)
n,m

E
(i)
n,m

sel = 0

A B

1 1

Init select

A B

1

∑
m E

(i−1)
n,m

sel = 1
1 0 011

A B A B A B

Init select

T
(i)
n

(V)

(V)

SWAP

SWAP

1

1

Figure 5.8: Dataflow of variable information depending on the state and the sel value
changed in the SWAP state.

(c) Frédéric Guilloud, Télécom Paris - July 2004

5.2 Memory Management 97

a.w b.w
a.en

a b

b.en
a.in b.in

b.outa.out

Vadr_acc

sel

Accu.1

Init select

L_mem_V

adr_write_V

data_accu

dpram_accu

1
10

1

sel

Figure 5.9: The principle of the first accumulation bit access.

that all the memory has been filled with ’1’, and that the sel signal is set to the opposite
value ’0’. When the address of the variable vnn is presented on the adr_acc wire for
the first time in the iteration, the output a.out is ’1’. After the latency of the memory
denoted L_mem_V, the value ’0’ is written at the same address. The init_select is equal
to ’1’ xor ’1’ which is ’0’. So the first time the address of the variable vnn is presented, the
init_select signal forces to zero the previous accumulated value data_accu. The next
time the same address is presented inside the same iteration, the output of the memory is
then ’0’ and thus the init_select signal is set to ’1’. Note that at the end of an iteration,
all the memory V is filled with ’0’ values. But as the sel signal is complemented in the
SWAP state, the same principle applies with the complemented values.

5.2.3 Check node memories

The check node memories are the L and Pt memories. In section 4.4, the architecture
of the λ−min algorithm has been discussed. In figure 4.7, an architecture of the parity
check processor is depicted where a FIFO memory is used to save at iteration (i):

• the set of the λ + 1 results of the λ−min algorithm is denoted by

E
(i)
λ = {en0 , · · · , enλ−1

, eλ}.

It is saved in the memory L. enj is the magnitude of the extrinsic information which
is sent to the variable which sent the j-th minimum. eλ is the default one, which is
sent to all the variable which did not sent a message among the minimum set.

• the signs of the extrinsic information S
(i)
n,m, and the set N

(i)
λ = n0, · · · , nλ−1 of the

index of the λ least reliable variable of the parity check are saved together in the
memory Pt. In fact, a convention enables to use only one bit to save the set N

(
λi),

as described hereafter.

(c) Frédéric Guilloud, Télécom Paris - July 2004

98 5. GENERIC IMPLEMENTATION OF AN LDPC DECODER

Offset

1

0

Memory L

Memory Pt

Extrinsic Sign

Default Flag

1

0

0

Default Flag

eq
λ

eq
n1

eq
n0

...

q = M/P − 1

q = 0

pointer

Default Flag

pointer

offset

address

1

0
...

1Sq,nk−1

Sq,n0

Sq,n1

...

q = 0

q = M/P − 1

counter

q ← q + 1 ?

eq
nλ−1

Figure 5.10: Organization of the check node processor memories L and Pt.

The memory L is not exactly used as a FIFO memory, as described in the following.
The memories L and Pt are divided into P independent blocks. Each block is linked

to M/P different parity-check processors and is organized as follows:

• the memory L contains M/P × λ words of Nb + 1 bits. It is addressed by a pointer
and an offset which can be added or not to the pointer, as depicted on figure 5.10.
The default LLR elambda is saved on the first address and then the other ei are saved
on the next addresses following the time scheduling addresses (more details about
this scheduling will be given through section 5.2.4). The pointer points the default
value eλ and the offset is incremented when the default value is not chosen by the
synthesis block.

• The memory Pt contains M/P × k words for a regular (j, k)−LDPC code. Each
word is 2 bits long: one bit is the sign of the extrinsic value, and the other bits is
the default flag. It indicates whether the variable belongs to the set of minimum
(flag set to ’0’) or not (flag set to ’1’). If not, the pointer to the L memory is used
without offset. On the contrary, if the flag is set to ’0’, the offset is incremented and
added to the pointer so as to read the next ei value in the L memory (see figure
5.10).

(c) Frédéric Guilloud, Télécom Paris - July 2004

5.2 Memory Management 99

So during an iteration, the memory Pt is addressed by a counter ranging from 0 to
kM/P − 1. The output of this memory is split into 2 parts. The first part is the sign
of the extrinsic information E

(i)
n,m. It is multiplied by the output of the memory L. This

memory is addressed either by the value of the current pointer signal or by the value of
the sum between the pointer and the offset, depending on the second part of the output
of the memory Pt (Default Flag). Each the default Flag is zero, the offset is incremented.

Note that when a parity-check has been processed, the value of q is incremented and
the pointer is increased of the value λ + 1. The degree of the parity check is saved in the
memory S. Although it is used in the check node processing, it is described in section
5.2.4 because the parity-check matrix is memorized in these two memory blocks.

5.2.4 The memories A and S

The memory A is the variable address memory, and the memory S is the parity-check
size memory. The memory S contains the degrees of the different parity checks. The
memory A contains the non-zero entries of the parity-check matrix. In fact, the data
which are saved in A are not simply the index of the non-zero entries of H. They are the
addresses of the intrinsic and extrinsic memory (time shuffling), and also the addresses
of the shuffle network (spatial shuffling). A pre-processing on the parity-check matrix is
required to somehow code H in the memory A and the memory S. We will assume without
any loss of generality that the rows of the parity check matrix are sorted in the ascending
way of their degree, as specified by the scheduling of the parity check processor in section
4.4.1. We will also assume in a first time that the parity-check degree distribution has a
granularity of P . It means that the number of rows with the same weight should be a
multiple of P . Note that the end of this section will be devoted to the analysis of such
constraints: we will show that the decoder is still generic.

So the memory S contains M/P words. The q−th word is the degree of the rows
(q − 1)P to qP − 1, which will be denoted kq, q ∈ {0, · · · ,M/P − 1} hereafter.

Scheduling access to the edges

For the time shuffling address construction, the following rule has to be respected: as the
data are sent serially to the parity check processor: it means that the k bits will be read
in k clock cycles in the memories. So at each clock cycle, P variables implied in the P

different parity check processor have to be read. These P variables should also be saved
in the P different memory banks, since only one read access can be made.

Based on figure 5.6 where the parity-check matrix is written by grouping with each
other the variables which belong to the same memory bank, figure 5.7 depicts the time
scheduling for reading or writing the information saved in the memory banks. The time
ti is the time when the corresponding variable is accessed. It is written in the place of the
non-zero entries of the parity-check matrix, t1 < t2 < t3 < t4. Respecting the rule above
means that:

(c) Frédéric Guilloud, Télécom Paris - July 2004

100 5. GENERIC IMPLEMENTATION OF AN LDPC DECODER

Table 5.1: Listing of the shuffle network addresses for P = 3. The order of the input list
is changed according to the address of the shuffle.

input output address

a b c a c b 0
b c a 1
c a b 2
c b a 3
a b c 4
b a c 5

1. one can not read 2 bits in the same area (same block) at the same time ti.

2. one can not read 2 bits on the same parity check (same line) at the same time ti.

Then the variable data have to be routed to the ad-hoc parity-check processor. It is
implemented by a shuffle network. This shuffle network is a P → P MUX which is also
addressed to get into the right configuration. More details about the shuffle network are
given in section 5.3.

Organizing H in the memory A

A word of the variable address memory is the concatenation of the P addresses to read
or write the variable memory and of the address of the shuffle network. This memory has
a total of

∑M/P−1
q=0 kq = M/P × k words for regular (j, k)−LDPC codes. The number of

bit for each word is the sum of:

• P × log2(N/P) for the memory address part (time shuffling),

• the number of bit dedicated to the address of the shuffle network (space shuffling).
If for example the P ! permutations are to be possible then log2(P !) bits are required.
Note that when P is high, coding all the P ! permutations is too complex. Then, a
restricted number of possible permutations should be implemented.

As an example, the table 5.2 resumes the construction of the data saved in the memory
1 for decoding the parity check matrix of figure 3.8. It is supposed that all the 3! = 6
permutations are implemented, following the address rule of table 5.1. So dlog2(P !)e = 3
bits are needed to code this address.

Using the A-memory

Figure 5.11 depicts how the information saved in the A-memory is used during the de-
coding phases. The two-ports memory is filled with the kM/P = 12 words which have

(c) Frédéric Guilloud, Télécom Paris - July 2004

5.2 Memory Management 101

Table 5.2: Encoding the parity-check matrix in the A-memory

���������	��

�	�

NumberLabelTimePhase
Integers Hexa

t1

q0

���������������
3 1 2 1 0 0

shuffle 1 2 3 4
������� ��������� 101h

t2

���������������
9 7 8 3 2 2

shuffle 1 2 3 4
������� ��������� 13Ah

t3

���������������
0 4 11 0 1 3

shuffle 2 1 3 5
������� ��������� 147h

t4

���������������
6 10 5 2 3 1

shuffle 3 2 1 3
������� ��������� 0EDh

t1

q1

���������������
0 4 5 0 1 1

shuffle 1 2 3 4
������� ��������� 105h

t2

���������������
6 7 8 2 2 2

shuffle 1 2 3 4
������� ��������� 12Ah

t3

���������������
3 1 11 1 0 3

shuffle 2 1 3 5
������� ��������� 153h

t4

���������������
9 10 2 3 3 0

shuffle 3 2 1 3
������� ��������� 0FCh

t1

q2

���������������
0 1 11 0 0 3

shuffle 1 2 3 4
������� ��������� 103h

t2

���������������
9 10 2 3 3 0

shuffle 2 3 1 1
������� ��������� 07Ch

t3

���������������
3 4 8 1 1 2

shuffle 3 2 1 3
������� ��������� 0D6h

t4

���������������
6 7 5 2 2 1

shuffle 3 1 2 2
������� ��������� 0A9h

(c) Frédéric Guilloud, Télécom Paris - July 2004

102 5. GENERIC IMPLEMENTATION OF AN LDPC DECODER
C

A
L

C
U

L
A

T
E

R
E

A
D

A
C

C
U

M
U

L
A

T
E

PCP2

Time shuffle address = {1, 0, 3}

21
3

11

4
0

Time shuffle address = {2, 3, 1}

PCP1 PCP3

Spatial shuffle address = 5
{1, 2, 3} → {2, 1, 3}

87
9

8

2

7
9

MB1 MB2 MB3

4
0

P memory blocks

5

10
6

Spatial shuffle address = 3
{1, 2, 3} → {3, 2, 1}

0A9
0D6
07C
103
0FC
153
12A
105
0ED
147
13A
101

A-memory

q = 1, time t2>

101 01 00 11

011 10 11 01

3
1

11

6
10

5

q = 0, time t3>

accumulate
pointer

read
pointer

Π

Π−1

Ascending
addresses

Figure 5.11: The information saved in the A-memory are used for addressing the memory
banks and the shuffle network, both during the reading phase and during the accumulation
phase.

(c) Frédéric Guilloud, Télécom Paris - July 2004

5.2 Memory Management 103

Table 5.3: Memory size requirements for a regular (j, k)−LDPC code of length N . The
architecture is mixed with parameters α = k, β = j, P = Re.

Memory Nb of Block Size Word size Nb of FPGA Ram Block
blocks (words) (bits) (Xilinx VirtexE-1000)

I, E1, E2 3P N/P Nb + 1 3P ×
⌈

N/P×(Nb+1)
4096

⌉
A 1 M.k/P

P.dlog2(N/P)e +
dP log2(P)− P + 1e (*)

Mk
4096P (P.dlog2(N/P)e +
dP log2(P)− P + 1e) (*)

Pt P M.k/P 2 P ×
⌈

M.k/P×2
4096

⌉
L P M(λ + 1)/P Nb + 1 P ×

⌈
M(λ+1)/P×(Nb+1)

4096

⌉
V P N/P 1 P × N/P×1

4096

S 1 M/P log2(kmax)
⌈

M/P×log2(kmax)
4096

⌉
(*) see section 5.3 for more information on the shuffle address.

been pre-processed in table 5.2. The dual port RAM block enables this memory to be
addressed twice at the same time for reading. In this example, 2 words are read: one
address for the reading of phase q = 1 and one address for the accumulation of phase
q = 0.

5.2.5 Migration to FPGA

Using the FPGA memories

Table 5.3 describes the memory size needed for all the different memory types for a
regular (j, k)−LDPC code of length N decoder, implementing a mixed architecture with
parameters α = k, β = j, P = Re. Note that for irregular matrices, kM/P should
be replaced by

∑M/P−1
q=0 kq. The first column indicates the number of block required

by the edge rate Re = P of the decoder. The second column indicates the number of
words needed in one such block, and the third one, the size of this word. Of course,
one block might be instanced with more than one FPGA dual block RAM, depending
on the required size of one word and on the required number of words. The optimized
number of FPGA RAM block required is calculated in the last column of table 5.3 for a
Xilinx VirtexE-1000 FPGA, whose RAM blocks have 4096 bits. Optimized means that
this number is the lowest, since it does not take into account how the block should be
wired to achieve such a number. It is equal to:

Nb of Blocks×
⌈

Block size×Word size (bits)
4096bits

⌉
(5.1)

A numerical application is illustrated in table 5.4. For several FPGA (2 Xilinx Virtex

(c) Frédéric Guilloud, Télécom Paris - July 2004

104 5. GENERIC IMPLEMENTATION OF AN LDPC DECODER

Table 5.4: FPGA RAM Block usage for several FPGA.

