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Abstract

Conventionally, a digital communication system is composed of a source coder (reduction
of the information to be transmitted) and a channel coder (protection against channel
errors). This approach allows on the one hand to divide the transmission of information
into two independent tasks, and on the other hand, to operate close to the theoretical
limits for a given channel SNR. Nevertheless, this tandem system exhibits a high overall
complexity and in addition, it su�ers from a dramatic performance degradation when the
channel conditions are poor. In this thesis, we focus on a joint source-channel trellis coding
technique from both a theoretical and hardware standpoints. Our goal is to implement
a simple and robust coding system for a large range of channel SNR and which could
replace more e�ciently the tandem system in certain applications.

The main goal of this joint source-channel trellis coding technique is to �nd a represen-
tation of the source sequence which minimizes the expectation of the distortion between
the source sequence and the reproduction sequence decoded at the receiver end. This
minimization is accomplished by a codebook design algorithm which takes into account
the channel distribution during the generation of the reproduction codebook, and by the
�delity criterion employed during the quantization of the source.

In the �rst part of this work, we show that the type of computations required for
the codebook design operation and the branch metrics of the Viterbi algorithm are quite
similar. Upon proposing a simpli�cation in the computations of the distortion measure,
a recon�gurable architecture is presented which allows to implement both the codebook
design algorithm and the quantization process within the same architecture.

In the next stage of this work, complexity reductions were investigated by replacing
the Viterbi algorithm with a suboptimum trellis search. We showed that the M algo-
rithm, when used in the context of joint source-channel trellis coding, presented excellent
complexity-performance trade o�s. Then, we focused on the design of VLSI architectures
for the M algorithm, and two new ideas which are potentially more advantageous than
previously reported work are proposed. The �rst one pro�ts from the trellis structure to
reduce up to 50% the hardware complexity of the sorting networks required by this algo-
rithm. The second idea consists in the adaptation of the trace-back technique employed
in Viterbi decoders to the M algorithm with the use of pointer tables.



vi Introduction

Finally, in the last part of this work, a joint source-channel coding technique is pre-
sented consisting in the joint optimization of the trellis quantizer described above and
a convolutional code. The pairwise error probabilities required to perform the codebook
design operation and the source quantization are derived from the generator polynomials
of the convolutional code. Then, at the decoder end, we propose to decode the received
channel sequence by means of the MAP algorithm. This algorithm provides us with the
a posteriori probabilities of each trellis branch, or equivalently, with the probabilities of
decoding a given codeword from the reproduction codebook. We called this a �soft� source
decoding.



Glossary of Abbreviations

JSCC Joint Source-Channel Coding
JSCTC Joint Source-Channel Trellis Coding
OPTA Optimum Performance Theoretically Achievable
TQ Trellis Quantization
VQ Vector Quantization
LBG Linde-Buzo-Gray
MAP Maximum A Posteriori
APP A Posteriori Probabilities
BCJR Bahl-Cocke-Jelinek-Raviv
VA Viterbi Algorithm
VA M Algorithm
MA M Algorithm
TCQ Trellis Coded Quantization
TCM Trellis Coded Modulation
CELP Code Excited Linear Prediction

MSE Mean Square Error
SNR channel Signal to Noise Ratio
SQR Signal to Quantization noise Ratio
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BPSK Binary Phase Shift Keying
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CL Computational Load
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RE Register Exchange
TB Trace-Back
PM Path Metric
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LIFO Last In First Out
FIFO First In First Out
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CER Comparison-Exchange-Rejection
MRO Merging Rejection Operator



Glossary of Symbols

k time index
K trellis constraint length
X source alphabet
x source sequence
xk source symbols
C reproduction codebook
y reproduction sequence
yi reproduction codeword
x̂ decoded source sequence
x̂k decoded source symbol
li binary label associated to codeword yi
u binary sequence
uk binary symbol
v transmitted channel sequence
vk transmitted channel symbol
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v̂k received channel symbol
p(�) probability density function
Rs source code rate
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W bandwidth
Pav average signal power
No noise spectral density
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M number of surviving paths in a trellis search algorithm



Contents

Remerciements iii

Abstract v

Glossary of Abbreviations vii

Glossary of Symbols ix

Introduction 1

Dissertation Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Published Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1 Joint Source-Channel Coding: Fundamentals and State of the Art 5

1.1 Digital Communication System . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Source Coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.1 Distortion Measures . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2.2 Rate-Distortion Function . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2.3 Scalar Quantization . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2.4 Vector Quantization . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3 Channel Coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.3.1 Channel Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.3.2 Channel Capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.4 Joint Source-Channel Coding . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.5 State of the Art on JSCC . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.5.1 Concatenated joint source-channel coders . . . . . . . . . . . . . . . 21

1.5.2 Joint source-channel decoders . . . . . . . . . . . . . . . . . . . . . 22

1.5.3 Robust source coders . . . . . . . . . . . . . . . . . . . . . . . . . . 23



xii CONTENTS

1.5.4 Joint optimization of source and channel coders . . . . . . . . . . . 24

2 Joint Source-Channel Trellis Coding 27

2.1 Trellis Source Coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.1.1 Codebook Desing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.1.2 Codebook Initialization . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.2 Joint Source-Channel Trellis Coding . . . . . . . . . . . . . . . . . . . . . . 34

2.2.1 Codebook Design and Initialization . . . . . . . . . . . . . . . . . . 37

2.2.2 Performances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3 Joint Source-Channel Trellis Coding Architecture 45

3.1 Architecture for Codebook Design . . . . . . . . . . . . . . . . . . . . . . . 46

3.1.1 Architecture for Method 1 . . . . . . . . . . . . . . . . . . . . . . . 48

3.1.2 Architecture for Method 2 . . . . . . . . . . . . . . . . . . . . . . . 50

3.1.3 Codeword Label Decoder . . . . . . . . . . . . . . . . . . . . . . . . 52

3.1.4 Channel Transition Probability . . . . . . . . . . . . . . . . . . . . 52

3.2 Hardware Implementation of the Distortion Measure . . . . . . . . . . . . 53

3.2.1 Global Architecture for Method 1 . . . . . . . . . . . . . . . . . . . 55

3.2.2 Global Architecture for Method 2 . . . . . . . . . . . . . . . . . . . 57

3.3 Measures for Increasing Performance . . . . . . . . . . . . . . . . . . . . . 57

3.3.1 Parallelization of Method 1 . . . . . . . . . . . . . . . . . . . . . . 60

3.3.2 Parallelization of Method 2 . . . . . . . . . . . . . . . . . . . . . . 63

3.3.3 Architecture Comparison . . . . . . . . . . . . . . . . . . . . . . . . 63

3.4 Adaptability to the Extension Algorithm . . . . . . . . . . . . . . . . . . . 65

3.4.1 Shift Registers and Counters . . . . . . . . . . . . . . . . . . . . . . 65

3.4.2 Channel Transition Probability . . . . . . . . . . . . . . . . . . . . 66

3.4.3 Codebook Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4 Study of a Suboptimum VLSI Architecture for Joint Source-Channel
Trellis Coding 71

4.1 Architectural Issues of the Viterbi Algorithm . . . . . . . . . . . . . . . . . 72

4.1.1 The Viterbi Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.1.2 The Add-Compare-Select Unit . . . . . . . . . . . . . . . . . . . . . 76



CONTENTS xiii

4.1.3 Survivor Memory Management . . . . . . . . . . . . . . . . . . . . 77

4.1.3.1 Register Exchange Algorithm . . . . . . . . . . . . . . . . 77

4.1.3.2 Trace-Back Algorithm . . . . . . . . . . . . . . . . . . . . 78

4.2 Quest for a Suboptimum Trellis Search Algorithm . . . . . . . . . . . . . . 81

4.3 Classi�cation of the Trellis Search Algorithms . . . . . . . . . . . . . . . . 83

4.3.1 Metric-�rst example: The Stack Algorithm . . . . . . . . . . . . . . 83

4.3.2 Depth-�rst example: The Fano Algorithm . . . . . . . . . . . . . . 84

4.3.3 Breadth-�rst example: The M algorithm . . . . . . . . . . . . . . . 85

4.3.4 Algorithm Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.4 JSCTC with the M Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.4.1 Computational Load Comparison with the VA . . . . . . . . . . . . 86

4.4.2 Peformance Comparison with the VA . . . . . . . . . . . . . . . . . 87

4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5 VLSI Architectures for the M Algorithm 99

5.1 The M Algorithm revisited . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.2 The Sorting Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.2.1 Introduction of Path Merge Rejection within the Sorting Circuit . . 106

5.2.2 State of the Art in Sorting Architectures for the M Algorithm. . . . 110

5.2.3 First Method for Selecting the Best Paths: Path Merge Detectors . 111

5.2.4 Second Method for Selecting the Best Paths: Combined Sorting and
Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.2.5 Third Method for Selecting the Best Paths: Delayed State Label
Sorting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.3 Survivor Memory Management . . . . . . . . . . . . . . . . . . . . . . . . 126

5.3.1 Conventional Approach of Survivor Memory Management in the M
Algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.3.2 Trace-Back Techniques Adapted to the M Algorithm . . . . . . . . 127

5.3.2.1 Trace-Back Technique by Comparison of Visited States. . 131

5.3.2.2 Trace-Back Technique with Path-Number Pointer. . . . . . 132

5.3.3 Improving Hardware E�ciency: Hybrid Architectures . . . . . . . . 136

5.3.3.1 Block Trace-Back for the M Algorithm. . . . . . . . . . . . 136

5.3.3.2 Forward Trace-Back for the M algorithm. . . . . . . . . . 138



xiv CONTENTS

5.4 Hardware Comparison with the Viterbi Algorithm . . . . . . . . . . . . . . 140

5.5 Hardware Realization of the M Algorithm . . . . . . . . . . . . . . . . . . 142

5.5.1 Sorting Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 142

5.5.2 Survivor Memory Managements Architecture . . . . . . . . . . . . . 143

5.5.3 Logic Synthesis Results . . . . . . . . . . . . . . . . . . . . . . . . . 143

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

6 Joint Optimization of a Trellis Source and Convolutional Channel Coders
with Soft Source Decoding 145

6.1 System Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

6.2 Previous Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

6.3 The Pairwise Error Probability . . . . . . . . . . . . . . . . . . . . . . . . 149

6.3.1 Analytical Derivation of the Pairwise Error Probability . . . . . . . 149

6.3.2 Derivation of Coe�cient ai(d) from the Transfer Function a the
Convolutional Code . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

6.4 Codebook Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

6.5 The BCJR Algorithm as Soft Source Decoder . . . . . . . . . . . . . . . . 156

6.6 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

6.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

Conclusion and Future Work 163

Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

A Trace-Back Techniques in Survivor Memory Management for the Viterbi
Algorithm 167

A.1 l-Pointer Trace-Back . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

A.2 Improving Hardware E�ciency: Hybrid Survivor Memory Management Ar-
chitectures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

A.2.1 Block Trace-Back . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

A.2.2 Register-Exchange-Pointer Trace-Back . . . . . . . . . . . . . . . . 174

A.3 Complexity Models of the Di�erent Survivor Memory Management Tech-
niques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

B A Brief Survey on Sorting Algorithms 179

B.1 Parallel Sorting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

B.1.1 Batcher's Odd-Even Sorting Network . . . . . . . . . . . . . . . . . 180



CONTENTS xv

B.1.2 Batcher's Bitonic Sorting Network . . . . . . . . . . . . . . . . . . . 184

B.1.3 Bubble Sort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

B.2 Serial Sorting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

B.2.1 Single Insertion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

B.2.2 Dichotomic Insertion . . . . . . . . . . . . . . . . . . . . . . . . . . 188

B.2.3 Parallel Insertion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

Bibliography 193





List of Figures

1.1 Conventional communication system. . . . . . . . . . . . . . . . . . . . . . 6

1.2 Source coder-decoder pair. . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Rate-distortion function of a gaussian source. . . . . . . . . . . . . . . . . 10

1.4 Scalar quantizer with 8 reproduction levels. . . . . . . . . . . . . . . . . . . 11

1.5 Bidimensional Vector Quantizer with 16 reproduction vectors. . . . . . . . 13

1.6 Channel coder-decoder pair. . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.7 Binary Symmetric Channel Model. . . . . . . . . . . . . . . . . . . . . . . 16

1.8 Additive White Gaussian Noise channel. . . . . . . . . . . . . . . . . . . . 16

1.9 Channel Capacity of a BSC channel. . . . . . . . . . . . . . . . . . . . . . 18

1.10 Channel Capacity of an AWGN channel. . . . . . . . . . . . . . . . . . . . 18

1.11 OPTA curve for gaussian source and BSC channel. . . . . . . . . . . . . . 20

1.12 OPTA curve for gaussian source and AWGN channel. . . . . . . . . . . . . 20

2.1 Trellis quantizer decoder. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.2 Trellis quantizer structure and operation example. . . . . . . . . . . . . . . 31

2.3 Codeword assignment in the Extension algorithm. . . . . . . . . . . . . . . 33

2.4 JSCTC vs Noiseless Trellis Quantization. . . . . . . . . . . . . . . . . . . . 36

2.5 JSCTC vs TQ Performance for BSC and gaussian source. . . . . . . . . . . 38

2.6 JSCTC vs TQ Performance for BSC and markov source. . . . . . . . . . . 39

2.7 JSCTC vs tandem system performance for AWGN channel and gaussian
source. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.8 Original Lenna image 8 bpp. . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.9 Lenna image encoded at 1 bpp. SNR=10dB. . . . . . . . . . . . . . . . . . 41

2.10 Lenna image encoded at 1 bpp. SNR=0dB. . . . . . . . . . . . . . . . . . . 42

2.11 Lenna image encoded at 1 bpp. SNR=�5dB. . . . . . . . . . . . . . . . . . 42



xviii LIST OF FIGURES

2.12 Pixel range of the image decoded with the noiseless TQ and JSCTC. . . . 43

3.1 Pseudo-programs describing to ways of implementing the codebook design
algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2 Hardware architecture for the �rst method of codebook design. . . . . . . . 49

3.3 Hardware architecture for the second method of codebook design. . . . . . 51

3.4 Codeword Label Decoder. . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.5 Channel Transition Probability Block. . . . . . . . . . . . . . . . . . . . . 53

3.6 Global architecture for method 1. . . . . . . . . . . . . . . . . . . . . . . . 56

3.7 Global architecture for method 2. . . . . . . . . . . . . . . . . . . . . . . . 58

3.8 Parallel architecture of method 1. . . . . . . . . . . . . . . . . . . . . . . . 61

3.9 Parallel architecture of method 2. . . . . . . . . . . . . . . . . . . . . . . . 64

3.10 Channel transition probability dependency between successive constraint
lengths in the extension algorithm. . . . . . . . . . . . . . . . . . . . . . . 67

3.11 Architecture for updating the channel transition probability memory. . . . 67

3.12 Architecture for codebook duplication in the extension algorithm. . . . . . 68

4.1 Path metric updating in the Viterbi algorithm. . . . . . . . . . . . . . . . . 73

4.2 Operation example of the Viterbi algorithm. . . . . . . . . . . . . . . . . . 75

4.3 Block diagram of the Viterbi decoder. . . . . . . . . . . . . . . . . . . . . . 76

4.4 Basic processing element of the ACS operation. . . . . . . . . . . . . . . . 77

4.5 Register Exchange architecture. . . . . . . . . . . . . . . . . . . . . . . . . 78

4.6 Operation Example of the Trace-Back Algorithm. . . . . . . . . . . . . . . 80

4.7 Suboptimum robust trellis quantizer performance on gaussian sources. . . . 88

4.8 Suboptimum robust trellis quantizer performance on �rst-order gauss-markov
sources. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.9 SQR vs SNR performance of the Viterbi and M algorithm for the trans-
mission of the Lenna image. . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.10 SQR vs SNr performance of the Viterbi and M algorithm with the same
hardware complexity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.11 E�ects of channel mismatch in suboptimum trellis quantization. . . . . . . 92

4.12 Overall performance with reduced computational load at SNR=10 dB . . . 93

4.13 Overall performance with reduced computational load at SNR=0 dB . . . 94

4.14 JSCTC overall performance with similar computational load at SNR=10 dB 95

4.15 JSCTC overall performance with similar computational load at SNR=0 dB 96



LIST OF FIGURES xix

5.1 Operation example of the M algorithm. . . . . . . . . . . . . . . . . . . . . 102

5.2 Block Diagram of the M Algorithm Architecture. . . . . . . . . . . . . . . 103

5.3 Architecture for Path Extension. . . . . . . . . . . . . . . . . . . . . . . . 103

5.4 Hardware operations performed by the M algorithm at every trellis stage. . 105

5.5 Comparison-exchange element for sorting networks. . . . . . . . . . . . . . 106

5.6 Merging paths during the construction of the surviving paths (M=3). . . . 107

5.7 Path merging rejection in odd-even sorting networks. 4-item structure. . . 108

5.8 Path merging rejection in odd-even sorting networks. 8-item structure. . . 109

5.9 Mohan and Sood's approach for path merging rejection. . . . . . . . . . . . 111

5.10 Separation of the extended paths into two sets for path merging detection. 112

5.11 Internal Structure of the new operators utilized in the sorting network. a)
comparison-exchange-saturation; b) merging rejection operator. . . . . . . . . . 112

5.12 Odd-even sorting network for M = 4 performing simultaneous sorting and
path merging rejection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.13 Odd-even sorting network for M = 8 with simultaneous sorting and path
merging rejection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.14 Block Diagram of the Combined Sorting and Selection Method. . . . . . . 116

5.15 Circuit diagram of a path merge rejection cell. . . . . . . . . . . . . . . . . 117

5.16 Selection of the best M paths with a one-layer bitonic merging. . . . . . . . 118

5.17 Sorting Example of the Combined Sorting and Selection Method. . . . . . 119

5.18 Block Diagram of the Delayed State Label Sorting Method. . . . . . . . . . 123

5.19 Example of the Delayed State Label Sorting. . . . . . . . . . . . . . . . . . 124

5.20 Example of the Trace-Back procedure in Viterbi decoders. . . . . . . . . . 128

5.21 Wrong Trace-Back Procedure in the M algorithm. . . . . . . . . . . . . . . 130

5.22 Trace-Back by comparison of visited states. . . . . . . . . . . . . . . . . . . 131

5.23 Pointer generation for TB decoding. . . . . . . . . . . . . . . . . . . . . . . 133

5.24 Trace-Back with Path-Number Pointer. . . . . . . . . . . . . . . . . . . . . 134

5.25 Operation example of a block trace-back adapted to the M algorithm. . . . 137

5.26 Forward Trace-back architecture for the M algorithm. . . . . . . . . . . . . 139

5.27 Simultaneous parallel insertion and bitonic merging of path metrics. . . . . 143

6.1 Joint Source-Channel Trellis Coding Scheme. . . . . . . . . . . . . . . . . . 147

6.2 State transition diagram for a joint trellis source code and rate 1/2, K=3
convolutional code. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151



xx LIST OF FIGURES

6.3 First paths of expresion 6.10 . . . . . . . . . . . . . . . . . . . . . . . . . . 153

6.4 Performance comparison between the proposed system and a tandem scheme
for a gaussian source and AWGN channel. . . . . . . . . . . . . . . . . . . 159

6.5 Performance comparison between the proposed system and a tandem scheme
for a �rst order gauss-markov source and AWGN channel. . . . . . . . . . . 159

6.6 Lenna images coded with JSCTC-MAP and Tandem-MAP systems at
SNR=-3dB. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

6.7 Lenna images coded with JSCTC-MAP and Tandem-MAP systems at
SNR=-1dB. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

6.8 Lenna images coded with JSCTC-MAP and Tandem-MAP systems at
SNR=0dB. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

A.1 Trace-back schedule for a 2-pointer trace-back. . . . . . . . . . . . . . . . . 169

A.2 Ancestor state property of the surviving paths. . . . . . . . . . . . . . . . . 171

A.3 Block trace-back architecture and operations schedule. . . . . . . . . . . . 173

A.4 Register-Exchange-Pointer Trace-Back Architecture and Operations Sched-
ule. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

A.5 Register-Exchange-Pointer Trace-Back Schedule with two RE pointers. . . 176

B.1 Comparison-exchange element for sorting networks. . . . . . . . . . . . . . 180

B.2 Iterative rule of the odd-even merging network. . . . . . . . . . . . . . . . 181

B.3 Four-item merging and sorting networks. . . . . . . . . . . . . . . . . . . . 182

B.4 Odd-even sorting networks for N = 8 and N = 16-item lists. . . . . . . . . 183

B.5 Iterative rule for the bitonic merging network. . . . . . . . . . . . . . . . . 185

B.6 Bitonic sorting networks for four and eight item lists. . . . . . . . . . . . . 186

B.7 Bubble sorting network for 16-item lists. . . . . . . . . . . . . . . . . . . . 187

B.8 Sorting architecture with the single insertion algorithm. . . . . . . . . . . . 188

B.9 Sorting architecture with the dichotomic insertion algorithm. . . . . . . . . 189

B.10 Principle of parallel insertion. . . . . . . . . . . . . . . . . . . . . . . . . . 190

B.11 Parallel insertion Architecture. . . . . . . . . . . . . . . . . . . . . . . . . . 191



List of Tables

3.1 Computational requirements of the distortion measure in the JSCTC algo-
rithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.2 Codebook Design Latency of Architectures 1 and 2. . . . . . . . . . . . . . 59

3.3 Latency comparison between architectures 1 and 2. . . . . . . . . . . . . . 65

4.1 Estimation of the computational load per input symbol of the Viterbi and
M algorithms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.2 Performance degradation introduced by the suboptimum trellis search. . . 90

5.1 Comparison-exchange elements used in the combined sorting and selection
method and in Mohan and Sood's approach. . . . . . . . . . . . . . . . . . 120

5.2 Comparison-exchange elements used in the proposed method and in Mohan
and Sood's combined sorting and selection. . . . . . . . . . . . . . . . . . . 121

5.3 Architecture latency of the combined sorting and selction method and Mo-
han and Sood's approach. . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.4 Hardware complexity comparison between the delayed state label sorting
network, the combined sorting and selection method and Mohan and Sood's
approach. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.5 Storage Requirements of the Viterbi and M algorithms. . . . . . . . . . . . 140

5.6 Viterbi and M Algorithm Computational Load for Branch Metric Compu-
tation and Path Metric Updating. . . . . . . . . . . . . . . . . . . . . . . . 141

6.1 Simulated and estimated pairwise error probabilites for SNR=0 and 1 dB . 154

6.2 Simulated and estimated pairwise error probabilites for SNR=2 and 3 dB . 154

A.1 Latency and storage requirements of the di�erent survivor memory man-
agement techniques. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177





Introduction

The main goal of a digital communication system consists in both looking for e�cient ways
to represent the information to be transmitted and to render this representation robust
to the corrupting e�ects of the transmission channel. The usual approach to accomplish
these two goals is the well known �divide et impera� principle: the information transmission
problem is divided into two tasks, source coding and channel coding. The former seeks
to represent the information to be transmitted with the least possible number of bits
whereas the latter must guarantee a reliable communication between the transmitter and
the receiver. This is achieved by introducing additional information to the compressed
source so that the receiver can recover the original information from a compressed and
noise-corrupted version of it.

This task separation is due to Shannon's pioneering work which stablished the foun-
dations of what is now known as Information Theory. C. E. Shannon demonstrated that,
under certain assumptions, this separation allows the design of optimum-performance
communication systems. Nowadays, we witness the optimality of these assumptions. In-
deed, today's advances in both information theory and semiconductor technology permit
the design of communication systems which allow in turn to transmit information with
performances that approach the theoretical limits predicted by Shannon's work. These
systems have reached a certain maturity that has dramatically increased the services that
can be provided by them. Satellite and mobile communications, internet and mutimedia
applications have had an amazing developement in the last �ve years thanks to the great
advances in source and channel coding. Source coders such as vocoders, CELP coders,
JPEG, MPEG2 and MPEG4 standards; and channel coding tecniques such as coded mod-
ulation, turbo codes, turbo-equalization and code division multiple access, constitute few
examples of the potential techniques which facilitate the approach towards the Shannon
limits.

Nevertheless, this apogee in the services provided by present time communication sys-
tems causes in turn a strong demand to make data transmission more e�cient and provide
greater performance. In particular, environments such as mobile satellite systems require
minimal power usage and minimal bandwidth usage to maximize the number of users,
which restricts the use of channel coding. On the other hand, its time-varying nature
causes bursty errors which, if mitigated by interleaving, would induce lengthy delays. As
a consequence, it seems that communication systems design is close to its upper limit.
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This is because Shannon's separability theorem has been used as a design principle,
motivating always the concatenation of separately optimized source and channel coders.
However, the theorem assumes that the source coder is an optimal one that removes
all source redundancy. Moreover, it assumes that for rates below channel capacity, the
channel coder corrects all errors. Such optimal systems can only be achieved in general by
allowing limitless encoding/decoding complexity and delay. Practical systems must limit
complexity and delay, and thus sacri�ce performance. In many cases it is not reasonable
to assume then that the conditions for the separation theorem hold even approximately.
For instance, for several noisy channels, channel codes may fail to reduce errors and may
in fact, increase the bit error rate. Moreover, the output of practical source encoders may
contain a signi�cant amount of redundancy, specially for sources with memory such as
speech and images. In this circumstances, we can potentially improve performance by
considering the souce and channel designs jointly.

Since the late seventies, researchers started to realized this last problem and wondered if
a joint design could not lead to more e�cient and less complex systems. This question was
taken into account more seriously in the following years and Joint Source-Channel Coding
was born. Since the last decade, JSCC has attracted so much attention that today, we can
�nd a wide range of applications where the concepts and underlying principles of JSCC are
proposed. Nonetheless, these systems are still con�ned to the pure research stage and no
or very little hardware implementations of JSCC systems have been proposed. This thesis
is intended to start contemplating the possibility of designing hardware architectures for
JSCC.

In particular, this thesis is concerned with the design of hardware architectures for Joint
Source-Channel Trellis Coding. This technique consists in the design of trellis quantization
algorithms that are robust to channel errors. The main characteristic of this technique
is that source and channel protection are indeed merged into a single operation. The
goal of this system is the complete elimination of the channel coding scheme or at least
to reduce its hardware complexity. With this approach we seek new alternatives to the
conventional tandem scheme, presenting a reduced hardware complexity system, with a
smooth degradation of its overall performance, as opposed to the tandem system where
the optimality is obtained for a very small range of channel conditions.

The methodology employed in this thesis consisted in three main parts. First, a study
on the hardware requirements of the JSCTC technique was peformed, and a comparison
to conventional systems was done from both performance and complexity standpoints.
Then, suboptimal architectures were studied which allow a signi�cant reduction in the
hardware complexity while maintaining the overall performance as close as possible to the
optimum system. This way, its hardware implementation in medium- to low-complexity
circuits such as digital signal processors, �eld programmable gate arrays, etc. can be
accomplished. Finally, the third step consisted in further studying this technique, this
time from a theoretical point of view, in order to seek for other means to improve its
overall performance.
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This work is a continuation of a series of research activities at the COMELEC depart-
ment focused on JSCC.

Thesis Outline

The thesis is organized as follows. In Chapter 1, the underlying principles of a conventional
communication system are presented. The theoretical limits given by the rate-distortion
theory and channel coding theory are highlighted. Then, their relationship to the under-
lying theory of JSCC is described.

Chapter 2 presents the theory behind Joint Source-Channel Trellis Coding. The working
operation of this technique is presented and compared to both non-joint trellis quantiza-
tion techniques over noisy channels and a tandem system comprising a non-joint trellis
quantizer and a convolutional code.

Every quantization technique uses a reproduction codebook to represent the input
source. This codebook needs to be optimized to account for the statistical distribution
of the input source. In addition, when lossy compression techniques are considered, a
distortion measure is required to assess the performance of the source coding technique.
In Chapter 3, hardware architectures are presented for the implementation of both the
codebook design algorithm and the distortion measure employed to encode the input
source in the context of joint source-channel trellis coding.

As its name suggests, the core of trellis quantizers is a trellis search algorithm. In
Chapter 4, a study of suboptimal trellis search algorithms is presented so as to reduce
the hardware requirements of the joint source-channel trellis coding tecnique. The goal of
this study is to replace the optimum trellis search (Viterbi algorithm) by a suboptimal
search with the best trade o� performance-hardware complexity.

Chapter 5 presents hardware architectures for the selected suboptimum trellis search
algorithm. The trellis search algorithm that we have selected is the M algorithm. This
algorithm is very similar to the Viterbi algorithm except for the number of surviving
paths retained. In this algorithm, only the best M paths are retained at each trellis stage.
This process of selecting the best M paths implies the use of sorting circuits. In this
chapter, new methods to perform the selection of the M best paths are presented which
take advantage of the trellis structure in order to reduce the hardware requirements of the
sorting architecture. In addition, a new method for survivor memory management based
on the Trace-Back algorithm is described. We will show that, as in the case of Viterbi
decoders, the Trace-Back approach results in more e�cient architectures than the register
exchange procedure.

After the architectural study of the joint source-channel trellis coding technique, we
propose in chapter 6 to concatenate this robust quantization method with a convolutional
code. The robust trellis source coder takes into account the error probability of the convo-
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lutional code to optmized its reproduction codebook and to perform the quantization of
the source. On the other hand, a new approach for computing the error probaility needed
during the robust source quantization is presented which avoids the extensive Monte-
carlo simulations of previous reported work. Nevertheless, this channel estimation is not
adapted to channels with time varying statistics such as the rayleigh fading channel.

In addition, at the decoder end, an exploration of Maximum A Posteriori decoding
in the context of source reconstruction is considered. With source distortion being the
performance criterion, the MAP algorithm is used not to correct transmission errors but
to provide channel a posteriori information for decoding the source. This �soft� source
decoding allows to improve the performance of the overall system.

Finally, concluding remarks are given and future work to be explored is hightlighted.
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Chapter 1

Joint Source-Channel Coding:

Fundamentals and State of the Art

In this Chapter, the theoretical background on digital communication systems related to
Joint Source-Channel Coding (JSCC) is presented. The notations and associated termi-
nology that will be used throughout this thesis is outlined and the fundamental results
leading to source and channel coding are presented. Speci�cally, upper bounds such as
the rate-distortion function, the channel capacity and the Optimum Performance Theo-
retically Attainable (OPTA) [52] are unveiled. Finally, a brief overview on the state of the
art on joint source and channel coding is given.

1.1 Digital Communication System

A classical digital communication systems is illustrated in �gure 1.1. The purpose of
every communication system is the transmission of the information generated by the
source to a destination. The source may be speech, audio or video signals. In a digital
communication system, these kind of signals are converted into binary sequences and the
aim is to represent the source signals by as few bits as possible. We say in this case that the
goal is to obtain a binary sequence representing the source with little or no redundancy.
This operation is accomplished by the source encoder.

The binary sequence issued from the source encoder is passed to the channel encoder.
The channel encoder introduces redundancy in a controlled and deterministic way so that
the receiver may overcome the disturbing e�ects of the transmission channel onto the
binary sequence generated by the source encoder.

The coded binary sequence is passed to the modulator which maps the binary sequence
into signal waveforms suited to be transmitted through the channel. The transmission
channel is the physical medium that is used to send the signal from the source to the
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destination. The transmission channel can be either free space, wire lines, optical �ber,
etc. The main feature of the channel is that of corrupting the transmitted signal in a
random manner.

At the receiver, the demodulator detects the corrupted transmitted waveforms and
maps them into a sequence of bits which are estimates of the binary sequence at the
input of the modulator. Then, the channel decoder takes this sequence and attempts to
reconstruct the original binary sequence from knowledge of the controlled redundancy
that was introduced at the encoder end.

Finally, the binary sequence found by the channel decoder is passed to the source
decoder which converts the binary sequence into the signal generated by the information
source. This reconstruction of the source is made with knowledge of the algorithm used
to encode the source. Due to the channel decoding errors, the signal at the output of the
source decoder is an approximation of the original source.

modulator

channel

destination

source

encoder
source

source
demodulator

decoder

channel

encoder

channel

decoder

Figure 1.1: Conventional communication system.