AlteraXilinx
Model

F
P
G
A

�������������
	�������
���������������
	����������� �������������

������� ���������
	��������

����� ��

� �
�����
���������� � �������������!#"%$'&#(#)%)#*,+-&#.%(/ � �����������������0�1�� /
����������������0�1�

 ��������������������2������������������������2��

(a) (b)(c) (a) (b)(c) (a) (b) (c) (a) (b) (c)

8765Examples 1 2 3 4

46080368401600012280
D
E
C
O
D
E
R

N 4096 4080 18560 32800
92161842032006140M 2048 816 9280 6560
0.80.50.80.5

2�3�4��
�������
0.5 0.8 0.5 0.8

8888P 8 8 8 8
8888

5 ��6��
8 8 8 8

156156k 6 15 6 15

3333lambda 3 3 3 3

24242424I
,

E
i

7 ������8�8���8�����9:� / �1�
24 24 24 24

5760460520001535
; 8�3�2��
����<����0=�3���4��

512 510 2320 4100

8888
> 3���4
����<����0�����1�

8 8 8 8
?�@�A ��8�3�2���B�����C��

24 24 48 48 0 72 0 0 96 0 0 216 0 0 288 0

8888

V

7 ������8�8���8�����9:�0�1�
8 8 8 8

5760460520001535
; 8�3�2��
����<����0=�3���4��

512 510 2320 4100

1111
> 3���4
����<����0�����1�

1 1 1 1
?�@�A ��8�3�2���B�����C��

8 8 8 8 24 0 0 32 0 0 72 0 0 96 0 0

8888

Pt

7 ������8�8���8�����9:�0�1�
8 8 8 8

172801381560004605
; 8�3�2��
����<����0=�3���4��

1536 1530 6960 12300

2222
> 3���4
����<����0�����1�

2 2 2 2
?�@�A ��8�3�2���B�����C��

8 8 8 16 144 0 0 192 0 0 432 0 0 544 0 0

8888

L

7 ������8�8���8�����9:�0�1�
8 8 8 8

4608921016003070
; 8�3�2��
����<����0=�3���4��

1024 408 4640 3280

8888
> 3���4
����<����0�����1�

8 8 8 8
?�@�A ��8�3�2���B�����C��

16 8 24 16 0 48 0 0 32 0 0 144 0 0 72 0

1111

A

7 ������8�8���8�����9:�����
1 1 1 1

172801381560004605
; 8�3�2��
����<����0=�3���4��

1536 1530 6960 12300

121121105105
> 3���4
����<����0�����1�

89 89 113 121
?�@�A ��8�3�2���B�����C��

34 34 43 81 0 0 1 0 0 2 0 0 4 0 0 4

1111

S

7 ������8�8���8�����9:�����
1 1 1 1

11522302.5400767.5
; 8�3�2��
����<����0=�3���4��

256 102 1160 820

4343
> 3���4
����<����0�����1�

3 4 3 4
?�@�A ��8�3�2���B�����C��

1 1 1 1 5 0 0 0 1 0 14 0 0 9 0 0

?�@�A ��8�3�2��
8���D��
5 13 36 -2 51 18 1 0 9 0 249 4 5 118 4 5

(c) Frédéric Guilloud, Télécom Paris - July 2004

5.3 Shuffle network 105

and 2 Altera Stratix), a comparison is made on the size of regular LDPC codes that can
be implemented, as a function of the memory resources of each FPGA. Two kinds of codes
are illustrated: the first one is a regular (3, 6) LDPC code of rate R = 0.5 and the second
one is a regular (3, 15) LDPC code of rate R = 0.8. The main difference between the
Virtex and the Stratix families is that for the Stratix series, three different kind of RAM
block are available inside a FPGA; they are referred to by the (a), (b) and (c) columns
in table 5.4. So the possible code length is higher. Note that these examples are just an
overview of what would be possible with nowadays FPGA. It means that an optimization
of the memory usage would yield an implementation of longer codes for example. Note
also that distributed memories built with the slices of the FPGA are not considered. This
would also increase the size of the available memory and thus would enable to implement
longer codes too. However, table 5.4 shows that with existing FPGA technologies, it is
possible to build such a generic LDPC decoder for codes of a few 10k bits length, with
rate R = 0.5.

Throughput

The information rate is given by (3.18), in section 3.3:

Db =
ReKfclk

imaxΓ
[information bit/s] (5.2)

=
fclkPRN

imaxkM
(5.3)

=
fclkPR

imaxk(1−R)
(5.4)

=
fclkPR

imaxj
(5.5)

So Db increases as the parallelism rate P and the rate R increases, and decreases as
the variable degree increases. In the examples of table 5.4, where P = 8, 2 different
throughput are possible, if we choose fclk = 10 [MHz] and if assume that imax = 10:

• R = 0.5: Db = 6.667 [Mbit/s] ,

• R = 0.8: Db = 10.667 [Mbit/s] .

. These numerical applications show that with these existing FPGA technologies, out de-
sign make also possible the implementation of a generic LDPC decoder having a through-
put a several mega bits per second.

5.3 Shuffle network

The shuffle network performs the spatial shuffle which is a part of the whole interconnec-
tion network achievement. The other part is the time shuffle, achieved by the random
access of the variable information memories.

(c) Frédéric Guilloud, Télécom Paris - July 2004

106 5. GENERIC IMPLEMENTATION OF AN LDPC DECODER

...

...

o1

o2
I1

oN

oN−1

O1

...

i1
i2

iN−1

iN
IN

2

WN
2

WN
2

...
...

ON
2 −1

Figure 5.12: Waksman’s permutation generator of order P : WP ; iterative synthesis of
WP using WP/2, P = 2r

Choice

The genericity specification of the decoder yields to have potentially all the spatial per-
mutations achievable. If some permutations are impossible, then some randomly chosen
LDPC codes could not be decoded.

A first possible solution is to implement P multiplexors (MUX) (P → 1) and to
code the shuffle address on P log2(P) bits. But there’s no need to code more than P !
permutations since 2 bits can not go to the same serial parity-check processor. Coding
the overall permutation requires log2(P !) bits. Using Stirling approximation, we can save
about:

P log2(P)− log2(P !) ≈ P (5.6)

bits on the size of the shuffle address.
Of course, here again, only small values of P are acceptable. For large values, a

limitation in the number of possible permutation should be accepted.

Permutation generator

The permutation generator is a device which can output any of the P ! permutations of
its P inputs. It should be made of 2-input 2-output switches to avoid complex routing.
A switch is a device which lets the data go through with or without crossing them. Only
one bit is needed to address one switch (figure 3.2).

Hence, the minimum required number of switch is then equal to log2(P !). If N is a
power of 2, a generic structure exists (Waksman 1968) which requires P log2(P)− P + 1
switches (figure 5.12). But if P is not a power of 2, it is more difficult to find an efficient
generic structure. Figure 5.13 describes non-optimal permutation generator for N =
3, 5, 6, 7.

Figure 5.14 depicts the size of the shuffle address (in bits) for the 3 different cases: the
use of P MUX, the lower bound and the Waksman solution, interpolated by our solutions
when P is not a power of 2.

(c) Frédéric Guilloud, Télécom Paris - July 2004

5.3 Shuffle network 107

P = 3 P = 5 P = 6 P = 7

Figure 5.13: Some permutation generator of order N 6= 2r

 0

 10

 20

 30

 40

 50

 60

 70

 0 2 4 6 8 10 12 14 16

N
um

be
r

of
 b

its
 f

or
 o

ne
 s

er
ie

P

Gain of Permutation coding

ceil(P.Log2(P)) (red)

ceil(P.Log2(P)−P+1) (blue)
ceil(Log2(P!)) (green)

Figure 5.14: The number of bit saved by coding the permutation of the variables increases
linearly. The number of bit required when using P MUX is represented by the red bars.
The blue bars are for the use of Waksman generator, interpolated to any value of N , and
the green bars are for the ideal generator.

(c) Frédéric Guilloud, Télécom Paris - July 2004

108 5. GENERIC IMPLEMENTATION OF AN LDPC DECODER

Comb.
+Shuffling (inv) Shuffling

PCP PCP

a
d
r
_
p
i
_
i
n
v

a
d
r
_
p
i

e
n
d
_
i
t
e
r

first_iter

CNU

PCPdata data

bypass(N/A)

VP VP VP

MEM A

VNU

data

start_O

start_I

data_int

data_acc

data_strobe

req_word

data_out

d
a
t
a
_
a
c
c
_
e
n

start_cnu

zero_syndrome

end_io io

selstart_vnu

input_en

end_io

req_input_AS

FSM

new_H

APP_INT_ACK
FSM

FSM

PCP CONTROL

VP CONTROL

MEM S

Figure 5.15: The top-level architecture of the decoder

Note that the authors of (Thul, Gilbert, and Wehn 2003) proposed an ring-interleaver.
The complexity is reduced as compared to interconnection networks, but at the expense
of a high and not constant latency.

5.4 Description of the architecture

The architecture of the top-level is illustrated on figure 5.15. It is divided into 2 units

• the Check Node Unit (CNU): it is where the computation of the extrinsic values is
made. The CNU features P parity-check processors (PCP). The memories L and
Pt are included in the PCP. The memory S is also inside the CNU.

• the Variable Node Unit (VNU): it is where intrinsic and extrinsic information is
saved and accumulated. The VNU features P Variable Processor (VP). The mem-

(c) Frédéric Guilloud, Télécom Paris - July 2004

5.4 Description of the architecture 109

WR_MEM_A

WR_MEM_S

APP_INT_ACK = 1

RESET
rst = 0

new_H = 0

new_H = 1

CONFIG
read new_H
read imax

IO

end_iter = 1

Niter = imax
start_vnu = 0
es = 1

sel = not(sel)
start_vnu = 0
es = 0

if (Niter=imax)
first_iter =1
else = 0

start_vnu = 1

first_iter = 1
SWAP ITER

end_io = 1
end_decode = 1)

not (Niter = 0 OR

end_iter = 0Niter = 0 OR
end_decode = 1

and req_word = 1
end_write_A = 1

end_write_S

1

WR_SIZE
read sigma_ki

es = 0

Figure 5.16: Top-level Finite State Machine

ories I, E1, E2 and V are inside the VP. The memory A is also inside the VNU.

These 2 units feature a common control for their P processors, avoiding multiple instances
of the same control components. The information is exchanged between each others during
each iterations through a the permutation network and its inverse.

The detailed architecture of the PCP and of the VP are presented in annexe C,
respectively in section C.1 and C.2. The top-level architecture is controlled by the top-
level finite state machine (FSM) depicted on figure 5.16. It has 4 main states and a
secondary FSM for the configuration control, which will not be detailed here:

1. RESET when rst is set to 0.

2. CONFIG (secondary FSM) when the APP_INT_ACK is set to 1 (this signal is considered
as the start signal for the decoder). The configuration of the decoder is read at
this moment: the maximum number of iterations imax and the new_H signal which
specifies if a new parity-check matrix has to be decoded. The input of a new parity-
check matrix is also processed by this secondary FSM.

3. IO when new_H is set to 0 or when a codeword has been decoded. This state
correspond to the input and output data transfers.

4. ITER when an iteration is being proceeded.

(c) Frédéric Guilloud, Télécom Paris - July 2004

110 5. GENERIC IMPLEMENTATION OF AN LDPC DECODER

· · ·
· · ·

· · ·

≥ 1 N/P cycles

· · ·
· · ·

state

rst
clk

RESET IO
CONFIG SWAP

ITER
SWAP

ITER
SWAP

IO

new_H

req_word
start_O

data_strobe

start_I

1+D_mem_I+D_adder
N/P cycles

Figure 5.17: Top-level waveforms when the new_H signal is set to zero.

5. SWAP after IO or ITER; this one clock cycle state swaps the role of the 2 extrinsic
memories.

The waveforms of the main signals are depicted on the figure 5.17, where some signals
are defined in the finite state machine of the decoder. The start_O input enables the
decoder to output the result of the decoded word on data_out. The start_I input
enables the decoder to read the word to be decoded on data_input. These operations
last N/P clock cycles, and the output one has to be done first, so as not to erase the
decoded word by the word to decode. The data_strobe output port is used to know
when the data_out one is valid.

5.5 Universality of the decoder

A very few generic architectures for LDPC codes have been published in the literature. In
fact we have not been aware of such any generic LDPC-decoder platform. Some scalable
architecture are described which are a template architecture description for various kind of
LDPC codes. The authors of (Kienle, Thul, and Wehn 2003) for example, discussed about
implementation issues of scalable LDPC code decoders. This architecture however does
not seem to handle more than one code once the synthesis tool has been processed. An-
other scalable architecture is given by (Verdier and Declercq 2003). The authors designed
a highly structured LDPC code decoder which performs as well as randomly generated
codes. Here again, not all the degree distributions can be implemented.

In our architecture, before the synthesis has been performed, the set of parameters
enables to decode all the LDPC codes. Once the set of parameters N ,M and P has been
decided, all the (M ×N) parity-check matrices can be decoded, whatever the degree dis-
tribution can be: parity-check matrices can be either randomly designed according to the
architecture, or an existing parity-check matrix can be also decoded using a preprocess-
ing. This preprocessing will prepare the data of the A and S memories, to schedule the

(c) Frédéric Guilloud, Télécom Paris - July 2004

5.5 Universality of the decoder 111

decoding process as described in section 5.2.4.

5.5.1 Randomly designed LDPC codes

Two softwares have been written to generate a random LDPC code, either based on a
variable node degree distribution or on a check node degree distribution. Both of them
can be obtained on-line thanks to (Chung ; Urbanke) website.

Check node degree specification

We will assume here that the check node degree distribution has a granularity of P . It
means that the number of check node having the same degree is a multiple of P . So the
first work to do is to adapt the distribution on the required parameters of the parity-check
matrix. For the general case, please refer to section 5.5.2. Note however that it is not a
hard constraint since P is not very large.

The random generation of the parity-check matrix consist of generating the random
addresses of the memory A (Spatial and time shuffle), according to a given distribution
profile: first, the check node are sorted in the ascending order; then a permutation address
and P memory addresses are randomly chosen. This operation is repeated as many times
as the degree of the P check nodes under process. The only constraint is that a variable
should not be randomly chosen twice by the same check node. The software tries to have
a uniform variable node degree distribution: the variable node degree should be constant,
or at least should be made of only 2 successive values. As an illustration, a random
rate−0.5 LDPC code of length N = 2048 is depicted on figure 5.18. The check nodes
have degrees 6 (ρ6 = 0.6) or 8 (ρ8 = 0.4), yielding 1368 variables to have a degree 3 and
680 to have a degree 4.

Variable node degree specification

The random generation of a parity-check matrix having a given variable node degree
specification is processed approximately in the same way as for the check-node degree
specification case. The constraint is that the check node degree should be constant, or at
least 2 successive degrees, all of them being multiples of P .

5.5.2 Preprocessing of existing LDPC codes

The first preprocessing step is to sort the parity-check matrices by ascending order of
their degree, as specified in the flow of operations of the parity-check processor, section
4.4.1.

The second step is to rearrange the non-zero entries of the parity-check matrix. The
number of non-zero entries should be the same in all the regions described by the inter-
section of a memory bank and a set of P parity-checks processed at the same time. It

(c) Frédéric Guilloud, Télécom Paris - July 2004

112 5. GENERIC IMPLEMENTATION OF AN LDPC DECODER

 0

 200

 400

 600

 800

 1000

 0 500 1000 1500 2000

Figure 5.18: An illustration of a random parity-check matrix

�� ��
�� ���	
� �
 ����

�� ��
��

����
��

�� ! "#$%
pcn

· · ·
pcn+P−1

Figure 5.19: Row permutation for spreading the non-zero entries of H.

is possible to process rows permutations, as depicted on figure 5.19, provided that they
have the same degree.

If no solution can be found by row permutations, column permutations can be per-
formed on the parity-check matrix, as depicted on figure 5.20. If the encoding has been
performed with an efficient scheme, such as in (Richardson and Urbanke 2001), the column
permutation should be avoided as much as possible , since it requires also a permutation
of the received variables before being decoded.

Finally, for the last blocking cases, a “NOP” variable can be introduced (see figure
5.21). This is in fact a No-Operation variable which is added to the N/P variables of the
code. This special address will be detected and process separately for doing nothing.

Providing these preprocessing solutions, all the type of parity-check matrices can be
decoded by our architecture. This is a important feature for an LDPC performance
evaluation tool. Note that the preprocessing software and the special NOP processing
implementation are part of our perspectives.

(c) Frédéric Guilloud, Télécom Paris - July 2004

5.5 Universality of the decoder 113

�� ��
�� ���	
� �
 ����

�� ��
��

����
��

�� ! "#$%
pcn

· · ·
pcn+P−1

vn3 vn9

Figure 5.20: Column permutation for spreading the non-zero entries of H.

�� ��
��

���	

�

�

��
�� ������
�� �� ���� �

!" #�#$ %&pcn

· · ·
pcn+P−1

NOP variable

Added non-zero entry

Figure 5.21: Using a “NOP” variable to allow irregular degrees inside regions of the same
processing phase.

(c) Frédéric Guilloud, Télécom Paris - July 2004

114 5. GENERIC IMPLEMENTATION OF AN LDPC DECODER

5.6 Conclusion

We presented in this chapter a generic architecture of a decoder which accepts any LDPC
codes. The meaning of genericity is twofold:

• first, for a given code size (N,M), and a given parallelism rate P , any LDPC code
can be decoded by the decoder, without any synthesis before. The new code is
uploaded inside the decoder, and the decoding process is ready to run;

• second, the description of the code is versatile: before a synthesis is to be performed,
any parameters can be changed. The different components can also be changed easily
(shuffle, check node processor, ...).

Even if the architecture has been written for a wide range of LDPC codes, it can be also
simplified to fit with some constraint matrices. For example in the work of (Hocevar 2003),
only P different spatial permutations are used, instead of the P ! possible permutations.
The variable addresses are also simplified by the use of circular shifted identity matrices:
addressing is a common counter for all the variable processors, as designed also by (Zhang
and Parhi 2001).

This generic LDPC decoder implementation will be associated to other LDPC soft-
wares so as to build an LDPC evaluation platform. The synthesis and simulation results
of this platform are given in chapter 6.

(c) Frédéric Guilloud, Télécom Paris - July 2004

Chapter 6

The platform

Summary:

This last chapter presents in a first part an overview of the platform designed

to run intensive simulations with the generic decoder described in the chapter

5. Some synthesis issues are then presented. In a second part, fixed-point sim-

ulations are processed to study the influence of quantization on the decoding

algorithms. A comparison between software simulations and hardware simula-

tion shows no difference between them. A comparison between the BP and the

λ−min algorithms is proposed, and the influence of the intrinsic information

processing is emphasized. The material of the second part has been partly

presented during the GDR ISIS seminar on LDPC (Guilloud, Boutillon, and

Danger 2002b).

6.1 Platform description

6.1.1 Overview

The simulated communication is depicted on figure 6.1. The encoder is a software running
on a PC. The encoded bits are sent to the channel emulator, implemented on a first FPGA,
where white gaussian noise samples are added to the BPSK modulated bits. Then the
intrinsic information is computed using high precision processing. Finally, the intrinsic
information is truncated and rounded, and is sent to the iterative decoding process, on a
second FPGA.

This communication platform is implemented on a Xilinx Virtex-E evaluation board
from Nallatech systems. The block diagram of the platform is depicted on figure 6.2.
It is based on a PCI-card: the Ballyinx card. It is connected to the PCI bus of the
PC and it features a Virtex XCV300 in which the PCI interface is implemented. A
driver has been written with the Numega SoftIce Driver Suite tools. The driver enables
the communication between the Ballyinx and the PC through the PCI-bus, under the

115 (c) Frédéric Guilloud, Télécom Paris - July 2004

116 6. THE PLATFORM

AWGN Channel

BER
Counter

Encoder processing
Iterative

PC software

FPGA Xilinx E 1000 #1 FPGA Xilinx E 1000 #2

LDPC decoder

nb_bit_maxnb_error_max

× 2
σ2

σ2 imax H

Figure 6.1: The block diagram of the platform for encoding and decoding LDPC codes.

Software C++

Virtex 1000 #2

Virtex 1000 #1

FIFOFIFO

Virtex 300

USER

Driver

LDPC decoder

DIME interface

Channel emulator

Error counter

50 MHz

84 bits

Ballyinx

DIME bus

USB

PCI bus

64 bits

66 MHz

PC

Design tools

Application

32 Mo
SDRAM

100 bits

BallyBlue DimeCard

PCI interface

Figure 6.2: The block diagram of the platform using the Nallatech evaluation board.

(c) Frédéric Guilloud, Télécom Paris - July 2004

6.1 Platform description 117

Figure 6.3: The picture of the Ballyinx and the Ballyblue cards (Nallatech evaluation
board)

Windows 2000 operating system. A picture of the Ballyinx and the BallyBlue cards is
shown on figure 6.3. A C++ software has also been developed to handle the interruptions
and to manage the input/output dataflow between the Ballyinx and the PC.

Some DIME-modules can be added to the Ballyinx card and communicate through a
DIME bus. One such DIME-module is used which features two Virtex XCV1000E, and is
called the BallyBlue card. The second FPGA of the BallyBlue card features the generic
implementation of the LDPC decoder which has been described in chapter 5. The first
FPGA features all the other blocks of the communication scheme, which are:

• the DIME interface which has been developed as an interface between the BallyBlue
and the Ballyinx,

• the channel emulator for the AWGN channel, including the intrinsic information,

(c) Frédéric Guilloud, Télécom Paris - July 2004

118 6. THE PLATFORM

• the communication protocol manager between the DIME interface and the LDPC
decoder, including an input buffer and an error counter.

6.1.2 Intrinsic information processing

The bits coming from the encoder are modulated with a BPSK modulation. Then some
gaussian noise with variance σ is added to the modulated inputs. The white gaussian noise
generator (WGNG) designed by (Danger et al. 2000; Ghazel et al. 2001; Boutillon, Danger,
and Gazel 2003) has been used. Finally, the LLR of the channel output is computed and
sent to the decoder. We suppose here that the output of the BPSK modulation are the
samples (−1)cn , assuming that

√
Es = 1. From equation (1.33), we have:

In = (σN (0, 1) + (−1)cn)× 2
σ2

(6.1)

where N (0, 1) is the centered probability density function of the gaussian random vari-
able with standard deviation σ = 1. Equation (6.1) requires one multiplication and one
division. So for implementation purpose, (6.1) can be written:

In =
(
N (0, 1)± 1

σ

)
× 2

σ
(6.2)

where there is one division left. The output of the WGNG is coded with a fixed-point
convention. To adjust as much as possible the dynamic range with the number of bits
used, the decoder has to take into account dynamics which are not a power of 2. The
dynamic range is denoted ∆, and is coded using Nb+1 bits. By convention, let ∆ represent

the integer value 2Nb . So the maximum value coded on Nb bits is
2Nb − 1

2Nb
∆. Hence, (6.2)

can be replaced by:

In =
(
N (0, 1)± 1

σ

)
× 2

σ
× 2Nb

∆
(6.3)

If 1/σ is restricted to the multiples of ∆: 1/σ = γ ×∆, then (6.3) becomes:

In =
(
N (0, 1)± 1

σ

)
× γ2Nb+1 (6.4)

Equation (6.4) is easier to implement than equation (6.2) since the division is replaced
by a multiplication, and also right shifts. The architecture of the channel emulator is
depicted on figure D.1, in annexe 6. The inverse of sigma is coded on [3, 6] bits – 3 bits
for the integer part, 6 for the fractional part – and should be a multiple of ∆. It is
signed by the incoming coded bits and then added to the output of The results are then
multiplied by γ which results in a [8, 19] bits coded value. The magnitude part is clipped
to ±∆ and rounded to fit on Nb bits. The output is the concatenation of the coded bit,
the sign of the noisy sample and its magnitude. P successive bits are processed, with a
latency of AP + 2 and then P words of Nb + 2 bits are output.

(c) Frédéric Guilloud, Télécom Paris - July 2004

6.2 Synthesis 119

−45 −40 −35 −30 −25 −20 −15 −10 −5 0
0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Intrinsic information I
n
 for σ = 0.256, 0.4 and 0.8

N
um

be
r o

f e
le

m
en

ts

B = 6
B = 9
B = 14

Figure 6.4: Distribution of the intrinsic information In as a function of the decimal pre-
cision of the gaussian noise generator, and for several value of noise power.

In the WGNG, A = 4 successive accumulations are processed on the box-muller vari-
ables and the output is not truncated (B = 14). A correction block has been added in
the WGNG as specified by (Danger et al. 2000) to compensate the non-zero mean by an
offset of A.2−B−1 and to have a standard deviation set to 1 instead of

√
A. Figure 6.4

depicts the influence of the number of bits B of the fractional part on the distribution
of In, when σ = 0.256, 0.4, 0.8 and for a coded bit cn = 1. In is a gaussian random
variable with a mean of 2/σ2 (respectively −30.5, 12.5 and 3.125) and a variance of 2/σ

(respectively 7.8, 5 and 2.5). We can see that if B is not high enough, the less significant
bits are lost after the clipping and thus the distribution of In contains some peaks: the
number of samples before clipping is not the same between each power of 2 value because
of the multiplication factor γ.

6.2 Synthesis

6.2.1 Illustration of the genericity

The synthesis of the decoder is processed under some fixed constant which can be modified
inside a VHDL package as described in the listing E.1, in the annexe E.

The different vector sizes are then calculated using the logarithm to base 2 thanks to a
VHDL function which process successive divisions by 2. The latencies of all the different

(c) Frédéric Guilloud, Télécom Paris - July 2004

120 6. THE PLATFORM

blocks can also be changed in the package, and the different delays which are implemented
will be adjusted, as described in listing E.2 in annexe E. Hence, any different blocks can
be changed for comparison purpose.

Once the synthesis is complete, every LDPC code with the same length and the same
rate can be decoded, assuming it can bear an edge rate of P . So the distribution degree,
the non-zero entries of the parity-check matrix and the number of decoding iteration of
course can be changed on-the-fly.

The synthesis itself is also generic: numerical examples for the FPGA memory usage
are listed in table 6.1 for several combinations of the decoder parameter values. They are
based on table 5.3. The information bit rate given in table 5.3 is computed thanks to the
equation (5.3), which can be also expressed:

Db =
fclkNP (1−M/N)

kMimax
(6.5)

Note that this information-bit rate is a lower bound since the number of iterations can be
lower than imax. The other parameters in table 6.1 are the weight k of the parity-check
equations (the LDPC code is supposed to be regular). For each kind of memory, it is
specified the number of independent block of memory, the number and the size of the
words to store and the number of FPGA RAM blocks required. The last column gives
the number of RAM block left in the FPGA: if it is less than zero, the architecture does
not fit in the FPGA. Table 6.1 is on the same template as table 5.4, but for the FPGA
xilinx Virtex 1000 only. Each line is an example of a particular case.

The first case is an example of a high rate code (R = 0.875) of length N = 8192.
Since the number of parity-check constraint is lower, the bit rate can be very high. The
other codes listed below the first case have rates R = 0.5. Of course, the bit rate is then
much lower (2nd case). If the bit rate is doubled (3rd case), the edge rate is doubled and
thus the A-memory is to big to fit in the FPGA (all the permutations have to be possible,
so the word size in A increases exponentially). With a lower edge rate (4th case), the
density can be increased to k = 7 bit per parity-checks. The density can also be increased
to k = 16 (5th case) if the length of the code is divided by 2. The 6th case is the example
of the 2nd case with the 4 −min algorithm implemented instead of the 3−min one. So
the number of LLR to be saved for each parity increases from 4 to 5, i.e. from 25%. This
is why the size of the L-memory (value of the minima) is also increased by 25%. For the
5 first cases, the number of RAM block needed for the A-memory was supposed to be
optimized: it means that the number of RAM block to concatenate to get a word of the
required size versus the number of RAM block to add to get the number of required words
was optimized. For both the 6th and the 7th cases, it is assumed that the A-memory has
a fixed dimension (2048 words of 64 bits), since it can not be inferred by the synthesis
tool. In the 6th case, the size of the LDPC code is limited by the maximum size of 64
bits in the words of the memory A. For the last case, the size of a word in the memory
is lower than 64 bits by decreasing the value of P , and thus the size of the spatial shuffle

(c) Frédéric Guilloud, Télécom Paris - July 2004

6.2 Synthesis 121

Table 6.1: FPGA RAM Block usage for several examples.

�����������
	�������
FPGA

case Clk
(Mhz) N M P ��������� Nb k lambda Rate

(Mb/s)

1 50 8192 1024 8 10 8 6 3 46.66667

2 50 4096 2048 8 10 8 6 3 6.666667

3 50 4096 2048 16 10 8 6 3 13.33333

4 50 4096 2048 2 10 8 7 3 1.428571

5 50 2048 1024 8 10 8 16 3 2.5

6 50 4096 2048 8 10 8 6 4 6.666667

7 50 1536 768 6 10 8 6 3 5

8 50 3400 1700 5 10 8 6 3 4.166667

� �
���� � 	�	�� � �
� � � � ������� �����! �"
#�����
 � ��� � 	 � ����$ � �

 � ��� � 	

(I,E1,E2)

case

%
block
s

Block
size

(words)

Word
size
(bits
)

FPGA
blocks
Number

%
block
s

Block
size

(words)

Word
size
(bits
)

FPGA
blocks
Number

1 24 1024 8 48 8 1024 1 8

2 24 512 8 24 8 512 1 8

3 48 256 8 48 16 256 1 16

4 6 2048 8 24 2 2048 1 2 ...
5 24 256 8 24 8 256 1 8

6 24 512 8 24 8 512 1 8

7 18 256 8 18 6 256 1 6

8 15 680 8 30 5 680 1 5

����&
� �����
� � � "' ��� � � ��������& � ���

��������
� � ��� "

case

%
block
s

Block
size

(words)

Word
size
(bits
)

FPGA
blocks
Number

%
block
s

Block
size

(words)

Word
size
(bits
)

FPGA
blocks
Number

1 8 768 2 8 8 512 8 8

2 8 1536 2 8 8 1024 8 16

3 16 768 2 16 16 512 8 16

4 2 7168 2 8 2 4096 8 16 ...
5 8 2048 2 8 8 512 8 8

6 8 1536 2 8 8 1280 8 24

7 6 768 2 6 6 512 8 6

8 5 2040 2 5 5 1360 8 15

� �
 � ��(���)���	�* ' ��+ � � ' "
, ��� ����)���������� � ���-��. � � ��� ���)��
������� �!/�"

case

%

block

s

Block

size

(words)

Word
size
(bits
)

FPGA

blocks

Number

%

block

s

Block

size

(words)

Word
size
(bits
)

FPGA

blocks

Number

FGPA& /�0�1 ����	*����������
�������
�

96

1 1 768 97 19 1 128 3 1 4

2 1 1536 89 34 1 256 3 1 5

3 1 768 177 34 1 128 3 1 -35

4 1 7168 23 41 1 1024 3 1 4

5 1 2048 81 41 1 128 4 1 6

6 1 1536 89 34 1 256 3 1 -3

7 1 768 59 12 1 128 3 1 47

8 1 2040 56 28 1 340 3 1 12

(c) Frédéric Guilloud, Télécom Paris - July 2004

122 6. THE PLATFORM

address. The limiting parameter is then the total number of words in the memory A,
which limits the length of the code.