The source and channel encoder-decoder pairs need some measures of performance so
as to know the e�ciency of their operation. In the following, these performance criteria
and theoretical limits are outlined for both coders. It must be pointed out that the goal
of the next sections is not to provide a detailed description of source and channel coding
but to recall the fundamental results. For a detailed derivation of these results, the reader
is referred to [14, 51, 52, 69, 76, 89, 116].

1.2 Source Coding

Source coding or signal compression can be divided into two major areas: lossless compres-
sion and lossy compression. Lossless compression techniques involve no loss of information,
that is, the original source can be recovered exactly from the compressed data. Lossless
compression is generally used for discrete data, such as text, computer data and some
kinds of image and video.
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Since lossless compression implies the exact reconstruction of the source, Shannon
showed that the best that a lossless compression scheme can do is to encode the output of
a source with an average number of bits equal to its entropy. Remember that the entrooy
of a source is de�ned as the average number of bits needed to code the source output [51].

Lossy compression, on the other hand, involves some loss of information, meaning that
the original source cannot be recovered exactly from the compressed data. Nonetheless,
by accepting this loss of information in the reconstructed source, it is possible to obtain
much higher compression ratios than is possible with lossless compression. In this thesis,
only lossy compression is considered.

The basic de�nitions and notations of a source coder are described in �gure 1.2. The
source to be encoded can be modeled either as continuous random variable X with a
probability density function p(x) or as a discrete random variable X which delivers source
symbols x from an alphabet X = fx1; x2; � � �xMg with M possible symbols. Each symbol
has a probability of occurrence p(xi).

l ix y  = xi
l i

y
i

encoder decoder

Figure 1.2: Source coder-decoder pair.

The source encoder takes the source symbol(s) and produces the compressed represen-
tation Y . To do so, the encoder uses its own alphabet or codebook C = fy0; y1; � � � yN�1g
and selects the letter or codeword yi = x̂ which represents in the best manner the source
symbol x. In addition, a function F : yi 7! li is used to map the reproduction codeword
yi to a binary label li which is used to represent the reproduction codebook yi. Since the
function F is a one-to-one mapping, there is no loss of information by representing code-
word yi by the binary label li. This binary label is the information that will be transmitted
to the receiver. The length of the binary label is n = log2N bits.

A measure of the compression achieved by a given source coder can be de�ned as the
number of bits required to represent a source symbol. This measure of compression is
known as the code rate Rs. For the encoder described above, Rs = log2N bits.

At the receiving end and assuming error-free transmission, the transmitted and received
binary labels are the same (l̂i = li). Hence, the source decoder takes this binary label and
reconstitutes the codeword yi = x̂ which is an approximation of the source symbol x.

1.2.1 Distortion Measures

As indicated earlier, since lossy compression implies a loss of information during source
encoding, a measure of the closeness or �delity of the reconstructed source sequence with
regard to the original source sequence is necessary. These measures are called distortion
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measures. A natural thing to do when looking at the �delity of the reconstructed source is
to measure the di�erence between the original source symbol and the reconstructed source
symbol. The measure of the distortion introduced by the reconstructed source in a symbol-
by-symbol basis is called per-letter distortion. The most common per letter distortion
measures are the squared error or euclidean distance and the absolute di�erence. The
squared error measure is given by

d(x; y) = (x� y)2 (1.1)

and the absolute di�erence measure is given by

d(x; y) = jx� yj (1.2)

In general, it is di�cult to examine the di�erence on a symbol-by-symbol basis. There-
fore, average measures are used to summarize the information in the di�erence sequence.
The most popular average measure is the average of the square error measure and is
known as the Mean Squared Error (MSE). The MSE is de�ned as

MSE = Ef(x� y)2g (1.3)

Assuming that the source X veri�es the hypotheses of stationarity and ergodicity
[52, 91], the MSE can be rewritten as

MSE =
1

L

LX
k=1

(xk � yk)
2 (1.4)

where L is the length of the source sequence.

When the distortion introduced by the encoding process is measured with regard to
the original source, the ratio of the average squared value of the source and the MSE are
used. This is called the Signal to Quantization noise Ratio (SQR) and de�ned as

SQR =
�2
x

MSE
(1.5)
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where �2
x is the average squared value of the source. Expressed in decibels, the SQR is

given by

SQR(dB) = 10 log10
�2
x

MSE
(1.6)

1.2.2 Rate-Distortion Function

Rate-distortion theory [14] stablishes the relationship between the source coding rate Rs

of a given source coder and the minimum distortion D that can be achieved with this
rate. The function relating these two parameters is called rate-distortion function.

Consider a sourceX that has a probability density function p(x), a reconstructed source
Y belonging to a reproduction codebook C and a per-letter distortion d(x; y) where x 2 X
and y 2 C. The rate-distortion function is de�ned as the minimum rate in bits per source
symbol that is required to represent the source X with a distortion less than or equal to
D. Mathematically, this can be expressed as

R(D) = min
p(yjx):Efd(x;y)g�D

I(X;Y ) (1.7)

where p(yjx) is the probability of encoding source symbol x by the reproduction code-
word y and I(X; Y ) is the average mutual information between X and Y . The mutual
information for discrete sources is de�ned as [14]

I(X;Y ) =
M�1X
i=0

N�1X
j=0

P (xi; yj) log
P (xijyj)

P (xi)
(1.8)

whereas that for continuous sources is

I(X;Y ) =

Z Z
p(x; y)log2

p(x; y)

p(x)p(y)
dxdy (1.9)

From this result, the rate-distortion function of a continuous gaussian source with variance
�2
x is given by [14, 89, 99]

Rs(D) = max

�
0;

1

2
log

�2
x

D

�
(1.10)
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Figure 1.3: Rate-distortion function of a gaussian source.

Figure 1.3 plots the rate-distortion function of a unit variance gaussian source.

The rate distortion function of a source is associated to the source coding theorem
stated by Shannon [89]. This theorem states that:

�Under certain hypothesis, there exists and encoding scheme that maps the source
output into reproduction codewords such that for any given distortion D, the mini-
mum rate Rs(D) bits per symbol is su�cient to reconstruct the source output with
an average distortion that is arbitrarily close to D.�

The rate-distortion function gives us, thus, a lower bound on the source rate that is
possible for a given level of distortion.

In practical situations, there exist source coding procedures that attempt to reach
the theoretical limit given by the rate distortion function. These procedures are called
quantization algorithms. Quantization algorithms can be divided into two main classes:
scalar quantization and vector quantization. In the following, these two clases are treated.

1.2.3 Scalar Quantization

In scalar quantization, the source sequence X is quantized in a symbol-by-symbol basis.
The quantizer consists of two mappings: an encoder mappingQ(x) and a decoder mapping
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Q�1(x). Suppose the input sequence takes values from the real numbers (X 2 <) and the
quantizer outputs are drawn from the reproduction codebook C with N reproduction
codewords yi. The encoder divides the real line into N intervals or partitions Qi (i =
0 � � �N). Each partition is represented by a distinct codeword yi. The encoder represents
all the source symbols that fall into a particular interval by the reproduction codeword
representing that interval, as shown in �gure 1.4. As indicated above, the reproduction
codewords can be represented in turn by a binary label li. This way, all the source symbols
represented by the same reproduction codeword yi will have the same binary label li.

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

0 X

Q(X) = l i

000

001

010

011

100

101

111

110

Q 1 Q 2 Q 3Q 7 Q 6 Q 5 Q 4 Q

Figure 1.4: Scalar quantizer with 8 reproduction levels.

In order to reconstruct the input symbol, the decoder mapping retrieves from the
reproduction codebook C, the reproduction codeword yi given by the binary label li.
Since that codeword represents an entire interval, there is no way to know the exact value
of the source symbols xk of time k. As a result, the loss of information is irreversible.
Consequently, the codeword yi must be chosen in such a way that the distortion introduced
by this codeword in representing the source is minimized.
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The problem of �nding the optimum values of the reproduction codebook can be solved
by optimizing the encoder and decoder mappings. This problem was considered indepen-
dently by Lloyd [70] and Max [72] and the resulting optimum quantizer is called the
Lloyd-Max quantizer. They proposed an iterative algorithm for optimizing the reproduc-
tion codewords either from the knowledge of the source statistical distribution or from a
training sequence which is considered of being representative of the source to be quantized.
This algorithm consists of two steps:

1. nearest neighbor condition: each source symbol xk falls into the encoding interval
Qi represented by codeword yi according to the condition

d(xk; yi) < d(xk; yj); 8j 6= i (1.11)

2. centroid computation: the optimum reproduction codeword yi for a given parti-
tion Qi is the centroid of all the input symbols that fell into that interval during the
encoding process. This centroid is given by

yi = Efxjx 2 Qig (1.12)

For equally likely source symbols and squared error per-letter distortion measure,
the centroid is given by

yi =
1

jjQijj

X
j:xj2Qi

xj (1.13)

that is, it is simply the average of all the source symbols belonging to a given
partition Qi.

These steps are performed alternately until the distortion introduced by the reproduc-
tion codebook is acceptable. The process of optimizing the values of the reproduction
codewords is called codebook design.

1.2.4 Vector Quantization

Unlike scalar quantization where the source sequence is encoded one symbol at a time, in
vector quantization the source is divided into vectors x ofM input symbols and each block
is encoded into a single binary label li. Each binary label li is assigned to a reproduction
codevector yi of dimensionM . Notice that the reproduction codebook is still constituted
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by N reproduction codewords. The di�erence is that now, each reproduction codevector
has dimension M . The encoder and decoder mappings work in the same manner as the
encoder and decoder mapping of scalar quantizers but translated to the vector domain.
That is, the source sequence takes values from <M and the encoder divides this M -
dimensional space into N cells or Voronoi regions. Each Voronoi region is represented
by a codevector yi and by a binary label li, as shown in �gure 1.5. The rate of the vector
quantizer is now given as Rs =

log2N
M

bits per source symbol.

Voronoi cell

X 1

X 2

i
y

Figure 1.5: Bidimensional Vector Quantizer with 16 reproduction vectors.

At the decoder, the binary label li is used to retrieve the codevector yi which represents
the source vector xk at the destination.

As in scalar quantization, vector quantizers also need to optimize their reproduction
codebook according to the statistics of the input source. With this goal in mind, Linde,
Buzo and Gray [67] designed a codebook optimization algorithm for vector quantizers.
This algorithm is the M dimensional version of the Lloy-Max algorithm. In practical
applications, this algorithm is based on a training sequence to design the codebook.
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The algorithm consists in the following steps:

1. Initialization: Start with an initial codebook C0 and a training sequence X. Set
m = 0 and D�1 =1. Select a convergence threshold �.

2. encoding: encode the training sequence according to the nearest neighbor condition.
This encoding partitions the training sequence into N sets Q. Each set Qi contains
the source vectors x that are closer to the reproduction codevector yi than any other
codevector yj.

3. halt test: Compute the average distortion Dm between the training vectors and
the representative codevectors. If

Dm�1 �Dm

Dm�1
< � (1.14)

then stop with codebook Cm as the �nal codebook. Otherwise go to step 4.

4. codebook update: �nd the new reproduction codebook Cm+1 according to the
centroid equation 1.12. Set m = m + 1 and go to step 2.

Under certain assumptions about the source, the LBG algorithm guarantees that the
distortion from one iteration to the next will not increase. However, the algorithm does not
guarantee that the optimized codebook is the optimum one. This is because the algorithm
is heavily dependent on the initial codebook C0. Linde, Buzo and Gray also proposed a
codebook initialization technique called the splitting algorithm. In this technique, the
codebook design procedure begins by designing a vector quantizer with a single codevector,
that is, a codebook of size one. Then, this codebook is used as the initial codebook for a
two-codeword codebook by using the codeword of the one-size codebook and an additional
codeword which is obtained by adding a �xed perturbation vector � to the optimized code-
word. Then, the LBG algorithm is used to obtain an optimized two-codewords codebook.
Once this new codebook is optimized, a new four-codewords codebook is generated by
adding the perturbation vector � to the optimized codewords of the current two-codewords
codebook. The LBG algorithm is then used to optimize this four-codeword codebook and
so on. In this manner, the algorithm keeps doubling the number of codewords until the
desired codebook is reached.
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1.3 Channel Coding

Figure 1.6 presents the de�nitions and notations of a channel coder [29, 69]. As indicated
before, channel coding adds some redundancy to the encoded source so that it can be
protected against possible transmission errors. Usually, the channel encoding process im-
plies taking m information bits at a time from a binary sequence u, and mapping each
sequence ofm bits into a unique n-bit sequence v called a codeword or channel symbol
belonging to an alphabet V. The ratio m=n is called the code rate Rc.

The sequence of channel symbols v is transmitted through the channel and corrupted
by noise. At the receiving end, the channel decoder is fed with the channel-corrupted
symbols v̂ beloging to an alphabet V̂ and exploits the available redundancy to correct the
transmission errors and to recover the original information sequence u.

n

u

nm

v u
m

v
encoder decoderchannel

Figure 1.6: Channel coder-decoder pair.

1.3.1 Channel Models

As we can see, the transmission channel plays a crucial role in determining the performance
of a given channel coding technique. As a consequence, channel models are required to
design high-performance channel codes.

Channels can be characterized by a probabilistic model relating the channel input v
and its output v̂. The simplest channel model is the Binary Symmetric Channel (BSC).
This model is characterized by binary input and output alphabets V = V̂ = f0; 1g, and
a set of conditional probabilities p(v̂jv), for the output symbols given each of the input
symbols. These probablities are de�ned as

p(1j0) = p(0j1) = p (1.15)

p(0j0) = p(1j1) = 1� p (1.16)

where parameter p is known as the transition error probability. The BSC is depicted in
�gure 1.7.

If a n-bit channel symbol v is transmitted through a BSC, the conditional probability
of receiving v̂ given that v was transmitted is

p(v̂jv) = pd(v;v̂) � (1� p)n�d(v;v̂) (1.17)
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Figure 1.7: Binary Symmetric Channel Model.

where d(v; v̂) is the Hamming distance between the channel input and its output.

Another channel that plays an important role in communication systems is the Additive
White Gaussian Noise channel (AWGN). This is a memoryless channel with discrete input
alphabet V = fv1; v2; � � �vMg and continuous output alphabet V̂ = (�1;1). The channel
is assumed to corrupt the channel input v by the addition of white gaussian noise, as
illustrated in �gure 1.8. Thus, the received signal can be expressed as

v̂ = v + w (1.18)

where w denotes additive white gaussian noise of zero mean and variance �2
w. The prob-

ability of receiving the channel output v̂ given that the channel input was v is de�ned
as

p(v̂jv) =

 
1p
2��2

w

!
exp

�
�
jjv̂ � vjj2

2�2
w

�
(1.19)

+

w

v v = v + w

σ2

Figure 1.8: Additive White Gaussian Noise channel.
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1.3.2 Channel Capacity

The channel capacity is de�ned as the maximum average mutual information between
its input and its output, where the maximization is over all possible input probability
distributions. Mathematically this can be expressed as

C = max
p(v)

I(V ; V̂ ) (1.20)

The usefulness of channel capacity is that it serves as an upper limit on the transmission
rate for reliable communication over noisy channels. This important result was stated by
Shannon in his noisy channel coding theorem which states that [89, 98]

�Under certain hypothesis, there exist channel codes that make it possible to achieve
reliable communication with as small an error probabilities as desired, if the trans-
mission rate Rc < C, where C is the channel capacity. If Rc > C, it is not possible
to make the probability of error tend toward zero with any code�

In a BSC with transition error probability p, the channel capacity is de�ned as [89]

C = p log2 2p+ (1� p) log2 2(1� p) (1.21)

Figure 1.9 sketches the channel capacity of the BSC channel.

Regarding an AWGN channel, its channel capacity is de�ned as [98]

C = W log2

�
1 +

Pav
WNo

�
(1.22)

where W , Pav and No is the channel bandwidth, the average signal power and the spectral
density of the AWG noise, respectively. Figure 1.10 illustrates the channel capacity of a
AWGN channel.
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Figure 1.9: Channel Capacity of a BSC channel.
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Figure 1.10: Channel Capacity of an AWGN channel.
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1.4 Joint Source-Channel Coding

When the source and channel coders of the previous sections are considered as a whole,
the noisy channel coding theorem and the source coding theorem can be merged into a
single statement [91]:

�A source sequence which satis�es the source coding theorem can be reconstructed at
the receiving end with a distortion arbitrarily close to D if the transmission channel
has a capacity C which is higher than R(D)�

Conversely, it is not possible to reconstruct a source sequence with distortion D if
C < R(D). This theorem allows to de�ne an ideal communication system as that for
which a distortion D can be obtained when the source coding rate Rs equals the channel
capacity C. That is, the distortion introduced to the decoded source depends only on the
distortion introduced by the source coder. The distortion D that can be attained with
this system is called Optimum Performance Theoretically Achievable (OPTA) and
denoted as D(C) [52].

In the case of a gaussian source with variance �2
x, transmitted through a BSC channel,

the OPTA function is given by

D(C) = 2�2(1+(1��) log2(1��)+� log2 �) (1.23)

This function is illustrated in �gure 1.11.

For an AWGN channel, the OPTA function can be expressed as

D(C) =
�2
x

D
=

�
1 +

Pav
2No

�2

(1.24)

A sketch of this functions is shown in �gure 1.12.



20 Joint Source-Channel Coding: Fundamentals and State of the Art

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

1

2

3

4

5

6

error probability p

S
Q

R
 (

dB
)
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1.5 State of the Art on JSCC

Since the last two decades, JSCC has attracted a lot of attention. Massey, in his seminal
paper [73], is the �rst to analyse the advantages of combining source and channel coding
in a single block. He claimed that it is in fact possible to design joint source and channel
coders with smaller complexity and at least the same performance as tandem systems
since a tendem system is a special cases of joint source and channel coding. Nowadays,
several techniques are available which cover a wide range of applications and which treat
the JSCC problem from di�erent perspectives. In this section, a brief survey on these JSCC
techniques is presented. We have followed the same approach of [95] by distinguishing four
classes of JSCC systems. This survey is also based on the classi�cation presented in [91]
and [86]. Other excellent surveys on present time JSCC techniques can be found in [36]
and [121].

JSCC techniques can be divided into four main classes:

� Concatenated joint source-channel coders

� Joint source-channel decoders

� Robust source coders

� Joint optimization of source and channel coders

In the following, each one of theses classes are described.

1.5.1 Concatenated joint source-channel coders

The main idea of the techniques belonging to this class is that source and channel coders
are separately optimized, but a trade o� between the source rate and the channel rate is
made so that the the overall distortion D is minimized.

The work of Modestino and his co-authors for the transmission of still images over noisy
channels belongs to this class [77, 78, 79]. In [77], the performance of a 2-D di�erential
pulse code modulation combined with convolutional codes is analyzed over noisy channels.
In [78], a 2-D DCT coder is concatenated to the same convolutional codes and the same
trade o�s source-rate-channel-rate is studied. Finally, in [79] a 2-D tree encoding system
is compared to the results obtained in [78]. The conclusions of these series of papers
are that for large channel SNR, better performances in terms of source distortion are
obtained when more bits are used for source encoding. On the other hand, when the
channel degradation is large, by reducing the source rate Rs and increasing the channel
rate Rc in the same proportion, the performance of the whole system is greately improved.
Thus, an intelligent trade o� has to be done between source and channel coders so as to
improve the performances when the transmission is done over noisy channels.
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As an example, comparing a transmission system composed only of a DPCM system
at Rs = 2 bits per pixel (bpp) with a concatenated systems composed of a source coder
with Rs = 1 bpp and a Rc = 1=2 convolutional code, it was noticed that for a chan-
nel SNR=15 dB, the former system outperformed the concatenated system in 5 dB of
SQR. However, when the channel SNR was reduced to 10 dB, the concatenated system
outperformed the source coder in 12 dB.

In [122], instead of trading source and channel code rates, a new algorithm for index
assignment of source codewords is proposed to reduce the overall distortion introduced by
noisy channels. This algorithm is called pseudo-gray coding. In this method, the Hamming
distance of the binary labels is commensurate with the euclidean distance of the channel
codevectors. This way, small errors in the received word introduce little distortion in the
decoded source. Pseudo-gray coding provides redundancy-free error protection for vector
quantizers since the binary indexes associated to the source codevectors correspond to
the channel symbols of the channel constellation. Another algorithm which performs a
judicious assignment of the binary labels associated to the source codewords of a vector
quantizer was proposed in [33]. The proposed algorithm is suboptimal in general; how-
ever, for examples involving a small number of codevectors, this algorithm achieved the
optimum solution.

1.5.2 Joint source-channel decoders

These methods are motivated by the practical shortcomings of Shannon's separation the-
orem: the failure to remove all redundancy and the inadequacy of conventional channel
coding methods, specially for very noisy and/or fading channels. These techniques cap-
italize on the �rst shortcoming to mitigate the second shortcoming. They can provide
channel robustness without incurring any increase in rate, and without modifying the
encoder for the noisy channel. Thus, these methods are potentially useful for broadcast
transmission, where there is no feedback channel from decoder to encoder.

In some of these techniques, it is actually desired that the source coders do not remove
all the natural redundancy of the source and hence, this a priori information can be used
to provide better decisions at the decoder. This way, the decoder uses both the received
information from the channel and the a priori information from the source by considering
all possibilities and selecting the most probable.

The most important results on this subject were provided by Sayood et al. [95, 94]. In
order to take into account the source redundancy during the decoding operation, instead
of decoding one source symbol at a time, a set of received source symbols is treated. To
do so, new metrics are used which are similar to the branch metrics of covolutional code
decoding. As a result, the Viterbi algorithm can be used together with this new metrics
to reconstruct the source. It was shown that signi�cant gains could be obtained with this
method.
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In addition to the source a priori information for joint decoding, a priori channel infor-
mation can also be used at the decoder, and by means of Maximum A Posteriori (MAP)
decoding, the performance in terms of source distortion can be increased. Certainly, if the
channel characteristics are known and can be modelled, they can be incorporated into the
decoding metrics as more information becomes known about the received sequence and
better decisions can be made [1].

More recently, Hagenauer proposed the modi�cation of the Viterbi algorithmwhich uses
a priori or a posteriori information about the source bit probability for better decoding
in addition to soft inputs and channel information [55]. This algorithm is called APRI-
SOVA. When applied to the full rate GSM speech codec, results showed that with this
algorithm, the channel SNR in a bad mobile environment could be lowered by 2 or 3 dB
resulting in the same voice quality.

Then, in [120], the APRI-SOVA was modi�ed and applied to the transmission of still
images over a AWGN channel. The source coders consisted of a DCT coder and a sub-
band coder. Signi�cant gains were obtained, specially in bad transmission environments.
Furthermore, it was shown that it is better not to remove the statistical redundancy in
source-coded bits by using a variable length coding like the Lempel-Ziv algorithm [93],
where error propagation occurrs even with a single bit error. Instead, such redundancy
can be more e�ciently utilized at the receiver end by applying the APRI-SOVA.

1.5.3 Robust source coders

In this kind of coders, the quantizer is optimized in such a way that the channel statistical
distribution is taken into account during both the source quantization and the codebook
design. It must be noted that these coders serve as simultaneous source and channel coders.
In addition, it must be noticed that these systems do not try to correct transmission errors
but rather to decrease the impact of these errors in the reconstruction of the source.

The design of scalar quantizers optimized for a given channel probability model was
�rst suggested by Kunterbach and Wintz [65]. They developed a generalized Lloyd-Max
algorithm which take into account the channel noise so as to minimize the overall distor-
tion. New expressions for the nearest neighbor condition and the centroid equation were
found.

Later, Farvardin and Vaishampayan [37] extend the work of Kunterbach for the case
where the number of reproduction codewords at the receiving end is di�erent from the
number of codewords at the encoder. In addition, they also analyzed the index assignment
during the codebook design procedure. Kumazawa et al., in [64] generalized the results
of Farvardin to vector quantization. The LBG algorithm, adapated to the expressions for
the nearest neighbor condition and the centroid equation was used. This new technique
is called Channel Optimized Vector Quantization (COVQ).
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Dunham and Gray [34], on the other hand, found the necessary conditions for the design
of joint source-channel trellis coders and Ayano�glu and Gray proposed algorithms for the
design of such coders, based on the LBG algorithm [9]. In [119], trellis coded quantization
(TCQ) [71] was designed for noisy channels and the codebook design algorithm presented
in [9] was modi�ed to account for the TCQ features. The performance obtained with this
algorithm were close to Ayano�glu's algorithm but with smaller computational complexity.

Another way of implementing joint source-channel trellis coders was proposed by Ro-
dríguez in [91]. This algorithm employs a training sequence and an iterative procedure
where transmitter and receiver are used to design the codebook. The main di�erence with
respect to other trellis quantizers is that the codebook update is performed at the receiv-
ing end. To do so, a Viterbi algorithm is employed at the receiver. This way, two Viterbi
algorithms are required during the optimization of the reproduction codebook. The main
advantage of this approach is that the channel disturbances are inherently taken into ac-
count and absorbed by the codebook update. Results close to Ayano�glu's approach were
also obtained.

A di�erent approach in the design of robust source coders was recently proposed by
Skoglund in [107] and [108]. He proposes new iterative algorithms for �soft� decoding
of vector quantizers over noisy channels. MAP decoding is utilized and the resulting
algorithm is optimum according to mean-squared error criterion.

1.5.4 Joint optimization of source and channel coders

There are two ways of performing a joint optimization between source and channel coders.
In [113], Vaishampayan et al. proposed an algorithm for the design of vector quantizers
subject to the modulation signal sets. The design criterion was the minimization of the
MSE at the receiver. Such scheme attempts to match the source sensitivities to the mod-
ulation signal set in a structured manner.

A joint TCQ/TCM scheme was developed by Fischer and Marcellin in [42] which
combined both coders to match quantization MSE to euclidean distance in TCM [16].
However, this system does not perform as well as expected when the transmission channel
is very noisy. The reason for this poor behavior is that both coders are separately designed
and the only interaction between source and channel coders is done during the mapping
from equal MSE to euclidean distance. To solve this problem, in [119] an algorithm based
on the LBG algorithm which optimizes the TCQ and the TCM is proposed. This time,
the performance of the system when the transmission channel is poor is largely improved.

In [106], another adaptation between the codewords of a vector quantizer and the
signal constellation is proposed by means of neural networks. In this algorithm, the neural
network �nds the best assignment between the source codewords and the modulation
signal set.
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Chei and Ho extended the work of Wang and Fischer and developed a new algorithm
for optimum soft decoding for combined TCQ/TCM schemes in rayleigh fading channels
[28]. In addition to the iterative algorithm for the joint optimization of the TCQ and TCM
schemes, the MAP algorithm [12] is used as a minimum mean-squared error decoder.

In Chapter 6 of this thesis, we present another technique which uses the joint source-
channel trellis coding design algorithm of Ayano�glu and the MAP algorithm for soft source
decoding.





Chapter 2

Joint Source-Channel Trellis Coding

Last Chapter presented the theory behind joint source-channel coding. Di�erent tech-
niques which have been proposed in the last years were outlined and we saw the potential
advantage of using JSCC techniques over tandem systems, specially when complexity is
the main parameter design and when the transmission channel is very noisy.

In this chapter, we present the concepts and design algorithms for the JSCC tech-
nique that we have chosen for hardware implementation, the Joint Source-Channel Trellis
Coding (JSCTC) technique proposed by Ayano�glu [9, 34]. We chose this JSCC technique
because it treats the JSCC problem in a �pure� fashion, where source and channel coding
is embedded into a single entity. That is, JSCTC is considered as a single source and
channel coder since the quantization of the source and the protection against channel er-
rors is done in the same block. Other algorithms such as those described in sections 1.5.1,
1.5.2 and 1.5.4 employ separate source and channel coders which are already well-known
and which have been modi�ed to incorporate the JSCC charecteristics. Hence, these sys-
tems do not treat the JSCC as a single operation. Other techniques such as Rodríguez
algorithm and COVQ are also pure JSCC techniques. However, the computational load
of these techniques is higher.

We begin this chapter with a general description of trellis source coding with noiseless
assumptions, and then, a detailed description of the joint source-channel trellis coding
technique is given. In fact, we will see that the main di�erences between these two tech-
niques reside in the distortion measure utilized to perform both the quantization process
and the codebook design algorithm. The distortion measure results in an optimum quan-
tization of the source when transmitted through a noisy channel and when no channel
coding is considered. The derivation of the distortion measure allowing this �protection�
against channel errors and the codebook design algorithms are presented.



28 Joint Source-Channel Trellis Coding

2.1 Trellis Source Coding

Trellis source coding is a quantization technique proposed from the discovery that encoding-
decoding structures similar in nature to convolutional channel coding-decoding could also
be used for source coding applications yielding performances arbitrarily close to the the-
oretical limits given by the rate-distortion theory [58, 83, 115]. In addition, it has been
shown that trellis source coding systems are more robust to channel errors than vector
quantizers and need less complexity for the same performance requirements [50]. Trellis
source coding is particularly well suited for speech coding applications, specially in model-
based source coding where instead of transmitting the samples of the source waveform, the
parameters of a synthetic model representing the source are quantized and transmitted
[36, 51, 87, 97, 110].

A trellis quantizer can be thought of as a quantizer with memory, that is, a quantizer
whose encoder output or channel symbol, uk, depends on the current and prior source
symbols fxk; xk�1; xk�2; � � � ; xk�Lg, and its decoder output x̂k depends on the current
and prior channel symbols fuk; uk�1; uk�2; � � � ; uk�Kg, where parameter K is known as
the trellis coder's constraint lenght. Let us �rst describe the decoding process.

Consider a sequence of length LTS of q-ary channel symbols u = fukg
LTS�1
k=0 entering

from left to rigth a log2 q(K � 1)-bit shift register, as shown in �gure 2.1 for K = 3
and q = 2 (uk 2 f0; 1g). This shift register represents a �nite state machine (FSM) with
qK�1 states whose transition diagram is also shown in �gure 2.1. Each time a channel
symbol uk enters the shift register, the FSM changes to the next state Sk+1 according to
its transition diagram. In a general way, the next state is given by the mapping

Sk+1 = f(uk; Sk) k = 0; 1; � � � (2.1)

where f is called the next-state function. In our particular case where the decoder is a shift
register, the current state of the FSM is given by the channel symbols uk�1; uk�2; � � � ; uk�K+1

and the next state is given by

Sk+1 = f(uk; Sk) = uk; uk�1; uk�2; � � � ; uk�K+2 (2.2)

that is, as described above, the next state of the FSM is given by simply shifting the
current input symbol into the leftmost position of the shift register.

In order to visualize the evolution in time of the di�erent states visited by the FSM,
a trellis diagram is commonly employed, as depicted in �gure 2.1(c). A trellis diagram is
a bidimensional representation of the FSM where the horizontal axis denotes time and
the vertical axis represents the states of the FSM. The transitions or branches connecting
two states in successive time instants represent the channel symbol uk entering the shift
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register. In the case where q = 2, only two branches leave and reach each state, indicating
whether a 0 or a 1 channel symbol enters the FSM. Notice that there are 2K trellis branches
per trellis stage. Each path in the trellis diagram represents a unique channel sequence u;
conversely, di�erent channel sequences will never trace the same path through the trellis.
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Figure 2.1: Trellis quantizer decoder.

If we associate a reproduction codebook C = fyig
2K�1
i=0 to the branches of the trellis

diagram, the channel sequence u generates in turn a sequence of reproduction codewords
y = fyi(k)g

LTS�1
k=0 , where yi(k) denotes the codeword associated to branch i visited by the

channel symbol uk at time k. This sequence of reproduction codewords is the representa-
tion x̂ of the source sequence at the receiver end.
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In practice, the decoder of the trellis quantizer may be implemented with the shift
register described above, addressing a Look-Up Table (LUT) which contains the repro-
duction codebook C. The address of the LUT is given by the current channel symbol uk
and the current state of the FSM; that is, the address is simply given by the most recent
K bits.

At the encoder end, the channel sequence u is generated by a trellis search algorithm.
This search algorithm employs the trellis structure of the decoder and a copy of the
reproduction codebook in order to search for the path in the trellis that minimizes the
distortion between the source sequence x = fxkg

LTS�1
k=0 and the reproduction codeword

sequence y = fyi(k)g associated to that trellis path. The �delity criterion used to �nd this
minimum distortion path is the MSE de�ned in the previous Chapter. Thus, the trellis
search algorithm �nds the trellis path yielding the minimum value of the MSE given by

MSE =
1

LTS

LTS�1X
k=0

d(xk; yi(k)) (2.3)

where d(xk; yi(k)) = (xk � yi(k))
2 is the per-letter distortion measure.

An example and overall structure of a trellis quantizer is illustrated in �gure 2.2 for a
4-state trellis. The trellis search algorithm in the example is performed with the Viterbi
algorithm [43, 114] which will be explained in a more detailed way in Chapter 4. For the
moment, we will give a rough description of its operation.

At every time instant k, when two paths enter the same state, the one having the
smallest distortion is retained. To do so, each state keeps the value of the accumulated per-
letter distortions between the current and previous source symbols, and the reproduction
codewords associated to the trellis branches that form the path entering the state. This
is shown in the �gure by the distortion values at the top of each state. To compute the
new distortion associated to a given state at time k + 1, the per-letter distortions of
the two branches entering a given state are computed and accumulated to the distortion
associated to the trellis states from which these branches are coming at time k. The
smallest accumulated distortion is chosen and the state keeps track of the retained branch,
as shown by the arrows in the �gure. This way, at every time instant, each state in the
trellis has a unique path. The process of retaining a single path per trellis state is repeated
until all the source sequence is treated. Then, the trellis state having the least accumulated
distortion is chosen and the binary sequence u associated to its path is the compressed
representation of the source sequence x which is transmitted to the receiver. This least
distortion path is represented in the �gure by the bold line.

It must be pointed out that the trellis search does not necessarily map the source
symbol xk into the codeword yi(k) yielding the minimum distortion. What the trellis
search algorithm does it to map the entire source sequence into the minimum average
distortion sequence of reproduction codewords.
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Finally, after transmission of the binary sequence u and assuming that no channel errors
were produced, this sequence enters the decoder in order to generate the reproduction
codewords x̂ = y which will represent the source sequence x at the receiver end.

2.1.1 Codebook Desing

In the same manner as the Lloyd-Max algorithm was adapted to vector quantization,
resulting in the LBG algorithm [67], a codebook design algorithm for trellis quantizers,
based on the Lloy-Max method was developed by Stewart [110]. It consists in the same
training sequence-based iterative procedure but the encoding operation is performed by
the trellis search algorithm. Refer to page 14 for a description of the codebook design
algorithm.

2.1.2 Codebook Initialization

The stewart codebook design algorithm also generates locally optimum solutions and if
the initial codebook C0 is not well guessed, it is likely that the algorithm produces low-
performance codebooks. To make a good guess for C0, several methods have been proposed
within the context of trellis quantization [51]. Nevertheless, an algorithm that has been
shown to provide excellent results in practical situations is the extension algorithm pro-
posed also by Stewart [110].

The main idea of this algorithm is to design a reproduction codebook for aK-constraint
length trellis, from a K � 1-constraint length. Thus, the decoder can begin with a single
stage register and iteratively design longer codebooks until the desired constraint length
is reached. The main advantage of this method is the design of reproduction codebooks
from scratch for sources with unknown characteristics.

The extension algorithm can be thought of as the trellis counterpart of the splitting
algorithm of vector quantizers since increasing by one the constraint length of the trellis
implies duplicating the number of reproduction codewords.

It must be pointed out that attention must be paid during the codeword assignment
from a K � 1-constraint length quantizer to a K-constraint length one. The aim is to
start the codebook design operation of the K-constraint length quantizer with a distortion
identical to the distortion of the previous K � 1-constraint length quantizer. In the way
we have de�ned the labels of the reproduction codewords in the trellis (see �gure 2.1), the
rule for assigning the codewords of the K � 1-length quantizer to the new K-constraint
length codebook is

yi = y02i = y02i+1 i = 0 � � �2K�1 � 1 (2.4)
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where y0i denotes the codeword associated to branch i of the new K-length codebook. This
way, during the �rst iteration of the codebook design procedure of the new constraint-
length quantizer, the channel sequence u and the distortion D0 will be the same as the
ones obtained during the last iteration of the K � 1-constraint length codebook design
operation. This is shown if �gure 2.3.
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2.2 Joint Source-Channel Trellis Coding

The trellis source coding technique explained above can be adapted to the JSCC case
with performances arbitrarily close to the theoretical limits given by the OPTA function.
The major goals of this approach are [9]:

� the design of compression systems that are robust to channel errors,

� the reduction of system complexity due to �tandemizing� the trellis quantizer with
a channel protection technique and,

� for certain applications, the complete elimination of channel coding. This results
in higher transmission rates dedicated only for encoding the source which in turn
results in a better performance.

It must be pointed out that this technique acts like a simultaneous source coding and
error protection technique. That is to say, the aim is not to correct transmission errors
but to reduce the distortion introduced by these errors during the reconstruction of the
source sequence.

The theorem showing that JSCTC yields performances arbitrarily close to the OPTA
function was demonstrated by Dunhan and Gray in [34]. They showed that such good
performances could be achieved by replacing the conventional noiseless distortion mea-
sures by distortion measures equal to the expected value of the distortion between the
source symbol and the corresponding reproduction codewords; where the expectation is
taken over the channel distribution, that is, over the channel error probability.

Consider the source sequence x which has been encoded at the encoder end by the
sequence of reproduction codewords y = fyi(k)g

LTS�1
k=0 . The overall distortion that has to

be minimized is given by

D =

LTS�1X
k=0

2K�1X
j=0

d(xk; yj) � Pr(yjjyi(k)) (2.5)

where Pr(yjjyi(k)) is the probability of receiving codeword yj given that codeword yi(k)
was actually sent and d(xk; yj) is the distortion between the source symbol xk and the
reproduction codeword yj at the receiver end.

When a BSC channel is cosidered, the error probabilities Pr(yjjyi) are given by the
expression [89]

Pr(yjjyi) = pd(i;j) � (1� p)K�d(i;j) (2.6)



2.2 Joint Source-Channel Trellis Coding 35

where p is the transition error probability of the BSC channel. For AWGN channels and
BPSK modulation, this transition error probability is given by [89]

p = Q

 r
2
Eb

No

!
(2.7)

We can see that Pr(yjjyi(k)) depends on both the modulation technique used and the
channel conditions or channel SNR 1. In addition, notice that this system assumes that the
transmitter has some information about this channel SNR. Fortunately, such information
is commonly available in practical communication systems.

If d(xk; yj) is the euclidean distance, the per-letter distortion measure in the JSCTC
context is given by

d(xk; yi) =

j=2K�1X
j=0

(xk � yj)
2 � Pr(yjjyi) (2.8)

where yi is the reproduction codeword associated to branch i.

Example

Consider the source sequence x = f5; 5; 0; 3; :::g wich is trellis quantized with the noise-
less and JSCTC quantizers using the reproduction codebook C = f4; 6; 1; 25g associated
to a 2-state trellis, as shown in �gure 2.4, and that will be transmitted through a BSC
channel with p = 0:1.

In the noiseless case, the per-letter distortion measure is the euclidean distance and the
best path in the trellis is the one having the least MSE de�ned in equation 2.3. The bold
line represents the minimum distortion path. The channel sequence corresponding to this
path is u = f0; 1; 0; 0; :::g and the distortion introduced by the quantization process is 4.

In the JSCTC case, the per-letter distortion measure is given by equation 2.8 and the
error probabilities Pr(yjjyi(k)) are computed with equation 2.6. The channel sequence cor-
responding the path having the best expectation of the distortion is u = f0; 0; 0; 0; :::g,
with a total MSE of 19.

Suppose now that during transmission, an error is produced on the third bit of each
channel sequence such that the received channel sequence for the noiseless case be-
comes u = f0; 1; 1; 0; :::g whereas the received channel sequence in the JSCTC case
is u = f0; 0; 1; 0; :::g. At the decoder, the reconstructed source with the noiseless quanti-
zation has a total distortion of 631 while the distortion introduced by the JSCTC is only
of 42.

1Notice that this technique is not restricted to BSC channels or BPSK modulation.
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We can see that, eventhough at the encoder end the reproduction codeword sequence
found by the JSCTC coder introduces higher distortion, at the receiver, the expectation
of the distortion introduced by transmission errors is decreased.

2.2.1 Codebook Design and Initialization

Ayano�glu in [9], proposes the design of JSCTC systems with the same approach given by
Stewart. In fact, it is a straightforward adaptation of Stewart's work to the context of
JSCTC. He demonstrates that the fact of using the modi�ed distortion measure described
above does not a�ect the convergence and monotonically decreasing distortion properties
of the Stewart algorithm. The only di�erence between Stewart's and Ayano�glu's algorithm
is the per-letter distortion measure employed for encoding the source sequence, and the
codebook update which is governed by the centroid equation. This centroid can be ob-
tained by setting partial derivatives of equation 2.5 with respect to ymj to zero. We thus
have

ym+1
j =

1P2K�1
i=0 Pr(yjjyi)jjQijj

2K�1X
i=0

Pr(yjjyi)
X

k:xk2Qi

xk (2.9)

This equation can be seen as the centroid of equation 1.12 (page 12) �weighted� by the
channel error probability. For instance, if the transmission channel is noiseless, Pr(yjjyi) =
�ij

2and equations 1.12 and 2.9 become identical.

Concerning codebook initialization, Ayano�glu also showed that the extension algorithm
outperformed other codebook initialization methods. In addition, he proposed a second
extension algorithm which consists in the generation of a noisy channel codebook from
a noiseless channel codebook of the same constraint length. This is also an iterative
algorithm. It starts by obtaining an optimized codebook C for noiseless channel conditions.
Then, by means of a perturbation constant p which is added repeatedly to the error
probability Pr(yjjyi), the ayano�glu codebook design algorithm is run until obtaining an
optimized codebook for that particular value of Pr(yjjyi). This operation is iterated until
the optimized codebook for the desired error probability is designed.

2�i;j is the Kronecker delta function de�ned as

�ij =

(
1 i = j

0 i 6= j
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2.2.2 Performances

In this section, the performance of the JSCTC technique is evaluated for di�erent sources.
Simulations are presented for the BSC channel which is governed by the transition error
probability p, and for the AWGN channel whose error probability is given by equation
2.7. Comparisons with noiseless trellis quantization is highlighted for the BSC channel. In
addition, the JSCTC technique is compared to a tandem system comprising a noiseless
trellis quantizer and a convolutional code for error control coding. All the simulations
were performed for 1 bit per sample quantization.

Figures 2.5 and 2.6 present the source distortion performance of the JSCTC system
and the noiseless trellis quantizer over a BSC channel with transition error probabilities in
the range [0:0; 0:5]. Figure 2.5 corresponds to a zero-mean, unit variance gaussian source
and �gure 2.6 to a �rst order Gauss-Markov source with autoregression coe�cient 0:9.
The constraint length of the trellis quantizers is K = 5.

We can see from the �gures, that, as it was claimed before, when the transmission
channel is noiseless, the performance of both quantizers is exactly the same. Nevertheless,
as the transmission channel degrades, the performance of the noiseless trellis quantiza-
tion is rapidly decreased whereas that of the JSCTC system decreases very smoothly,
approaching the upper bound given by the OPTA curve (see �gure 2.5).
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Figure 2.5: JSCTC vs TQ Performance for BSC and gaussian source.
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Figure 2.7 compares now the source distortion performance between the JSCTC tech-
nique and a tandem system composed of a 1 bit per sample noiseless trellis quantizer
and a R= 1=2-rate convolutional code. Both systems have a K = 5 constraint length and
operate over an AWGN channel. The information to be transmitted is a gaussian source.
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Figure 2.7: JSCTC vs tandem system performance for AWGN channel and gaussian source.

Two aspects are worth pointing out from this �gure. First, the same behaviour as in
�gure 2.5 can be observed; that is, when the channel quality is optimum, the performance
of both systems is equivalent. However, as the transmission channel worsens, the error
correction capability of the convolutional code is exceeded and uncorrected transmission
errors introduce large distortion to the decoded source. Notice, however, that in the range
0 � 5 dB of channel SNR, the tandem system is closer to its theoretical limit than the
JSCTC system.

The other aspect is complexity. Two trellis search algorithms are required by the tandem
system, one for the trellis quantization and one for decoding the convolutional code. As
we will see later, the complexity of trellis search algorithms increases exponentially with
the constraint length of the trellis search. This is a good reason for prefering JSCTC over
the tandem system.

Finally, �gures 2.9 through 2.11 present Lenna images originally coded with 8 bits
per pixel (bpp) (255 grey levels) encoded with the JSCTC and noiseless quantizers, and
transmitted through an AWGN channel for SNR=�5, 0 and 10 dB. Notice the improved
image quality obtained with the JSCTC system when the channel is very noisy.
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Figure 2.8: Original Lenna image 8 bpp.

(a) noiseless TQ; K = 10 (b) JSCTC; K = 10

Figure 2.9: Lenna image encoded at 1 bpp. SNR=10dB.
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(a) noiseless TQ; K = 10 (b) JSCTC; K = 10

Figure 2.10: Lenna image encoded at 1 bpp. SNR=0dB.

(a) noiseless TQ; K = 10 (b) JSCTC; K = 10

Figure 2.11: Lenna image encoded at 1 bpp. SNR=�5dB.
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A �nal comment regarding the improved performance of the JSCTC technique over
the noiseless trellis quantization is in order. Figures 2.10 and 2.11 highlight the reason
why JSCTC introduces less distortion than the noiseless trellis quantizer during source
decoding. Notice that the image decoded with the noiseless quantizer has a larger contrast,
that is, the image has darker and brighter pixels than the images decoded with the JSCTC
system. This is because the codebook of the noiseless quantizer has a larger range than the
JSCTC codebook, as shown in �gure 2.12. For instance, the higher and lower codewords
of the noiseless codebook are 35 and 225, respectively; as a result, if an error occurs on
a bit which had to decode a dark pixel and the decoder decodes instead a bright pixel,
a large distortion is introduced. On the other hand, the higher and lower codewords of
the JSCTC codebooks are 55 and 190 for the 0 dB codebook and 75 and 170 for the
�5 dB codebook; since the codewords of the JSCTC codebook are closer to each other, a
transmission error does not introduce distortions as large as the ones introduced by the
noiseless decoder. Of course, as described in the example at the beginning of this section,
at the encoder the image encoded with the JSCTC codebook is not so good.
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Figure 2.12: Pixel range of the image decoded with the noiseless TQ and JSCTC.

2.3 Conclusion

In this chapter we have seen the potential advantages of joint source-channel trellis coding
over noiseless trellis quantization. Simulations were presented pointing out the superior-
ity of this technique, specially when the quality of the transmission channel is very poor.
Nevertheless, there is a price to pay since the computational load of the JSCTC distortion
measure and the codebook design and codebook intialization algorithms are quite large.
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This large complexity results in a limited size of the reproduction codebook which causes
in turn a degradation in performance since the codebook codewords cannot represent the
input source in the best possible way. As a consequence, means to reduce this compu-
tational load are required without being prejudicial to the system's performance. In the
next chapters, ways to achieve this complexity reduction without penalizing the overall
performance will be described. This reduction in complexity is related to the two main
parts of the JSCTC algorithm, namely the computation of the distortion measure and
the trellis search algorithm employed for source quantization.



Chapter 3

Joint Source-Channel Trellis Coding

Architecture

In the previous chapter, we presented the underlying principles and theory of joint source-
channel trellis coding. We saw that in this tehcnique the entire communication system
is a trellis source coder-decoder pair which is able to outperform conventional tandem
systems when the conditions of the transmission channel are very poor.

This chapter deals with hardware architectures for the implementation of the JSCTC
technique presented in the previous chapter. These architectures comprises both the code-
book design algorithm and the distortion measure required during the trellis quantization.
The goal of this chapter is to study the transition from algorithm to architecture, that is,
to accomplish an accurate adequation of the algorithm to be implemented, to an architec-
ture that ful�ls the performance requirements with an acceptable hardware complexity.
When this cannot be achieved, a trade o� performance-hardware feasibility is done, by
modifying the architecture so that its hardware costs and/or processing time are reduced.

The outline of the Chapter is as follows. In section 3.1, two architectures for the code-
book design algorithm are presented. Then, in section 3.2, we will show that the same
architecture for the codebook design can be utilized to implement the distortion measure
of the quantization algorithm because both tasks can be modi�ed so as to meet the same
type of arithmetic operations. Section 3.3 gives some measures to increase the perfor-
mance of the architecture in terms of latency. Then, simple hardware modi�cations of the
global architecture are highlighted in section 3.4, in order for the codebook initialization
algorithm to be implemented in the hardware architecture.
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3.1 Architecture for Codebook Design

At a �rst glance, it may appear that the hardware implementation of the codebook design
algorithm is of no importance since this kind of tasks are generally done o�-line, in soft-
ware, prior to the quantization of the source. Nevertheless, as indicated in [27], in some
applications the high complexity of this task and the need for repeated access to large �les
of training data generally places severe limitations on the size of the training sequence
used for the codebook design procedure. In such cases, a hardware architecture for the
codebook design is needed. Moreover, since the trellis quantization process is embedded
into the codebook design algorithm, the hardware ressources are not largely increased if
the optimization algorithm is implemented in hardware. In addition, we will see that the
distortion measure of the quantization process can employ the same hardware ressources.

As we saw in the previous chapter, the codebook design algorithm alternately performs
two operations:

1. Trellis quantization of the training sequence employing a trellis search algorithm,

2. Codebook update which calculates the centroid equation given by

ym+1
j =

1P2K�1
i=0 Pr(yjjyi) � jjQijj

2K�1X
i=0

Pr(yjjyi)
X

k:xk2Qi

xk (3.1)

Recall that a training sequence x of length LTS is partitioned by the quantization
operation in 2K (or less) sets Q. Each set Qi (i = 0 � � �2K � 1) contains the training
samples xk that were represented by codeword yi during the trellis quantization, and
jjQijj, the cardinality of Qi, denotes the total number of training samples that were coded
with this codeword. The quantization process produces in turn a binary sequence or
channel sequence u which is the compressed version of the training sequence.

Equation (3.1) suggests two ways of implementing the codebook update. These two
ways are described by the pseudo-program of �gure 3.1.

In words, the �rst pseudo-program states that a �rst step would consist in accumulat-
ing the training samples that were coded by the same codeword yi and computing the
cardinality of its corresponding partition set Qi, and then, a second step consists in per-
forming the centroid computation weighted by the transition error probabilities Pr(yjjyi).
The other possibility given by the second pseudo-program is to compute the numerator
and denominator terms of equation (3.1) at the same time as the training sample xk is
being decoded, and then perform the corresponding divisions so that the �nal codebook
is updated.
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1. Codebook Update with respect to codeword label i
/*Trellis encoding*/

for k=0 to LTS

{

uk = trellis_encoding(xk)
codeword_label = decode_codeword_label(uk)
Acccodeword label += xk
jjQcodeword labeljj = jjQcodeword labeljj+ 1

}

/*Centroid computation*/

for j=0 to 2K�1

for i=0 to 2K�1

{

Pr(yjjyi) = channel_transition_probability(i,j)

NUMj += Pr(yjjyi) � Acci
DENj += Pr(yjjyi) � jjQijj

ym+1
j =

NUMj

DENj

}

2. Codebook Update with respect to codeword label j
/*Simultaneous trellis encoding and*/

/*generation of numerator and denominator terms*/

for k=0 to LTS

{

uk = trellis_encoding(xk)
codeword_label = decode_codeword_label(uk)
for j=0 to 2K�1

{

Pr(yjjyi) = channel_transition_probability(j,codeword_label)

NUMj += Pr(yjjycodeword label) � xk (xk 2 Qcodeword label)
DENj += Pr(yjjycodeword label)

}

}

/*Centroid computation*/

for j=0 to 2K�1

ym+1
j =

NUMj

DENj

Figure 3.1: Pseudo-programs describing to ways of implementing the codebook design
algorithm.
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3.1.1 Architecture for Method 1

The hardware architecture for the codebook design algorithm, implemented with the �rst
method is shown in �gure 3.2. For simplicity, the trellis search algorithm will be seen as a
black box and we will assume that it delivers the binary sequence u corresponding to the
sequence of reproduction codewords yi(k) that matches the input sequence x in the best
way. Discussions about the trellis search algorithm and its hardware architectures will be
presented in the next chapter.

The three steps of the codebook desing algorithm are highlighted in the �gure:

1. Trellis Encoding (ligth grey in the �gure): the output bit uk delivered by the
trellis quantizer enters the codeword label decoder block in order to know the label li
of the reproduction codeword yi that was used to represent the kth training symbol.
The training sample xk is added to the previous training samples that were encoded
with codeword yi and the cardinality of this set is incremented. The accumulated
values are then stored again in the accumulation memory at the address given by
the decoded label li. This operation is repeated until all the training sequence is
processed.

2. Halt Test (darker grey in the �gure): the distortion Dm introduced by the trellis
quantization is compared to the distortion Dm�1 of the previous iteration according
to the halt condition (see equation 1.14 in page 14). If the halt condition holds,
the circuit stops and the current codebook Cm is used for the quantization of the
source. Otherwise, step 3 is performed.

3. Codebook Update (darkest grey in the �gure): In this step, counter1 and counter
2 start working. Counter1 serves to generate the codeword labels lj whereas counter
2 generates the codeword labels li of the centroid equation (3.1). Counter 2 is now
used as the address of the accumulation memory to retrieve the

P
Qi
xk and jjQijj

terms. At the same time, the ouputs of the two counters enter the channel transition
probability block to compute the error probabilities Pr(yjjyi). This value is then mul-
tiplied by the outputs of the accumulation memory. The results of this operation are
stored in �ip-�ops acc. This way, the NUMj and DENj terms of pseudo-program 1
are being computed. The process is repeated until counter 2 �nishes counting. Next,
the division is done with the contents of the acc �ip-�ops, and the new codeword
ym+1
j is stored in the codebook memory. Afterwards, counter 1 is increased by one,
counter 2 restarts working and the process is repeated for the new value of label lj.
The whole procedure is repeated until counter 1 reaches its �nal value, indicating
that the entire codebook has been updated.



3.1 Architecture for Codebook Design 49

i

+ +

Pr (y   | y   )*

2    -1K

i=0
Σ

j

ym+1
j

i

freq

Pr (y   | y   )*

K= 2   freq

Σ

i

xk

k

j label

j label

Σ

j

i

D
m

Pr (y   | y   )

Trellis Encoding

Halt Test

Codebook Update (centroid computation)

i label

i label

write

read Memory

Accumulation

ε

K2    -1

i=0

u

Σ
j

counter 2 counter 1

kx  (Q  )
i

kx  (Q  )
i

||Q  ||

memory address

D
out

D
inm+1

C

CODEBOOK

||Q ||

accacc

M
U

X

X

i

X

!

MUXMUXMUXMUX

m
em

or
y 

ad
dr

es
s

probability
transition

Dout

Din

DIV

channel

counter 2counter 1

1

Source

Codeword
label

decoderQuantizer

Trellis 

-

X

COMP

Halt
or

codebook update

Halt 
test

Figure 3.2: Hardware architecture for the �rst method of codebook design.
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Notice that the frequency of counter 2 is 2K times faster than the frequency of counter 1

freqcounter2
freqcounter1

= 2K (3.2)

3.1.2 Architecture for Method 2

Figure 3.3 shows the hardware architecture for the second pseudo-program. The steps
towards the codebook update are:

1. Simultaneous Trellis Quantization and NUM and DEN accumulation
(light grey): For every training sample xk, its corresponding bit uk is decoded as la-
bel li. Counter 1 acts as the label generator of codewords yj. The channel transition
probability with respect to the decoded label and counter 1's label is computed.
This probability is multiplied by the training sample xk and the result as well as
the error probability are accumulated to the contents of the accumulation memory
whose address is given by counter 1. This way, the NUMj and DENj terms of
the second pseudo-progam are being computed and stored in their corresponding
address. This operation is repeated until counter 1 �nishes its count and until the
last training sample is quantized.

2. Halt Test (darker grey): After the training sequence has been quantized, the quan-
tizer has the mth iteration distortion. The halt condition is checked.

3. Codebook Update (darkest grey): If the codebook update is needed, counter 1,
which generates the lj lables, reads the contents of the accumulation memory where
the NUMj and DENj terms were stored. The division is computed and the result
is stored in the codebook memory. The write address is given by counter 1.

In this case, the operation frequency of counter 1 is 2K times the frequency of the system

freqcounter1
freqsystem

= 2K (3.3)

A �nal remark is in order. As indicated earlier, the way the accumulation memory is
used changes in each approach. In the �rst architecture, each memory location contains
the accumulated training symbols belonging to a given set Qi together with its cardinality
jjQijj. On the other hand, in the second architecture each memory location contains the
contribution of each training symbol xk belonging to set Qi, to the new value of codeword
yj. Notice that each contribution is weighted by the channel transition probability.

The following sections describe the inner structures of the codeword label decoder block
and the channel transition probability block.
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3.1.3 Codeword Label Decoder

The codeword label decoder can be implemented with a K-bit shift register. Figure 3.4
depicts the label decoder. The bitstream u enters the shift register; the output of each
register re-creates the trellis states visited by the sequence u during the training sequence
quantization, as indicated by the trellis diagram in the �gure.

next
state

current
state

Shift Register

0

00 1

00
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11

01

Trellis Diagram
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codeword 

0

label

u
k-2
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y
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k-1
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k-2u
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Figure 3.4: Codeword Label Decoder.

The codeword label is formed by the current input bit uk and the outputs of the shift
register. In this K-bit word, the K � 1 LSBs denote the current state of the trellis and
the K � 1 MSB bits are the next state. The codeword label is thus yuk;uk�1;uk�2;��� ;uk�K+1

.

3.1.4 Channel Transition Probability

The channel transition probability generator is described in �gure 3.5. This block is im-
plemented with an array of K XOR gates, an encoder circuit and a memory containing
all the channel transition probabilities Pr(yjjyi). Remember that for a binary symmetric
channel the channel transition probability is given by

Pr(ljjli) = pd(li;lj) � (1� p)K�d(li;lj) (3.4)

where p is the error probability and d(li; lj) is the hamming distance between labels li and
lj.

The range of the hamming distance is

0 � d(li; lj) � K (3.5)
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Hence, a K + 1-word memory is needed to store all the possible channel transition prob-
abilities. The memory address is given by the encoder block. This block translates the
output of the XOR array into a log2(K+1)-bit word that indicates the number of di�ering
bits between the two input labels li and lj.

2
(K+1)log

iencoder

d ( i , j )

i j

bits

K bits K bits

memory

probability 

error Pr ( y   | y  )
j

Figure 3.5: Channel Transition Probability Block.

3.2 Hardware Implementation of the Distortion Mea-
sure

A second issue in the robust trellis quantization algorithm is the implementation of the
distortion measure of the trellis search algorithm. This distortion measure was de�ned as

d(x; yi) =
2K�1X
j=0

(x� yj)
2 � Pr(yjjyi) (3.6)

Table 3.1 shows the computational requirements per source symbol of this operation
in terms of its arithmetic operations. As we can see, a direct hardware implementation
of this expression demands a large amount of circuitry. Nevertheless, as in the case of
vector quantization architectures [32, 62, 118], since the reproduction codebook remains
unchanged between each codebook design iteration and during the quantization process,
we can reduce the complexity of the distortion measure by precalculating the terms that
do not depend on the input symbols xk. Indeed, if equation (3.6) is expanded, the branch
metric can be expressed as
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Table 3.1: Computational requirements of the distortion measure in the JSCTC algorithm.

Operation Type Number of operations

x� yj substraction 2K � 2K

(x� yj)
2 square 2K � 2K

(x� yj)
2 � Pr(yjjyi) multiplication 2K � 2K

P2K�1
j=0 (x� yj)

2 � Pr(yjjyi) addition 2K � 2K � 1

d(x) = Aix
2 �Bix+ Ci (3.7)

where

Ai =
2K�1X
j=0

Pr(yjjyi) = 1 (3.8)

Bi = 2 �
2K�1X
j=0

yj � Pr(yjjyi) (3.9)

Ci =
2K�1X
j=0

y2j � Pr(yjjyi) (3.10)

Since Ai = 1, x2 is common to all distortion measures and can thus be discarded. The
Bi and Ci coe�cients are now independent of the input samples xk; thus, they can be
computed o�-line, prior to the quantization process. The distortion measure can now be
expressed in the form

d(x) = �Bix + Ci (3.11)
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which consists in one multiplication and one addition per source symbol and per repro-
duction codeword. The complexity has been reduced from O(2K

2

) to O(2K).

If we take a closer look at the Bi and Ci coe�cients, and the expression of the numerator
and denominator terms of the centroid equation (3.1), we see that they consist in the same
kind of operations. As a result, the same architecture proposed for the codebook update
can be used for the computation of the Bi and Ci coe�cients. All what is left to do is to
manage the sharing of the di�erent hardware ressources.

3.2.1 Global Architecture for Method 1

The complete hardware architecture for method 1 is presented in �gure 3.6. The func-
tioning of this architecture is the following:

1. Trellis Quantization: The operation of this step is the same as the one described
in �gure 3.2.

2. Halt Test: idem

3. Codebook Update and Bi, Ci Calculation: In this step, counter 2, which gener-
ates the lj labels, reads the accumulation memory and the accumulator circuit (adder
and �ip-�op acc) produces the NUMj and DENj terms. When counter 2 �nishes
counting, the divider takes the outputs of the two accumulators and calculates the
new codeword ym+1

j which is in turn stored in the codebook memory. The address
bus of the codebook memory is controlled by counter 1. When all the codewords are
updated, the control of the address bus corresponding to the codebook memory is
now passed to counter 2; conversely, counter 1 commands the address bus of the
accumulation memory. The new codewords ym+1

j are read, multiplied by the channel
transition probabilities and accumulated to the previous processed codewords in the
accumulator circuit. This process is iterated until counter 2 arrives to its maximum
value. Then, the accumulator ouputs are stored in the accumulation memory at the
address given by counter 1. This way, the �rst Bi and Ci coe�cients are calculated.
At the end, when counter 1 �nishes counting, all the Bi and Ci coe�cients have
been computed.
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3.2.2 Global Architecture for Method 2

The complete hardware architecture for method 2 is described in �gure 3.7. Its functioning
consists in the following steps:

1. Trellis Quantization: the same as in �gure 3.3.

2. Halt Condition: idem

3. Codebook Update: idem

4. Bi and Ci Calculation (lightest gray): Counter 1 commands the address bus of the
codebook memory and counter 2 commands theaccumulation memory. Codewords
ym+1
counter1 are read from the codebook memory, they are multiplied by the channel
transition probabilities (Pr(ycounter1 j ycounter2) and accumulated to the previous
processed codewords in the accumulator circuit. When counter 1 �nishes counting,
the accumulator ouputs are stored in the accumulation memory whose address is
given by counter 2's value. This way, when counter 1 �nishes counting, all the Bi

and Ci coe�cients are computed.

A �nal comment on the mutual independence of the codebook design and the quanti-
zation process is in order. In fact, both operations are not totally independent since the
trellis quantizer starts decoding the bits uk before the entire training sequence has been
encoded. As a consequence, the Bi and Ci coe�cients would be lost if the training samples
of a given set Qi and its cardinality jjQijj are accumulated and stored in the accumulation
memory. A solution to this problem is to use a bu�er that stores the bitstream u until all
the training sequence is coded, or to employ two accumulation memories, one dedicated
specially to the centroid computation and the other to the computation of the Bi and Ci

coe�cients.

3.3 Measures for Increasing Performance

In the last section two hardware architectures for the codebook update and the distor-
tion measure were presented. Each approach has its advantages and disadvantages. For
instance, if we assume that the clocks of counter 2 and the trellis quantizer in the �rst
architecture are the same, the codebook is updated after LTS + 2(2K � 2K) cylces. The
�rst LTS cycles are needed to decode the codeword labels and 2K � 2K cycles are needed
to update the codebook. Afterwards, other 2K � 2K cycles are needed to compute the Bi

and Ci coe�cients.

Concerning architecture 2, if counter 1 has the same frequency as counter 2 of archi-
tecture 1, the circuit takes 2K �LTS+2K cycles to update the codebook. The �rst 2K �LTS

cycles are due to the fact that for each bit uk, the terms Pr(yjjyi) �xk have to be computed
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for each j (j = 0 � � �2K). The last 2K cycles are required to divide the NUMj and DENj

terms.