6.2.2 Synthesis results

The synthesis has be processed by Leonardo Spectrum 2003-b35. The other tools are
from Xilinx (ngdbuild, map, par and bitgen).

A synthesis has been performed with the parameters of the 7th case, described in
table 6.1. The summary of the mapper is listed on listing E.3, in annexe E. The number
of used block RAMs is equal to 88 as expected in table 6.1. One can also note that only
25% of the slices are used.

6.3 Simulations

6.3.1 Simulation conditions

The C++ program which has been written for simulating floating point decoding of LDPC
codes, described in section 4.3.1, features also a fixed-point representation for the data.
For the fixed point coding, two parameters are defined:

• the number of bits Nb used to code the magnitude of the signal;

• the dynamic range ∆ which is the highest magnitude representable.

This representation enables to have a dynamic range which is not necessary a power of
2, and hence the quantization is not a power of 2 as well. The conversion between an
absolute real value r and its quantized integer value rq is:

rq =
[
r(2Nb − 1)

∆

]
(6.6)

Note that similar fixed-point coding has been also used independently by (Jones et al.
2003).

The same decision rule is applied as described in section 4.3.1: a bit is said to be wrong
if the total information Tn is negative, and it is said to be right if it is positive. When
the total information is equal to zero, the bit error rate depends on the decision to take,
since the all-zero codeword has been sent for all the simulations. Counting half of the bit
having a null reliability as errors and the other half as right bits is then considered as a
good approximation for the BER which is obtained using random codewords generation.

6.3.2 On the BP algorithm

Fixed point simulations have been performed for the code C1. The figure 6.5 depicts the
BER performance for several dynamic range (∆ = 2, 5, 10, 40) and several number of bit

(c) Frédéric Guilloud, Télécom Paris - July 2004

6.3 Simulations 123

2 3 4 5 6
10−6

10−5

10−4

10−3

10−2

10−1

i
max

 = 5

E
b
/N

0

B
E

R

∆ = 2, 6 bits
∆ = 2, 8 bits
∆ = 5, 6 bits
∆ = 5, 8 bits
∆ = 10, 6 bits
∆ = 10, 8 bits
∆ = 40, 6 bits
∆ = 40, 8 bits
BPSK

2 3 4 5 6
10−6

10−5

10−4

10−3

10−2

10−1

i
max

 = 50

E
b
/N

0

B
E

R

∆ = 2, 6 bits
∆ = 2, 8 bits
∆ = 5, 6 bits
∆ = 5, 8 bits
∆ = 10, 6 bits
∆ = 10, 8 bits
∆ = 40, 6 bits
∆ = 40, 8 bits
BPSK

Figure 6.5: Influence of the fixed point coding on the BP algorithm

for the fixed point coding (Nb = 6, 8). The first point to notice is the significant error
floor, which can be denoted quantization error floor, since it is a consequence of the fixed
point coding and not a consequence of the LDPC code itself. This error floor is directly
linked to the dynamic range. The wider the dynamic range is, the lower the error floor is.
For example, for a dynamic range of ∓40, the error floor is far below 10−6. If the dynamic
is doubled, from ∓5 to ∓10, the error floor is decreased of approximately 2 decades. We
can also notice that the number of iterations enables only to let the BER be more vertical
before the error floor. But it does not seem to increase the error floor. The number of
fixed-point coding bits does not seem to have much impact on the performance. The
reason is that in this case the intrinsic information In is computed using a floating point
coding and floating point operations. The choice of a number Nb of bits and of a dynamic
range ∆ yields the least significant bit to weight as much as q0 = ∆2−Nb . The influence
of q0 is easier to see on figure 6.6 where the intrinsic information is computed inside the
decoder (CAN labelled). The error floor is still correlated to the dynamic range, and the
performance gap to the floating point BER is linked to q0. We can see for example that
for the 2 cases (∆ = 40, Nb = 8) and (∆ = 10, Nb = 6) where q0 = 0.15625, the gap to
the floating point curve is the same. Similar results have independently been found by
(Declercq and Verdier 2003), where density evolution is performed using classical fixed-
point coded messages: the integer part is coded on a bits, and the fractional part is coded
on b bits.

(c) Frédéric Guilloud, Télécom Paris - July 2004

124 6. THE PLATFORM

2 2.5 3 3.5 4 4.5 5 5.5 6
10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

E
b
/N

0

B
E

R

∆ = 10, 6 bits
∆ = 10, 8 bits
∆ = 40, 8 bits
∆ = 10, 6 bits, CAN
∆ = 10, 8 bits, CAN
∆ = 40, 8 bits, CAN
BPSK
BP float

Figure 6.6: Influence of the intrinsic information coding

6.3.3 On the λ−min algorithm

Simulations results for the 3−min algorithm using fixed point coding are depicted on
figure 6.7 for code C1. The fixed point coding is with Nb = 6 bits. Two dynamic ranges
have been simulated: ∆ = 10 and ∆ = 40. Each of them are compared with the BP
results. The results using floating point coding are also depicted as a reference for both
the 3−min and the BP algorithms. The main conclusions that arise from figure 6.7 are
that:

1. The performance gap between the BP and the λ−min algorithms does not seems
not increase when the fixed point coding is used instead of the floating point one,
in the waterfall region;

2. In fixed point coding, the error floor is higher for the λ−min algorithm than for the
BP algorithm. So this quantization effect depends also on the algorithm, and not
only on the quantization parameters.

6.3.4 Algorithm comparaison

The genericity of the platform enables to design and compare different suboptimal algo-
rithms such as the 3-min and the A-min* algorithms. Figure 6.8 depicts the different bit
error rate obtained for several number of maximum iterations. The code used here is a
very small irregular LDPC code of length N = 400 and rate R = 0.5.

(c) Frédéric Guilloud, Télécom Paris - July 2004

6.3 Simulations 125

2.5 3 3.5 4 4.5 5
10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

i
max

 = 5

E
b
/N

0

B
E

R
3 min, float
3 min ∆ = 10 (6 bits)
BP ∆ = 10 (6 bits)
3 min ∆ = 40 (6 bits)
BP ∆ = 40 (6 bits)
BP, float
BPSK

2.5 3 3.5 4 4.5 5
10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

i
max

 = 50

E
b
/N

0

B
E

R

3 min, float
3 min ∆ = 10 (6 bits)
BP ∆ = 10 (6 bits)
3 min ∆ = 40 (6 bits)
BP ∆ = 40 (6 bits)
BP, float
BPSK

Figure 6.7: Influence of the quantization on the λ−min algorithm (λ = 3).

0 1 2 3 4 5 6

10
−3

10
−2

10
−1

Comp 3−min, A−min

E
b
/N

0

3 min, 2 iter
A min, 2 iter
3 min, 5 iter
A min, 5 iter
3 min, 100 iter
A min, 100 iter
BPSK

BER

Figure 6.8: Comparaison between the 3-min and the A-min* algorithm.

(c) Frédéric Guilloud, Télécom Paris - July 2004

126 6. THE PLATFORM

6.3.5 Intrinsic information computing

As described in the previous section, the error floor is due to the dynamic range. And the
different ways of calculating the intrinsic information In can yield to different performance
loss. The intrinsic information (LLR) is defined in (1.33) by:

In =
2yn

σ2
(6.7)

where yn ∼ N (±Es, σ
2). So In is a random gaussian variable with mean µI = ±2Es

σ2 and

with standard deviation σI =
√

4
σ2 . So as the Eb/N0 ratio increases, σ decreases, and

thus the mean µI and the variance σ2
I of the intrinsic information increase, yielding the

intrinsic information distribution to be clipped by the dynamic range constraints.
To circumvent this issue, 2 cases are distinguished hereafter, whether the channel is

assumed to be known (σ estimation) or not:

• The channel parameter σ is unknown: the intrinsic information is then computed
using a constant assumed noise-level. In (MacKay and Hesketh 2003), the authors
studied the floating point performance of an assumed noise level versus the actual
one. Equation (6.1) is then replaced by:

In = Ayn (6.8)

The intrinsic information mean is then a constant: µI = ±EsA and the standard
deviation is decreasing when the noise level increases: σI = A2σ2. Figure 6.9 depicts
the different performance obtained for several assumed noise level, for 2 dynamic
range values. They are compared to the classical intrinsic information computing
both in fixed point and floating point simulations. Note that for a fixed number
of iterations, an optimization can be performed to get the best performance. This
performance is achieved on a wide range of noise level.

• The channel parameter σ is known: the intrinsic information is then modified so
as to lower the increase of both its mean and its variance. The idea is to divide the
channel output by σ instead of σ2 and to add a multiplication factor A. Equation
(6.1) is then replaced by:

In =
Ay

σ
(6.9)

This yields to have a lower mean µI = ±AEs
σ and a constant standard deviation

σI =
√

A2 when the noise power decreases. Figure 6.10 depicts the results obtained
for several values of A and a comparison with the other classical schemes. The
intrinsic information is computed inside the decoder. We can notice that the error
floor can be lowered by only changing the intrinsic calculation, but at the expense
of a loss in BER performance in the waterfall region.

(c) Frédéric Guilloud, Télécom Paris - July 2004

6.3 Simulations 127

3 3.5 4 4.5 5
10−6

10−5

10−4

10−3

10−2

10−1

i
max

 = 5, ∆ = 5, 8 bits

E
b
/N

0

B
E

R

I
n
 = 2.244y (1 dB)

I
n
 = 2.518y (2 dB)

I
n
 = 2.825y (3 dB)

I
n
 = 3.170y (4 dB)

y=2/σ2

float
BPSK

3 3.5 4 4.5 5
10−6

10−5

10−4

10−3

10−2

10−1

i
max

 = 5, ∆ = 10, 8 bits

E
b
/N

0

B
E

R

I
n
 = 2.244y (1 dB)

I
n
 = 2.825y (3 dB)

I
n
 = 3.557y (5 dB)

y=2/σ2

float
BPSK

Figure 6.9: The intrinsic information is computed assuming a constant noise power: In =
ay. Comparison between 4 values of a and between the usual intrinsic calculation both
in fixed point and floating point coding. All the fixed point are 8 bits coded, with ∆ = 5
or 10. The decoding is processed within 5 iterations max.

(c) Frédéric Guilloud, Télécom Paris - July 2004

128 6. THE PLATFORM

2 2.5 3 3.5 4 4.5 5 5.5 6
10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

i
max

 = 5

E
b
/N

0

B
E

R

I
n
 = 2/σ2, ∆ = 5, 6 bits

I
n
 = 2/σ, ∆ = 5, 6 bits

I
n
 = 1.5/σ, ∆ = 5, 6 bits

I
n
 = 1.3/σ, ∆ = 5, 6 bits

I
n
 = 2/σ2, ∆ = 10, 6 bits

I
n
 = float

BPSK

Figure 6.10: The intrinsic information is computed to have a constant standard deviation:
In = A2. It is simulated for imax = 5, ∆ = 5 and 6 bits for coding the data.

(c) Frédéric Guilloud, Télécom Paris - July 2004

6.4 conclusion 129

6.4 conclusion

In this chapter, we have presented an overview of the LDPC platform. It consist of a
generic decoder implementation running on an FPGA and of some software for performing
fixed-point simulations. The platform has been used to perform LDPC simulations. We
have been able to study the influence of the quantization on the decoding algorithms. A
comparison between the BP and the λ−min algorithms has been proposed, as well as a
study on the way the intrinsic information processing can modify the BER.

Some additional work should be done to complete the hardware simulation platform of
LDPC codes:

• to develop a tool to perform the preprocessing of the matrices to download into the
hardware decoder;

• to implement the LDPC encoder;

• to achieve a friendly user interface; the access to the platform using the WEB can
also be done.

Moreover, the platform has been designed based on the LDPC state of the art of year
2002. It would be interesting to extend the possibilities of the platform. For example, the
node processors could perform the A-min algorithm. In addition, on the system level point
of view, the new schedule developed in section 3.4.3 and 3.4.2 could be also implemented.

In the future, it will be possible to run intensive and fast simulations, in order to opti-
mize finite length LDPC codes. A first comparison has shown that hardware simulations
are roughly 103 times faster than software simulations performed on a PC Pentium III -
1.7 GHz running under Linux (Debian/1.0.0-0.woody.1).

(c) Frédéric Guilloud, Télécom Paris - July 2004

This page intentionally left blank.

Conclusion and Perspectives

The low-density parity-check codes (LDPC) were discovered in the early sixties by
R. Gallager. They have then been largely forgotten until their rediscovery in the mid-
nineties. Nowadays, LDPC codes are, with the turbo-codes, the best performing channel
codes, as they are almost reaching the Shannon limit.

LDPC codes encompass a large family of error correcting codes defined by a sparse
parity-check matrix. These families are defined by a wide range of parameters. The
versatility of LDPC codes enables to perform optimizations on these parameters so as to
design a class of codes which can fit different channel specifications. For example, LDPC
codes have been designed for optical communications, magnetic storage, multi-input and
multi-output channels, and of satellite transmission. LDPC codes have been chosen as
a standard for the DVB-S2 protocol, making a starting point to their take-off in the
industry. Thus, the architectures of LDPC decoders are now a hot topic in the field of
algorithm-architecture adequation. In this thesis, three important milestones have been
reached in the design of LDPC decoders.

Our first contribution is the layout of a new original formal framework for the descrip-
tion of LDPC decoders. Researchers have published for about four years now solutions
and examples of LDPC decoders. We proposed to classify the architectures of LDPC
decoders as the combination of three entities:

1. the generic message passing data flow, which is governed by the parallelism rate,

2. the generic node processor data flow,

3. the control mode for scheduling the message transfers in the decoder.

In addition, we proposed a set of three parameters which quantify the complexity of an
LDPC decoder architecture. This framework made also possible the design of new original
solutions which are patent pending.

From a chronological point of view, the analysis of the state of the art and of the
complexity of LDPC decoders shows that the first decoders solutions were focused on the

131 (c) Frédéric Guilloud, Télécom Paris - July 2004

132 CONCLUSION AND PERSPECTIVES

simplification of the shuffle network, leading the researchers to construct LDPC codes with
such properties. Then the memory requirement issue has been addressed, and solutions
such as new schedules have been found.

Our second contribution is therefore a sub-optimal algorithm named the λ−min algo-
rithm. It circumvents both the complexity processing issue and the memory requirements
issue. Without any significant performance loss, this algorithm enables a reduction of
memory up to 75% for high rate codes, compared to the optimal algorithm. An original
architecture for the check node processors implementing the λ−min algorithm has also
been proposed. These results have been published and are patent pending.

The validation of new algorithms, and the simulations performed to analyse and to op-
timize LDPC codes can take a lot of time. The emergence of high capacity reconfigurable
hardware is igniting a revolution in digital simulations. Exploiting the reconfigurability
of FPGAs for example can enhance the simulations now performed on PCs.