Table 3.2 summarizes the latency of each approach. As an example, consider a training
sequence of 100 samples and a K = 3 constraint length trellis quantizer. The �rst archi-
tecture requires 164 cycles to complete one iteration of the codebook desing whereas the
second architecture needs 808 cylces. Eventhough the latency of the second architecture
is far larger than that of the �rst architecture, its optimization is easier.

Table 3.2: Codebook Design Latency of Architectures 1 and 2.

Operation Architecture 1 Architecture 2

Codebook update LTS + 2K � 2K 2K � LTS

Bi and Ci computation 2K � 2K 2K

It is well-known that sequential processing of signals leads to the throughput being
the critical measure. In addition to the throughput, storage requirements, regularity and
modularity, and parallelism are further characteristics that are relevant to the implemen-
tation. Because of the iterative and sequential nature of the robust trellis quantization
algorithm, pipelining for circuit optimization is of little help. We can however appeal to
parallelism to optimize and increase the throughput.

At �rst thought, it can be argued that circuit optimization through the use of paral-
lelism is not important since the codebook design operation is performed only once, prior
to the source quantization. Nevertheless, since the Bi and Ci coe�cients, needed during
the trellis quantization, are computed in the same circuit as for the codebook design,
parallelization of this architecture may be required if the trellis search algorithm is to be
parallelized as well. Indeed, for high speed applications, it is common use to parallelize the
trellis search algorithm (usually a Viterbi decoder) so as to increase the system through-
put [39]. For instance, in applications where a total parallelism is required, each trellis
state is provided with its own processor to update its metric. As a result, 2K distortion
measures must be simultaneously available in order for the 2K � 1 processors to update
the state metrics at the same time. In our case, if the computation of the Bi and Ci

coe�cients is parallelized, the trellis quantizer architecture can also be parallelized; this
way, the system throughput is increased. Moreover, the latency of the codebook design
procedure is also reduced. Thus, we kill two birds with a single shot. In the following
sections, parallel architectures for the two methods are proposed.
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3.3.1 Parallelization of Method 1

The parrallel structure of the architecture for method 1 is shown in �gure 3.8. In this
case, the circuit is duplicated n1 times so that the accumulation memory is divided into
n1 memory banks. Each block has its own accumulator and multiplier circuits. Since both
counters control the address bus of the accumulation memory, they have to be modi�ed
in such a way that counter 1 ranges from 0 to 2K�1 in the codebook updating mode and

from 0 to
�
2K

n1
� 1
�
in the Bi and Ci computation mode. Conversely, counter 2 ranges

from 0 to
�
2K

n1
� 1
�
in the codebook updating mode and from 0 to 2K � 1 in Bi and Ci

computation mode. This is due to the fact that the accumulation memories are reduced

to
�

2K

n1
� 1
�
memory addresses whereas the codebook memory remains with 2K memory

addresses. The circuit works as follows:

1. Trellis Quantization (lightest grey): The codeword label li decoded with input
bit uk enters the control block which serves to generate the memory address of the
memory bank corresponding to that codeword label. In other words, from the K
bits that form the codeword label li, the log2 n1 MSB bits are used to select the
accumulation memory bank, and the rest are used to select the memory address of
the selected memory bank. The process continues until all the training samples have
been coded.

2. Codebook Update: In this mode, the
P

xk and jjQijj terms of each memory bank
are read with counter 2. These terms are multiplied by the channel error probability
and accumulated in their corresponding accumulator circuits. Counter 1's value is
used as the codeword label li needed for the channel error probability computation.
Notice that when counter 2 �nishes, each accumulator in each block contains pieces
of accumulated terms NUMj and DENj. That is, block 1 contains NUM0 and
DEN0, NUM1 and DEN1, � � � , NUM�

2K

n1
�1

� and DEN�
2K

n1
�1

�; block 2 contains

NUM�
2K

n1

� and DEN�
2K

n1

�, NUM�
2K

n1
+1

� and DEN�
2K

n1
+1

�, � � � , NUM�
2 2

K

n1
�1

� and

DEN�
2 2

K

n1
�1

�, and so on. Thus,two n1-operand adders are needed to compute the

�nal NUMj and DENj terms for the centroid computation. Finally, the respective
divisions are performed to compute the new codeword ym+1

j which is stored in the
codebook memory.

3. Bi and Ci Computation: Once the reproduction codebook is updated, counter 2
switches to the 2K-range mode and counter 1 to the 2K

n1
-range mode respectively.

Counter 2 reads in sequential order the new codewords for the computation of the
new Bi and Ci coe�cients as described previously. They are stored in the accu-
mulation memory whose address bus is controlled by counter 1. At the end of this
operation, each memory bank contains 2K

n1
new Bi and Ci coe�cients.
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Notice that when one of the two counters is working in the
�
2K

n1

�
-range mode, its

output enters the label encoder block shown next to the channel transition probability
block. This block converts the counters' current value into a 2K-range value representing
the codeword label li. This way, the channel transition probabilities can be calculated.
One way to perform this conversion is to simply append log2 n1 bits to the counter bits
in each block so that a K-bit word is created. The value of this log2 n1 bits is permanent
in each block.

As an example, assume that K = 6 (32 trellis states) and n1 = 4. We have 4 memory
banks with 16 words each, addressed by the 4-bit counter. Hence, two bits need to be
appended to the counter bits in order to create a 6-bit word that generates the 6-bit
codeword label li. Now, if block 1 is reserved to the appending bits 00, then it contains
the codeword labels from 00j0000 up to 00j1111. In the same manner, if block 2 uses the
01 bit pattern, it contains the labels 01j0000 up to 01j1111; codeword labels from 10j0000
to 10j1111 correspond to block 3 and the codeword labels ranging from 11j0000 to 11j1111
are reserved to block 4. This way, all the reproduction codewords are used in one iteration
of counter 2.

It must be pointed out that parallelism is also possible in counter 1's �dimension�. In
other words, counter 1 can be constrained to the range [0 � � � 2

K

n2
� 1] so that the compu-

tation of the new codebook is reduced. In this case, the codebook memory is divided into
n2 memory banks with 2K

n2
words each. In addition, the computation time of the Bi and

Ci coe�ecients is also reduced. Nonetheless, there is a penalty in hardware complexity be-
cause in this new parallelization, n2 n1-operand adders and one �nal n2-operand adder are
needed to complete the codebook update and the coe�cient computation. Moreover, since
the computation of the Bi and Ci coe�cients is performed only once, their parallelization
is of no interest.

A �nal comment is in order. For parallel implementations of the trellis search algorithm,
the Bi and Ci coe�cients needed to update a single state metric must be stored in di�erent
memory banks so that they can be simultaneously read from memory. In this case, the
label encoder described previously only has to change the position of its corresponding bit
pattern. For instance, assuming that we have the same conditions as before, the processor
that updates the state metric of the 0 state needs the B0, C0 and B1, C1 coe�cients
to compute the distortion measure. Hence, if the bit pattern for block 1 in �gure 3.8 is
0xxxx0, where xxxx is the counter value, and the bit pattern for block 2 is 0xxxx1, then
the coe�cients B0, C0 and B1, C1 are available for the computation of the two distortion
measures. In the same way, if the bit pattern for block 3 is 1xxxx0, and that of block 4 is
1xxxx1, then four distortion measures can be computed for the trellis branches steming
from the same states.
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3.3.2 Parallelization of Method 2

Figure 3.9 presents the parallel architecture for method 2. Like method 1, counter 1

ranges from 0 to
�
2K

n1
� 1
�
in codebook update mode and from 0 to 2K � 1 in Bi and Ci

computation mode. Counter 2, on the other hand, ranges from 0 to
�
2K

n1
� 1
�
and is only

used in the Bi and Ci computation mode. The two main modes of operation are:

1. Trellis Quantization and Codebook Update: It works in the same way as in
�gure 3.7 except for the computations duration. Now, only 2K

n1
cycles are needed

between successive bits uk to compute the pieces of the NUMj and DENj terms.
The training sample xk is distributed to all the n1 blocks for the computation of
each NUMj and DENj term. At the end of the trellis quantization, counter 1
restarts so that n1 new codewords ym+1

j are computed in parallel and stored in their
corresponding codebook memory banks.

2. Bi and Ci computation: In this mode, counter 1, which now ranges from 0 to
2K � 1, reads the codewords yj sequentially. These codewords are distributed to
all the blocks for the computation, accumulation and storage of each Bi and Ci

coe�cient. Counter 2 commands the memory address of the accumulation memory.
Notice that the outputs of counter 2 enter the label encoder block in order to convert
its value into a K-bit word representing codeword label li. The CE (chip enable)
block next to the codebook memories serves to enable that codebook memory storing
the codeword corresponding to counter 1's value. This way, only one codeword is
read at a time without having problems with the data bus.

In the same way as in architecture 1, parallelism for the computation of the Bi and Ci

coe�cients is also possible by giving the control of the codebook memory address bus to
counter 1, instead of counter 2. In such a case, each accumulation memory contains partial
accumulations of the Bi and Ci coe�cients in the same way as for the NUMj and DENj

terms in architecture 1. As a consequence, a n1-operand adder is needed to compute the
total value of these coe�cients. Nonetheless, as explained earlier, the optimization of the
computation of these coe�cients is not relevant.

3.3.3 Architecture Comparison

From a hardware ressources point of view, both architectures are practically the same
except for the n1-operand adder required by architecture 1. Table 3.3 shows a compari-
son of both architectures in terms of latency. For simplicity, we have assumed that one
multiplication and one division can be done in one clock cycle.

Although the latency of architecture 1 is smaller, architecture 2 is easier to parallelize.
Moreover, for full parallelism, the hardware ressources and the latency of architecture 2
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Figure 3.9: Parallel architecture of method 2.
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Table 3.3: Latency comparison between architectures 1 and 2.

Operation Architecture 1 Architecture 2

Trellis Quantization LTS
2K

n1
� LTS

Codebook Update 2K �
�

2K

n1
+ tadder

�
2K

n1

Bi and Ci computation 2K � 2K

n1
2K � 2

K

n1

(LTS + 1 + 2K cycles) is smaller than the latency of architecture 1. At the end, the
target application dictates the choice of the architecture. For example, for a full parallel
implementation of the robust trellis quantizer, architecture 2 is preferable over architecture
1; however, for sequential implementations, architecture 1 is more attractive.

3.4 Adaptability to the Extension Algorithm

In section 2.1.2 of chapter 2, we pointed out the great sensibility of the codebook design
algorithm to the initial or seed codebook. Consequently, another algorithm, called the
extension algorithm was introduced in order to solve the impasse on how the codebook
design is initialized. Remember that the extension algorithm consists in iteratively using
the codebook design algorithm, from a 1-bit scalar quantization (K = 0) to the �nal
desired constraint length Kex = Kf , where the �nal codebook of a given constraint length
Kex is used as the initial codebook for the Kex + 1 constraint length trellis.

The architectures presented in this chapter can be easily modi�ed to account for the
extension algorithm. In the following, the di�erent parts of the architecture, taking into
account the extension algorithm are presented.

3.4.1 Shift Registers and Counters

Shift registers and counters can easily manage the extension algorithm by enabling only
the �rst Kex registers from the total length of Kf . This way, the codeword label decoder
with total length Kf is able to decode Kex-bit codewords during iteration ex of the
extension algorithm. In the same manner, the counters addressing the accumulation and
codebook memories are able to address 2Kex locations out of a total of 2Kf .
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3.4.2 Channel Transition Probability

The adaptation of this part of the system is a little bit more complicated. The channel
transition probability of a binary symmetric channel was de�ned in equation (3.4). Figure
3.10 shows an example of the di�erent channel transition probabilities as a function of
the Hamming distance d(i; j) for a K = 3 and K = 4-bit codeword labels. We can see
that the channel transition probabilities of the K = 4-bit codeword labels can be updated
from those of the K = 3-bit case. In general, the expression for updating the channel
transition probabilities of a K-bit codeword labels from a K � 1-bit labels is

PrKex

d(i;j)(yjjyi) = PrKex�1
d(i;j) (yjjyi) � (1� p) = PrKex�1

d(i;j)�1(yjjyi) � p (3.12)

that is, the channel transition probability of Kex-bit codeword labels with Hamming
distance d(i; j) can be obtained from the channel transition probability of Kex � 1-bit
labels with the same Hamming distance d(i; j), multiplied by the term (1 � p). Other
option is to multiply the channel transition probability corresponding to the Kex� 1-bit
labels with hamming distance d(i; j) � 1 by the error probability p. Notice that when
d(j; i) = Kex, the expression for updating the channel transition probabilities of the new
constraint length coder becomes

PrKex

d(i;j)=Kex
(yjjyi) = PrKex�1

d(i;j)=Kex�1(yjjyi) � p (3.13)

The new architecture to update the channel transition probabilities is shown in �gure
3.11. In this case, a multiplexer and a multiplier were added to the circuit of �gure 3.5.
The multiplexer is controlled by the encoder output so that, when d(i; j) = Kex, the
memory output is multiplied by p; otherwise, the output is multiplied by (1� p).

In addition, a control circuit is needed in order to detect those channel transition
probabilities that have already been updated. This can be done with a circuit based on
�ags, which are set to one when its corresponding hamming distance has been computed.
This way, the updating of the channel transition probabilities is performed only once per
hamming distance.
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Figure 3.10: Channel transition probability dependency between successive constraint lengths
in the extension algorithm.
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3.4.3 Codebook Memory

When the halt condition of the codebook design algorithm holds, the current codebook
has to be duplicated from 2Kex�1 codewords to 2Kex. Instead of duplicating the codebook
in the same codebook memory, we can proceed directly to the computation of the Bi

and Ci coe�cients of the new constraint lenght coder. To do so, each codeword yj of the
2Kex�1-codeword codebook is read twice and multiplied by the new updated channel error
probabilities P (yj0jyi) and P (yj1jyi), where the j label ranges from 0 to 2Kex�1. Each term
is accumulated to the other codewords yj (j = 0 � � �2Kex�1) that were also read twice. This
way, in the �rst iteration of the codebook design optimization of the new Kex-constraint
length coder, 2Kex new Bi and Ci coe�cients are ready to be used.

The codebook duplication procedure is shown in �gure 3.12. When the counter used
to read the codebook memory passes from Kex � 1 to Kex bits, only the Kex � 1 MSBs
are taken into account in the duplication procedure. This allows a double reading of each
codeword yj in successive time instants. Then, during a normal operation of the codebook
optimization, all the counter bits are used to address the codebook memory.
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Figure 3.12: Architecture for codebook duplication in the extension algorithm.

3.5 Conclusion

In this Chapter we have presented two hardware architectures for the codebook design
algorithm and the distortion measure of Ayano�glu's JSCTC technique. One of the main
drawbacks of this technique was the large computational load of the distortion measure
(O(N2)). This distortion measure takes into account all the reproduction codewords to
quantize each symbol of the source sequence. Hence, when the reproduction codebook is
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large, the computational load becomes prohibitively complex. Nevertheless, following the
same approach as in vector quantization, we showed that this computational load can be
reduced to O(N) by modifying the distortion measure and precomputing those terms in
the modi�ed distortion measure that do not depend on the source symbol. In addition,
thanks to this modi�cation in the distortion measure, the same architecture can be used
for the codebook design procedure.

Measures to increase the performance of the proposed architectures were presented.
These architectures allow both a parallelization of the trellis quantization and a reduc-
tion in the latency of the codebook design operation. Finally, these architectures were
made recon�gurable in order to account for the extension algorithm. This way, the entire
codebook design procedure can be implemented in hardware.





Chapter 4

Study of a Suboptimum VLSI

Architecture for Joint Source-Channel

Trellis Coding

This chapter introduces the basic component of the robust trellis quantizer: the trellis
search algorithm. Roughly speaking, trellis search algorithms are methods whose goal is
to �nd the path in a weighted graph wich connects two given nodes Si and So, with the
property that the sum of the weights of all the branches producing the path is minimized
over all such paths. The sum of the partial weights of each branch is called a metric
and indicates how well the path is being travelled over. In our case, the weight of all the
branches in the trellis is the distortion measure discussed in the last Chapter and which
is known as branch metric. So far we have considered the trellis quantizer as a black box
delivering the best path in the trellis. In this chapter, architectural aspects for the trellis
quantization are presented.

Among all the trellis search algorithms that exist, the Viterbi algorithm is perhaps the
most famous and the one for which the most hadware architectures have been proposed.
This is because the Viterbi decoder is the optimum trellis search algorithm for almost all
trellis coding applications. Nevetheless, since our will is to continue with the algorithm-
architecture adequation strategy, the goal of this chapter is to study the e�ects of using
a suboptimum trellis search algorithm for the implementation of the JSCTC scheme.
The idea is to reduce the harwdare complexity of the trellis quantizer while maintaining
as much as possible the performace that would have been obtained with the use of the
optimum Viterbi algorithm.

The chapter is organized as follows. Section 4.1 presents the basic principles of the
Viterbi algorithm. A description of the conventional hardware architectures is presented.
Then, in section 4.2 we give some arguments that make us reconsider the use of the
Viterbi algorithm for the implementation of the robust trellis quantizer. More precisely,
some aspects of the global communication system that is considered (only a trellis source



72
Study of a Suboptimum VLSI Architecture for Joint Source-Channel Trellis

Coding

coder-decoder pair) make us realize that the Viterbi algorithm may not result in the most
e�cient trellis search for our application. After a brief survey on suboptimum trellis search
algorithms (section 4.3), we �nally show in section 4.4 that the use of the M algorithm
allows an important reduction in the system's hardware complexity while the overall
system performance is maintained very close to that of the optimum system.

4.1 Architectural Issues of the Viterbi Algorithm

The aim of this section is to present the Viterbi algorithm in an architectural context.
Di�erent aspects of its hardware architectures such as operation, storage requirements,
computational load, latency and measures for increasing its performance are outlined.
This way, an assessement of the weak points of the algorithm can be done with respect
to the system's overall performance so that alternative solutions can be proposed. In
addition, by understanding this algorithm, the operation of suboptimum trellis searches
can be elucidated more easily and the algorithm which is best suited to our needs can be
selected.

4.1.1 The Viterbi Algorithm

The Viterbi Algorithm (VA) �nds the best path in a trellis by calculating a measure of
similarity, or distance, between a received sequence (pixels of an image or channel symbols)
and all the trellis paths entering each state [43, 114]. This measure of similarity is called
the path metric. The algorithm reduces the computational load by taking advantage of
the trellis structure. When two paths enter the same state, the one having the best path
metric is chosen; this path is called the surviving path of the state. There is a surviving
path associated to each trellis state. The early rejection of the unlikely paths reduces the
decoding complexity.

The algorithm can be divided into two main operations:

1. Path metric updating

2. Survivor memory management

During the path metric updating operation, the selection of the branches that create
the surviving path arriving to each state is accomplished. This is done in the way described
in �gure 4.1 for a 4-state trellis. At every time step k, a path metric PMk

i is assigned to
each trellis state i (i = 0 � � � 2K�1). In order to calculate the new path metric of state j at
time k+1, the branch metric BMk+1

i!j connecting state i at time k to state j at time k+1

is computed and added to the path metric PMk
i . In the �gure there are two branches
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arriving to each state, thus, the new path metric of state j is found by the recursion
expression

PMk+1
j = min

�
PMk

i +BMk+1
i!j ; PMk

l +BMk+1
l!j

�
j = 0 � � �2K�1 (4.1)

that is, the path metric of state j at time k+1 is given by the minimum value between the
addition of the branch metric connecting states i and j with the path metric of state j, and
the addition of the branch metric connecting states l and j with the path metric of state l.
This is done for all the trellis states. Equation 4.1 is referred to as the Add-Compare-Select
(ACS) iteration.

3
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0 0BM 
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Figure 4.1: Path metric updating in the Viterbi algorithm.

In order to �nd the best path in the trellis, the algorithm must know which are the
branches that constitute the surviving path arriving to each state. To do so, a decision
bit is generated at every ACS iteration, one decision bit per trellis state. The decision bits
generated at a given time instant k form a decision vector Vk. Conventionally, the decision
bit is labeled as

0 if the surviving path arriving to a given state comes by the upper branch

1 if the surviving path comes by the lower branch

This way the algorithm can trace, at every time instant, the evolution of the surviving
path arriving to each state.

Upon the processing of all the input symbols, the path metric updating operation is
terminated. Each trellis state Si has its own �nal path metric PMLTS

i and its own sequence
of decision bits ui. Then, the survivor memory management operation takes place.
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Starting from the trellis state having the best path metric, its decision bits are read in
backward direction from the last generated decision bit to the �rst one. The decision
bits allow the re-creation of the trellis states visited by the best surviving path in the
forward direction during the path metric updating operation and hence the output
binary sequence can be decoded.

Figure 4.2 shows an example of operation of the Viterbi algorithm for a source coding
application, where the branch metric is the squared error. At the beginning, the path
metrics are intialized as

PM0 = 0

PMi = 1 i = 1 � � �2K�1

so that the surviving paths are forced to come from a unique state. Each branch has its
associated branch metric and each trellis state has its own path metric and decision bit
as shown in the �gure. During the forward direction of the algorithm, that is, during the
path metric updating, at each time instant every path metric is computed and the
decision vectors are generated. The thin grey lines in �gure 4.2 indicate the trellis paths
that have been discarded during path metric updating.

When the entire source sequence has been processed, the best surviving path is traced
back through the trellis, as indicated by the bold grey line in the �gure, so that the binary
sequence associated to this path can be found. The binary sequence can be decoded by
taking the MSB of each state visited by the surviving path.

A very important feature of trellis search algorithms is the decoding depth of the trellis.
This feature states that all the surviving paths associated to each state are likely to merge
into a single path after a certain number L of trellis states have been visited during the
survivor memory management operation. In the �gure, the decoding depth is L = 2
and is indicated by the bold lines steming from each state at k = 5 in backward direction.
In other words, each time the survivor memory management operation has processed L
decision vectors, it is very likely that the surviving paths at time k = k � L come from
the same state, and for k < k�L, the segment of the 2K�1 surviving paths are identical.
As a result, the survivor memory management operation can start from any trellis
state and be sure that the decoded bit at k = k�L is part of the �nal decoded sequence.
Moreover, this feature allows the survivor decoding operation to be performed before the
complete path metric updating operation is achieved, and hence, the latency of the
algorithm can be reduced. Typically, the length of the decoding depth is [85]

L � 6 �K (4.2)
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Figure 4.2: Operation example of the Viterbi algorithm.
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In order to design hardware architectures for the Viterbi algorithm, the usual approach
is to divide its implementation into three main blocks, the branch metric unit (BMU),
the Add-Compare-Select unit (ACSU) and the survivor memory unit (SMU), as
indicated in �gure 4.3. As the name suggests, the ACS unit performs the ACS recursion
(equation (4.1)) and the SMU unit performs the surivivor memory management operation.
Since the branch metric unit was already explained in the previous Chapter, only the ACS
unit and SMU unit will be discussed in the reminder of this section.

k+1

PMk

Vk+1
u

k+1

BM sequence

metric
branch

x
k+1

metric
path

decision
vector

sequence
input

BMU ACSU SMU
decoded

Figure 4.3: Block diagram of the Viterbi decoder.

4.1.2 The Add-Compare-Select Unit

The basic processing element of the Add-Compare-Select unit is presented in �gure 4.4.
This simple structure performs exactly the operation of equation 4.1. In spite of the
simplicity of the basic processor, high-speed implementations of the Viterbi algorithm
are di�cult because the ACS operation contains a feedback loop which is non-linear and
inherently serial in nature due to the data dependency of the recursion [84]. Since path
metrics of time k depend on previous path metrics, a limit on the processing rate of
the Viterbi algorithm is imposed since the use of parallellism and pipelining is of little
help. Consequently, the ACS recursion is the critical path and bottleneck of the Viterbi
algorithm.

The logical solution to this data dependency problem is the use of full parallel archi-
tectures where a single processing element is reserved to the path metric updating of a
single state. Nevertheless, the problem that arises with this new approach is the arrange-
ment and layout design of the ACS unit since the data dependency a�ects the required
interprocessor communication. As a result, a trade o� throughput-complexity has to be
done.

A lot of work has been dedicated to the optimization of the interprocessor communica-
tion; however, the resulting hardware architectures are so complex that they are limited
to constraint lengths in the order of K = 7. Di�erent approaches have been proposed to
design e�cient architectures for the ACS unit. For a detailed treatement on this subject,
the reader is referred to [19, 39, 40, 53, 75, 84, 90, 100, 109].
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4.1.3 Survivor Memory Management

The two most important methods to perform the survivor memory management in Viterbi
decoders are:

� The Register Exchange algorithm and

� The Trace-Back algorithm

Each approach has its advantages and disadvantages; thus, before deciding which ap-
proach will be used, a careful study must be done so as to know which parameters are
of primary importance: high throughput, latency, storage density, storage requirements,
circuit area and wiring, power consumption, etc.

4.1.3.1 Register Exchange Algorithm

The Register Exchange algorithm (RE) is the most straightforward method to manage the
decision vectors produced during the path metric updating operation [29]. This method
consists in storing in a bank of registers the L most recent decision bits of the surviving
path corresponding to a given state. The bank of registers is interconnected in tha same
manner as the structure of the trellis diagram, as shown in �gure 4.5 for a 4-state trellis.
Each row in the bank of registers contains the surviving path of its corresponding state,
that is to say, the �rst row is assigned to state 0, the second one to state 1 and so on. For
each new decision vector generated by the ACS unit, the register contents are interchanged
according to the decision bit controlling the multiplexers of each row in the register array;
then, the new decision vector is inserted at the rightmost column of the register bank and
the oldest bit coming out of the array is the decoded bit. Since the decoding depth of the
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trellis is respected, the surviving paths merge with high probability and hence the oldest
decision bit of any state can be chosen as the decoded bit.
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Figure 4.5: Register Exchange architecture.

The main advantage of this architecture is its small latency. After L cycles of the
survivor memory management operation, the architecture is able to deliver the decoded
sequence at a throughput rate that is matched to the rate at which the ACS unit delivers
new decision vectors. Another advantage of this architecture is the regularity and simplic-
ity of the processing elements (a register and a multiplexer). However, it is clear that when
the number of trellis states is large, this architecture becomes impractical due to the poor
density of storage and the large area required to interconnect the processing elements. In
addition, since the registers in the array are updated at every cycle, the power dissipa-
tion of this architecture is quite large. Consequently, register exchange architectures are
attractive only when the size of the trellis is small (K � 4).

4.1.3.2 Trace-Back Algorithm

In the Trace-Back algorithm (TB), the decision bits generated by the ACS unit at each
processing interval act as pointers to the visited states of the surviving paths [90]. The
principle of operation is very simple and is the �natural� way of decoding the output
sequence from the decision vectors. The idea underlying the trace-back operation consists
in the utilization of the decision bits to �nd the ancestor states of the best surviving path.
More precisely, the trellis state visited by the surviving path at time k, together with its
decision bit, serve to �nd the ancestor state visited by the surviving path at time k � 1.
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This way, all the trellis states visited by the surviving path can be traced back in time and
thus, the decoded sequence can be found.

Figure 4.6 presents the hardware structure that implements the trace-back algorithm
for the example of �gure 4.2. During the path metric updating operation, the decision
vectors generated by the ACS unit are stored in the trace back memory at the address
given by time index k. Once the trace back memory has been �lled in (in our example,
at k = 5), the state having the best path metric (01 state) is stored in the shift register
and the trace back memory is read in backward direction, starting from the last decision
vector (at k = 5). Then, the multiplexer selects the decision bit corresponding to the
contents of the shift register (1), the shift register is shifted one position to the left and
the decision bit is appended at the rightmost position of the register. This way, the visited
state at time k = 4 is found (11 state). At the next processing cycle, the decision vector
of time k = 4 is retrieved from memory, the multiplexer selects the decision bit according
to the shift register value and this decision bit is inserted into the shift register such that
the visited state of time k = 3 is found (11 state). This procedure is continued until the
entire trace back memory is read. During the trace back operation, the output bit of the
shift register (the MSB of the visited states) is stored into a LIFO so that the decoded
sequence can be arranged in reverse order as they were generated by the ACS unit. The
grey boxes of the trace-back memory in the �gure indicate the decision bits selected during
the trace-back operation.

The main advantages of the TB algorithm are the simplicity of operation, low power
consumption and the large storage density since we can use RAMs to store the decision
vectors. As a consequence, this algorithm is specially attractive for trellises with large
number of states.

On the other hand, the main drawback of this approach is the decoding delay since it
has to wait for all the received sequence to be processed by the ACS unit before starting
the trace-back operation. Nevertheless, thanks to the decoding depth property of the VA,
we can use a trace back memory of length L to perform the trace back procedure. This
way, the storage requirements and the decoding delay may be reduced. However, the
problem that arises with such a hardware implementation is that only one bit is decoded
each time a trace back operation of length L is accomplished. In addition, we have to take
into account that during the trace back procedure more decision vectors are created by
the ACS unit, which need to be stored. Clearly, the architecture has problems of storage
management, read/write con�icts and inter-symbol decoding because there is a gap of L
cycles between successive decoded bits.

As in the case of the hardware implementation of the ACS unit, a lot of hardware
structures based on the TB algorithm have been proposed. These architectures attempt
to solve the problems described above. In appendix A, the most important methods
to improve the hardware implentation of the trace-back algorithm are highlighted. The
unfamiliarized reader is encouraged to take a look at these architectures since in Chapter
5 we will present some architectures that are based on the same approaches.
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Figure 4.6: Operation Example of the Trace-Back Algorithm.
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4.2 Quest for a Suboptimum Trellis Search Algorithm

In Chapter 2 it was shown that the use of the Viterbi algorithm in JSCTC allowed us to
attain an overall performance that is superior to that of a tandem system composed of a
trellis quantizer and a convolutional code. Nevertheless, notice that this superiority was
achieved for noisy channel conditions and for large values of the trellis constraint length. In
general, the larger the constraint length of the trellis, the better the overall performance.
This is due to the fact that when the constraint length is large, the reproduction codebook
is richer, with the result that the reproduction codewords are better adapted to the
statistical distribution of the source.

In the previous section, the hardware implementation of the Viterbi algorithm was dis-
cussed. Clearly, the complexity of this algorithm grows exponentially with the constraint
length K. For instance, at each processing interval, the VA must compute

� 2K branch metrics

� 2K�1 ACS operations which consist in 2K additions and 2K�1 comparisons

In addition, the minimum storage requirements are L � 2K�1 decision bits. As a result,
the primary di�culty with Viterbi JSCTC is that the proximity to the OPTA curve is
not achievable in practice because only small constraint length trellis quantizers can be
used. In addition, it is well known that in source coding applications, eventhough many
states are required, only a few paths need to be pursued [2, 4, 8, 51, 79]; that is, it is
possible to obtain source codes with an excellent performance even if the search through
the trellis is not the optimum one [80, 81, 87, 110]. Consequently, it is clear that the
amount of computations of the Viterbi algorithm is not always needed and it may lead to
low-performance JSCTC systems because of this complexity constraint.

On the other hand, in the context of JSCTC, �nding the least distortion path at the
encoder end is not very helpfull since that path will not be entirely reconstructed at the
decoder end since the transmission system lacks of a channel correction scheme. In other
words, the performance obtained by the system does not deserve the e�ort employed to
�nd the optimum path. This means that the Viterbi algorithm still performs 2K multipli-
cations and additions per input symbol xk, some of which are wasted e�ort. Consequently,
it is desirable to have a search procedure whose encoding e�ort allows a certain increase
in the number of trellis states so that the overall performance can be increased because
the reproduction codebook is richer. This way, for low channel SNR, the abscence of a
channel protection scheme is substituted by a richer reproduction codebook which, in
addition to the joint source-channel codebook optimization, permits the decoder to resist
the distortion introduced by the transmission channel.

Sequential coding has come to be an attractive alternative to the Viterbi algorithm
[7]. The decoding e�ort of sequential coding is essentially independent of the constraint
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length and thus larger trellises can be used. This reduction in hardware complexity can
lead to the design of more e�cient JSCTC systems.

It is convenient to de�ne the features that are general to all the search algorithms. As
indicated earlier, the aim of every search algorithm is to �nd a path with the best metric.
In a general way, the search process begins at a root state and continues until some (or all)
path(s) reach(es) the decoding depth L. At this point, the algorithm selects the best path
and releases the oldest branch of this path as output. The search process resumes until
some path again reaches L branches; then, the best path is selected and its oldest branch
is released as output. The procedure continues inde�nitely until all the input sequence
have been coded. As in the case of the VA, a path metric is associated to every path in
the trellis.

All the algorithms peform the following steps to �nd the minimum metric path:

1. Path Extension: The algorithm extends one branch at each time instant k in a
process which includes:

(a) computing or retrieving the codeword symbols associated to the branch,

(b) fetching the input symbol corresponding to the time instant k (source symbols
to be encoded or channel symbols to be decoded)

(c) calculating the metric increment or branch metric

(d) updating the new path metric for that path together with its length and ter-
minal state.

2. Ambiguity Check: The algorithm checks if two paths diverge and then remerge to
a same state. In this case, the path having the best path metric is retained because
the other path will never become the best path. As a result, it is useless to keep
retaining this path. This will be explained in more detail in the next chapter.

3. Path Deletion: The algorithm deletes an entire path. The deletion occurs whenever
the numbre of paths stored exceeds a given value or when a path fails an ambiguity
check.

4. Release Output Symbol: The algorithm releases as output the oldest symbol of
the best path.

In the case of the Viterbi algorithm, the �rst three steps are performed by the ACS
and branch metric units described above. Speci�cally, the �rst three items of the path
extension are done at the branch metric unit whereas the last step as well as the ambiguity
check and path deletion are inherently performed in the ACS unit. The fact that the ACS
unit selects one path arriving to each state out of two, makes the path deletion to be
performed automatically. In addition, thanks to the decoding depth L, the ambiguity
check is saved, it does not need to be performed by the Viterbi decoder. Finally, the
release output symbol step is performed by the survivor memory unit. Notice that it is
possible to release a block of output symbols at once if the decoding depth is respected.
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4.3 Classi�cation of the Trellis Search Algorithms

There are several ways of classifying trellis search algorithms. One way of classifying
the algorithms is by knowing whether they need sorting operations or not. Yet, a more
accurate classi�cation of the algorithms is by the way they perform the extension and
search through the trellis. In this way, trellis search algorithms fall into three categories
[7]:

1. Metric-�rst: In this class, the contender paths are ranked according to its metric
and only the path having the best metric is extended and explored.

2. Depth-�rst: These algorithms search along a single promising path until its metric
falls below a discard criterion. In that case, the trellis is backtracked to explore
alternative branches. Like in the metric-�rst class, in depth-�rst algorithms only
one paths is explored at a time.

3. Breadth-�rst: In this case, all contending paths are extended during a processing
interval and pruned according to a discard criterion based on the metric [8].

There are several trellis search algorithms existing in the literature. The reader is
referred to [6, 7, 26, 54, 96] for a deeper insight into those algorithms. Only one example
of each search class will be given here.

4.3.1 Metric-�rst example: The Stack Algorithm

The Stack algorithm is a member of the metric-�rst trellis search algorithms [3, 59]. In
this algorithm, an ordered list or stack of previously examined paths of di�erent lengths
is kept in storage. Each stack entry contains a path together with its metric; the path
with the smallest (or largest) metric is placed at the top of the list and the others are
placed in order of increasing (or decreasing) metric. At each decoding step, the top path
in the stack is extended by computing the branch metrics of its 2 succeeding branches
and adding these to the metric of the top path to form 2 new paths. The top path is
deleted from the stack, its 2 succesors are inserted, and the stack is rearranged in order
of increasing (decreasing) metric values. When the top path in the stack is at the end of
the trellis, the algorithm terminates.
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The steps of the stack algorithm are:

1. Load the stack with the origin state in the tree, whose metric is taken to be zero

2. Compute the metrics of the successors of the top path in the stack

3. Delete the top path from the stack

4. Insert the new paths in the stack, rearrange the stack in order of increasing (de-
creasing) metric values and retain only the best S paths

5. If the top path in the stack ends at a teminal state in the tree, stop. Otherwise,
return to step 2

When the algorithm terminates, the top path in the stack is taken as the decoded
sequence.

4.3.2 Depth-�rst example: The Fano Algorithm

When the stack algorithm is working on a particular partial path that it considers is not
likely to be part of the correct path (i.e. when the metric of the partial path is inferior to
the metric of one or other partial paths in the stack) the algorithm jumps to the partial
path that appears to be the one most likely to grow into the correct path.

In the Fano algorithm [24, 35], when a particular path is decided to be abandoned, a
di�erent approach is taken. Rather than jump to a completely di�erent path, the algorithm
�backtracks� in the trellis by removing the most recently appended branch from the path.
The algorithm then examines the alternative branches that could take the place of the
one just removed.

The Fano algorithm stores only the path from the initial state S0 to the current state
Sk, so it cannot use comparisons with other paths to help decide what to do with the
current working path. Rather than jumping from state to state looking for a better path,
as in the stack algorithm, the Fano algorithm must decide if the current path is good
enough to continue building the path. This decision is accomplished by comparing the
new path metric to a threshold. If this metric is better than the threshold, the algorithm
moves forward to the corresponding new branch to reach the new working state Sk+1. If
the new path metric is not better than the threshold, the algorithm moves backwards to
the state Sk leading to the present state Sk+1. This eliminates the need for storing the
path metrics of previously examined states. Nevertheless, some states are visited more
than once and in this case their path metrics must be recomputed.

If no path can be found whose path metric is better than the threshold, the threshold
is lowered and the decoder moves forward again and tries to keep moving forward with
this lower threshold. Each time a given state is revisited in the forward direction, the
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threshold is lower than on the previous visit to that same state. This prevents in�nite
looping in the algorithm and the decoder eventually reaches the end of the tree, at which
point the algorithm terminates. We can see that this algorithm is very cumbersome for
hardware implementations.

4.3.3 Breadth-�rst example: The M algorithm

As stated above, in the M algorithm [60], paths are extended at the same time and the
number of retained paths is �xed: only the best M paths are retained at every processing
interval. In the M algorithm the search is synchronous, that is, all paths have the same
length. Notice that the Viterbi algorithm falls into this class of trellis search algorithms. At
every time instant, the Viterbi algorithm extends 2K new paths by the branch metric unit
and the ACS unit performs the selection and deletion of 2K�1 paths; when the decoding
depth is reached, the oldest branch of the best path is released as output.

In its speci�c operation, the M algorithm moves forward by extending the M paths it
has retained to form 2M new paths. All the terminal branches are compared to the input
data corresponding to this depth, the branch metrics are computed and the M poorest
paths are deleted. The heart of the algorithm is a sorting algorithm which serves to delete
these paths.

The steps of the M algorithm are:

1. Obtain departure states

2. Perform ambiguity check and release output symbol

3. Extend 2 paths from each retained path and save them in a list

4. Order the list to �nd the best M paths

5. Delete the remaining paths. Go to step 2

4.3.4 Algorithm Selection

In VLSI implementations of trellis coding techniques, algorithms such as Fano and stack
are seldom used because the computational load is not largely reduced as compared to
the Viterbi algoritm [7]. In addition, as we have seen, they present a random computing
time which make very di�cult their hardware implementation. As a result, these algo-
rithms are rather interesting for software applications. To our knowledge, there has never
been reported hardware implementations of the Fano algorithm. For the stack algorithm,
however, recently, a VLSI architecture for fast stack decoders was proposed where the
operation of sorting the stack is alleviated by using a systolic priority queue that delivers
the best path in �xed periods of time [66].
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Breadth-�rst algorithms, on the other hand, perform a constant number of computa-
tions per cycle. This regularity of operations and inherent parallelism renders the Viterbi
and M algorithm very suitable for VLSI implementations and are therefore of greater
interest here. It must be pointed out that in [101], another breadth-�rst trellis decod-
ing algorithm, called the T algorithm, was introduced for application to sequence esti-
mation. The decoding algorithm maintains a variable number of paths which depends
on the channel noise encountered. This algorithm exhibits an error-rate versus average-
computational-complexity behavior that is much superior to the Viterbi algorithm and
which also improves the M algorithm. However, because of the adaptive computational
load, a bu�er for received samples is required and the computing time is also variable.
Consequently, the algorithm that we have selected for JSCTC is the M algorithm.

4.4 JSCTC with the M Algorithm

The JSCTC scheme implemented with the M algorithm was used for the transmission of
di�erent sources through a BSC channel. In the following, simulation results are presented
and compared to the same JSCTC scheme but performed with the Viterbi algorithm. The
comparison is made in terms of overall performance and computational complexity.

4.4.1 Computational Load Comparison with the VA

The Computational Load (CL) of the VA and M algorithm (MA) is located mostly in the
branch metric computation and in the path metric updating. This computational load
can be expressed as

CL(V A) = 2K multiplications + 2K additions (branch metrics)

+2K � 1 ACS operations (4.3)

CL(MA) = 2M multiplications + 2M additions (branch metrics)

+2Madditions (path metric updating)

+[(log2M)2 + log2M ]M sorting operations1 (4.4)

If the ACS operation, multiplications and comparison elements are transformed into
addition operations, we can have a more accurate estimation of the reduction in the
computational load achieved by the M algorithm. Table 4.1 shows an estimation in terms

1This expression for the sorting operation was taken from [82] where a hardware implementation of
the M algorithm is proposed. It denotes the number of comparison elements required by a Batcher's
odd-even sorting network [11]. In the next Chapter we will show that this hardware complexity can be
reduced.



4.4 JSCTC with the M Algorithm 87

of addition operations of the computational load per input symbol of the Viterbi and
M algorithms. We have assumed that one multiplication, one ACS operation and one
comparison element correspond to 8, 3 and 2 addition operations respectively.

Table 4.1: Estimation of the computational load per input symbol of the Viterbi and M
algorithms.

Viterbi M=8 M=16 M=32
K additionss additions additions additions
5 336 352 960 2560
6 672 352 960 2560
7 1344 352 960 2560
8 2688 352 960 2560
9 5378 352 960 2560
10 10752 352 960 2560

We can see that while the M algorithm is independent of the trellis constraint length,
the Viterbi algorithm has an exponential dependency. Moreover, as we will see in the next
section, this signi�cant reduction of the computational load (see for instance, the last row
of table 4.1) does not introduce considerable performance degradations.

A thorougher hardware complexity comparison, this time considering new ways of
implementing the M -path selection and the survivor memory management will be made
in the next chapter.

4.4.2 Peformance Comparison with the VA

Figure 4.7 and 4.8 show the performance of the suboptimum JSCTC scheme for a zero-
mean, unit variance gaussian source and a �rst-order gauss markov source with autoregres-
sion coe�cient 0.9, respectively. Both sources were transmitted through a BSC channel
with the error probability p evenly distributed from p = 0 to p = 0:5.

In the case of the gaussian source, the JSCTC was performed with a K = 5 constraint
length trellis (16 states) and only two surviving paths were retained at each trellis stage.
We can see from the �gure that there is practically no performance degradation between
the optimum and suboptimum trellis searches, and however, the computational load was
reduced by a factor of 7.
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Figure 4.7: Suboptimum robust trellis quantizer performance on gaussian sources.

Regarding the �rst order gauss-markov source, the suboptimum JSCTC scheme was
performed with aK = 10 constraint length coder and only 8 surviving paths were retained.
Two important aspects can be pointed out from this �gure. First, with the same com-
putational load (VA, K = 5 curve), the M algorithm outperforms the Viterbi quantizer
because the reproduction codebook is larger. Second, with a reduction of the computa-
tional load by a factor of 31, a performance degradation of 0:3 dB is introduced by the
M algorithm. Hence, the M algorithm o�ers an excellent trade o� performance-hardware
complexity.
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Figure 4.8: Suboptimum robust trellis quantizer performance on �rst-order gauss-markov
sources.

In the following, the Viterbi and M algorithms are compared for the transmission of
the Lenna image through an AWGN channel. Figure 4.9 presents the performance of
JSCTC with the VA and MA, in terms of the SQR as a function of the channel SNR. We
can see that for the same trellis constraint length K = 10, the performance degradation
introduced by the M algorithm is not very important, specially for our region of interest,
that is, when the transmission channel is noisy.

Table 4.2 shows the degradation in dB introduced by this suboptimum trellis search
with respect to the Viterbi JSCTC. We can see from this table that if the computational
load of the robust trellis quantizer is reduced in a factor of 11 (M=16), the maximum
performance degradation at low channel SNR is of 0:2 dB whereas for large SNR the
di�erence attains 0:33 dB. On the other hand, when the computational load is reduced
31 times (M=8), the maximum performance degradation is 0:4dB at low channel SNR
and 0:7 dB for large SNR. Finally, by reducing the computational load 90 times (M=4),
the maximum distortion obtained is 0:83 dB and for large SNR the degradation reaches
1:3 dB. Notice that even the suboptimum JSCTC scheme with M=4 surviving paths
outperforms a Viterbi quantizer with 64 states; as indicated earlier, this is due to the
fact that the reproduction codebook of a K = 10 trellis coder has a larger number of
codewords which are better adapted to the statistical distribution of the source.

To better elucidate this last remark, �gure 4.10 presents the performance of the opti-
mum and suboptimum trellis searches when the trellis quantizers have the same compu-
tational load. Figure 4.10(a) shows the performance of a K = 5 Viterbi quantizer and a
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Figure 4.9: SQR vs SNR performance of the Viterbi and M algorithm for the transmission of
the Lenna image.

Table 4.2: Performance degradation introduced by the suboptimum trellis search.
SNR Viterbi M=16 M=8 M=4

SQR (dB) SQR (dB) � SQR SQR (dB) � SQR SQR (dB) � SQR
0 9:05 8:85 0:2 8:71 0:34 8:5 0:55
1 10:29 10:08 0:21 9:95 0:34 9:68 0:61
2 11:61 11:46 0:15 11:24 0:37 10:79 0:83
3 12:90 12:89 0:01 12:50 0:40 12:23 0:67
4 14:24 14:20 0:04 13:94 0:30 13:52 0:72
5 15:67 15:44 0:23 15:13 0:50 14:72 0:95
6 16:69 16:64 0:05 16:26 0:43 15:76 0:93
7 17:63 17:45 0:18 16:99 0:64 16:33 1:28
8 18:06 17:86 0:20 17:42 0:64 16:73 1:33
9 18:24 17:91 0:33 17:54 0:70 16:97 1:27
10 18:23 18:06 0:17 17:65 0:58 17:02 1:21
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Figure 4.10: SQR vs SNr performance of the Viterbi and M algorithm with the same hardware
complexity.

K = 10, M = 8 M quantizer. Notice that for the same computational load, the perfor-
mance obtained with the M quantizer is much better than that of the Viterbi quantizer
(gains from 1:7 to 2:9 dB). On the other hand, with a K = 6 Viterbi quantizer and
K = 10, M = 16 M quantizer, gains from 1:2 to 2:2 dB are obtained (see �gure 4.10(b)).

It can be argued that channel mismatch can have a prejudicial in�uence on the sub-
optimum trellis search. Actually, this can be certainly the case since the reproduction
codebook may not be well designed. Nonetheless, simulation results strongly suggest that
channel mismatch between the codebook design and the quantization operation do not
introduce large distortions, at least when the transmission channel is noisy, as shown in
�gure 4.11 for trellis quantizers whose codebooks were designed with channel estimations
of 0, 3 and 10 dB. A source was quantized with these three codebooks and transmitted
through the AWGN channel at di�erent SNR values. We can see that when the transmis-
sion channel is noisy, the degradation in performance introduced by this channel mismatch
is not important (0:2 dB) except, of course, for the extreme case where the codebook has
been designed for a channel SNR=10 dB, meaning that the transmission is considered
as noiseless and obviously, this is not the case!! As a result, we can conclude that the
robustness of this suboptimum trellis quantizer is quite good.
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Figure 4.11: E�ects of channel mismatch in suboptimum trellis quantization.

Finally, di�erent Lenna images are shown from �gure 4.12 to 4.15 which were quantized
with the Viterbi and M algorithms. The images were transmitted through an AWGN
channel at SNR =0 and 10dB. In the �rst two �gures (4.12 and 4.13), a comparison is
made between JSCTC coders of the same constriant length (K = 10) but with di�erent
hardware complexity. Notice that the image quality of the reconstructed images that were
quantized with the M algorithm are very close to that of the Viterbi algorithm, eventhough
the hardware complexity was largely reduced. Finally, the last two �gures compare the
Viterbi and M algorithm for quantizers with the same hardware complexity. It must be
noted the signi�cant improvement of the reconstructed images when coded with the M
algorithm.
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(a) original image (b) VA; K = 10 constraint length

(c) MA; K = 10,M = 16 (d) MA; K = 10,M = 8

Figure 4.12: Overall performance with reduced computational load at SNR=10 dB
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(a) VA; K = 10 constraint length (b) MA; K = 10,M = 16

(c) MA; K = 10,M = 8 (d) MA; K = 10,M = 4

Figure 4.13: Overall performance with reduced computational load at SNR=0 dB
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(a) VA; K = 6 constraint length (b) MA; K = 10,M = 16

(c) VA; K = 5 constraint length (d) MA; K = 10,M = 8

Figure 4.14: JSCTC overall performance with similar computational load at SNR=10 dB
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(a) VA; K = 6 constraint length (b) MA; K = 10,M = 16

(c) VA; K = 5 constraint length (d) MA; K = 10,M = 8

Figure 4.15: JSCTC overall performance with similar computational load at SNR=0 dB
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4.5 Conclusions

We have presented a study of the performance of the JSCTC technique when a subopti-
mum trellis search algorithm is utilized. It was shown that the use of this suboptimum
search introduces very little distortion as compared to the optimum search, while the
computational complexity was largely reduced. This is due to the fact that the small
computational requirements of the M algorithm allows the use or larger trellises. As a
result, the reproduction codebook is richer and better adapted to the source statistics.
This way, the channel optimized codebook, in addition to the use of larger trellises sub-
stitute the utilization of a channel protection scheme. Simulation results were presented
were all these arguments were corroborated. The next step will consist in the hardware
implementation of the M algorithm. This will be treated in the next Chapter.





Chapter 5

VLSI Architectures for the M

Algorithm

In the last chapter, we showed how, in source coding applications, the M algorithm may
yield more e�cient schemes than the Viterbi algorithm. In addition, the M algorithm was
also selected because of its regularity and inherent parallelism.

In addition to source coding, another application where the M algorithm has probed its
e�ciency is sequence estimation for intersymbol interference [116]. When the transmission
channel is bandlimited (as it is almost always the case), the transmitted sequence is
dispersed or spread, causing the signal pulses to overlap. As a result, the estimation of a
given symbol does not depend only on the symbol itself but also on the last transmitted
symbols. This phenomena can be seen as an unwanted coding where the channel acts as a
convolutional coder that receives K transmitted symbols and generates a waveform that
is a mixture of these symbols. Thus, a trellis search algorithm can be used to estimate
the transmitted sequence. In cases where the channel bandwidth is very limited, symbol
overlapping attains several trasmitted symbols; hence, an e�ective Viterbi algorithm can
be very complex. For this reason, a suboptimum search like the M algorithm can lead to
more e�cient sequence estimations than the Viterbi algorithm [10, 68, 74, 92, 105].

In this Chapter, VLSI architectures are presented for the M algorithm. A thorough
study of this algorithm is presented in order to elucidate its working operation and be able
to propose e�cient hardware architectures that take advantage of the algorithm's features.
The outline of the chapter is the following. In section 5.1 the M algorithm is presented
in a more detailed fashion. The di�erent characteristics of each part of the algorithm
are highlighted. Speci�cally, an important feature of the path extension stage is pointed
out which allows a better treatment of the ambiguity check stage described in section
4.2 of the previous chapter. Then, section 5.2 presents a hardware study of the sorting
operation, the main component for selecting the best M paths. This section comprises a
state of the art in sorting architectures employed to implement the M algorithm and three
new approaches to select the M best paths are highlighted. In section 5.3, a new method
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for the survivor memory management is proposed. This method is based on the Trace-
Back technique employed in the survivor memory management of Viterbi decoders, but
modi�ed to account for the M algorithm's characeristics. Section 5.4 gives a more re�ned
hardware comparison between the Viterbi and M algorithms. This comparison is made
in terms of hardware ressources, storage requirements, power consumption and latency.
Finally, a hardware implementation of the M algorithm, implemented at the COMELEC
department is outlined in section 5.5.

It must be pointed out that to our knowledge, no hardware implementations of the M
algorithm employing our ideas concerning the sorting operation and the trace back-based
survivor memory management have ever been reported in the litterature.

5.1 The M Algorithm revisited

Section 4.3 on page 83 described the functioning of the M algorithm. A more detailed
description of the algorithm is given for a better understanding of its operation. In this
manner, we can de�ne its four main steps as follows:

1. Extension: the M surviving paths at time k are extended to their two successors
at time k+1. For these new 2M paths, their corresponding path metric and decision
words are also computed.

2. Rejection of merging paths: It is likely that two distinct paths merge at time
k + 1. This means that for the remaining processing intervals these two paths will
share the same branch metrics, paths metrics and decision words. If these merging
paths are not eliminated, the e�ective number of explored paths in the trellis is
reduced and the performance of the algorithm may decrease. Therefore, when two
paths merge into a single state, the one with the largest metric must be discarded.
This is equivalent to the ACS operation in the Viterbi algorithm.

3. Selection of the best M paths: the 2M paths are sorted and theM paths having
the smallest path metrics are retained for the next extension step.

4. Decoding of output sequence: when the decoding depth L is reached, the oldest
bit of the best metric path is released as ouput.

Step 2 and 3 imply the use of sorting circuits and, as we will see, the hardware com-
plexity of sorting circuits can be very large. As a result, in practice the M algorithm is
advantageous only when

M << 2K�1 (5.1)
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that is, in the cases where the number of surviving paths is much smaller than the number
of trellis states.

An example of operation of the M algorithm is presented in �gure 5.1 for an 8-state
trellis andM = 4 surviving paths. The algorithm starts with an initilization process where
a root node (state 000) is extended to generate its two successors (states 000 and 100).
Then, the branch metrics (not shown in the �gure) are computed and the path metrics are
updated. This initialization continues until M = 4 surviving paths are generated (time
k = 1). Upon the generation of the four surviving paths, at every time instant k, each
survivor is extended to its two successors, the branch metrics per succesor are computed
and the path metric updating is done as well as the selection of the 4 best paths. Each
state in the �gure has its associated path metrics at each time instant. The trellis branches
in grey color denote the discarded paths and the branches in black color are the surviving
paths. Notice that at time k = 6 there are two paths merging to state 000 and two paths
merging to the state 100. In this case, the rejection of merging paths step is executed.
The paths having the largest metrics are eliminated (path coming from state 000 and
arriving to state 000 with a 38 path metric, and path coming from state 001 and arriving
to state 100 with a 35 path metric). The algorithm continues in the usual way until all
the input sequence has been coded. Then, like in Viterbi decoding, starting from the state
which has the smallest metric, the surviving path corresponding to this state is traced
back and the decoded sequence is found. The surviving path is shown by the bold line
in the trellis diagram and its associated binary sequence is shown at the bottom of the
�gure.

In the same manner as in the Viterbi algorithm, the M algorithm can be divided into
two main operations: path metrics updating and selection, and survivor memory
management [47, 48]. The former operation consists in the computation of the branch
metrics and the selection of the M best paths, and the latter consists in the decoding of
the binary sequence u associated to the best path in the trellis. The advantage of this
division is that we can focus on each part of the algorithm separately and propose di�erent
approaches for each component.

The block diagram of the M algorithm is shown in �gure 5.2. In the path extension and
path metric updating block, the new 2M paths are generated together with their associated
states and decision bit. In the sorting and selection block, theM paths having the smallest
distortions are selected and the merging paths are detected and discarded. Once the best
M paths are selected, their decision bits feed the survivor memory management block for
sequence decoding.

Figure 5.3 shows the internal structure of the path extender. Let Z(k) be the set of
state labels associated to theM survivors of time k and Si(k) be the state label associated
to the ith survivor of time k. We can write this in the form

Z(k) = fSi(k)g0�i<M�1 (5.2)
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Figure 5.1: Operation example of the M algorithm.
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The state labels can be represented by the binary contents of the shift registers associated
to each survivor

Si(k) = (uik�1; u
i
k�2; � � � ; u

i
k�K+1)2 (5.3)

where the index 2 denotes binary representation.

During the extension operation, each state label Si(k) is extended to its two successors
of time k+1. These successors are Si

0(k+1) = (0; uik�1; � � � ; u
i
k�K+2)2 for the arrival of a 0

and Si
1(k+1) = (1; uik�1; � � � ; u

i
k�K+2)2 for the arrival of a 1. The 2M extended paths can

be clustered into two sets, Z0(k+1) and Z1(k+1), which contain the successors generated
with the arrival of a 0 and a 1 respectively, that is,

Z0(k + 1) = fSi
0(k + 1)g0�i<M�1 = f(0; uik�1; � � � ; u

i
k�K+2)2g0�i<M�1 (5.4)

Z1(k + 1) = fSi
1(k + 1)g0�i<M�1 = f(1; uik�1; � � � ; u

i
k�K+2)2g0�i<M�1 (5.5)

We can notice that

Z0(k)
\

Z1(k) = ; (5.6)

since the MSB of the state labels is di�erent in the two sets. This property will be de�ned
as Mutual independence of extended sets.

On the other hand, if Si(k) > Si+1(k) then

Si
0(k + 1) � Si+1

0 (k + 1) (5.7)

and

Si
1(k + 1) � Si+1

1 (k + 1) (5.8)

In words, if the state labels Z(k) associated to the M survivors of time k are in sorted
order, then the two sets, Z0(k+1) and Z1(k+1) will be in sorted order too. This property
will be denoted as State Label Sorting Conservation of Extended Paths. We will
see that these two properties allow a signi�cant reduction in the hardware complexity of
the sorting architecture.
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From a hardware architecture point of view, �gure 5.4 presents the di�erent operations
that the algorithm must perform at every processing interval. To describe these opera-
tions, consider the time instant from t = 6 to t = 7 of �gure 5.1. Each survivor has its
associated path metric and surviving path of lenght L. Notice that the three righmost bits
of each surviving path denote its associated state (read from right to left). The algorithm
begins by extending the four surviving paths to their two corresponding successors. This is
accomplished by appending a 1 and a 0 bit to the states associated to each surviving path
at the rightmost position (MSB). Then, the branch metrics of the new extended paths
are retrieved or computed and added to the path metric of each new extended path. This
way the path metrics of the eight new paths are updated. Next, the eight path metrics are
sorted so as to detect the best four paths. Notice that in this block the ambiguity check
or path merging deletion is done. Once all the paths are sorted in increasing order, the
�rst four paths are retained for the next processing interval. Finally, when the decoding
depth is attained, the oldest bit of the best surviving path is released as output (darkest
bit at the leftmost position of the best path in the �gure). This process is repeated until
all the input sequence has been coded.
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Figure 5.4: Hardware operations performed by the M algorithm at every trellis stage.

As we can see from this �rst discussion, the bulky part of the M algorithm resides in the
selection of the best M paths and in the survivor memory management. The complexity
of the path extension block is not important, except for the branch metric computation
which depends on the application and which was explained in chapter 4. In the following,
the main parts of the M algorithm are treated, namely, the sorting architecture and the
survivor memory management unit.
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5.2 The Sorting Architecture

The sorting operation is the heart of the path metric updating. Therefore, fast and regular
sorting algorithms are required in order for the M algorihtm to be implemented in VLSI
circuits. Sorting algorithms can be divided into two main classes: parallel sorting and
serial sorting [20, 46]. In the former, all the values to be sorted are processed together in
an interconnection network fashion; conversely, in the latter it is assumed that the values
arrive serially to the sorting circuit in such a way that the new value to sort is inserted in an
already ordered list. Obviously, the choice of the sorting algorithm depends on the target
application. If, for example, a parallel implementation of the M algorithm is required,
sorting networks result in the best solution. On the other hand, if the architecture were
to be implemented in programmable architectures such as FPGAs or DSP processors,
the logical solution is to employ serial sorting algorithms. In this section, only parallel
algorithms are considered.

We based our study of the sorting architecture in the Batcher's odd-even and bitonic
sorting networks [11]. The basic processing element of these networks is a comparison-
exchange element, as shown in �gure 5.5. It compares its two inputs and the largest input
is released according to the arrow head (H output) whereas the smallest input is released
by the upper output line (L output). At the end of this chapter, an FPGA implementation
is presented which employs a serial sorting algorithm [25]. In appendix B, a description of
the operation of the sorting networks employed in our work is presented. It is assumed that
the reader is familiarized with Batcher's sorting networks. Otherwise, it is recommended
to consult the appendix for a thorough explanation of these sorting structures.

Y

L

H

X

Figure 5.5: Comparison-exchange element for sorting networks.

Before starting the study of the sorting architectures, a description of the di�erent
ways the rejection of merging paths can be dealt with is presented.

5.2.1 Introduction of Path Merge Rejection within the Sorting
Circuit

As we saw in section 4.2, ambiguity check is a very important step towards the design
of high performance trellis search algorithms. In the M algorithm, the ambiguity check
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is crucial so that the full search capability of the algorithm can be pro�ted. The most
common ways of implementing the ambiguity check in the M algorithm are:

� State comparison: The states associated to the surviving paths are compared at
each stage of the trellis and whenever two paths have the same state (we say that a
path merging is produced), the one having the largest metric is discarded.

� Comparison of the oldest symbols: The paths whose branches di�er from that
of the best path at depth L are discarded. This way, initial divergence of the merging
paths is detected and rejected. This is illustrated in �gure 5.6. The survivors whose
surviving path passes by the dashed line must be discarded because if one of these
paths become the best path in the following trellis stages, its oldest bit will be
released as output causing con�icts in the generation of the decoded sequence.
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Figure 5.6: Merging paths during the construction of the surviving paths (M=3).

The second solution presents two main drawbacks. First, it must be pointed out that
this method introduces a lag of L symbols in rejecting the merging paths. The problem
that comes out is that during this interval, path merging is not tested. As a consequence,
merging paths can slip into the best M paths, discarding other paths that might have
become the overall best path. The full search capability is thus reduced. Moreover, this
problem can be important if the decoding depth is large.

The second disadvantage is that this approach can only be adopted for register-exchange-
like methods of the survivor memory management. Indeed, in order to compare the last
decision bits of all the surviving paths, these bits must be available always, and this can
only be accomplished by storing them in banks of registers (see �gure 5.4). As a result, this
method cannot be implemented in trace-back-based approaches for the survivor memory
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management since in this method only the path corresponding to the best survivor is
re-created. Therefore, in spite of its higher complexity, the state comparison method will
be utilized in this thesis to perform the path merging rejection.

Regarding the state comparison method, the �rst problem that arises is that the sorting
network is unable to handle the sorting and rejection operations simultaneously. Figure
5.7 shows an example of a M = 4 odd-even sorting network which has been modi�ed to
account for the path merging rejection. There are two kinds of information feeding the
sorting network, the state metrics and the state labels associated to each contender path.
Each comparison-exchage element compares the state labels of their corresponding inputs
and if these labels are the same, an 1-metric is assigned to the contender path having
the largest metric so that it goes down all along the sorting network. This way, the output
metrics are in sorted order and the best paths all have di�erent state labels. Notice that
an additional compare-exchange element is required to ensure the complete arrangement
of the output list, that is, to force the 1-metric contenders to be placed at the botton of
the sorting network. An additional sorting layer is thus required.
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Figure 5.7: Path merging rejection in odd-even sorting networks. 4-item structure.

The problem with this approach is that generalizations to higher number of surviving
paths is not straightforward. To illustrate this, �gure 5.8 shows an example of a sorting
network for M = 8 surviving paths. Notice that eventhough the output metrics are in
sorted order, the structure failed in the rejection of merging paths since there are two
survivors among the M best paths with the same state label. In addition, notice the
modi�cation that the sorting network su�ers in its last layer. Once again, this modi�cation
is to guarantee that the 1-metric paths descend to the bottom of the network.

In the following section, di�erent architectures that have been proposed to select the
best M paths, with a simultaneous rejection of merging paths are presented.
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Figure 5.8: Path merging rejection in odd-even sorting networks. 8-item structure.
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5.2.2 State of the Art in Sorting Architectures for the M Algo-
rithm.