Our third contribution is the design and the implementation of a generic architecture
LDPC decoder, within a development tool platform based on FPGAs. The word generic
means first that any LDPC code of a given length N and of a given rate R can be decoded.
The second meaning is that the description of the architecture has been designed while
keeping in mind that all the components could be changed. It means that other check node
processors for example can be implemented, since the parameters and all the latencies are
tunable. Moreover, we showed that when using FPGAs from the nowadays technology,
this genericity does not bring much overhead compared to other optimized decoders.
This decoder has been used first to validate the λ−min algorithm performance and its
associated architecture. It is also intended to speed up the simulations of a wide variety of
LDPC codes: hardware simulations are roughly 103 times faster than software simulations
performed on a PC Pentium III - 1.7 GHz running under Linux.

The work achieved in this thesis brings a new formal framework to LDPC decoders. A
theoretical approach is now available to design LDPC decoders. The generic architecture
will be adapted to the other kinds of schedules, and some more components will be added
to be able to compare different decoding algorithms. In the future, we will use our LDPC
platform as a very efficient tool to study the performance of LDPC codes. We will be
able also to perform optimizations in order to find good finite length codes.

Note that only the case of binary LDPC codes have been addressed in this thesis. We
plan also to study the non-binary codes having their alphabet in GF (2q). These codes
promise to be more powerful, with even more challenging implementations issues.

(c) Frédéric Guilloud, Télécom Paris - July 2004

Appendix A

Minimum BER achievable by

coded BPSK systems

According to (Gallager 1968), the BER of a distortion-capacity limit gives the minimum
Eb/N0 required for a communication having a given BER p, and a code rate R. Let H2

denote the entropy of a binary symmetric source:

R(p, R) = R(1−H2(p)) (A.1)

= R(1 + p log2(p) + (1− p) log2(1− p)) (A.2)

Then solve:
R(p, R) = C(R

Eb

N0
) (A.3)

where C denotes the capacity of the binary input AWGN channel. The results are plotted
on figure A.2 where the blue curves represent the minimum bit error probabiliies for the
binary input additive white Gaussian noise output. The red curves are for the AWGN
channel. It is to be noted that the AWGN input perform better than the binary input
modulation. The difference is more and more obvious as the rate is increasing. The binary-
input curve is moving toward the BPSK curve, whereas the AWGN curve is moving toward
around 1.7 dB.

Channel
AWGNSource DecoderEncoder

BPSK

c y x̂x

BSC channel

Figure A.1: The binary-input gaussian-output channel (Bi-AWGN channel)

133 (c) Frédéric Guilloud, Télécom Paris - July 2004

134 A. MINIMUM BER ACHIEVABLE BY CODED BPSK SYSTEMS

−6 −4 −2 0 2 4 6 8

10
−4

10
−3

10
−2

10
−1

Eb/No [dB]

B
it

E
rr

or
 R

at
e R=0.1

R=0.1 (AWGN)
R=0.25
R=0.33
R=0.5
R=0.5 (AWGN)
R=0.66
R=0.75
R=0.8
R=0.9
R=0.9 (AWGN)
R=0.99
R=0.99 (AWGN)
uncoded BPSK

Figure A.2: Minimum bit error probability for coded BPSK modulations, when Eb/N0 is
lower than the minimum Eb/N0 dictated by the Shannon bound

(c) Frédéric Guilloud, Télécom Paris - July 2004

Appendix B

Log Likelihood Ratios and Parity

Checks

Summary:

The aim of this annexe is to derive the expressions of the log likelihood ratio

(LLR) of the modulo-2 sum of n variables ci: φ = c1 ⊕ c2 ⊕ · · · ⊕ cn. It is

denoted by L (φ) and it is defined by:

L (φ) = ln
Pr (φ = 0)
Pr (φ = 1)

(B.1)

In section B.1 we derive a 2-inputs core expression which can be applied iter-

atively to compute L (Lφ). In section B.2 a factorized expression for a direct

processing of L (φ) is derived.

B.1 Iterative expression

B.1.1 2−variable rule

Let φ = c1 ⊕ c2 such as depicted in figure B.1. Let p1 = Pr (c1 = 0) and p2 = Pr (c2 = 0).
Then we have:

L (ci) =
Pr (ci = 0)
Pr (ci = 1)

=
pi

1− pi
(B.2)

and pi =
eL(ci)

1 + eL(ci)
(B.3)

135 (c) Frédéric Guilloud, Télécom Paris - July 2004

136 B. LOG LIKELIHOOD RATIOS AND PARITY CHECKS

D1 D2

c1 c2

φ = c1 ⊕ c2

Figure B.1: An XOR operation on 2 bits c1 and c2. They depend on the set D1 and D2

So the LLR of φ is (Battail and El-Sherbini 1982):

L (φ) =
Pr (c1 = 0)Pr (c2 = 0) + Pr (c1 = 1)Pr (c2 = 1)
Pr (c1 = 1)Pr (c2 = 0) + Pr (c1 = 0)Pr (c2 = 1)

(B.4)

=
p1p2 + (1− p1)(1− p2)
p2(1− p1) + p1(1− p2)

(B.5)

=
1 + exp (L (c1) L (c2))

exp (L (c1)) + exp (L (c2))
∆= L (c1) ? L (c2) (B.6)

Hence, L (c1 ⊕ c2) = L (c1)?L (c2), where ? defines a binary operator on the LLR’s value.
Note that also the ? operator can be defined as (Hu et al. 2001):

L (c2) = L (φ⊕ c1) = L (φ) ?L (c1) (B.7)

= ln
∣∣∣eL(c1)+L(φ) − 1

∣∣∣− ∣∣∣eL(c1)−L(φ) − 1
∣∣∣− L (φ) (B.8)

B.1.2 Hardware efficient implementation

Equation (B.6) can be derived so as to be put into a more efficient form for implementation:
In order to simplify the notations, let

a = L (c1) and b = L (c2) (B.9)

and suppose without loss of generality that a > b. Then:

L (a⊕ b) = ln
(

1 + ea+b

ea + eb

)
(B.10)

= ln
(

e−a 1 + ea+b

1 + e−(a−b)

)
(B.11)

= −a + ln
(

1 + ea+b

1 + e−|a−b|

)
(B.12)

= −sign (a) |a|+ ln
(

1 + ea+b

1 + e−|a−b|

)
(B.13)

There are two cases, depending on the sign of (a + b):

(c) Frédéric Guilloud, Télécom Paris - July 2004

B.1 Iterative expression 137

• if (a + b) < 0 then knowing that (a > b) we have: |a| < |b| and b < 0; so:

L (a⊕ b) = −sign (a) |a|+ ln

(
1 + e−|a+b|

1 + e−|a−b|

)
(B.14)

= sign (b) sign (a) min (|a|, |b|)

− ln
(
1 + e−|a−b|

)
+ ln

(
1 + e−|a+b|

)
(B.15)

• if (a + b) > 0 then knowing that (a > b) we have: |a| > |b| and a > 0; so:

L (a⊕ b) = −a + ln

(
e(a+b) 1 + e−(a+b)

1 + e−|a−b|

)
(B.16)

= b− ln
(
1 + e−|a−b|

)
+ ln

(
1 + e−|a+b|

)
(B.17)

= sign (b) sign (a) min (|a|, |b|)

− ln
(
1 + e−|a−b|

)
+ ln

(
1 + e−|a+b|

)
(B.18)

Both of the two cases are then summed up by:

L (a⊕ b) = sign (b) sign (a) min (|a|, |b|)− ln
(
1 + e−|a−b|

)
+ ln

(
1 + e−|a+b|

)
(B.19)

Such an expression has also been derived in (Hu et al. 2001).
Architectures for operator ? and ? are depicted on figure B.2. Note that the sign and

the magnitude can also be processed separately.

B.1.3 n−variable rule

As shown on figure B.3, for parity-check constraints of length n, a serial processing can
be applied to compute L (φ), using the ? operator defined in (B.6):

L (φ) = L (cn) ? L (φn)

L (φn) = L (cn−1) ? L (φn−1)

. . .

L (φ3) = L (c1) ? L (c2)

Hence, the LLR of the parity check φ is the star operator applied between all the LLR of
each variable of the parity:

L (φ) = llr
1≤i≤N

(L (ci)) = L (c1) ? L (c2) ? · · · ? L (cn) (B.20)

(c) Frédéric Guilloud, Télécom Paris - July 2004

138 B. LOG LIKELIHOOD RATIOS AND PARITY CHECKS

g

? E
(i)
m,n0 ? E

(i)
m,n1

E
(i)
m,n0

E
(i)
m,n1

E
(i)
m,n1

E
(i)
m,n0 ? E

(i)
m,n1

E
(i)
m,n0?

E
(i)
m,n0 ? E

(i)
m,n1

E
(i)
m,n1

h

h

E
(i)
m,n0

E
(i)
m,n1

E
(i)
m,n0

g

sign (.)

sign (.)

E
(i)
m,n0 ? E

(i)
m,n1

min(|.| , |.|)

with g(x) = ln
(
1 + e−|x|

)
and h(x) = ln |ex − 1|

Figure B.2: Possible architecture for the 2−input LLR operator defined by (B.19) and its
symbol representation.

(c) Frédéric Guilloud, Télécom Paris - July 2004

B.1 Iterative expression 139

Dn DnD1

D1 D2

Dn−1

φ = c1 ⊕ · · · ⊕ cn

Di

ci cnc1

· · · · · ·

φ = cn ⊕ φn

φn−1

c1

φ3

cn−1

c2

cnφn = cn−1 ⊕ φn−1

Figure B.3: An XOR operation on n bits ci. They depend on a set D =
⋃n

i=1 Di. The
n− 1 XOR operations can be done serially using only 2−inputs XOR (left side).

(c) Frédéric Guilloud, Télécom Paris - July 2004

140 B. LOG LIKELIHOOD RATIOS AND PARITY CHECKS

B.2 Expression of the LLR using the tanh rule

B.2.1 2−variable rule

Let φ = c1⊕c2 be a parity check equation where c1 and c2 are 2 binary variables depending
on others variables (resp. D1 and D2), such as illustrated by figure B.1. Let also pφ =
Pr (φ = 1|D1, D2). Then:

tanh
1
2

log
Pr (φ = 0|D1, D2)
Pr (φ = 1|D1, D2)

= tanh
1
2

log
1− pφ

pφ
(B.21)

Using tanh(x) =
exp (2x)− 1
exp (2x) + 1

, (B.21) yields to:

tanh
1
2

log
Pr (φ = 0|D1, D2)
Pr (φ = 1|D1, D2)

= 1− 2pφ (B.22)

Let p1 = Pr (c1 = 1|D1, D2) and p2 = Pr (c2 = 1|D1, D2). Then:

pφ = p1(1− p2) + (1− p1)p2 (B.23)

because φ = 1⇔ (c1 = 0 AND c2 = 1) OR (c1 = 1 AND c2 = 0). Using (B.23) in (B.22)
yields:

tanh
1
2

log
Pr (φ = 0|D1, D2)
Pr (φ = 1|D1, D2)

= 1− 2p1(1− p2)− 2(1− p1)p2 (B.24)

= (1− 2p1)(1− 2p2) (B.25)

= tanh
1
2

log
Pr (c1 = 0|D1, D2)
Pr (c1 = 1|D1, D2)

(B.26)

× tanh
1
2

log
Pr (c2 = 0|D1, D2)
Pr (c2 = 1|D1, D2)

(B.27)

B.2.2 n−variable rule

The recursion is easy for proving the general LLR on a modulo−2 sum of n variables ci:

tanh
1
2

log
Pr (φ = 0|D)
Pr (φ = 1|D)

=
n∏

i=1

tanh
1
2

log
Pr (ci = 0|Di)
Pr (ci = 1|Di)

(B.28)

which can be written:

log
Pr (φ = 0|D)
Pr (φ = 1|D)

= 2 tanh−1
n∏

i=1

tanh
(

1
2

log
Pr (ci = 0|Di)
Pr (ci = 1|Di)

)
(B.29)

or equivalently:

log
Pr (φ = 1|D)
Pr (φ = 0|D)

= −2 tanh−1
n∏

i=1

tanh
(
−1

2
log

Pr (ci = 1|Di)
Pr (ci = 0|Di)

)
(B.30)

(c) Frédéric Guilloud, Télécom Paris - July 2004

Appendix C

Architecture of the node

processors

C.1 Check Node Unit (CNU)

The CNU is a component which features P Parity Check Processor (PCP). They are con-
trolled by the same signals, generated in the CNU. Each PCP is decomposed as described
in section 4.4.1.

The PCP components are depicted on figure C.1. The first synthesis block is denoted
SYNTH_R for read, and the second one is denoted SYNTH_W for write. 2 dual port RAM
(dpram) L and P are implemented in the PCP: the L memory is used to save the λ + 1
results of the LLR computations, and the P memory is used to save the k pointers to one
of this result and the sign of the new value. In fact the pointer to the new value is only
coded one bit: the signal is_default. If the signal is set to 1, the variable is not in the
set Nλ(m). Else, the address of the L-memory is incremented, because the λ + 1 LLR
results are saved following their time of arrival.

The waveforms depicted on figure C.2 enables to define the latencies of the different
components. They are denoted by a name beginning with D_* There is no problem in
pipelining the different parity-check size if they are processed by ascending order of their
weight and if the calculation time is lower than the one of the variable reading, which
takes ki clock cycles.

141 (c) Frédéric Guilloud, Télécom Paris - July 2004

142 C. ARCHITECTURE OF THE NODE PROCESSORS

TRI

CALCUL

SYNTH_W

a.w P b.w
a.en

a b

b.en
a.in b.in

b.outa.out

SYNTH_R

a.w L b.w
a.en

a b

b.en
a.in b.in

b.outa.out

Accumulate
syndrome

syndrome(N/A)

Start_Tri
End_Tri

output, signe

output, signe

synth_w_en
adresse_sytnh_w
start_synth_w

LLR

data_out_mem_L

signe_D

we_P

adresse_w_P

start_synth_r

synth_r_en

data_out_mem_P

adresse_r_P

adresse_w_L
we_L

data_in_mem_L

data_out

default

parite

Sub.out
Sub.2

Sub.1
/first_iter

signe

extr
 is_default

 signe

adresse_r_mem_L

data_in

raz_syndrome

start_syndrome

adresse_data_in

zero_syndrome

size_fifo
commande

end_calcul
bypass

end_iter

dpram

dpram

DL

Nb + 1

Figure C.1: Parity Check Processor

(c) Frédéric Guilloud, Télécom Paris - July 2004

C.1 Check Node Unit (CNU) 143

0
1

2
3

3
0

1
2

3
3

0
1

2
3

3

cl
k

da
ta

_o
ut

_m
em

_p

sy
nt

he
se

_r
_e

n
st

ar
t_

sy
nt

h_
r

ad
re

ss
e_

r_
m

em
_L

, s
ig

ne

su
b_

ou
t

su
b_

1,
 d

at
a_

in

su
b_

2,
 d

at
a_

ou
t_

m
em

_L
, s

ig
ne

_D

ad
re

ss
e_

da
ta

_i
n

st
ar

t_
tr

i
en

d_
tr

i

si
gn

e

si
ze

_f
if

o
en

d_
ca

lc
ul

by
pa

ss

0
1

3
0

1
2

0
1

2

ou
tp

ut
,d

ef
au

lt

si
gn

e

sy
nt

h_
w

_e
n

st
ar

t_
sy

nt
h_

w

ad
re

ss
e_

sy
nt

h_
w

da
ta

_i
n_

m
em

_L

0
1

4
5

8
9

10
13

14
12

6
7

15
16

17
18

19
20

21
22

23
24

0
ad

re
ss

e_
W

_L

w
e_

L

ex
tr

, s
ig

ne
, i

s_
de

fa
ul

t

w
e_

P

ad
re

ss
e_

W
_P

0
3

1
2

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
19

20
21

22
23

D
_
P D
_
S
R

D
_
L

D
_
s
u
b

k
1

k
2

k
3

k
4

k
5

k
6

D
_
t
r
i

co
m

m
an

de
 (

L

L
R

)

D
_
c
a
l
c
u
l

D
_
S
W

D
_
p
c
p

st
ar

t_
cn

u

D
_
t
r
i

=

k
i
+
1

D
_
c
a
l
c
u
l

=

{
4
,
5
}
=

f
(
k
i
)

(
k
i

=

2

−
>

4

k
i

>

2

−
>

5
)

D
_
p
c
p

=

D
_
s
u
b
+
D
_
t
r
i
+
D
_
c
a
l
c
u
l
+
D
_
S
W

ou
tp

ut

ad
re

ss
e_

r_
p

Figure C.2: Waves of the PCP component

(c) Frédéric Guilloud, Télécom Paris - July 2004

144 C. ARCHITECTURE OF THE NODE PROCESSORS

sel

sel

a.w b.w
a.en

a b

b.en
a.in b.in

b.outa.out

V

a.w I b.w
a.en

a b

b.en
a.in b.in

b.outa.out

io

zeros

sel

a.w b.w
a.en

a b

b.en
a.in b.in

b.outa.out

a.w b.w
a.en

a b

b.en
a.in b.in

b.outa.out

Adder.1

Adder.2

io & w_en_I

sel

E_in

Accu.out

data

Accu.2

Accu.1
data_accu

select_accu_out

sel

adr_write_V

sel

data_E1E2

Adder.out
sel

adr_read

adr_acc

int_data adr_write_E

acc_data

dpram_accu

dpram_accu

dpram_accu
dpram

I_out

s
o
u
r
c
e
_
r
e
g

1 0

1 0

1 0

E2E1

1 0

01

10

sel

log2(N/P)

sel

(Nb + 2)

Figure C.3: Variable Processor

C.2 Variable Node Unit (VNU)

Similarly to the CNU, the VNU features P Variables Processor (VP), which are data paths
components, controlled by the same signals generated in the VNU. The VNU also features
the A-memory, which contains the parity check matrix. Figure C.3 depicts the architecture
of the VP, which is mainly made of memories. Figure C.4 and C.5 depict the waveforms
of the signals in the VP and their control respectively during the input/output phase,
and during the decoding phase. The architecture of the VP components implements the
data path behaviour depicted on figure 5.8. This behaviour may yield 2 kinds of memory
conflicts:

1. What if the read and write address of the dual port RAM are the same ? The 3
memories V and alternatively E1 and E2 may be concerned by this event. An accu-
mulation is made of a read and then a write access. If two pipelined accumulations
are processed, the read access of the second one will append at the moment at the
same time as the write access of the first one. So the second read access will not
output the true value, which should have been modified by the first accumulation.
Our solution is the dpram_accu component, depicted on figure C.6, which features

(c) Frédéric Guilloud, Télécom Paris - July 2004

C.2 Variable Node Unit (VNU) 145

adr_read

adder_out

adder_1, adder_2

STATE = IO
L_mem_I=L_mem_E

start_O

L_adder
data_strobe

end_I

end_O
start_I

int_data

adr_acc

io

Figure C.4: Waves of the VP component for the IO state

a dpram component and the detection of such a conflict. The output is then either
the dpram output (no conflict) or the dpram input (conflict). The waveforms corre-
sponding to such a situation are depicted on figure C.7: the same variable is implied
in 2 successive parity-check (the n-th one and then the n + P one).

2. The second conflict is due to the latency of the accumulation, when a variable is
accessed for reading in the n + P -th parity-check before the accumulation of this
same variable has been processed concerning the n-th parity-check. The waveforms
corresponding to this situation are depicted on figure C.8. This conflict concerns
only the extrinsic memory which is used for the accumulation: alternately E1 and
E2. Our solution is the select_accu_out signal, which controls a multiplexer.
This signal is set to 1 when 2 successive read addresses are identical. The only
way this conflict may occurs is when a bit has to be accumulated twice successively.
This conflict may occurs since the latency between the read and write part of the
accumulation is as much as 2 clock cycles (one for the memory read, and one for the
accumulation). Of course, if this latency has to be changed, this problem will have
to be reconsidered.

(c) Frédéric Guilloud, Télécom Paris - July 2004

146 C. ARCHITECTURE OF THE NODE PROCESSORS

A
_b

_b
it

=
 d

at
a_

A
_b

’

A
_b

_b
it(

L
_p

i+
L

_a
cc

u−
1)

ad
r_

ac
c

=
 A

_b
_b

it(
L

_p
i−

L
_m

em
_E

−
1)

ac
cu

_1
,a

cc
u_

2,
ac

c_
da

ta
, V

_o
ut

ad
r_

w
ri

te
_V

=
 A

_b
_b

it(
L

_p
i−

1)

ad
r_

w
ri

te
_E

=
A

_b
_b

it(
L

_p
i+

L
_a

cc
u−

1)

ac
cu

_o
ut

S
T
A
T
E

=

I
T
E
R

io

st
ar

t_
vn

u

ad
r_

m
em

_A
_a

L
_
P
i

L
_
p
c
p

L
_
P
i
_
i
n
v

L
_
a
d
d
e
r

L
_
m
e
m
_
I
=
L
_
m
e
m
_
E

L
_
S
W

1

L
_
m
e
m
_
E

=

L
_
m
e
m
_
V

L
_
a
c
c
u

ad
r_

re
ad

 =
 d

at
a_

A
_a

ad
de

r_
1,

 a
dd

er
_2

ad
de

r_
ou

t

ad
r_

pi

ac
c_

en

ad
r_

m
em

_A
_b

da
ta

_A
_b

 =
 a

dr
_p

i_
in

v

Figure C.5: Waves of the VP component for the ITER state

(c) Frédéric Guilloud, Télécom Paris - July 2004

C.2 Variable Node Unit (VNU) 147

a.w b.w
a.en

a b

b.en
a.in b.in

b.outa.out

=

1 0

10

address_write

change_output

data_out

change_output

address_read

change_output

data_in

dpram

Figure C.6: The dpram_accu component

0 1 2 3 1 3 2 0

D0 D1 D2 D3 A1 D3 A2 A0

Same read / write address

A0 A1 A2 A3 A4 A5 A6 A7

0 1 2 3 1 3 2 0

D0 D1 D2 D3 A1 A2 A0A3

The read and write address are the same

The output of the memory is then
not what we expected

So the output has to be changed

by the output of the accumulator

(read address) E.a

E.out

accu.out

(write address) E.b

clk

change_output
dpram_accu_out

parity n parity n + P

Figure C.7: Example of a memory conflict (1).

(c) Frédéric Guilloud, Télécom Paris - July 2004

148 C. ARCHITECTURE OF THE NODE PROCESSORS

read before write

0 1 2 3 2 03 1

A0 A1 A2 A3 A4 A5 A6 A7

D0 D1 D2 D3 A2 A0D3 A1

0 1 2 3 2 03 1

D0 D1 D2 D3 A2 A0A3 A1
by the output of the accumulator

So the data_accu has to be changed

not what we expected
The output of the memory is then

when the second read occurs.
 accumulation is not up to date
this lead to the problem that the first

The read address is twice the same

data_accu

select_accu_out

(write address) E.b

accu.out

E.out

(read address) E.a

clk

parity n parity n + P

Figure C.8: Example of a memory conflict (2).

(c) Frédéric Guilloud, Télécom Paris - July 2004

Appendix D

Platform component architecture

149 (c) Frédéric Guilloud, Télécom Paris - July 2004

150 D. PLATFORM COMPONENT ARCHITECTURE

round & clip

data_in(s_bit)

s_bit
s_topBit counter

data_in

sigma_inv

(P)

(3.6) unsigned

(4.14)

delay = A× P + 2

A = 4
WGNG

B = 14 (5.14)

s_gauss s_somme

s_signal
(4.6)

s_old_bit

delay
valid_in

(2.5) unsignedgamma

Nb

data_out

s_prod_int
(8.19)

s_prod_abs
(7.19)

s_signe

s_prod_sigma

valid_out

log2(∆).(Nb − log2(∆))

Figure D.1: Architecture of the channel emulator component.

(c) Frédéric Guilloud, Télécom Paris - July 2004

151

state
=

INTERFACE

r_in.data

APP_DIN_EN r_in.input_en

APP_INT_ACK APP_INT_ACK

load_Hload_H

APP_DATA_IN

valid_out

data_out

EMULATOR
CHANNEL

s_APP_DATA_IN

MEM CODED

s_gamma

state
=

INTERFACE

data_in

valid_in

(P)

(P × (Nb + 2))

state

C
O
N
F
I
G

O
T
H
E
R
S

G
E
T
_
M
E
M
_
H

nbr_iter

s_sigma_inv

error counter
Output bits

r_out.data

nb_max_error

s_init_cmpt

Input bits
error counter

input_error_bit_nb

update_sigma

output_error_bit_nb

total_bit_nb

(2P)

(32)

(32)

(64)

(32)r_out.data_strobe

sigma_inv_start (3.6)
unsigned

gamma_start (2.5)
unsigned

gamma_step (4)

Eb/N0

increment

Figure D.2: Architecture of the protocol component.

(c) Frédéric Guilloud, Télécom Paris - July 2004

This page intentionally left blank.

Appendix E

Listings

153 (c) Frédéric Guilloud, Télécom Paris - July 2004

154 E. LISTINGS

Listing E.1: LDPC decoder VHDL package for constant definitions.
−− (c) Telecom Paris − 2004 −−
−− ldpc pack.vhd
−− LDPC decoder package

library IEEE;

use IEEE.Std Logic 1164.ALL;
use work.log pkg.all ; −− enable to compute log 2(x)

package ldpc pack is

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Constant declaration
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

constant N : natural := 800; −− Codeword length
constant M : natural := 400; −− Number of parity
constant P : natural := 5; −− Edge rate
constant Pmax : natural := 8; −− Edge rate max
constant Nb : natural := 6; −− Number of bit for magnitude coding
constant lambda : natural := 3; −− Number of minimum for the lambda−min
constant kmax : natural := 32; −− Highest Parity degree
constant Dynamique : natural := 6; −− Dynamic range

(c) Frédéric Guilloud, Télécom Paris - July 2004

155

Listing E.2: LDPC decoder VHDL package for constant definitions.
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Latencies
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
constant L mem L : natural := 1; −− Latency for L−memory (read)
constant L mem A : natural := 1; −− Latency for A−memory ”
constant L mem I : natural := 1; −− Latency for I−memory
constant L mem E : natural := 1; −− Latency for E−memory
constant L mem P : natural := 1; −− Latency for P−memory
constant L mem V : natural := 1; −− Latency for V−memory
constant L SR : natural := 1; −− Latency for read synthesis
constant L SW : natural := 1; −− Latency for write synthesis
constant L C : natural := 1; −− Latency for LLR processing
constant L sub : natural := 1; −− Latency for subtraction
constant L adder : natural := 1; −− Latency for adder
constant L pi : natural := 3; −− Latency for shuffle
constant L accu : natural := 1; −− Latency for accumulation
constant D1 : natural := L mem L; −− delay P.out vs L.out
constant D2 : natural := L mem I+L adder; −− delay A.a.out vs Pi.a
constant D3 : natural := L pi+L accu; −− delay E.a vs E.b
constant D4 : natural := L mem V; −− delay V.a vs V.b
constant D5 : natural := L mem A+L mem V+L pi; −− delay V.out vs E.out
constant Max FIFO Parity length : natural := 8; −− FIFO size for pipelining

−−− parity−check sizes in the CNU

(c) Frédéric Guilloud, Télécom Paris - July 2004

156 E. LISTINGS

Listing E.3: map summary for the synthesis 3400x1700x5.
Xilinx Mapping Report File for Design ’bloc fpga 2’
Copyright (c) 1995−2000 Xilinx, Inc. All rights reserved.

Design Information
−−−−−−−−−−−−−−−−−−
Command Line : map −pr b bloc fpga 2.ngd −o bloc fpga 2.ncd bloc fpga 2.pcf
Target Device : xv1000e
Target Package : bg560
Target Speed : −6
Mapper Version : virtexe −− D.27
Mapped Date : Fri May 07 18:31:50 2004

Design Summary
−−−−−−−−−−−−−−

Number of errors: 0
Number of warnings: 294
Number of Slices: 3,112 out of 12,288 25%
Number of Slices containing

unrelated logic : 0 out of 3,112 0%
Number of Slice Flip Flops: 2,257 out of 24,576 9%
Total Number 4 input LUTs: 4,854 out of 24,576 19%

Number used as LUTs: 4,716
Number used as a route−thru: 138

Number of bonded IOBs: 104 out of 404 25%
IOB Flip Flops: 91

Number of Block RAMs: 88 out of 96 91%
Number of GCLKs: 3 out of 4 75%
Number of GCLKIOBs: 2 out of 4 50%
Number of DLLs: 3 out of 8 37%

Total equivalent gate count for design : 1,519,335
Additional JTAG gate count for IOBs: 5,088

(c) Frédéric Guilloud, Télécom Paris - July 2004

Bibliography

Ammar, B., B. Honary, Y. Kou, and S. Lin. July 2002. “Construction of low den-
sity parity check codes: a combinatoric design approach.” Proceedings of the IEEE
International Symposium on Information Theory.

Amraoui, A., S. Dusad, and R. Urbanke. July 2002. “Achieving general points in the
2-user Gaussian MAC without time-sharing or rate-splitting by means of iterative
coding.” Information Theory, 2002. Proceedings. 2002 IEEE International Sympo-
sium on.

Ardakani, M., and F.R. Kschischang. July 2002. “Designing irregular LPDC codes using
EXIT charts based on message error rate.” Proceedings of the IEEE International
Symposium on Information Theory.