Eventhough the M algorithm has proven its e�ectiveness in di�erent applications, very
few hardware implementations have been reported. The �rst hardware implementation
of a sequential encoder of speech utilizing the M algorithm is due to Anderson and Ho
[5]. The sorting algorithm used was the serial insertion technique (see appendix B). The
circuit was implemented with TTL (Transistor Transistor Logic) components (late 70's).

More recent reported work dates from the late 80's. Mohan and Sood [82] present a
multiprocessor architecture for VLSI implementation of the M algorithm. The sorting
algorithm used is Batcher's odd-even sorting network. In a very creative way, the sorting
network is substituted by a column of M processors and an interconnection newtwork.
Each processor performs the extension step, the computation of the branch metrics and
the updating of the state metrics. Then, to select the best paths, the processors and
the interconnection network are repeteadely used to simulate the stages of the sorting
network. The processors perform the corresponding comparisons and the interconnection
nerwork performs the corresponding switching operations to direct the di�erent metrics
to their corresponding processor for comparison. This is done in circular form, and by
changing the states of the switches in the interconnection network, a processor can read
from di�erent places. In this way, the interstage data transfer required within the sorting
network can be done using only M processors, as opposed to [(log2M)2 log2M ] �M for a
direct implementation. Nevertheless, it must be noticed that the interconnection networks
are also composed of comparators, mutliplexers, demultiplexers etc. which do not allow a
signi�cant reduction in the hardware complexity.

Simmons presents a series of papers where di�erent sorting algorithms are utilized
[102, 103, 104]. These architectures are based on a common underlying structure; only the
sorting methods di�er. The sorting algorithms employed are the bitonic sorting network
[11], odd-even transposition, insertion and weavesorting [96]. In order to alleviate the
hardware complexity and power consumption, the processing is done bit-serially. Yet,
there is a penalty in increased latency. In [102], a nonsorting VLSI structure is proposed.
Simmons noticed that the sorting operation and its associated complexity can be avoided
by using selection algorithms instead of sorting. This way, although the best M paths are
not delivered in sorted order, they are still selected. As a result, the circuit area is largely
reduced, meaning that larger trellises and larger values of M can be implemented on a
single chip.

Concerning the rejection of merging paths, Simmons proposes a solution to the problem
encountered in the comparison of the oldest symbols method by comparing the entire
surviving paths to that of the best survivor during the �rst L trellis stages. If an initial
divergence at any point in the trellis is followed by a remerging to a common state, a
rejection �ag is set and the remerging path is deleted. As we can see, this solution can
become more complex that the state comparison approach.
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On the other hand, Mohan and Sood describe a way of implementing an optimum path
merge rejection by using the state comparison method without modifying the structure
of the sorting network [82]. Figure 5.9 depicts their approach. The selection of the best
M paths is carried out according to two criteria. First, a sorting operation is performed
with respect to the state labels; then, a second sorting is done, this time with respect to
the path metrics. After the �rst sorting, it is guaranteed that the merging paths, if any,
are adjacent; then, the state labels of adjacent survivors are compared and an 1-metric
is assigned to the path with the largest metric. This way, after the second sorting, the
survivors with in�nite metric are placed in the lowest positions of the ordered lists and
the best M paths will all have di�erent state labels.

surviving

paths

M

contender
2M

order

2M
paths

in sorted
paths

Path

Rejection

Path

MetricMerging

SorterSorter

Path

Extension

State

Label

Figure 5.9: Mohan and Sood's approach for path merging rejection.

Notice that the hardware complexity of this approach su�ers no augmentation since
the same M -processor layer with the interconnection network are used for both sorting
operations. We must take into account, however, that eventhough this approach is opti-
mum and no hardware augmentation is required, the latency of the sorting operation is
doubled since two sorting operations are now performed. In the next sections new ways
of implementing the selection of the M best paths which improve both the hardware
complexity and the latency are presented.

5.2.3 First Method for Selecting the Best Paths: Path Merge De-
tectors

In section 5.2.1, we saw that the sorting network cannot manage path merging rejection
by itself. In this section we are going to study a way of modifying the sorting network so
that the selection of the best M paths and the rejection of merging paths can be carried
out on a single sorting operation.

We begin this discussion by remembering the mutual independence of extended
sets property described in section 5.1. It was shown that the extended paths could be
divided into two sets and only those extended paths that belong to the same set are likely
to become merging paths. As a result, it is useless to perform the test for path merging
rejection on the 2M-item list. Instead, this test can only be performed on each set of
the new extended paths as shown in �gure 5.10. This way, two M -item sorting networks
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performing path merging rejection are needed, together with a �nal 2M merging network
to sort all the 2M items1. We will see that this new approach can alleviate the hardware
requirements and the latency of the architecture.

Extension
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contenders

M

MSB = 0

contenders
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M-item

sorted

Path
list

M-item

M-item
sorted

list

merging network
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M-item

sorting network

M best

pathssorting network

Figure 5.10: Separation of the extended paths into two sets for path merging detection.

In this new approach, the comparison-exchange elements now become comparison-
exchange-rejection elements (CER) whose internal structure is shown in �gure 5.11(a).
They are composed of two comparators, one for metric comparison and the other for
merging detection. When the state labels associated to the input metrics are the same,
a saturation value ((111 � � �111)2) is assigned to the survivor with the largest metric.
Otherwise, the CER element behaves as a normal comparison-exchange element. It must
be pointed out that the complexity of the new CER element is not signi�cant (5 gates
per bit) and its latency can be neglected.
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Figure 5.11: Internal Structure of the new operators utilized in the sorting network. a)
comparison-exchange-saturation; b) merging rejection operator.

We saw in the previous paragraphs that by using comparison-exchange-rejection ele-
ments in the odd-even sorting network did not guarantee the simultaneous rejection of

1Refer to appendix B for de�nitions and di�erences between sorting and merging networks
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merging paths and the selection of the best ones. Therefore, in addition to the CER
elements, other operator, called merging rejection operator (MRO), is also needed to com-
pare those surviving paths who might never be compared during the sorting operation.
The merging rejection operator consists only of a state label comparator and a saturation
circuit as shown in �gure 5.11.b. This way, when the two state labels are the same, the
largest metric path is saturated to the (111 � � �111)2 metric. Notice that it must be already
known which survivor has the smallest metric before entering the MRO.

The new sorting network performing simultaneous sorting and path merge rejection is
presented in �gure 5.12 for a 4-item list. Notice that the merging rejection operators must
be carefully placed in the sorting network since not all the contender paths are compared
with each other within the network. For instance, it is possible that input In1 in the �gure
might never be compared to input In4 (in the case, for example, where In1 is the smallest
metric and In4 the largest one). A MRO is thus required between the L output of the
CER element 3 and the H output of the CER element 4. The arrow in the MRO indicates
the metric that is saturated if necessary. Accordingly, it is likely that the L output of CER
4 and 3 will never be compared (for example, when the L output of CER 3 is the input
In1 and the L output of CER 4 is the input In3 or In4). Hence, another MRO is needed
between these two outputs. In the same manner, a last MRO is required between the H
output of CER 3 and the H output of CER 4. Notice that the �nal comparison-exchange
element is still needed for the complet sorting of the list.
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Figure 5.12: Odd-even sorting network for M = 4 performing simultaneous sorting and path
merging rejection.
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In general, with this new con�guration of the sorting network, the merging networks
which constitute the sorting network need

M

2
� 1 (5.9)

additional comparison-exchange elements.

On the other hand, we can see that the placing of MROs is a combinatorial problem
that of how many combinations of two elements are possible in a list of M items. Hence,
the total number of MROs in a M -survivor merging network is

�
M

2

�
=
M

2
� (M � 1) (5.10)

For example, for the 4-metric list of �gure 5.12, six MROs are needed. However, because
the CER elements act also as MRO, only 3 additional operators are required. In general,
a M -item merging network needs

log2
M

2
�
M

2
+ 1 (5.11)

comparison-exchange elements. Thus, the number of additional MROs per merging net-
work is

M

2
� (M � 1)�

�
log2

M

2
�
M

2
+ 1

�
(5.12)

The reader is invited to corroborate that in this new structure of the odd-even sorting
network the �nal list is in sorted order and merging paths are indeed rejected.

Figure 5.13 illustrates anM = 8-survivor sorting network with merging path rejection.
As stated above, the 4-item merging networks need 1 additional comparison-exchange
element and 3 MROs. On the other hand, the 8-item merging network needs 3 additional
comparison-exchange elemensts and 28 MROs, from which 9 are already used within the
CER elements. We need thus to place 19 additional operators to ensure the complete
rejection of merging paths. The position of the merging rejection operators is shown in
the �gure.
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Figure 5.13: Odd-even sorting network for M = 8 with simultaneous sorting and path merging
rejection.

So far, the placing of the path merging detectors was done in a trial-and-error approach.
This means that an extremely complex problem arises as the number of surviving paths
increases. For example, for an M = 16 trellis search, 95 merging operators must be
placed in the 16-item merging network. Analogically, for a M = 32 trellis search, 431
merging operators are requried. Clearly, for largeM it is practically impossible to know the
exact location of the merging operators in the merging network. By means of a computer
program we would be able to know the di�erent paths that a given input can follow
through the sorting network and hence, the locations of the merging rejection operators
can be known. Nevertheless, we have to take into account that this path depends on the
other inputs to the sorting network. That is to say, eventhough the inputs to the odd-even
merging network are arranged in sorted order (the input is divided into two ordered lists
of M

2
items each), the shu�e that they experiment through the network makes very hard

to forecast or trace the paths followed by the di�erent contender paths. Therefore, the
problem of �nding the exact locations of the merging rejection operators is left open and
we opt to perform this placing in an empirical way or decide to search for alternative
solutions.

Notice however that this �rst method for path selection can be used in suboptimum
implementations of the M algorithm. That is, eventhough this method is not optimum
since merging paths are not detected in a precise way, at least, thanks to the merging
rejection operators, the probability of selecting two surviving paths with the same state
label is largely reduced.
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5.2.4 Second Method for Selecting the Best Paths: Combined
Sorting and Selection

Another way of achieving optimum path merge rejection with a reduction in hardware
complexity consists in the use of Mohan and Sood's approach but with some algorithmic
modi�cations. A �rst modi�cation consists in the division of the extended paths into
two sets; we saw in the previous section that this division can be advantageous from a
hardware complexity point of view. A second modi�cation can be done by observing that if
the decoding depth L of the trellis search is respected, then, decoding the source sequence
from any surviving path will not introduce large performance degradations as long as
this surving path belongs to the best M surviving paths. Therefore, instead of sorting the
entire 2M list to obtain the best M paths in sorted order, we can sort independently the
two sets of the extended paths with Mohan and Sood's approach and once we have the
two lists in sorted order, the best M paths are selected (not sorted) from the two lists.
This is illustrated in �gure 5.14.
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Figure 5.14: Block Diagram of the Combined Sorting and Selection Method.

The path merging rejection block in the inner structure of each sorting network is
composed of a column of M path merging detectors comparing adjacent states. The
circuit for implementing path merging rejection is shown in �gure 5.15. When the state
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labels in the inputs to the path merging detector are the same and path metric 1 (PM1)
is smaller than path metric 2 (PM2), that is PM1 < PM2 = 0, the PM1 output line
copies the PM1 input and the PM2 output line is set to the saturation value (111 � � �11)2.
If the two state labels are the same but PM1 < PM2 = 0, then the input PM2 is
transferred to the output line PM2 and the PM1 output is saturated. Finally, if the state
labels are di�erent, the two inputs are transferred to their corresponding outputs.

1PM     <PM 2

St     =1 St 2

PM1

PM2

St2

St1

2

State label

comparator

comparator

Path metric

2

1PM   / ( 111 ... 11 )

PM   / ( 111 ... 11 )

2

Figure 5.15: Circuit diagram of a path merge rejection cell.
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The selection of the best M paths can be very easily accomplished by noticing that
in the bitonic merging network explained in appendix B, after the �rst vertical layer of
comparison-exchange elements, the upper half of the resulting list contains already the
best M paths among the total list of 2M items, provided that the input list is bitonic.
This is illustrated in �gure 5.16. Notice that the two lists entering this one-layer merging
circuit must be in sorted order.

list

(not in sorted order)

M smallest items

list
decreasing ordered increasing ordered 

1116 67 1

comparison layer

2 5 7 6 1

52 13 219

Figure 5.16: Selection of the best M paths with a one-layer bitonic merging.

An example of the entire sorting network is shown in �gure 5.17. As indicated, the L
outputs of the bitonic merge have the best M paths. Moreover, these paths have distinct
state labels since the path merge rejection was performed during the sorting of each set
Zi(k + 1).
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Regarding the hardware complexity, table 5.1 presents the number of comparison-
exchange elements used in the proposed method and in Mohan and Sood's approach.
The expressions indicating the number of comparison-exchange elements required in each
approach are

Mohan and Sood

2

�
2M

4

�
(log2 2M)2 � log2 2M + 4

�
� 1

�
(5.13)

Combined Sorting and Selection

4

�
M

4

�
(log2M)2 � log2M + 4

�
� 1

�
+M (5.14)

Coe�cient 2 in Mohan and Sood's expression indicates that the sorting operations of a
2M -item list is performed twice, one for sorting the state labels and the other for sorting
the path metrics. Coe�cient 4 in our proposed method indicates that each set Zi(k + 1)
composed ofM items each is sorted twice. Then, these sortings are followed by a �nal layer
of M comparison-exchange elements to select the best paths. We can see that a reduction
in hardware complexity is achieved with practically no performance degradation.

Table 5.1: Comparison-exchange elements used in the combined sorting and selection method
and in Mohan and Sood's approach.

M Mohan and Sood Proposed Method Hardware
Reduction (%)

2 10 6 40
4 38 24 37
8 126 84 33:3
16 382 268 29:8
32 1086 796 26:7
64 2942 2236 24
128 7678 6012 21:6
256 19454 15612 19:7
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It can be argued that the previous comparison is not fair since Mohan and Sood's
approach delivers the best M paths in sorted order whereas the combined sorting and
selection method not. Table 5.2 gives the number of comparison-exchange elements used
in both methods, but Mohan and Sood's approach is now modi�ed so that it only selects
the best M paths, though not necessarilly in sorted order. The new expression to �nd the
number of comparison-exchange elements in the Mohan and Sood's combined sorting and
selection approach is

2M

4

�
(log2 2M)2 � log2 2M + 4

�
� 1 + 2

�
M

4

�
(log2M)2 � log2M + 4

�
� 1

�
+M

(5.15)

that is, one sorting operation of 2M items is done for the sorting of the state labels
and then two sortings of two M -item lists are performed for the selection of the best M
paths. We can see that even in this case, our proposed method presents a lower hardware
complexity.

Table 5.2: Comparison-exchange elements used in the proposed method and in Mohan and
Sood's combined sorting and selection.

M Mohan and Sood's Proposed Method Hardware
combined sorting Reduction (%)
and selection

2 9 6 33:3
4 33 24 27:2
8 109 84 22:9
16 333 268 19:5
32 957 796 16:8
64 2621 2236 14:7
128 6909 6012 13
256 17661 15612 11:6

Concerning the latency of both methods, table 5.3 shows the number of vertical layers
needed by our proposed method and Mohan and Sood's approach for both complet sorted
list and combined sorting and selection of the best M paths. The critical path expressions
for these three cases are
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Mohan and Sood's complete sorting

2

�
(1 + log2 2M) � log2 2M

2

�
� tp (5.16)

Mohan and Sood's combined sorting and selection

�
(1 + log2 2M) � log2 2M

2
+

(1 + log2M) � log2M

2
+ 1

�
� tp (5.17)

Combined Sorting and Selection

�
(1 + log2M) � log2M

2
+ 1

�
� tp (5.18)

The �rst expression comes from the fact that 2 sorting networks of 2M items are used.
In the second expression one 2M -item lists is sorted followed by two M -item lists sorted
in parallel and one �nal bitonic layer. Finally, in the last expression two M -item lists are
sorted in parallel followed by an additional bitonic layer. Notice that in both cases the
latency of the proposed method is lower than Mohan and Sood's approach.

Table 5.3: Architecture latency of the combined sorting and selction method and Mohan and
Sood's approach.

M Mohan and Sood's Mohan and Sood's Proposed Method Latency
complete combined sorting Reduction
sorting and selection (%)

2 6 5 2 67 60
4 12 10 4 67 60
8 20 17 7 65 58
16 30 26 11 63 57
32 42 37 16 62 56
64 56 50 22 61 56
128 72 65 29 58 55
256 90 82 37 59 55
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5.2.5 Third Method for Selecting the Best Paths: Delayed State
Label Sorting

One last method for selecting the best paths which further reduces the hardware com-
plexity of the sorting structure consists in the following observation. As we saw in section
5.1, the State Label Sorting Conservation of Extended Paths property states that if the
M surviving paths are sorted with respect to the state labels before being extended, then
after the extension step of the next trellis stage the two sets Z0(k+ 1) and Z1(k+ 1) will
have their corresponding state labels arranged in sorted order too. This means that the
sorting network which sorts the state labels of the extended paths can be delayed and
performed after the path metrics sorting and the merging of the ordered lists Z0(k + 1)
and Z1(k + 1). Figure 5.18 presents the block diagram of such method.
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with state labels
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Z  (t+1)1
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paths

only

Merging
Network

select
M best

Figure 5.18: Block Diagram of the Delayed State Label Sorting Method.

After the division of the extended paths into the sets Z0(k+1) and Z1(k+1), the state
labels of each set are in sorted order; hence, an initial path merging rejection between
adjacent contender paths is done. Then, each set is sorted, this time with respect to the
path metrics, and a one-layer bitonic merging is done so as to �nd the M surviving paths
from the two sets. Finally, once the best paths are selected, a �nalM -item sorting network
is employed to sort the selected paths with respect to the state labels. This way, after
the extension stage of the next processing interval the contender paths will be arranged
according to the state label.

An example of the operation of this method is given in �gure 5.19. Notice that this
new approach allow us to further improve the path merging rejection cell of �gure 5.15.
Indeed, the path merging rejection can be performed with a single state label comparator,
the �rst layer of comparator-exchange elements of the path metric sorting network and
a merging rejection operator (MRO), as shown in �gure 5.19. We only need to compare
the state labels of the middle values on each set. If these are the same, the �rst and third
input to the path metric sorting network are switched so that the metrics of these merging
paths are compared; then, the MRO saturates the contender with the largest metric.
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If the state labels are not the same, the circuit works as a normal sorting circuit. Notice
also that only one state label comparator is needed since the path extension is symmetrical,
that is, if a path remerging occurs in set Z0(k+1), the same remerging occurs in Z1(k+1).
As a result, the same state label comparator can control the path merging rejection of
both sets. Moreover, this modi�cation permits to save 7 comparators.

The main advantage of this new structure with respect to the previous one is the
reduction in hardware. The complexity model of this method is given by

3

�
M

4

�
(log2M)2 � log2M + 4

�
� 1

�
+M (5.19)

This means that only three M -item odd-even sorting networks and one layer of bitonic
merge are needed. Table 5.4 shows the hardware complexity of the delayed state label
sorting method and its hardware reduction achieved with regard to Mohan and Sood's
approach and the combined sorting and selection method of the previous section. Notice
that the latency of the architecture is maintained since only a change in the arrangement
of the sorting networks was made.

Table 5.4: Hardware complexity comparison between the delayed state label sorting network,
the combined sorting and selection method and Mohan and Sood's approach.

M Mohan and Sood's Combined Sorting Delayed State Hardware
complete and selection Label Sorting Reduction
sorting (%)

2 9 6 5 50 17
4 33 24 19 50 21
8 109 84 65 48 23
16 333 268 205 46 24
32 957 796 605 44 24
64 2621 2236 1693 42 24
128 6909 6012 4541 41 24
256 17661 15612 11773 39 25
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5.2.6 Conclusion

In this section we have presented three new methods to perform the selection of the M
best paths in the M algorithm. One of these methods, however, does not perform an
optimum rejection of merging paths. Yet, it can be considered for suboptimum imple-
mentations or for implementations where the number of surviving paths is small. These
three methods o�er a signi�cant reduction in both hardware requirements and latency.
One reason for choosing the state comparison as the path merging rejection method is
because this method is well suited for trace-back-based structures of the survivor memory
management. In the next section, we complete our study of the M algorithm by proposing
a new method to implement the survivor memory management based on the trace-back
algorithm.

5.3 Survivor Memory Management

So far, we have focused only on the path metric updating block of �gure 5.2. In this
section an insight into the di�erent techniques available for survivor memory management
are presented and methods for increasing the hardware performance are highlighted.

In Chapter 4 we presented the two most important survivor memory management
techniques for the Viterbi algorithm, namely the Register Exchange (RE) approach and
the Trace-Back (TB) algorithm. Since the M algorithm belongs to the same class of trellis
search as the Viterbi algorithm, the way the decision bits are produced during the path
metric updating is the same; that is, at each processing interval, a decision bit per trellis
state is generated indicating whether the upper or the lower branch arriving to a given
state is the survivor. As a result, the same survivor memory management techniques that
are used in Viterbi decoders can be used in the M algorithm as well. Yet, we will see that
some modi�cations must be done for this to be true (See appendix A for more details).

5.3.1 Conventional Approach of Survivor Memory Management
in the M Algorithm.

Conventionally, all the reported architectures of the M algorithm employ a register-
exchange-like approach. The di�erence with the Viterbi algorithm resides in the fact that
each surviving path holds all the information correspoding to it, namely the path metric,
the associated state label and the last L decision bits, and this information is moved as a
single entity all along the sorting network until the surviving paths are selected.
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The general approach adopted by all the reported architectures was presented in �gure
5.4 (page 105). Each surviving path is composed of a W +L-bit word, W bits correspond
to the path metric of the surviving path and the last L bits correspond to the decision bits;
from these L bits, the K � 1 most recent denote the current state label of the surviving
path. All this information is stored in an array of register and multiplexers like the RE
approach of the Viterbi algorithm; nonetheless, when the extended paths enter the sorting
network, the comparison-exchange elements that compose the sorting network must be
able to support the data �ow of all this information. When the number of surviving paths
and the decoding depth of the algorithm is not very large, this kind of structures are suit-
able for VLSI implementations because of its simplicity (only registers and multiplexers
are required) and regularity. However, for applications where large trellises and surviving
paths are needed, this structure becomes impractical because the length of the binary
word associated to each path must be increased. Thus, in the same manner as in Viterbi
implementations, eventhough the latency of this structure is very small (L clock cycles),
the architecture becomes bulky for large M and L. To alleviate this massive �ow of in-
formation, interconnection networks are used [82] or bits are processed serially so as to
obtain a more compact structure but with its corresponding penalty in decoding latency
[102, 103, 104]. In any case, this movement of information is still power consumming since
all theM�(W+L) bits move through the sorting network simultaneously [23]. Therefore,
other solutions have to be proposed, and this solution may be the trace-back algorithm.

5.3.2 Trace-Back Techniques Adapted to the M Algorithm

The Trace-Back procedure can lead to very e�cient implementations of Viterbi decoders
[31, 41, 85]. Its large density of storage allows the design of small area and low power
circuits. However, the main disadvantage of this approach is its latency; nevertheless,
di�erent methods to overcome this drawback are known.

In the same manner as the register exchange approach, the trace-back procedure needs
some modi�cations so that it can be applied to the M algorithm. The problem that arises
when we try to use the trace-back procedure in the M algorithm is that the decision bits
generated by the path extension block of �gure 5.3 only correspond to the best M paths,
that is, to M trellis states. Clearly, at each time step, di�erent trellis states survive and
hence, we cannot predict the position of the decision bit corresponding to a given state
as in the Viterbi algorithm since we are not sure that this state will survive at the next
time step. In addition, these decision bits are shu�ed by the sorting network in such a
way that the exact location of the decision bit corresponding to a survivor state cannot
be known in advance.

Let us explain this in a more detailed way with an illustrative example. Figure 5.20
shows the operation of the trace-back procedure in the Viterbi algorithm. In this case, at
every processing interval, 2K�1 decision bits, one for each trellis state, are generated and
stored in the trace-back memory. Thus, we already know which decision bit corresponds
to a given state. For example, the �rst bit in the decision vector corresponds always to
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Figure 5.20: Example of the Trace-Back procedure in Viterbi decoders.
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state 00 � � �00, the second bit corresponds always to the 00 � � �01 state and so on. This
way, the steps that the trace-back procedure performs at every processing interval are:

1. Starting from k = L, select the trellis state i of time k which has the best metric
and load its value into the contents of a shift register,

2. Read the decision vector corresponding to address k,

3. From this decision vector, select the ith decision bit,

4. Shift the contents of the shift register one position to the left and insert the decision
bit in the LSB position of the shift register. This step creates the state visited by
the surviving path in the previous time step,

5. Set k = k � 1 and go to step 2.

Notice that there is a direct correspondance between the trellis state visited by the sur-
viving path and the position of the decision bit into the decision vector. The trellis state
acts thus as a pointer to the decision vector. Notice that this correspondance, trellis state-
decision bit position, is maintained �xed throughout the entire decoding process because
all the 2K�1 states are available at each processing interval.

On the other hand, �gure 5.21 shows the problem encountered in the M algorithm
when the same Trace-Back procedure is applied. In this case, the memory words are only
M bits wide. As a result, when the Trace-Back procedure begins from the best trellis
state, we cannot know which decision bit must be selected in the decision vector since the
correspondance trellis state-decision bit position is not observed; that is, the trellis states
visited by the surviving path cannot be pointed to by the state labels anymore.

To solve this problem, a naive solution could be the use of the same trace-back structure
employed in the Viterbi algorithm. In other words, we can utilize the same L�2K�1 trace
back memory and update only those decision bits in the decision vector corresponding to
the M surviving paths. This way, the Trace-Back decoding of the overall surviving path can
be performed in the same manner as it is done in Viterbi decoders. Clearly this is not the
wisest solution for two reasons. First, the waste in hardware ressources is extremely large,
specially in the cases where the number of surviving paths is far smaller than the number of
trellis states. Consider, for example, the case where the constraint length isK = 10 and the
number of surviving paths isM = 8; if L = 70 we would need a 70�512-bit memory, from
which only 8 bits per memory address are used. This means that from the 35840 bits that
can be stored in the memory, only 4096 have meaningfull information.We are thus wasting
almost 9 times the hardware ressources with its corresponding circuit area. Second, if we
use this structure for the decoding of the surviving paths, the storage requirements needed
for the M algorithm are still L�2K�1 decision bits, the same requirements as for the Viterbi
algorithm.
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5.3.2.1 Trace-Back Technique by Comparison of Visited States.

Another solution that we called Trace-Back by comparison of visited states is shown in
�gure 5.22. As we can see, the architecture is composed of the usual trace-back memory
and shift register controlling a multiplexer, and an additional set ofM comparators. Now,
not only the decision bits are stored in the trace-back memory but the state labels of the
surviving paths as well. Consequently, the size of the trace-back memory is L �M �K;
that is, the decision vector is divided into M packets of K bits, K � 1 correspond to the
state label and 1 bit to the decision bit. The operation of this structure is:
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1. Select the trellis state of time k = L which has the best metric and load its value
into the contents of the shift register,

2. Read the decision vector corresponding to address k,

3. Compare the contents of the shift register with the M state labels of this decision
vector. The decision bit of the K-bit packet that contains the same state as the one
stored in the shift register is selected by the multiplexer,
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4. The contents of the shift register is shifted one position to the left and the decision
bit is inserted in the LSB position,

5. Set k = k � 1 and go to step. 2

The hardware requirements of this approach are:

� 1 L� (M �K)-size memory

� M K � 1-bit comparators

� 1 multiplexer

� 1 K � 1-bit shift register

This time, the reduction of the storage requirements is important. For a K = 10 trellis
coder/decoder with M = 8 surviving paths, the amount of information to store is L� 80
bits, as opposed to the L � 512 bits required by the Viterbi algorithm. The reduction in
storage requirements achieved by this architecture is in the order of 7. Nevertheless, the
size of the decision vector is still large.

5.3.2.2 Trace-Back Technique with Path-Number Pointer.

A �rst observation towards the improvement of the architecture is that as a matter of fact,
even if the state label can act as a pointer to the decision bits, we still can produce another
type of pointer to this purpose. Figure 5.23 illustrates this approach. After the selection
of the best paths, a path number (0 � � �M�1) can be associated to these paths depending
on its position in the decision vector, as shown in �gure 5.23; this way, after the sorting
operation, we are able to know the ancestors of the new surviving paths. The decision bit
of the surviving path and the path number of its ancestor are then stored in the trace-
back memory. Then, the path numbers are reinitialized and the process continues in this
way until the last decision vector. The position in the decision vector k of the current
decision bit and the path number of its ancestor at time k � 1 depends on the current
path number. In this way, the path number can serve as a new pointer to the decision
bit of the previous processing interval which corresponds to the overall surviving path
since now there is a direct correspondance between the path number and the position of
the decision bit in the decision vector. As a result, each time a decision vector is read
from the trace-back memory, we are able to know the position of the decision bit in the
next decision vector and thus the overall surviving path can be decoded. This method is
referred to as Trace-Back technique with path-number pointer.
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Figure 5.24 presents an example of operation of this new approach for a K = 4 trellis
and M = 4 surviving paths. During the path metric updating stage (forward direction),
once the M surviving paths are selected, they are enumerated from 0 to 3 (cercled numbers
in the �gure) according to the sorting operation; the decision vector at every processing
interval is created by concatenating the decision bits and the path numbers of the ancestors
of each surviving path. The concatenation depends on the current path number of the
surviving paths; for example, in the �gure, the 3 LSBs of the 12-bit decision vector at
time k = 5 are 101 since the ancestor at time k = 4 of this �rst surviving path was labeled
with path number 2 and the current decision bit is 1. The next three bits are 111 since
the ancestor of this second path was labeled with number 3 and the current decision bit
is 1; the other three bits correspond to 000, that is, the path's ancestor had the number 0
and the decision bit is 0. Finally, the last 3 bits are 101 which correspond to the surviving
path whose ancestor had the path number 2 and the decision bit is 1. This process is
repeated until the trace-back memory has been �lled in.

During the trace-back operation, the register driving the multiplexer is set to the path
number of the surviving path with the best path metric and the decision vector of address
k = 10 is retrieved from memory. This �rst path number is 01, which means that the
second 3 bits of the decision vector are selected (101). From these bits, the LSB is the
decision bit which serves to decode the surviving path and the two MSBs indicate the
next 3-bit packet (10) that will be selected in the next cycle. These bits are stored in the
register and, at the next cycle, the decision vector of address k = 9 is read from memory,
the third 3-bit packet is selected from the decision vector, the LSB decodes the surviving
path and the MSBs indicate that the fourth 3-bit packet of the next decision vector at
k = 8 will be chosen. This process is repeated until the last decision bit is read. This is
the way the surviving path is decoded.

In general, because of the decoding depth property, we can start the trace-back proce-
dure from the �rst three bits (path number = 0). The Path-Number-Trace-Back procedure
consists in the following steps:

1. Set k = L and the contents of the register to path number = 0

2. Read the decision vector of address k and select the bit packet given by the current
path number. This packet contains log2M + 1 bits.

3. Take the LSB to decode the surviving path and store the log2M MSBs in the
register.

4. Set k = k � 1; if k = 0 halt, otherwise go to step 2

The main advantage of this architecture over the previous one is that the storage
requirements become independent of the trellis constraint length (except, of course, for
the decoding depth which still depends on the constraint length by the relation L = 6�K).
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The hardware requirements of this structure are:

� 1 L�M(log2M + 1)-size memory

� 1 log2M -bit register

� 1 M(log2M + 1) to log2M + 1 multiplexer.

Comparing the storage requirements with the Viterbi algorithm, we �nd that a re-
duction in the order of 2K�1

M(log2M+1)
is achieved. For instance, for K = 10 and M = 8, a

reduction in a factor of 16 is obtained.