Ardakani, Masoud, Terence H. Chan, and Frank R. Kschischang. May 2003. “Properties
of the EXIT Chart for One-Dimensional LDPC Decoding Schemes.” Proceedings of
CWIT.

Bahl, L.R., J Cocke, F. Jelinek, and J. Raviv. March 1974. “Optimal Decoding of
Linear Codes for Minimizing Symbol Error Rate.” IEEE Transactions on Information
Theory 20:284–287.

Barry, J.R. oct. 2001. Low-Density Parity-Check Codes. Available at http://www.ece.
gatech.edu/~barry/6606/handsout/ldpc.pdf.

Battail, G., and A. H. M. El-Sherbini. 1982. “Coding for Radio Channels.” Annales des
Télécommunications 37:75–96.

Battail, G., and H. Magalhães De Oliveira. 1993. “Probabilité d’erreur du codage
aléatoire avec décodage optimal sur le canal à bruit gaussien additif, affecté ou non
de fluctuations d’amplitude (in french).” Annales des Télécommunications 48:15–28.

Berrou, C., A. Glavieux, and P. Thitimajshima. May. 23-26, 1993. “Near Shannon limit
error-correcting coding and decoding: Turbo-codes.” International Conference on
Communication.

Bhatt, T., K. Narayanan, and N. Kehtarnavaz. Oct. 2000. “Fixed-point DSP Implemen-
tation of Low-Density Parity Check Codes.” 9th DSP (DSP 2000) Workshop.

157 (c) Frédéric Guilloud, Télécom Paris - July 2004

http://www.ece.gatech.edu/~barry/6606/handsout/ldpc.pdf
http://www.ece.gatech.edu/~barry/6606/handsout/ldpc.pdf

158 Bibliography

Blanksby, A.J., and C.J. Howland. March 2002. “A 690-mW 1-Gb/s 1024-b, Rate-1/2
Low-Density Parity-Check Code Decoder.” Journal of Solid-State Circuits 37:404–
412.

Bond, J.W., S. Hui, and H. Schmidt. May 2000. “Constructing low-density parity-check
codes.” EUROCOMM 2000. Information Systems for Enhanced Public Safety and
Security. IEEE/AFCEA.

Boutillon, E., J. Castura, and F.R. Kschischang. 2000. “Decoder-First Code Design.”
Proceedings of the 2nd International Symposium on Turbo Codes and Related Topics.
Brest, France, 459–462.

Boutillon, E., J.-L. Danger, and A. Gazel. Feb 2003. “Design of High Speed AWGN
Communication Channel Emulator.” Kluwer Press, Analog Integrated Circuits and
Signal Processing International Journal 34(2):133–142.

Boutillon, Emmanuel, Jacky Tousch, and Frederic Guilloud. 2003, december. LDPC
decoder, corresponding method, system and computer programm. US Patent pending.

Boutros, J., G. Caire, E. Viterbo, H. Sawaya, and S. Vialle. 2002. “Turbo code at
0.03 dB from capacity limit.” Information Theory, 2002. Proceedings. 2002 IEEE
International Symposium on.

Campello, J., and D.S. Modha. November 2001. “Extended Bit-Filling and LDPC Code
Design.” Global Telecommunications Conference. 985–989.

Chen, J., and M.P.C. Fossorier. May 2002. “Density Evolution for Two Improved
BP-Based Decoding Algorithms of LDPC Codes.” IEEE Communication Letters
6:208–210.

Chen, Jinghu. 2003. “Reduced Complexity Decoding Algorithms For Low-Density Parity
Check Codes and Turbo Codes.” Ph.D. diss., University of Hawaii.

Chen, Y., and D. Hocevar. 1-5 Dec. 2003. “A FPGA and ASIC Implementation of Rate
1/2, 8088-b Irregular Low Density Parity Check Decoder.” Global Telecommunica-
tions Conference, 2003. GLOBECOM ’03. IEEE.

Chung, Richardson, and Urbanke. 2001. “Analysis of Sum-Product Decoding of Low-
Density Parity-Check Codes Using a Gaussian Approximation.” IEEETIT: IEEE
Transactions on Information Theory, vol. 47.

Chung, Sae-Young. Sae-Young Chung’s Homepage. available at http://lids.mit.edu/
~sychung.

Chung, S-Y., G.D. Forney, T.J. Richardson, and R.L Urbanke. 2001. “On the De-
sign of Low-Density Parity-Check Codes within 0.0045 dB of the Shannon Limit.”
Communications Letters 5:58–60.

Danger, J.-L., A. Ghazel, E. Boutillon, and H. Laamari. 17-20 Dec. 2000. “Efficient
FPGA implementation of Gaussian noise generator for communication channel emu-

(c) Frédéric Guilloud, Télécom Paris - July 2004

http://lids.mit.edu/~sychung
http://lids.mit.edu/~sychung

Bibliography 159

lation.” Electronics, Circuits and Systems, 2000. ICECS 2000. The 7th IEEE Inter-
national Conference on.

Davey, M. C., and D. J. C. MacKay. 1998. “Low density parity check codes over GF(q).”
IEEE Communications Letters, vol. 2.

de Baynast, A., and D. Declercq. July 2002. “Gallager codes for multiple user applica-
tions.” Information Theory, 2002. Proceedings. 2002 IEEE International Symposium
on.

Declercq, D, and F. Verdier. Sept. 1-5, 2003. “Optimization of LDPC Finite Precision
Belief Propagation Decoding with Density Evolution.” 3rd International Symposium
on Turbo Codes & related topics.

Djordjevic, I.B., S. Sankaranarayanan, and B.V. Vasic. March 2004. “Projective-Plane
Iteratively Decodable Block Codes for WDM High-Speed Long-Haul Transmission
Systems.” Lightwave Technology, Journal of, vol. 22.

Djurdjevic, I., S. Lin, and K. Abdel-Ghaffar. April 2003. “Graph-theoretic construction
of low-density parity-check codes.” Communications Letters, IEEE 7::171 – 173.

Dolinar, S., D. Divsalar, and F. Pollara. Jan-March 1998. “Code Performance as a
Function of Block Size.” Technical Report, The Telecommunications and Mission
Operations Progress Report 42133.

Etzion, Tuvi, Ari Trachtenberg, and Alexander Vardy. Sept. 1999. “Which Codes Have
Cycle-Free Tanner Graphs ?” IEEE Transactions on Information Theory, vol. 45.

Forney, G.D. March 1973. “The Viterbi Algorithm.” Proceedings of the IEEE 61:268–
278.

Fossorier, M.P.C., M. Mihaljević, and I. Imai. May 1999. “Reduced Complexity Iter-
ative Decoding of Low-Density Parity-Check Codes Based on Belief Propagation.”
Transactions on Communications 47:673–680.

Gallager, R.G. Jan. 1962. “Low-Density Parity-Check Codes.” IRE Transactions on
Information Theory 8:21–28.

. 1963. Low-Density Parity-Check Codes. Cambridge, MA: MIT Press.

. 1968. Information Theory and Reliable Communication. New York: Wiley.

Garcia-Frias, J., and Wei Zhong. June 2003. “Approaching Shannon performance by it-
erative decoding of linear codes with low-density generator matrix.” Communications
Letters, IEEE 7:266 – 268.

Ghazel, A., E. Boutillon, J.-L. Danger, G. Gulak, and H. Laamari. 26-28 Aug. 2001.
“Design and performance analysis of a high speed AWGN communication channel
emulator.”Communications, Computers and signal Processing, 2001. PACRIM. 2001
IEEE Pacific Rim Conference on.

(c) Frédéric Guilloud, Télécom Paris - July 2004

160 Bibliography

Guilloud, F., E. Boutillon, and J.-L. Danger. may 2002a. “Bit Error Rate Calculation for
a Multiband Non Coherent On-Off Keying Demodulation.” International Conference
on Communication, ICC 2002.

. 19 dec. 2002b. Implémentation de LDPC sur FPGA : optimisation de
l’architecture et étude de précision finie (in french). Journée LDPC du GDR ISIS,
available at http://lester.univ-ubs.fr:8080/~boutillon/Journee_GDR_LDPC/

compte_rendu.htm.

. septembre 2003a. “Décodage des codes LDPC par l’algorithme λ−min.” 19ème

colloque GRETSI sur le traitement du signal et des images.

. Sept. 1-5, 2003b. “λ−min Decoding Algorithm of Regular and Irregular LDPC
Codes.” 3rd International Symposium on Turbo Codes & related topics.

Guilloud, F., E. Boutillon, and J.-L Danger. May 2002c. “Etude d’un algorithme itératif
d’annulation de repliement spectral lors d une conversion A/N parallèle (in french).”
Proceedings of the 5th “Journées Nationales du Réseau Doctoral de Microélectron-
ique”.

Hagenauer, J., and P. Hoeher. November 1989. “A Viterbi Algorithm with soft-decision
outputs and its applications.” Proceedings of the IEEE Globecom’89. Dallas, Texas.

Hagenauer, J., E Offer, and L. Papke. March 1996. “Iterative Decoding of Binary Block
and Convolutional Codes.” IEEE Transactions on Information Theory 42:1064–
1070.

Haley, D., A. Grant, and J. Buetefuer. Nov. 2002. “Iterative encoding of low-density
parity-check codes.”Global Telecommunications Conference, 2002. GLOBECOM ’02.
IEEE.

Hocevar, D.E. 2003. “LDPC code construction with flexible hardware implementation.”
Communications, 2003. ICC ’03. IEEE International Conference on.

Hou, J., P.H. Siegel, L.B. Milstein, and H.D. Pfister. Sept. 2003. “Capacity-approaching
bandwidth-efficient coded modulation schemes based on low-density parity-check
codes.” IEEE Transactions on Information Theory 49:2141–2155.

Hou, Jilei, Paul H. Siegel, and Laurence B. Milstein. May 2001. “Performance Analy-
sis and Code Optimization of Low Density Parity-Check Codes on Rayleigh Fading
Channels.” IEEE Journal on Selected Areas in communications, vol. 19.

Howland, C., and A Blanksby. May 2001a. “A 220mW 1Gb/s 1024-Bit Rate-1/2 Low
Density Parity Check Code Decoder.” Circuits and Systems, 2001. ISCAS 2001. The
2001 IEEE International Symposium on , Volume: 4 , 6-9 May 2001.

. May 2001b. “Parallel Decoding Architectures for Low Density Parity Check
Codes.” Custom Integrated Circuits, 2001, IEEE Conference on.

(c) Frédéric Guilloud, Télécom Paris - July 2004

http://lester.univ-ubs.fr:8080/~boutillon/Journee_GDR_LDPC/compte_rendu.htm
http://lester.univ-ubs.fr:8080/~boutillon/Journee_GDR_LDPC/compte_rendu.htm

Bibliography 161

Hu, X.-Y., E. Eleftheriou, D.-M. Arnold, and A. Dholakia. November 2001. “Efficient
Implementations of the Sum-Product Algorithm for Decoding LDPC Codes.” Global
Telecommunications Conference. 1036–1036E.

Hu, Xiao-Yu, E. Eleftheriou, and D.-M. Arnold. Nov. 2001. “Progressive edge-growth
Tanner graphs.” Proceedings of the IEEE Global Telecommunications Conference
GLOBECOM ’01.

IEEE. 2001, February. Special issue on codes on graphs and iterative algorithm. IEEE
Transactions on Information Theory. IEEE.

Johnson, S.J., and S.R. Weller. Dec. 2003a. “High-rate LDPC codes from unital designs.”
Proceedings of the IEEE Global Telecommunications Conference GLOBECOM ’03.

. Sept. 2003b. “Resolvable 2-designs for regular low-density parity-check codes.”
Communications, IEEE Transactions on 51:1413 – 1419.

Jones, C., E. Vallés, M. Smith, and J. Villasenor. 13-16 Oct. 2003. “Approximate-
min* constraint node updating for ldpc code decoding.” Military Communications
Conference, 2003. MILCOM 2003. IEEE.

Kienle, F., M.J. Thul, and N. Wehn. Sept. 1-5, 2003. “Implementation Issues of Scalable
LDPC-Decoders.” 3rd International Symposium on Turbo Codes & related topics.

Kim, S., G.E. Sobelman, and J. Moon. 2002. “Parallel VLSI Architectures for a Class
of LDPC Codes.” ISCAS 2002.

Koetter, R, and P Vontobel. Sept. 1-5, 2003. “Graph-covers and iterative decoding of
finite length codes.” 3rd International Symposium on Turbo Codes & related topics.

Kou, Y., S. Lin, and M.P.C. Fossorier. November 2001. “Low-Density Parity-Check
Codes Based on Finite Geometries : A Rediscovery and New Results.” Transactions
on Information Theory 47:2711–2736.

Kschischang, F.R., and B.J. Frey. 1998. “Iterative Decoding of Compound Codes by
Probability Propagation in Graphical Models.” Journal on Selected Areas in Com-
munications 16:219–230.

Lafferty, J., and D. Rockmore. November 2000. “Codes and Iterative Decoding on
Algebraic Expander Graphs.” International Symposium on Information Theory and
its Applications. Honolulu, Hawaiin, U.S.A.

Lehmann, F., and G.M. Maggio. Nov. 2003. “Analysis of the iterative decoding of LDPC
and product codes using the Gaussian approximation.” Information Theory, IEEE
Transactions on 49:2993 – 3000.

Levine, B., R.R. Taylor, and H. Schmit. 2000. “Implementation of near Shannon limit
error-correcting codes using reconfigurable hardware.” Field-Programmable Custom
Computing Machines, 2000 IEEE Symposium on , 2000. 217–226.

(c) Frédéric Guilloud, Télécom Paris - July 2004

162 Bibliography

Li, Jing, K.R. Narayanan, E. Kurtas, and C.N. Georghiades. May 2002. “On the perfor-
mance of high-rate TPC/SPC codes and LDPC codes over partial response channels.”
Communications, IEEE Transactions on 50:723 – 734.

Lu, B., G. Yue, and X. Wang. Feb. 2004. “Performance Analysis and Design Optimization
of LDPC-Coded MIMO OFDM Systems.” Signal Processing, IEEE Transactions on
[see also Acoustics, Speech, and Signal Processing, IEEE Transactions on] 52:348 –
361.

Luby, M.G., M. Mitzenmacher, M.A. Shokrollahi, and D.A. Spielman. February 2001.
“Improved Low-Density Parity-Check Codes Using Irregular Graphs.” Transactions
on Information Theory 47:585–598.

Luby, Michael G., Michael Mitzenmacher, M. Amin Shokrollahi, Daniel A. Spielman, and
Volker Stemann. 1997. “Practical loss-resilient codes.”Proceedings of the twenty-ninth
annual ACM symposium on Theory of computing. ACM Press, 150–159.

Lucas, R., M.P.C. Fossorier, Yu Kou, and Shu Lin. June 2000. “Iterative decoding of one-
step majority logic deductible codes based on belief propagation.” Communications,
IEEE Transactions on 48:931–937.

Lucent, Technology. 2004. An Overview of Information Theory. Available at http:

//www.lucent.com/minds/infotheory/docs/history.pdf.