5.3.3 Improving Hardware E�ciency: Hybrid Architectures

In the previous section we showed how the trace-back algorithm could be adapted to ac-
count for the features of the M algorithm so that sequence decoding can be performed in a
more e�cient way than with the register-exchange-like approach. The main advantage of
this adaptation is that all the hardware architectures that have been proposed in the lit-
erature to improve trace-back realizations of the Viterbi algorithm can be utilized for the
M algorithm as well, provided that the information about the path number is considered
(see appendix A or [31, 41, 85]). Other solutions such as hybrid architectures employing
both the register exchange approach and the trace-back algorithm can also be used al-
though these must su�er little modi�cations to work; yet, like in the Viterbi algorithm,
these structures allow signi�cant reductions in storage requirements and latency.

5.3.3.1 Block Trace-Back for the M Algorithm.

The �rst observation to point out is that the trace-back method presented in the previous
section is already working in an hybrid fashion because each surviving path has a K � 1-
bit shift register indicating the state label associated to this path (see �gure 5.23); that
is, the trace-back technique can be though of as a special case of the hybrid architecture
where the register-exchange-like structure has a K � 1-bit depth.

To improve this hybrid structure, we can simply increase the length of the registers
containing the state labels of each surviving path to a length l (l � K � 1). The decision
bits delivered by the sorting network are stored therein prior to being stored in the trace-
back memory. Then, each l cycles, the contents of this register are transferred into the
trace-back memory together with the path number corresponding to time instant k � l
since this path number serves to �nd the ancestor state l cycles before. Figure 5.25 shows
an example of operation of this new method for an 8-state trellis with M = 4 surviving
paths and a register exchange depth of l = 2. As indicated above, each 2 cycles, the
path numbers are initialized and are stored in the trace-back memory together with the
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2 decision bits generated in these 2 cycles. Then, the trace-back operation takes place in
the same way as before, except that this time, 2 bits are decoded per trace-back step.
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Figure 5.25: Operation example of a block trace-back adapted to the M algorithm.

The advantages of this method with respect to the trace-back approach presented
in the previous section is the number of bits decoded per trace-back step. In this new
approach, l bits are decoded at each time instant. In addition, the storage requirement
are reduced since the trace-back pointer depends only on the path number; then, the
number of decision bits that have to be stored every l cycles is
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M � (log2M + l) (5.20)

as opposed to

l �M � (log2M + 1) (5.21)

for the trace-back algorithm. A saving of l �M bits is thus achieved.

5.3.3.2 Forward Trace-Back for the M algorithm.

Other adaptations of hybrid structures applied to the Viterbi algorithm are possible. For
instance, we can adapt the Forward trace-back proposed in [21] and [22] in the following
manner.

Since the path number of each surving path commands the TB operation, we can
initialize every L cycles an array of M � log2M registers with the path numbers coming
from the sorting network. Then, in the intermediate cycles between k and k+L, the path
numbers coming out of the sorting network are used only to drive the shu�ing of the
register array. Thus, at the end of the L-cycle period, all the rows in the array contain
the path number of the surviving path corresponding to the time instant k. This path
number is used as the initial pointer of the trace-back operation, avoiding the initial trace-
back procedure performed in the trace-back methods presented above which is required
to attain the convergence length L.

An example of this method is presented in �gure 5.26 for the same 8-state trellis and
M = 4 with a decoding depth of L = 6. At k = 3, the register is initialized with the
values 0 �M � 1. Then, during the path metric updating, the path numbers generated in
each cycle control the shu�e of the di�erent path numbers stored in the register array.
For instance, at time k = 4, the �rst path indicates that its ancestor is path number 10;
hence, the contents of the third register in the register array is tranferred to the contents
of the �rst register (10). The second path indicates that its ancestor is path 11; thus, the
contents of the fourth register in the register array is transferred to the second register
(11). The same occurs to the other paths and during L cycles. At the end of these L cycles,
all the registers in the register array contain the path number visited by the surviving
path L cycles before (path 10 in the example).

Notice that in order to decode the output sequence, the trellis states of the surviving
paths at the moment of initialization of the register array must be known (seef �gure
5.26). To this purpose, a register containing the state labels of the suviving paths is also
initialized every L cycles. When the decoding depth is attained, the path number stored
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Figure 5.26: Forward Trace-back architecture for the M algorithm.
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in the register exchange array selects the state label corresponding to that path number.
This way, the decoded sequence can be found.

As we can see from all these TB examples, the trace-back procedure is an algorithm
that can be very easily adapted to the M algorithm. Consequently, all the hardware archi-
tectures proposed to implement Viterbi decoders can be employed for the M algorithm.
In addition, the main advantage with respect to the RE approach is that the complexity
of the sorting network is signi�cantly reduced because the surviving paths are reduced
from L+W -bit words to M � (log2M +1)+W -bit words. This is very important because
the �ow of information in the sorting circuit is reduced, which reduces in turn the power
consumption and the hardware complexity of the sorting network.

5.4 Hardware Comparison with the Viterbi Algorithm

We have seen that the survivor memory management of the Viterbi and M algorithms
is very similar. Basically, this procedure consists in the storage and retrievement of the
decision bits into and from a memory. Therefore, the hardware complexity of the sur-
vivor memory management is not very signi�cant in terms of computations but rather in
terms of storage. Table 5.5 shows the storage requirements of both algorithms for the RE
procedure and the TB approach.

Table 5.5: Storage Requirements of the Viterbi and M algorithms.

Viterbi M
algorithm algorithm

Register Exchange L� 2K�1 L�M

Trace Back L� 2K�1 L�M(logM +1)

Table 5.6 compares the computational load of the branch metric computation and path
metric updating of both algorithms. As an illustrative example, consider the simulation
results presented in the previous Chapter. We saw that for a trellis quantizer with a
K = 10 constaint length, the performance of the M algorithm withM = 8 surviving paths
was very close to that of the Viterbi algorithm. In this case, the overall computational
requirements of the Viterbi algorithm are:
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� 1024 branch metric computations per trellis stage

� 512 ACS operations (1024 additions + 512 comparisons + 512-address memory)

� Storage for L decision vectors of 512 bits each

On the other hand, the hardware requirements of the M algorithm are:

� 16 branch metric computations per trellis stage

� 65 comparisons-exchange operations

� Storage for L decision vectors of 32 bits each

Table 5.6: Viterbi and M Algorithm Computational Load for Branch Metric Computation and
Path Metric Updating.

Viterbi M
algorithm algorithm

Branch Metric 2K 2M

Path Metric
Updating 2K�1 3

�
M
4
[(log2M)2 � log2M + 4]� 1

	
+M

Using the same complexity model of the previous chapter, namely

1 ACS operation = 3 additions

1 comparison-exchange = 2 additions

the Viterbi algorithm needs 1536 additions per processing cycle to update the path metrics
while the M algorithm only needs 130.

A �nal comment is in order. It must be noted that in spite of the larger compuational
load and storage requirements, the Viterbi algorithm is still potentially more e�cient
than the M algorithm. This is because the critical path in the Viterbi algorithm is given
by the ACS unit only, whereas the M algorithm needs to perform sorting procedures to
�nd the best paths. Hence, as indicated above, the M algorithm could be more attractive
in applications where the number of surviving paths to retain is much smaller than the
number of trellis states
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5.5 Hardware Realization of the M Algorithm

A hardware architecture for the M algorithm was implemented on a FPGA circuit as part
of a 4-month-last year project in electronics engineering [25]. The aim of this implemen-
tation was to estimate the hardware complexity and operation speed of the path metric
updating and the survivor memory management blocks. The circuit was designed for a
K = 10 trellis constraint length and M = 8 surviving paths. No speci�c application was
intended for this architecture design; as a result, the branch metric unit was not taken
into account. It was only assumed that this unit delivered two branch metrics per clock
cycle. The computation precision was assumed at 10 bits for the branch metrics and 14
bits for the path metrics.

5.5.1 Sorting Architecture

The serial nature of the branch metric computation suggested a serial implementation of
the sorting circuit. In this implemetation of the M algorithm, a parallel insertion circuit
was selected. The features of this sorting circuit were described in section B.2. Remember
that in this circuit M comparison elements are required and the sorting operation is
performed in M clock cycles. Eventhough this method is not the most e�cient serial
sorting algorithm, its main advantage is that the path merging rejection and the sorting
operation can be done at the same time, making this algorithm a very attractive solution
for path metric updating.

The sorting architecture is the same as the one presented in �gure B.11. Only an addi-
tional state comparator was required to account for the path merging rejection. Addtional
control signals were also needed to manage the cases where path merging occurs. These
control signals consisted in enabling or disabling the shifts of the inserted elements when
two path metrics had the same state label.

The mutually independence of extended sets property was used to divide the path
metrics selection into two sorting architectures of M items each. This way, the latency
of the parallel insertion is reduced from 16 clock cycles to only 8. In addition, since this
architecture is serial and not all the path metrics of the surviving paths are required
at the same time to carry out the sorting operation, an optimization in the hardware
complexity of the bitonic merging layer was done; only one comparison element was used
to implement the merging operation of the two M -item lists. In order for the merging
circuit to do this, the parallel insertion architectures were designed so as to deliver the
sorting lists serailly, as described in �gure 5.27. Finally, during M clock cycles the M
surviving paths are selected. Notice that in this new structure, the bitonic merge and the
sorting of new path metrics is performed simultaneously. As a result, an addtional control
scheme was needed to distinguish between the current sorted lists and the one that is
being created.
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Figure 5.27: Simultaneous parallel insertion and bitonic merging of path metrics.

5.5.2 Survivor Memory Managements Architecture

The survivor memory management block was implemented with the trace-back algorithm.
Due to the serial sorting of the path metrics, only one pointer was needed to perform the
trace-back operation.

The trace-back memory was implemented withM FIFOs. For this reason, the surviving
paths stored in each FIFO needed to be re-circulated during L� 1 cycles before starting
the trace-back operation. In this way, the �rst decision vectors are stored as if they were
the last inputs to the FIFO and then, the trace-back operation can be done as usual.

5.5.3 Logic Synthesis Results

The architecture was synthesized on Altera's Flex10kE FPGA (EPF10K100EFC484-1).
The number of logic cells and registers employed was 2485 and 1083 respectively, and the
clock rate achieved by the circuit was 43 Mhz (3 Mbits/s).
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5.6 Conclusion

In this chapter we have presented new architectures for the M algorithm. As in the case
of Viterbi decoders, the hardware design was divided into two main blocks, as opposed to
the conventional approach where only register-exchange-like architectures are possible.

We proposed new methods for parallel sorting networks which exploit the algorithmic
properties of the M algorithm to reduce its hardware requirements and latency. Reductions
of up to 50%, as compared to previous reported work were achieved.

Regarding the survivor memory management, new trace-back techniques adapted to the
M algorithm were proposed. These ideas were borrowed from hardware structures for the
Viterbi algorithm. In addition, to further improve the e�ciency of the architecture in both
hardware requirements and latency, hybrid approaches which employ the register exchange
approach and the trace-back algorithm were developed. These structures are also based
on hybrid implementations of the Viterbi algorithm. It must be pointed out that with the
adaptation proposed in this thesis, namely the use of a pointer generated during the path
extension and which indicates the position of the surviving path in the trace-back memory,
all the trace-back and hybrid structures that have been proposed for the implementation
of Viterbi decoders can be straightforwardly applied for the implementation of the M
algorithm.



Chapter 6

Joint Optimization of a Trellis Source

and Convolutional Channel Coders

with Soft Source Decoding

The work presented so far has consisted in the study of a joint source and channel trellis
coding technique constituted by a robust trellis coder-decoder pair. This study has been
done from both a theoretical and architectural points of view. We showed that the tradeo�
performance-hardware complexity is quite good, as compared to the so called �tandem�
system, specially for degraded conditions of the transmission channel. In addition, we
showed that further reduction in hardware complexity was achievable by using subop-
timum trellis search algorithms, namely the M algorithm, with negligible performance
degradation. Nevertheless, as indicated in [91], the use of a binary symmetric channel
models to measure the e�ects of the transmission channel on the communication sys-
tem is not a realistic approach since channel parameters such as bandwidth expansion,
modulation, etc. are not considered.

This Chapter is devoted to the study of a joint source and channel coding technique
consisting in the joint optimizaton of a trellis source coder and a convolutional code
for transmissions over the AWGN channel. In this way, the transmission channel can be
treated in a more realistic way. In addition to the joint optimization, at the receiver end,
the same idea that was used for the robust quantization process consisting in �nding
a �weighted centroid� of all the possible reproduction codewords is employed. To this
purpose, the BCJR algorithm [12] is used to provide the channel estimation necessary to
perform this �soft source decoding�. In this manner, the distortion introduced by channel
errors during the reconstruction of the source can be further reduced.

Other works with similar underlying ideas have also been reported in the litterature
where a Trellis Coded Quantizer and a Trellis Coded Modulator are jointly optmized
[42, 119, 15]. It must be pointed out that a very similar work was independently developed
in [28] for the case of a TCQ encoder jointly optimized with a TCM coder employing the
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BCJR algorithm to deliver channel soft information that is used during source decoding.

The outline of the Chapter is the following. In section 6.1, the complete system is de-
scribed. Then, previous work on the joint optimization of trellis source codes and channel
coding systems is presented in section 6.2. Section 6.3 presents the analytical computa-
tion of the pairwise error probability needed for the codebook design and the encoding
processes. This error probability is estimated with a modi�ed transfer function of the con-
volutional code. This way, no extensive monte-carlo simulations are required as is the case
of previous reported work. Discussions about the codebook design procedure performed
with the extension algorithm which must take into account the convolutional code's error
probability are given in section 6.4. Section 6.5 elucidates the use of the MAP algorithm
for �soft source decoding�. Finally simulation results with benchmarking sources are given
in section 6.6.

6.1 System Description

The joint source-channel coder that we are going to study throughout this Chapter is
shown in �gure 6.1. It consists of a robust trellis quantizer and a convolutional coder at
the transmitter end and the BCJR decoder performing joint source-channel decoding at
the receiver end. As before, the goal of this system is not to correct transmission errors
but to minimize their e�ects on the decoded source.

The robust trellis quantization block in the �gure is the same quantizer that we have
been studying and whose purpose is to minimize the expectation of the distortion between
the original source x and the one decoded at the receiver end x̂. The same branch metric
as the one described in Chapter 2 is employed. Remember that this distortion measure is
de�ned as

d(xk; yj) = Ef(xk � yi)
2jyjg i = 0:::2K � 1

=
2K�1X
i=0

(xk � yi)
2 Pr(yijyj) (6.1)

The output binary sequence u delivered by the trellis quantizer is now encoded by
the convolutional coder so as to produce the channel sequence v that will be transmitted
through the AWGN channel. It must be pointed out that both coders employ the same
trellis, as indicated in the �gure, so that each trellis branch is labeled with a unique
reproduction codeword-channel symbol pair. This way of labeling the trellis branches is
very usefull to simplify the codebook design operation and the soft source decoding.

During the transmission of the channel symbols vk through the AWGN channel, these
are corrupted such that the received signal corresponding to channel symbol vk is
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Figure 6.1: Joint Source-Channel Trellis Coding Scheme.

v̂k = vk + wk (6.2)

where wk is a zero-mean gaussian random variable. At the receiver end, the received
sequence v̂ is decoded by the joint source-channel decoder block which consists of the
MAP decoder performing soft source decoding, that is, the soft information computed
by the MAP algorithm is used to compute a reproduction sample x̂k that attempts to
minimize the mean square error according to the channel distribution. The idea is to use
the BCJR algorithm for Maximum A Posteriori decoding, that is, to obtain the a posteriori
probabilities (APP) of the trellis branches, and in this way, the weighted centroid of all
the reproduction codewords can be estimated and used as the decoded symbol x̂k. Notice
that the BCJR algorithm is not employed to estimate the bit error probability since, as
indicated earlier, we are not interested in correcting transmission errors but rather to
decrease the distortion that they might introduced to the source decoding operation.
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6.2 Previous Work

As indicated at the beginning of this Chapter, previous work employing similar ideas to
the joint optimization of trellis source codes and channel coding techniques have already
been reported. In [42], Fischer and Marcellin present a joint source-channel technique
consisting in the combination of trellis-coded quantization with trellis-coded modulation.
They use the same trellises for both coders and a consistent labeling between quantization
levels and modulation symbols. This way, the euclidean distance in the channel is made
commensurate with the quantization noise in the source encoder; as a result, transmission
errors of small euclidean distance cause small additional distortion to the decoded source.
Nevertheless, the results presented in [42] are for separately designed TCQ and TCM
coders, resulting in a large performance degradation as the channel SNR decreases. To
avoid this dramatic drop of performance, Wang and Fischer proposed the joint optimiza-
tion of a TCQ-TCM system with successfull results [119]. The codebook design algorithm
is the same as the one presented in Chapter 2, but modi�ed to the TCQ case. In addition,
since the computation of the error probability needed to compute the expectation of the
distortion between the input and decoded symbols is TCM dependent, they conclude that
an analytical computation of this error probability is quite complex so that a numerical
method based on quasi-newton optimization is used to design the TCM system. As a con-
sequence, the �nal codebook design algorithm of this system is quite cumbersome since
two training sequences are required, one for the TCQ coder and the other for the TCM
system, and a montecarlo simulation consisting in the iterative coding and decoding of
source and channel sequences is performed.

In [15], the same approach as in [119] is used but modi�ed to the joint optimization of a
TCQ and a convolutional coder. The design algorithm also implies montecarlo simulations
which include TCQ encoding, channel encoding, insertion of channel errors, soft decision
channel decoding with the Viterbi algorithm and TCQ decoding. Recently, Chei and Ho
presented the design of an optimal soft decoding for combined TCQ/TCM over rayleigh
fading channels [28]. The main di�erence with respect to previous reported work is the
utilization of the BCJR algorithm as a minimum mean-square error decoder. The results
presented in this work outperform those of the previous reported systems because of this
new idea of using the BCJR algorithm as source decoder. Nevertheless, this system also
employs a codebook design algorithm which iterates source coding, channel decoding with
estimation of the channel statistical distribution and source decoding. This is due to the
fact that analytical computations of the channel error probability for TCM systems are a
quite di�cult task.

In the next section we will show that it is indeed possible to compute the pairwise error
probability Pr(yijyj) in an analytical way by considering the reproduction codewords yi
in the derivation of the transfer function of the convolutional code.
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6.3 The Pairwise Error Probability

The codebook design procedure and the source quantization require the knowledge of the
pairwise error probability Pr(yijyj). We have seen that when the communication system
consists only of the robust trellis source coder and the binary symmetric channel, these
error probabilities are expressed as

P (yijyj) = pdH(i;j) � (1� p)K�dH(i;j) (6.3)

However, in the system of �gure 6.1, the error probability depends now on the channel
code and its exact derivation is quite di�cult, specially for low channel SNR. This is the
reason why the usual approaches to deal with this problem are based on monte-carlo sim-
ulations. Nevertheless, in the same manner as the computation of upper bounds on the bit
error probability of convolutional codes [69, 89, 116], a tight upper bound on the pairwise
error probability P (yijyj) can be obtained. Certainly, since the trellises for the source and
channel coders are the same and there is a one-to-one mapping between a reproduction
codeword and channel symbol, the probability P (yijyj) is equal to the probability that
the Viterbi algorithm decodes the channel symbol corresponding to branch i instead of
decoding the channel symbol corresponding to branch j. This probability depends on the
code generator polynomial, i.e. the weight distribution of all the paths in the trellis.

6.3.1 Analytical Derivation of the Pairwise Error Probability

Assuming without loss of generality that the all-zero channel sequence is transmitted, it
can be shown that the �rst-event error probability, which is de�ned as the probability
that another path in the trellis merging for the �rst time with the all-zero path at a given
node has a better metric than the all-zero metric, is upper bounded in the form (see [89])

Pe �
1X

d=dfree

a(d) Pb(d) (6.4)

where dfree is the free distance of the convolutional code, coe�cient a(d) denotes the
number of trellis paths of distance d from the all-zero path that merge with the all-zero
path for the �rst time and Pb(d) is the probability of error in a pairwise comparison of
two paths that di�er in d bits and de�ned as

Pb(d) = Q

 r
2
Eb

No

Rc d

!
(6.5)
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where Rc is the channel code rate and
Eb
No

is the received SNR per bit. Carrying out the
same reasoning, it can be shown that the pairwise error probability Pr(yijy0) can be upper
bounded in the form

P (yijy0) �
1X

d=dfree

ai(d) Pb(d) (6.6)

where coe�cient ai(d) indicates the number of trellis paths of distance d from the all-zero
path that diverge from the all-zero path, pass by the trellis branch whose reproduction
codeword is yi and remerge into the all-zero path for the �rst time. Since the channel code
is linear, equation (6.6) which was obtained for the all-zero path can be generalized to all
the trellis branches and pairwise error probabilities in the form

P (yijyj) = P (yi�jjy0) (6.7)

6.3.2 Derivation of Coe�cient ai(d) from the Transfer Function a
the Convolutional Code

The coe�cients ai(d) can be obtained from the state transition diagram of the convolu-
tional code in the same manner as the distance properties and the error rate performance
of the code are derived. To do so, the transfer function T (D) of the convolutional code
is obtained [89]. Remember that variable D serves to have an indication of the Hamming
distance of the sequence of output bits corresponding to a given path in the trellis with
respect to the sequence of output bits corresponding to the all-zero path. In our case, in
order to obtain coe�cient ai(d), in addition to variable D, a label yj (j = 0 � � � 2K � 1))
corresponding to the reproduction codeword associated to branch j is added to the state
transition diagram of the code. This way, a modi�ed transfer function T (D; yj) is derived
which depends on D and yj. Coe�cient ai(d) can then be obtained by the coe�cients of
the polynomial Pi(D) which is de�ned as

Pi(D) =
@T (D; yj)

@yi

�����
yj=1 j 6=i

(6.8)

Let us explain the derivation of coe�cient ai(d) in a more detailed way with an illustra-
tive example. Consider the transition diagram shown in �gure 6.2(a) corresponding to the
joint source-channel trellis diagram presented in �gure 6.1. Each branch in the transition
diagram is labeled with its corresponding reproduction codeword yj and with variable D
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whose exponent denotes the Hamming distance between the output bits of a given branch
and the all-zero branch.

For ease of explanation, two additional dummy labels J and N are assigned to each
branch in the following manner:

(b) Split Transition Diagram(a) Transition Diagram
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Figure 6.2: State transition diagram for a joint trellis source code and rate 1/2, K=3
convolutional code.

J is a counting variable which indicates the number of branches in a given path from
the moment it diverges from the all-zero state to the moment it merges with the
all-zero state

N is a variable assigned to those branches generated by the input bit 1, that is, this
variable keeps the score of the number of ones that enter the shift register of the
convolutional code

In order to obtain the transfer function of the convolutional code, the zero state in the
state transition diagram is split into an input and output node, as illustrated in �gure
6.2(b). From this split diagram we can write the four state equations as

S2 = JND2y4 S0o + JNy5 S1

S3 = JNDy7 S3 + JNDy6 S2

S1 = JDy2 S2 + JDy3 S3 (6.9)

S0i = JD2y1 S1
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The transfer function of the code, de�ned as T (D;N; J; yj) =
S0i
S0o

, is obtained by solving

these state equations. We thus have

T (D;N; J; yj) =
J3ND5y1y2y4 + J4N2D6y1y3y4y6 � J4N2D6y1y2y4y7

1 � JNDy7 � J2NDy2y5 � J3N2D2y3y5y6 + J3N2D2y2y5y6

=

path 1z }| {
J3ND5y4y2y1 +

path 2z }| {
J4N2D6y4y6y3y1 +

path 3z }| {
J5N2D6y4y

2
2y5y1

+

path 4z }| {
J5N3D7y4y6y7y3y1 +

paths 5 and 6z }| {
2J6N3D7y4y6y5y3y2y1 +

path 7z }| {
J6N4D8y4y6y

2
7y3y1

+

path 8z }| {
J7N3D7y4y

3
2y

2
5y1 + � � � (6.10)

This polynomial expression indicates all the paths in the trellis that diverge from and
merge with the all-zero state for the �rst time, and provides information concerning the
Hamming weight of the input sequence (exponent of N), the Hamming weigth of the
ouput sequence (exponent of D), the path length (exponent of J) and the reproduction
codewords yj visited by a given path. Figure 6.3 shows the �rst eight paths obtained by
expression 6.10. We can see that the �rst path of equation 6.10 has a length of 3 input
bits, the hamming weight of this 3-bit input sequence is 1, the hamming weight of the
convolutional coded sequence is 5 and the reproduction codewords passed by this path
are y4, y2 and y1; the second path has a length of 4 input bits, the hamming weigth of
the input and coded sequences is 2 and 6 repectively, and the reproduction codewords
visited by this path are y4, y6, y3 and y1. Thus, this modi�ed transfer function gives us, in
addition to the distance properties of the convolutional code, the reproduction codewords
visited by a given path.

Finally, the number of paths of hamming distance D passing by codeword yi may be
obtained by di�erentiating T (D;N; J; yj) with respect to yi, according to equation 6.8. As
an example, in order to know the number of paths passing by codeword y2 in the trellis
diagram of �gure 6.3, equation 6.10 is di�erentiated with respect to y2 and all the dummy
variables J and N and the codewords yj, where j 6= 2, are set to one. We thus obtain

@T (D;N; J; yj)

@y2

�����
N=J=yj=1 j 6=2

= D5 + 2D6 + 5D7 + � � � (6.11)

This expression indicates that there is one path passing by codeword y2 with a Hamming
distance of 5, there are 2 paths with Hamming distance 6, �ve paths with Hamming
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distance 7 and so on. These �rst eight paths correspond to paths 1, 3 (this path passes
twice by codeword y2), 5, 6 and 8 (this path passes 3 times by codeword y2) as indicated
in �gure 6.3.

Since the convolutional code does not necessarily have a �xed length, it is not possible
to determine the exact number of paths passing by a given branch in the trellis. In practice,
we have obtained the polynomial Pi(D) of each trellis branch i by restricting the trellis
to a L-size frame of trellis stages.

Tables 6.1 and 6.2 show the computation results of the pairwise error probabilities
corresponding to a R=1/2 rate, K = 7 convolutional code with polynomial generators
(133; 171)octal and for channel SNR = 0, 1, 2 and 3 dB. The pairwise error probability
(Psim(yijy0)) was obtained with a Monte-carlo simulation where an all-zero sequence of
length 106 was encoded, transmitted and decoded with the Viterbi algorithm. The error
probability (Pub(yijy0)) represents the upper bound obtained with equation (6.6). These
error probabilities were normilized to 1 so as to obtain the pairwise error probabilities
Pnorm(yijy0). To this purpose, the term Psim(y0jy0) obtained by simulation is used accord-
ing to

Pnorm(yjjy0) = Pub(yjjy0) �
1� Ps(y0jy0)P
m>0 Pub(ymjy0)

(6.12)

Table 6.1: Simulated and estimated pairwise error probabilites for SNR=0 and 1 dB

SNR = 0 dB (10�4) SNR = 1 dB (10�4)

branch i 1 3 4 7 9 12 15 18 20 31

Psim(yijy0) 73:5 36:6 64:7 20:3 59:7 5:3 8:5 11:5 11:1 3:3
Pub(yijy0) 2861:3 2342:2 3918:6 1637:9 3805:1 32:1 56:8 76:2 74:9 29:2
Pnorm(yijy0) 38:1 31:2 52:2 21:7 50:6 4:9 8:7 11:7 11:5 4:4

Table 6.2: Simulated and estimated pairwise error probabilites for SNR=2 and 3 dB
SNR = 2 dB (10�4) SNR = 3 dB (10�4)

branch i 36 48 63 76 88 96 100 112 120 127

Psim(yijy0) 0:97 0:05 0:06 0:3 0:43 0:04 0:0 0:05 0:04 0:1
Pub(yijy0) 1:6 0:05 0:2 0:4 0:5 0:7 0:07 1:3 1:3 1:6
Pnorm(yijy0) 1:01 0:03 0:11 0:2 0:3 0:0 0:0 0:0 0:0 0:04

As we can see from the tables, the matching between the simulated and estimated
pairwise error probabilites is quite close; the di�erences may come from the insu�cient
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number of trellis stages considered for the computation of polynomial Pi(D). As a con-
clusion, from these estimated values of the pairwise error probabilities, quasi-optimum
robust source quantization can be performed.

6.4 Codebook Design

In section 2.2.1, page 37, two codebook design algorithms were described, based on the ex-
tension algorithm. So far, the �rst method of the extension algorithm has been employed.
Recall that in this method, the idea is to start from a K � 1-constraint length quantizer
with initial codebook C0

K�1 and run the codebook design algorithm to obtain an optimized

codebook Cf
K�1; then, codebook C

f
K�1 is extended to a K-constraint length quantizer by

appending a register element at the LSB position. In order to obtain an initial codebook
C0
K for this new constraint length quantizer, codeword yi, which is associated to branch

i from codebook Cf
K�1 is now associated to branches 2i and 2i+ 1 (i = 0 � � �2K�1 � 1) of

the new codebook C0
K . Then, the codebook design algorithm is used to obtain the �nal

codebook Cf
K . This method is alternately applied from C0

0 (a unique codeword) to Cf
K .

In the system proposed here where a convolutional code is added to the trellis quan-
tizer, the extension algorithm has to be adapted because the pairwise error probabilities
obtained in the previous section correspond to a �xed constraint length quantizer. Con-
sequently, the pairwise error probabilities used in the optimization process of the 2K-size
codebook have to be reduced for the optimization of the 2K�1-size codebook. To do so, a
reduction of the trellis is done by using the expression

PK�1(yijy0) = PK(y2ijy0) + PK(y2i+1jy0) (6.13)

that is, the probabilities corresponding to those branches having the same K � 1 LSBs
are added to form the pairwise error probability of the new K � 1-bit label codewords.
As a result, in order to optimize the reproduction codebook with the �rst method of the
extension algorithm, a trellis reduction is �rst performed from 2K�1 states to 20 and then
the trellis extension algorithm is used from 20 states to 2K�1.

Another possibility consists in the use of the second method of the extension algorithm.
This algorithm seems to be best suited since the constraint length remains constant.
However, it was observed that the performance obtained with both extension algorithms
were quite close.
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6.5 The BCJR Algorithm as Soft Source Decoder

Conventionally, decoding a communcation system employing a trellis source coder and a
convolutional code implies the concatenation of the Viterbi decoder for channel decoding
and the K-length shift register addressing a 2K-word Look-Up Table for source decoding.
The Viterbi algorithm decodes the binary sequence û from the channel sequence v̂ that
was corrupted by the transmission channel (see �gure 6.1). Then, the source decoder
decodes the source sequence x̂ = ŷi from the decoded binary sequence û. As we can see,
these two operations are performed separately and the source decoder has no knowledge
of the distortion caused by the transmission channel. In order for the source decoder to
take advantage of the channel characteristics during the source reconstruction, the source
and channel decoding operations can be merged into a single decoding operation so as to
obtain a soft source decoder which minimizes the expectation of the distortion introduced
by the transmission channel. This is justi�ed by observing that the mean square error
between the original source x and the one reconstructed at the receiver end x̂ can be
bounded with

D �
LTS�1X
k=0

(xk � yi(k))
2 +

LTS�1X
k=0

(yi(k) � x̂k)
2 (6.14)

where the �rst term corresponds to the distortion introduced by the quantization process
at the encoder end and the second term indicates the distortion introduced by the trans-
mission errors. Decreasing the overall distortion at the decoder end can only be accom-
plished with the second term since the distortion introduced by the quantization process
is due to a lossy compression operation, and minimizing its distortion is not possible.

In the same manner as the reproduction codebook is updated during the codebook
design algorithm described in Chapter 2, the expectation of the second term of equation
6.14 can be minimized by using the weighted centroid (see also [121])

x̂k =
1P2K�1

i=0 Pk(yi)

2K�1X
i=0

yiPk(yi) (6.15)

where Pk(yi) is the probability of decoding source codeword yi, given all the received
channel sequence v̂.

The channel information, i.e. Pk(yi), required for the estimation of the reproduction
sample x̂ can be obtained in an aposteriori way by the BCJR algorithm. According to [12],
the objective of the decoder is to examine the received channel sequence v̂ and estimate
the a posteriori probabilities of the trellis states and branches. Putting the probability
Pk(yi) in terms of the notation employed in [12], we have
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Pk(yi) = �k(m
0; m) = P (Sk�1 = m0;Sk = m; v̂�1 ) (6.16)

where m0 and m are the previous and current states, respectively, of the branch labeled
with the reproduction codeword yi and v̂�1 is a frame of the received channel symbols.

It was shown that �k(m
0; m) could be expressed in the form

�k(m
0; m) = �k�1(m

0) � 
k(m
0; m) � �k(m) (6.17)

where 
k(m
0; m), �k(m) and �k(m) are, respectively, the branch probability and the for-

ward and backward recursions. These three parameters are de�ned as

�k(m) =
2K�1�1X
m0=0

P (Sk�1 = m0;Sk = m; v̂k1) (6.18)

�k(m) =
X
m0

�k�1(m
0) � 
k(m

0; m) (6.19)

�k(m) =
2K�1�1X
m0=0

P (Sk+1 = m0; v̂�k+1jSk = m) (6.20)

�k(m) =
X
m0

�k+1(m
0) � 
k+1(m;m

0) (6.21)


k(m
0; m) = exp

�
�1

2�2
k v̂k � ck(m

0; m) k2
�

(6.22)

where �2 is the variance of the channel noise, v̂k is the received channel symbol and
ck(m

0; m) is the expected channel symbol associated to the trellis branch whose previ-
ous and current state are m0 and m, respectively1. Consequently, equation 6.15 can be
rewritten in the form

x̂k =
1P

m0

P
m �k(m0; m)

X
m0

X
m

y(m0;m)�k(m
0; m) (6.23)

where y(m0;m) is the reproduction codeword associated to the branch that links states m0

and m. Using this expression for decoding the source, the distortion introduced by the
transmission channel can be minimized.

1For more details on the BCJR algorithm, the reader is referred to [12] and [44]
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6.6 Simulation Results

The proposed system was simulated with a gaussian and �rst-order gauss-markov sources
transmitted through an AWGN channel. In addition, the system was compared to a
tandem system consisting of a trellis quantizer concatenated to a convolutional code.

The two systems used di�erent decoding strategies. One strategy consisted in joint
MAP decoding, as explained in the previous section; the other one consisted in a Viterbi
decoder concatenated to the trellis decoder discussed in Chapter 2. We thus have four
di�erent system combinations:

1. Tandem system with joint MAP decoding. This will be referred to as Tandem-MAP

2. Tandem system with concatenated Viterbi and shift register source decoder. This
will be called Tandem-vit

3. The proposed system, that is, JSCTC with a convolutional code and MAP decoding
(JSCTC-MAP)

4. The proposed system but instead of the MAP decoder, a concatenation of a Viterbi
decoder and the shift register source decoder is used (JSCTC-vit)

The source rate Rs is one bit per sample and the channel coder consisted of a K=7,
rate Rc = 1=2 convolutional code with generator polynomials (133; 171)octal.

Figure 6.4 shows the performance of the four systems in the case of a gaussian source
transmitted through a AWGN channel. We can point out from this �gure that MAP
decoding results in a very e�cient way to reduce the distortion introduced by transmission
errors (curve �Tandem-MAP�). Notice how, by using the a posteriori channel information,
the decoder is able to improve the tandem system's performance (curve �Tandem vit)
for about 2:5 dB (at channel SNR=0 dB). On the other hand, by using the JSCTC
algorithm for codebook design and source quantization, we can further improve the overall
performance (curves �JSCTC-vit� and �JSCTC-MAP�) between 0:8 and 1 dB of SQR.

Figure 6.5 presents results obtained with a �rst order gauss-markov source. The same
behaviour as in the above example can be observed: MAP decoding improves the tandem
system's performance, and with the addition of the JSCTC technique, the performance
is further improved.

Finally, �gures 6.6, 6.7 and 6.8 present Lenna images coded with the Tandem-map and
JSCTC-MAP systems for transmissions at SNR=�3, �1 and 0 dB. Notice the improved
performance of the proposed approach over the tandem system, specially for very noisy
channels.
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Figure 6.4: Performance comparison between the proposed system and a tandem scheme for a
gaussian source and AWGN channel.
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Figure 6.5: Performance comparison between the proposed system and a tandem scheme for a
�rst order gauss-markov source and AWGN channel.



160
Joint Optimization of a Trellis Source and Convolutional Channel Coders

with Soft Source Decoding

(a) Tandem-MAP; K = 7 (b) JSCTC-MAP; K = 7

Figure 6.6: Lenna images coded with JSCTC-MAP and Tandem-MAP systems at SNR=-3dB.

(a) Tandem-MAP; K = 7 (b) JSCTC-MAP; K = 7

Figure 6.7: Lenna images coded with JSCTC-MAP and Tandem-MAP systems at SNR=-1dB.
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(a) Tandem-MAP; K = 7 (b) JSCTC-MAP; K = 7

Figure 6.8: Lenna images coded with JSCTC-MAP and Tandem-MAP systems at SNR=0dB.

6.7 Conclusion

A jointly optimized trellis source coder and convolutional code was presented. It was
shown that the channel estimation for source encoding and codebook design can be tighly
bounded with the transfer function of the convolutional code without the need of extensive
monte-carlo simulations. On the other hand, the BCJR algorithm was modi�ed to perform
"soft source decoding" with the use of its a posteriori probability estimation. We saw,
that by using MAP decoding, the performance of the tandem system can be largely
improved. Finally, if the JSCTC approach is combined with this MAP decoding, further
improvements can be obtained.





Conclusion and Perspectives

Conclusion

In this thesis, a �rst approach towards the hardware implementations of JSCC techniques
was presented. In addition, new ideas for improving performance were presented. In the
last decade, JSCC became a very important topic in Information Theory. Exciting recent
developements have shown the potential advantages of JSCC over conventional commu-
nication systems where source and channel coders are designed separately. Nowadays,
researches continue scanning the horizon for new ideas and solutions in order to approach
Shannon's theoretical limits.

This thesis has served to demonstrate that JSCC may lead to the design of hardware
architectures with a better trade o� performance-computational load. In addition, we
saw that the behaviour of these systems is �softer� than conventional tandem systems. By
�softer� we mean systems that present a smooth performance degradation as the conditions
of the transmission channel worsen. That is, these systems do not present the dramatic
drop of performance presented in tandem systems when the transmission channel attains
a certain threshold.

In a more speci�c way, we study a JSCTC technique [9] and designed its hardware
architecture. This algorithm presents the following characteristics:

� a simultaneous compression and channel protection technique

� channel errors are not corrected, it is the impact of these errors in the decoded source
which is minimized. As a result, channel coding for error correction is completely
eliminated or very simple

� since channel coding may not be employed, the ressources that would have been
used by this operation are now dedicated to the source coding operation. This way,
a better performance on the decoded source can be obtained since more bits are
used for its representation

� larger gains if correlated sources are coded, if the constraint length of the trellis is
larger and when the transmission channel is very noisy
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� when the transmission channel is noiseless, the performance of noiseless trellis quan-
tization and JSCTC are identical.

In order to alleviate the hardware complexity of this algorithm, a suboptimum trel-
lis search algorithm was used. Simulation results showed that this algorithm o�ers an
excellent trade o� hardware complexity-performance degradation. Then, new hardware
architectures for the implementation of the M algorithm were proposed. These architec-
tures are much more e�cient than previous hardware implementations of this algorithm.
In addition, it must be pointed out that they can be used for di�erent applications sucha
as channel equalization.

Finally, a joint source-channel coding technique consisting in the joint optimization of
the JSCTC technique and a convolutional code was presented. At the receiver end, we
explored the use of MAP estimation for decoding the source with successfull results. It
must be noted that the MAP algorithm was used to decode the source, not to correct
transmission errors. This corroborates an idea expressed in [91] indicating that in JSCC
applications, evaluating the performance of a system in terms of its error probability does
not provide a usefull indication of the system's performance.

Future Work

The are a number of areas considered in this thesis where further work could be pursued:

� JSCTC

1. obviously, a short-term perspective would consist in the hardware implemen-
tation of the architectures proposed in this work.

2. in the context of image coding, the images presented in this work presented
an horizontal pattern of channel errors. This is due to the fact that the image
was rasterized before being coded. In order to reduce or eliminate this error
pattern, an intelligent solution would be to perform a bidimensional JSCTC.

3. another interesting perspective would be the application of the JSCTC tech-
nique for speech coding, and then to implement its hardware architecture.
In [87], a TCQ-CELP coder was designed; thus, we could merge the ideas
presented in this thesis with those of [87] in order to implement a hardware
architecture for robust TCQ-CELP coders.

� Architectures for the M algorithm

1. to implement a parallel architecture of the M algorithm. So far a serial imple-
mentation on FPGAs has been considered
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2. to evaluate the performance of these new architectures in the context of inter-
symbol interference

� Joint optimization of JSCTC and convolutional coding

1. the use of punctured codes to increase the rate of channel coding

2. study the application of di�erent channel coding schemes such as block codes
or turbo codes

3. to study suboptimal trellis searches applied to the MAP algorithm. We have
already started to work in this subject with the use of the M algorithm. Never-
theless, the results are quite dissapointing. In [45] it was indicated that when
applied to turbo decoding, the M algorithm yields poor results since it has a
�xed amount of survivors. The authors proposed to use a trellis search algo-
rithm with adaptive e�ort such that the number of surviving paths depends
on the conditions of the transmission channel. If the channel is very noisy, the
number of surviving pahs can increase to its maximum capacity of 2K�1 states.
On the other hand, in the opposite case, the number of surviving paths may
decrease even to one searches path. As a result, we can use the same approach
to evaluate the performance when applied the context of a posteriori estimation
for source decoding





Appendix A

Trace-Back Techniques in Survivor

Memory Management for the Viterbi

Algorithm

This appendix deals with the usual methods employed to improve the e�ciency of the
Trace-Back algorithm used in Viterbi decoders. In Chapter 4, we highlighted the working
operation of the TB algorithm and its advantages over the register exchange procedure
(density, power consumption, wiring, etc). Nevertheless, a direct implementation of the
TB algorithm is not possible since it is assumed that the TB memory stores all the
decision bits from the ACS unit before the algorithm is started. Consequently, methods
to simultaneously updating and reading the TB memory must be found.

In chapter 4 we also showed a naive method to perform the TB algorithm. Clearly, that
method is not feasible since serious problems of decoding delay, storage management and
read/write con�icts arise. In order to reduce the number of trace-back steps per decoded
bit, we can increase the trace back memory from L to L+ l memory addresses. This way,
for each trace back procedure, l bits are decoded and the number of trace-back steps per
decoded bit is reduced from L+ 1 to L+l

l
. Clearly, a choice of longer l will further reduce

the number of trace-back steps per decoded bit. Nevertheless, there is a price to pay since
the decoding delay and the storage requirements both grow. Moreover, the throughput
constraint of one decoded bit per decision vector generated by the ACS unit will never be
reached. In addition, we have to take into account that during the trace back procedure
more decision vectors are created by the ACS unit which need to be stored in the memory.
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A.1 l-Pointer Trace-Back

To solve this problem, the conventional approach adopted is to divide the trace back
memory in memory banks where three basic operations are performed:

1. Merging trace-back: This trace back procedure is performed on a memory bank
of length L so as to attain the decoding depth needed to decode reliable segments
of the output sequence.

2. Decoding trace-back: This trace-back operation uses the output pointer of the
merging trace-back in order to decode the surviving path corresponding to the time
interval [k = k � L + 1; k = k � 2L]. Then, the bits decoded in this trace back
operation are sent to the LIFO for data reordering.

3. Writing of new decision vectors: New decision vectors generated by the ACS
unit are stored in a free memory bank.

Figure A.1 shows the schedule of these operations on a 3-memory-bank trace-back. As
the name suggests, the overall trace back memory has been divided into three memory
banks. In general, while a merging trace-back is being performed on a given memory bank,
a decoding trace-back is performed in other memory bank with an initial pointer given by a
previous merging trace-back operation. At the same time, the memory space that is being
freed by the decoding trace-back is used for writing new decision vectors. The detailed
process is as follows:

� initialization (from k = 0 to k = 2L� 1)

1. Memory banks 0 and 1 are �lled in with the decision vectors of the ACS unit.

� Reaching the �rst decoding depth (from k = 2L to k = 3L� 1)

1. A merging trace-back is performed on memory bank 1 so that the decoding
depth is reached and a reliable pointer can be used to trace memory bank 0
back.

2. In the meantime, the writing of new decision vectors is performed on memory
bank 2.

� First decoding trace-back (from k = 3L to k = 4L� 1)

1. A decoding trace-back on memory bank 0 is performed with the pointer given
by the merging trace-back on memory bank 1 of the previous step.

2. A merging trace-back is performed on memory bank 2 and

3. The memory space freed by the decoding trace back is used for writing new
decision vectors
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� Steady state (for k � 4L; for i=0 to i=1 in steps of L cycles.)

1. The decoded segment of decision vectors from the previous decoding trace-back
on memory bank i mod 3 is arranged in reverse order,

2. A merging trace-back operation is done on memory bank i mod 3 that have
just been �lled in with decision vectors,

3. A decoding trace-back is performed on memory (i + 1) mod 3,

4. The writing of decision vectors is done in the spaced freed by the decoding
trace-back on memory (i+ 1) mod 3.

5. Set i = i+ 1 and go to step 1.

Performing the trace-back algorithm in this way guarantees that the throughput con-
straint of one decoded bit per decision vector generated is observed.

The trace-back method presented above uses two pointers to implement the trace back
algorithm, one pointer for the merging trace-back and another pointer for the decoding
trace-back; nevertheless, generalizations to l-pointer trace-backs have been proposed which
improve the e�ciency of the architecture in di�erent aspects such as latency, read/write
con�icts and storage requirements [31, 41]. Other versions of the same approach propose
the use of systolic architectures and di�erent clock rates for storing and reading the
decision vectors in order to improve the latency and throughput rate of the architecture
[22, 75, 112].

The main drawback of this approach is the decoding delay which for the example
described above was of 4L cycles. This delay can be reduced by increasing the number of
memory pointers but the price to pay is an increased complexity of the control circuitry
that manages the trace-back operations on di�erent memory banks.

A.2 Improving Hardware E�ciency: Hybrid Survivor
Memory Management Architectures.

In order to improve the hardware performance, it is possible to design architectures that
mix both the register exchange and the trace-back algorithm [22, 21, 85]. By doing this,
we can pro�t from the advantages of both survivor memory management approaches,
namely the small latency and regularity of the register exchange algorithm and the low
power dissipation and high storage density of the trace-back procedure. Consequently, we
can design hardware architectures with a better trade o� between latency and storage
requirements.

A �rst observation leading to this hybrid approach is that in a segment of decision bits
of length (K � 1)l corresponding to a given state, each subsegment i (i = 1 � � � l) of K� 1
bits indicates the ancestor state visited by the surviving path at time k = k� (K � 1) � i,
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as indicated in �gure A.2. This important feature of the surviving paths can be exploited
to improve the hardware e�ciency of the survivor memory management architecture.
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Figure A.2: Ancestor state property of the surviving paths.

The architecture for the survivor memory management can be improved in two major
aspects by using the hybrid approach:

� Latency and

� Storage requirements

Two methods to improve this two parameters are treated in the following paragraphs.

A.2.1 Block Trace-Back

The idea behind the block trace-back (Block TB) is to generate l-bit segments of the
surviving paths in a 2K�1� l-size register exchange structure, and every l cycles the l-bit
segment of the surviving paths is transferred to a trace-back table with 2K�1 horizontal
addresses and m � l vertical addresses. The segments of the surviving paths are written
in the vertical addresses. After n � l cycles, a trace-back operation is performed over the
horizontal addresses at a rate of l bits per trace-back step such that in n cycles the
surviving path is traced back over a n � l-bit depth. In the meantime, the contents of
the register exchange array are transferred to the m� n columns of the trace-back table
and new n decision vectors are shu�ed in the register exchange structure. From the n � l
decision vectors that are traced back, l bits belong to the �nal decoded sequence.
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Figure A.3 shows an example of the block trace-back architecture for the special case
l = 8, n = 8 and a total trace-back memory of n � l + l = 72 columns. As explained
above, at every 8 cycles, the surviving paths in the register exchange structure are shifted
into the trace-back table. Upon the shift of 64 columns of the surviving paths into the
trace-back memory, an 8-bit-step trace-back operation is performed during 8 cycles.

The reading operation of the trace-back table is done over the horizontal addresses and
the starting address of the trace-back operation is given by the K�1 LSBs of the register
exchange contents corresponding to the zero state (or any other state). From the 64-bit
word pointed by these K � 1 bits, only the �rst 8 bits are taken into account. This 8-bit
word corresponds to the �rst packet of decision bits that were shifted into the trace-back
memory. In the next clock cycle, the horizontal address pointed to by the K � 1 LSBs
of this 8-bit word are read; this time the second segment of 8 bits are taken, from which
the K � 1 LSBs indicate the next horizontal address that has to be read. The process
is continued until the last segment of 8 bits is read, which is part of the �nal decoded
sequence.

In the meantime, the contents of the register exchange structure are shifted into the
trace-back table and l new decision vectors from the ACS unit are shu�ed into the register
exchange circuit. Since the total trace-back memory is n + l columns, no data is over-
written and the throughput constraint of one decoded bit per decision vector generated
is respected.

We can see that in this architecture the decoding depth is L = 64 which make a
total memory of 80 columns and a latency of 80 cycles. Compared to this method, the
conventional 2-pointer trace-back approach of �gure A.1 would need 192 columns and
its latency would be of 256 cycles. Clearly, the hybrid architecture o�ers a signi�cant
improvement. Finally, notice that by reducing the size of register exchange depth l and
increasing the trace-back memory in the same proportion, the memory requirements and
the latency of the hybrid approach are further reduced.
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A.2.2 Register-Exchange-Pointer Trace-Back

A special case of the above method which is able to reduce the storage requirements and
latency to their lower bounds is the register-exchange pointer trace-back (RE-pointer TB).
In this so called method, the architecture is also divided into a register exchange circuit
and a trace-back memory. However, in this case the register exchange circuit is only K�1
columns wide.

Figure A.4 shows the architecture and operation principle of this method. In this ex-
ample, the trace-back memory is divided into two banks of L columns each. The decision
vectors generated by the ACS unit are transferred to the trace-back memory in the usual
way. Regarding the register exchange array, during the �rst K � 1 cycles, the curcuit
works as usual; then, from k = K � 1 to L, the decision vectors coming from the ACS
unit are not shifted into the register exchange array but are only used to drive the shuf-
�ing operation. This way, according to the decoding depth property and the property
described in �gure A.2, after L cycles the register exchange contents indicate the ancestor
state of the surviving paths L cycles earlier. As a consequence, this state can be used as
the initial pointer of the decoding trace-back. This way, the merging trace-back of the
l-pointer trace-back method is avoided and hence the decoding delay is reduced.

In the above example, the latency of the architecture has been reduced from 4L, corre-
sponding to the 2-pointer trace-back method, to 3L. In addition, the storage requirements
have been reduced from 3L to 2L + K�1 decision vectors. Generalizations to several reg-
ister exchange units are straightforward. Figure A.5 shows the register-exchange-pointer
trace-back schedule for two register exchange units RE1 and RE2. During the �rst L

2

cycles, the �rst trace back memory is �lled in. Then, at k = L
2
, the second TB memory

starts to be �lled in and the RE1 array is initialized during K � 1 cycles. Afterwards, the
decision bits control the shu�e of this array during L cycles in order to attain the decod-
ing depth. In the meantime, at k = L, the RE2 array is initialized and shu�ed during L
cycles. At k = 3L

2
, the �rst RE array attains the decoding depth and hence its stored val-

ued indicates the visited state L cycles before. This values serves to perform a trace back
on the �rst TB memory. Then, at k = 2L� 1 the second RE array attains the decoding
depth and a trace-back is performed on the second TB memory. The process continues
in this way until all the sequence is trated. Notice the signi�cant reduction of the latency
and the size of the trace-back memory with this method (2L and 3

2
L, repectively).
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A.3 Complexity Models of the Di�erent Survivor Mem-
ory Management Techniques

As a conclusion of this appendix, table A.1 summarizes the latency and storage require-
ments of the di�erent survivor memory management techniques presented. The reader is
referred to [22] and [41] for detailed derivations of these expressions.

Table A.1: Latency and storage requirements of the di�erent survivor memory
management techniques.

technique Latency Storage
(cycles) requirements

TB 2l1
l1�1

L 2K�1 � 2l1�1
l1�1

L

Block TB nl2 + l2 + n 2K�1 � (nl2 + l2 + n)

RE-pointer TB L + 2L
p

2K�1 �
h
p(K � 1) +

�
L+ L

p

�i

l1: number of TB pointers

l2: RE depth

n: TB depth

p: number of RE pointers





Appendix B

A Brief Survey on Sorting Algorithms

Sorting has attracted so much attention that bibliography on this subject is very extensive
[13, 56, 61, 63, 88, 117]. One of the reasons of this is that sorting is an interesting problem
with a great deal of practical applications, specially in computer science research; for
example, computer programs such as compilers or editors often choose to sort tables and
lists so as to enhance the speed and simplicity of the algorithms used to access them.

Since the main area of application of sorting algorithms is computer science, the char-
acteristics of these sorting algorithms are suitable for software applications rather than for
hardware implementations. Yet, with the advent of parallel processing, these algorithms
evolved and hadware implementations have been reported [17, 18]

Nevertheless, in spite of the great e�ectiveness of these algorithms, their study and
utilization are beyond the scope of this dissertation because those algorithms were de-
signed for the processing of large amounts of information, whereas in our particular case,
the number of values to sort is relatively small. Thus, by using one of these algorithms,
we would be overestimating the problem, resulting in hardware designs that are more
complex than they should be.

Sorting algorithms can be divided into two classes: parallel and serial. In the former,
all the values to be sorted are processed together in an interconnection network fashion;
conversely, in the latter it is assumed that the values arrive serially to the sorting circuit
in such a way that the new value to sort is inserted in an already ordered list. In the
following, di�erent sorting algorithms which are the most suitable for our application are
treated. Extensive studies can be found in [20, 46, 111]. In fact, most of the material
presented here was taken from those references so as to ease the comprehension of the
exposition.
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B.1 Parallel Sorting

B.1.1 Batcher's Odd-Even Sorting Network

This algorithm is due to Batcher [11], and the principle of this algorithm is based on
the merging of two ascendengly-ordered lists of numbers into one ascendengly-ordered
list. To make this sorting network fast, it is necessary to have a number of camparison
elements performing comparisons in parallel. A compaison-exchange element is shown in
�gure B.1. The two inputs entering the comparison-exchange element are compared, the
smallest input is released by the upper output line (L output) and the largest input is
released according to the arrow head (H output).

Y

L

H

X

Figure B.1: Comparison-exchange element for sorting networks.

The odd-even sorting network is based on iterated merging, that is, an iterative rule is
applied to an N -item list so as to create small sorted lists of size 2, 4, 8, � � � , N during
successive stages. The iterative rule of the odd-even merging network is illustrated in
�gure B.2. Starting from two sorted lists of numbers A = (a1; � � � ; as) andB = (b1; � � � ; bt),
two new lists C andD are generated. List C is formed by merging the odd-numbered terms
of lists A and B, and list D is formed by merging the even-numbered terms. Finally, lists
C and D are merged to obtain the sorted list E by performing the following comparison-
exchanges

e1 = c1

e2i = min(ci+1; di)

e2i+1 = max(ci+1; di) i = 1; 2; � � � (B.1)

es+t = dt

The iterative merge of numbers is done by noting that the merging network of two
numbers is simply a comparison-exchange element. Then, a merging network of four el-
ements is created from two 2-item merging networks and the iterative rule described in
equations B.1, as shown in �gure B.3(a). Notice that one condition to employ the merging
network is that the two list are in sorted order. Thus, to implement a four item sorting
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network, we need two 2-item sorting networks (that is, two comparators) followed by a
4-item merging network as indicated in �gure B.3(b). The two comparators in the �rst
vertical layer of the sorting network deliver two ordered lists of two items each to the
4-item merging network. Then, the 4-item merging network merge the two 2-item ordered
list into a single ordered list.
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Figure B.3: Four-item merging and sorting networks.

A sorting network of N = 8 items is shown in �gure B.4(a). Notice the recursivity of the
algorithm; in order to produce two ordered lists entering the 8-item merging network, two
4-itemmerging networks are needed. These in turn need two 2-itemmerging networks (two
comparators) so that the two lists entering each merging network are in sorted order. It is
important to notice the di�erence between amerging network and a sorting network.
The merging network requires two ordered lists at its inputs whereas the sorting network
not. Finally, �gure B.4(b) presents a sorting network for N = 16 items.
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Figure B.4: Odd-even sorting networks for N = 8 and N = 16-item lists.

The features of the odd-even sorgin network are:

� Number of comparision-exchange elements employed in a N -item merging net-
work:

log2

�
N

2

�
�
N

2
+ 1 (B.2)

� Number of comparison-exchange elements used in a N -item sorting network:

N

4
�
�
(log2N)2 � log2N + 4

�
� 1 (B.3)

� Number of vertical comparison-exchange layers:

(1 + log2N) � log2N

2
(B.4)

Notice that the smallest item takes log2N comparisons to be known. In addition, other
important aspect of this sorting network is that pipelining can be introduced very easily.
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B.1.2 Batcher's Bitonic Sorting Network

The iterative rule of the bitonic merging network is shown in �gure B.5. A bitonic list
is obtained by concatenating two monotonically increasing lists, one in ascending order
and the other in descending order. The bitonic rule comes from the fact that if A =
(a1; a2; � � � ; aN) is a bitonic list and we form two lists de�ned as

min(a1; aN
2
+1); min(a2; aN

2
+2); min(a3; aN

2
+3); � � � ; min(aN

2

; aN) (B.5)

and

max(a1; aN
2
+1); max(a2; aN

2
+2); max(a3; aN

2
+3); � � � ; max(aN

2

; aN) (B.6)

then, these two lists are also bitonic, and list B.5 has the smallest values of the N -item
list.

In the same manner as in the odd-even merging network, a bitonic sorter of 2 items
is a single comparison-exchange element. Figure B.6 shows bitonic merging and sorting
networks for lists of four and eight items. Notice that the same construction of sorting
networks as that of the odd-even case applies. That is, in order to sort a list of N items,
these are combined two at a time to form ordered lists of size 2; these lists are merged
two at a time to form ordered lists of length four and so on, until all the items are merged
into a single list.

The features of the bitonic sorting network are:

� Number of comparision-exchange elements employed in a N -item merging net-
work:

N

2
� log2N (B.7)

� Number of comparison-exchange elements used in a N -item sorting network:

N � log2N � (log2N + 1)

4
(B.8)

� Number of vertical comparison-exchange layers:

(1 + log2N) � log2N

2
(B.9)



B.1 Parallel Sorting 185

N
2

- item bitonic sorter

- item bitonic sorterN
2

2

2

2

c1

c2

c3

2

cN - 2

2

2

2

2

N - 2

2

a

2

3

2

a

2a

1a

2

cN - 2

cN - 1

cN + 1

cN

cN - 1

cN

cN + 2

cN + 3

aN + 1

aN + 2

aN + 3

L

H

L

H

L

aN

H

L

aN - 1

aN

aN - 2

aN - 1

L

H

L

H

H

Figure B.5: Iterative rule for the bitonic merging network.



186 A Brief Survey on Sorting Algorithms

L

L

H

H

L

H

L

L

H

a1

a2

a4

a3

c4

1c

2c

3c

L

H

H

(a) 4-item sorting network.

L

H

L

H

L

H

L

H

L

H

L

H

a1

a2

L

H

L

H

L

H

a1

a2

a1

a2

c4

c3

c2

c1

c8

c7

c6

c5

8-item bitonic merging network
merging network

L

H

H

L

H

L

H

L

H

L

L

H

L

H

H

H

L

L

L

H

H

L

H

L

a4

a3

L

H

H

L

H

L

a4

a3

a4

a3

a8

a7

a5

a6

c4

c3

c2

c1

c4

c3

c2

c1

4-item bitonic

(b) 8-item sorting network.
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B.1.3 Bubble Sort

The principle of this algorithm is based on the slow ascending of �light� values. Figure
B.7 show a bubble sorter for N = 8 items. At each stage of the algorithm, the �heavy�
values tend to go down along the network whereas the �light� values tend to go up. The
features of this sorting network are:

� Number of comparison-exchange elements used in a N -item sorting network:

N � (N � 1)

2
(B.10)

� Number of vertical comparison-exchange layers:

N (B.11)
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Figure B.7: Bubble sorting network for 16-item lists.

B.2 Serial Sorting

B.2.1 Single Insertion

This algorithm consists in the sequential comparison of the item to be inserted (inserting
element) with each one of the items already inserted in the sorting circuit. Notice that
the insertion is done on an already ordered list. Figure B.8 shows the architecture of
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this sorting algorithm. A �rst comparison is made with the �rst element of the ordered
list and depending on the result, the inserting element is either inserted in that position
or passed to the second comparison-exchange element. When the inserting element is
inserted, the item that was previously stored in that position is compared to the right-
hand-side items of the list producing a shifting operation. Notice that the comparison
elements in the �gure are not comparison-exchange elements anymore; they are simple
comparator circuits whose output is the largest element of the two inputs and a control
signal that indicates if the inserting element is larger than the inserted element or not.
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Figure B.8: Sorting architecture with the single insertion algorithm.

The features of this algorithm are:

� Processing time to sort N items:

N � (N � 1)

2
(B.12)

� Number of comparison-exchange elements:

N (B.13)

B.2.2 Dichotomic Insertion

This algorithm is shown in �gure B.9. The idea is to compare the inserting element to the
middle element in an ordered list. Then, depending on the result of this comparison, the
inserting element is either moved to the upper half of the N -item list or to the lower half.
Next, the inserting element is compared to the middle element of the upper or lower half
(second middle element in the �gure) and depending on the result, the inserting element
passes to the upper or lower half of the upper or lower half of the N -item list. This process
is repeated until there is only one item left to compare with (third middle element).
Finally, the previously inserted elements are shifted to the right and the inserting element
is inserted. We must point out that in the comparison elements utilized in this structure
the middle elements of the ordered list do not pass through the comparison element, only
the inserting element in released as output either through the L or H outputs. The features
of the dichotomic insertion are:
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� Processing time to sort N items (number of comparisions):

N � log2N (B.14)

� Number of comparison-exchange layers:

log2N (B.15)
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Figure B.9: Sorting architecture with the dichotomic insertion algorithm.

The main drawback of this algorithm is that we cannot introduce pipelining since we
must wait for the current inserting element to be inserted before starting the insertion
on the next element. This is due to the fact that the middle values of the list must be
updated.

A �nal comment is in order. If we want to obtain the smallest N values from a list of
M (M > N), the rightmost comparison-exchange element and the multiplexer of �gure
B.9 are required. Depending on the result of the two comparisons between the two largest
values on the list and the inserting element, the inserting element is either inserted in the
penultimate position, in the last position or not inserted at all.
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B.2.3 Parallel Insertion

In this �nal algorithm, the inserting element is compared to all the previously inserted
elements at the same time. Three cases may occur during this parallel comparision (see
�gure B.10.

1. The inserting element is larger than the inserted element of the ith position. In this
case, nothing in done.

2. The inserting element is larger than the inserted element of the ith position but is
smaller than the inserted element of position i + 1. This means that the inserting
element must be inserted at the i+ 1th position.

3. The inserting element is smaller than the inserted elements to its right. In this case,
the inserted elements must be shifted to the right position.

case 2

ordered

inserting element

list

list
final

case 1 case 1 case 1 case 1 case 1 case 3 case 3 case 3

3 4 5 11 16 20 23

3 54

8

8 11 16 20 2315

15

Figure B.10: Principle of parallel insertion.

This insertion takes only one processing time consisting of one comparison (actually, N
parallel comparisons) followed by shifting operations. The architecture of this algorithm is
shown in �gure B.11. This time, each element is a simple comparator whose output only
indicates which of the two inputs is the smallest one. The multiplixer on each register
is controlled by the output of the current register r = i and the output of the previous
register r = i�1. When the inserting element is smaller than the element of register r = i,
the ouput of the comparator commands the multiplexer to select the inserting element
to be stored in register r = i. Then, the outputs of comparators i and i + 1 select the
element of the ith position to be stored in register r = i + 1. The same operation occurs
with the other comparators, causing the elements stored at registers r > i to be shifted
to the right.
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Figure B.11: Parallel insertion Architecture.
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