MacKay, D. J. C., and M. C. Davey. 2000. “Evaluation of Gallager Codes for Short Block
Length and High Rate Applications.” In Codes, Systems and Graphical Models, edited
by B. Marcus and J. Rosenthal, Volume 123 of IMA Volumes in Mathematics and
its Applications, 113–130. New York: Springer.

MacKay, David J.C., and Christopher P. Hesketh. 2003. “Performance of low density
parity check codes as a function of actual and assumed noise levels.” Edited by Sharon
Flynn, Ted Hurley, Mı́cheál Mac an Airchinnigh, Niall Madden, Michael McGettrick,
Michel Schellekens, and Anthony Seda, Electronic Notes in Theoretical Computer
Science, Volume 74. Elsevier.

MacKay, David J.C., and Michael S. Postol. 2003. “Weaknesses of Margulis and
Ramanujan-Margulis low-density parity-check cCodes.” Electronic Notes in Theo-
retical Computer Science, Volume 74. Elsevier.

Mackay, D.J.C. LDPC database. Available at http://www.inference.phy.cam.ac.

uk/mackay/codes/data.html.

. March 1999. “Good Error-Correcting Codes Based on Very Sparse Matrices.”
Transactions on Information Theory 45:399–431.

MacKay, D.J.C, and R.M. Neal. 1995. “Good Codes Based on Very Sparse Matrices.”
5th IMA Conference on Cryprography and Coding. Berlin, Germany: Springer.

. 1996. “Near Shannon Limit Performance of Low-Density Parity-Check Codes.”
Electronic Letter 32:1645–1646.

(c) Frédéric Guilloud, Télécom Paris - July 2004

http://www.lucent.com/minds/infotheory/docs/history.pdf
http://www.lucent.com/minds/infotheory/docs/history.pdf
http://www.inference.phy.cam.ac.uk/mackay/codes/data.html
http://www.inference.phy.cam.ac.uk/mackay/codes/data.html

Bibliography 163

MacKay, D.J.C, S.T. Wilson, and M.C. Davey. October 1999. “Comparison of Construc-
tions of Irregular Gallager Codes.” Transaction on Communications 47:1449–1454.

Mannoni, V., D. Declercq, and G. Gelle. Sept. 2002. “Optimized irregular Gallager codes
for OFDM transmission.”Personal, Indoor and Mobile Radio Communications, 2002.
The 13th IEEE International Symposium on.

Mansour, M.M., and N.R. Shanbhag. Aug. 12-14, 2002a. “Low-Power VLSI Decoder
Architectures for LDPC Codes.” Int. Symp. Low Power Electronic Design.

. Nov 17 - 21, 2002b. “Turbo decoder architectures for low-density parity-check
codes.” Global Telecommunications Conference, 2002. GLOBECOM ’02. IEEE.

Mao, Y., and A.H. Banihashemi. October 2001a. “Decoding Low-Density Parity-Check
Codes With Probabilistic Scheduling.” Communications Letters 5:414–416.

Mao, Y, and A. H. Banihashemi. June 2001b. “A heuristic search for good low-density
parity-check codes at short block lengths.” IEEE International Conference on Com-
munications. ICC 2001.

Martinez, A., and M. Rovini. 2003, September. “Iterative decoders based on statistical
multiplexing.” Proceedings of the 3rd International Symposium on Turbo Codes and
Related Topics.

McEliece, R.J., D.J.C. MacKay, and J.-F. Cheng. February 1998. “Turbo Decoding as an
Instance of Pearl’s Belief Propagation Algorithm.” IEEE Journal on Selected Areas
in Communications 16:140–152.

Miller, G., and G. Cohen. November 2003. “The rate of regular LDPC codes.” IEEE
Transactions on Information Theory 49:2989–2992.

Morelos-Zaragoza, R.H. The Art of Error Correcting Coding, Wiley, 2002. program
available at http://the-art-of-ecc.com.

Narayanan, K.R., I. Altunbas, and R. Narayanaswami. Aug. 2003. “Design of serial
concatenated MSK schemes based on density evolution.” IEEE Transactions on
Communications 51:1283 – 1295.

Narayanan, K.R., Xiaodong Wang, and Guosen Yue. Oct. 2002. “LDPC code design for
MMSE turbo equalization.” Proceedings of the IEEE Information Theory Workshop.

Nickl, H., J. Hagenauer, and Burkert. Sept. 1997. “Approaching Shannon’s capacity
limit by 0.2 dB using simple Hamming codes.” Communications Letters, IEEE 1:130
– 132.

Oenning, T.R., and Jaekyun Moon. March 2001. “A low-density generator matrix
interpretation of parallel concatenated single bit parity codes.” Magnetics, IEEE
Transactions on 37:737 – 741.

Okamura, T. July 2003. “Designing ldpc codes using cyclic shifts.” Proceedings of the
IEEE International Symposium on Information Theory.

(c) Frédéric Guilloud, Télécom Paris - July 2004

http://the-art-of-ecc.com

164 Bibliography

Pearl, J. 1988. Probabilistic Reasoning in Intelligent Systems : Networks of Plausible
Inference. San Mateo: CA : Morgan Kaufmann.

Prabhakar, A., and K. Narayanan. Sept. 2002. “Pseudorandom construction of low-
density parity-check codes using linear congruential sequences.” Communications,
IEEE Transactions on 50:1389 – 1396.

Press, William H., Saul A. Teukolsky, and William T. Vetterling. 2nd edition (October
30, 1992). Numerical recipes in C : the art of scientific computing. Edited by New
York : Cambridge University. Cambridge University Press.

project, SPRING. The European SPRING project, number IST-1999-12342. http:

//www.imse.cnm.es/spring.

Richardson, T.J., M.A. Shokrollahi, and R.L Urbanke. February 2001. “Design of
Capacity-Approaching Irregular Low-Density Parity-Check Codes.” Transactions on
Information Theory 47:619–637.

Richardson, T.J., and R.L Urbanke. February 2001. “Efficient Encoding of Low-Density
Parity-Check Codes.” Transactions on Information Theory 47:638–656.

Rosenthal, J., and P. O. Vontobel. June 2001. “Constructions of regular and irregular
LDPC codes using Ramanujan graphs and ideas from Margulis.” Proceedings of the
IEEE International Symposium on Information Theory. 4.

Sankaranarayanan, S., B. Vasic, and E.M. Kurtas. Sept. 2003. “Irregular low-density
parity-check codes: construction and performance on perpendicular magnetic record-
ing channels.” Magnetics, IEEE Transactions on 39:2567 – 2569.

Schlegel, Christian. 1997. Trellis Coding. IEEE Press.

Shannon, C.E. 1948. The Mathematical Theory of Communication. Urbana, IL: Univer-
sity of Illinois Press.

Sipser, M., and D.A. Spielman. November 1996. “Expander Codes.” IEEE Transactions
on Information Theory 42:1710–1722.

Tanner, R. Septembre 1981. “A recursive approach to low complexity codes.” IEEE
Transactions on Information Theory 27:533–547.

ten Brink, S. May 1999. “Convergence of iterative decoding.” Electronics Letters 35:806
– 808.

Thangaraj, A., and S.W. McLaughlin. Sept. 2002. “Thresholds and scheduling for
LDPC-coded partial response channels.” Magnetics, IEEE Transactions on 38:2307
– 2309.

Thorpe, J. 2002. “Design of LDPC graphs for hardware implementation.” Information
Theory, 2002. Proceedings. 2002 IEEE International Symposium on.

(c) Frédéric Guilloud, Télécom Paris - July 2004

http://www.imse.cnm.es/spring
http://www.imse.cnm.es/spring

Bibliography 165

Thul, M.J., F. Gilbert, and N. Wehn. 6-10 April 2003. “Concurrent interleaving architec-
tures for high-throughput channel coding.” Acoustics, Speech, and Signal Processing,
2003. Proceedings. (ICASSP ’03). 2003 IEEE International Conference on.

Tian, Tao, C. Jones, J.D. Villasenor, and R.D. Wesel. 2003. “Construction of irreg-
ular LDPC codes with low error floors.” Communications, 2003. ICC ’03. IEEE
International Conference on.

Ungerboeck, G. Jan. 1982. “Channel Coding with Multilevel/Phase Signalling.” IEEE
Trans. Info. Theory 28:55–67.

Urbanke, R. LdpcOpt. Available at http://lthcwww.epfl.ch/research/ldpcopt/.

Varnica, N., and A. Kavcic. April 2003. “Optimized low-density parity-check codes for
partial response channels.” Communications Letters, IEEE 7:168 – 170.

Vasic, B. July 2002. “Combinatorial constructions of low-density parity check codes for
iterative decoding.” Proceedings of the IEEE International Symposium on Informa-
tion Theory.

Vasic, B., I.B. Djordjevic, and R.K. Kostuk. Feb. 2003. “Low-density parity check
codes and iterative decoding for long-haul optical communication systems.”Lightwave
Technology, Journal of 21:438 – 446.

Verdier, F., and D Declercq. Sept. 1-5, 2003. “A LDPC Parity Check Matrix Construction
for Parallel Hardware Decoding.” 3rd International Symposium on Turbo Codes &
related topics.

Verdier, F., D. Declercq, and Philippe J.-M. Dec. 2002. “Parallélisation et implantation
FPGA d’un décodeur LDPC.” Journées Francophones sur l’Adéquation Algorithme
Architecture JFAAA 2003.

Viterbi, A.J. April 1967. “Error Bound for Convolutional Codes and an Asymptotically
Optimum Decoding Algorithm.” IEEE Transactions on Information Theory 13:260–
269.

Waksman, A. January 1968. “A permutation network.” Journal of the Association for
Computing Machinery 15:159–163.

Wiberg, N. 1996. “Codes and Decoding on General Graphs.” Ph.D. diss., Linköping
University, Sweden.

Wiberg, N., H.-A. Loegliger, and R. Kötter. 1995. “Codes and iterative decoding on
general graphs.” Eur. Trans. Telecom. 6:513–525.

Wolf, J.K. January 1978. “Efficient Maximum Likelihood Decoding of Linear Block
Codes Using a Trellis.” IEEE Transactions on Information Theory 24:76–80.

Wozencraft, J. M., and I. M. Jacobs. 1965. Principles of Com- munication Engineering.
New York, NY: John Wiley and Sons.

(c) Frédéric Guilloud, Télécom Paris - July 2004

http://lthcwww.epfl.ch/research/ldpcopt/

166 Bibliography

Yeo, E., B. Nikolić, and V. Anantharam. Nov. 25-29, 2001. “High Throughput Low-
Density Parity-Check Decoder Architectures.” IEEE Globecom, San Antonio.

Yeo, E., P. Pakzad, B. Nikolić, and V. Anantharam. March 2001. “VLSI Architectures
for Iterative Decoders in Magnetic Recording Channels.” Transactions on Magnetics
37:748–755.

Zhang, Haotian, and J.M.F. Moura. Dec. 2003. “The design of structured regular
LDPC codes with large girth.” Proceedings of the IEEE Global Telecommunications
Conference GLOBECOM ’03.

Zhang, Juntan, and M. Fossorier. 3-6 Nov. 2002. “Shuffled belief propagation decod-
ing.” Signals, Systems and Computers, 2002. Conference Record of the Thirty-Sixth
Asilomar Conference on.

Zhang, T., and K. K. Parhi. 2002. “A 56 Mbps (3,6)-regular FPGA LDPC Decoder.”
Worshop on Signal Processing Systems 2002, SIPS.

. May 2003. “An FPGA Implementation of (3,6)-Regular Low-Density Parity-
Check Code Decoder.” EURASIP Journal on Applied Signal Processing, special issue
on Rapid Prototyping of DSP Systems 2003:530–542.

Zhang, T., and K.K. Parhi. Sept. 2001. “VLSI implementation-oriented (3,k)-regular
low-density parity-check codes.” Worshop on Signal Processing Systems 2001, SIPS.

Zhang, T., Z Wang, and K.K. Parhi. May 2001. “On Finite Precision Implementa-
tion of Low Density Parity Check Codes Decoder.” Proceedings of ISCAS. Sydney,
Australia.

(c) Frédéric Guilloud, Télécom Paris - July 2004

	Remerciements
	Résumé
	Abstract
	Preamble
	Contents
	List of figures
	List of tables
	List of listings
	Notations
	Introduction
	Channel coding
	Optimal decoding
	Shannon theorem for channel coding
	Communication model
	Optimal decoding

	Performance of error correcting codes
	The Shannon bound
	The AWGN capacity

	Decoding of linear block codes
	Definitions
	Optimal decoding of binary block codes
	The iterative algorithm

	Conclusion

	Low Density Parity Check codes
	A bit of History
	Classes of LDPC codes
	Optimization of LDPC codes
	Constructions of LDPC codes
	Random based construction
	Deterministic based construction

	Encoding of LDPC codes
	Lower-triangular shape based encoding
	Other encoding schemes

	Performance of BPSK-modulated LDPC codes
	Decoding of LDPC codes
	Scheduling
	Performance in iterative decoding

	Conclusion

	A unified framework for LDPC decoders
	Generalized message-passing architecture
	Overview
	Shuffle network

	Node processors
	Generic node processor
	Variable and check node processors

	Complexity analysis
	Computation requirements
	Message rate
	Memory

	Synthesis
	Flooding schedule (check way)
	Horizontal shuffle schedule
	Vertical shuffle schedule
	Memory comparison

	Existing platforms survey
	Parallel designs
	serial design
	Mixed designs
	Summary

	Conclusion

	lambda Min Algorithm
	Motivations and state of the art
	APP-based algorithms
	BP-based algorithm

	The lambda Min Algorithm
	Performance of the lambda Min Algorithm
	Simulation conditions
	Algorithm Comparison
	Optimization

	Architectural issues
	PCP architecture
	Memory saving

	Perspectives
	Conclusion

	Generic Implementation of an LDPC Decoder
	Overview
	About genericity
	Synoptic
	Architecture

	Memory Management
	Preliminaries
	Variable node memories
	Check node memories
	The memories A and S
	Migration to FPGA

	Shuffle network
	Description of the architecture
	Universality of the decoder
	Randomly designed LDPC codes
	Preprocessing of existing LDPC codes

	Conclusion

	The platform
	Platform description
	Overview
	Intrinsic information processing

	Synthesis
	Illustration of the genericity
	Synthesis results

	Simulations
	Simulation conditions
	On the BP algorithm
	On the lambda min algorithm
	Algorithm comparaison
	Intrinsic information computing

	conclusion

	Conclusion and Perspectives
	Minimum BER achievable by coded BPSK systems
	Log Likelihood Ratios and Parity Checks
	Iterative expression
	2-variable rule
	Hardware efficient implementation
	n-variable rule

	Expression of the LLR using the tanh rule
	2-variable rule
	n-variable rule

	Architecture of the node processors
	Check Node Unit (CNU)
	Variable Node Unit (VNU)

	Platform component architecture
	Listings
	Bibliography

