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INTRODUCTION

Amid the ongoing industrial revolution, communication services play a major role in
the development of society. These services are extended to involve newly emerged services
such as the Internet of Things (IoT), human-machine interaction, machine-to-machine
communication, multimedia services, autonomous vehicles, holographic communications,
deep space communication, etc. The proliferation of these services will lead to a significant
increase in the number of connected devices which is expected to reach around 30 billion
devices in 2030, according to Statista [2]. Therefore, due to spectral scarcity, reliable and
spectral-efficient communications are the main challenges for the research community.

Back in the mid-twentieth century, Claude Shannon in his famous paper on information
theory [3] showed that reliable communication is possible using error control coding. Prior
to Shannon’s seminal work in 1948, data repetition was the only way to reduce the error
probability of transmission over a noisy channel. Hence, it was inefficient, as it required
significantly more bandwidth to transmit the same amount of data.

Since then, plenty of error-correcting schemes have been proposed. Error control coding
is a coding procedure followed to control the occurrences of errors which helps in error
detection and correction. In any error-correcting scheme (code), a message (information)
block of K symbols is transformed into a codeword of N symbols by adding M = N −K
redundant (parity) symbols. Those parity symbols serve in error detection and correction
to check the consistency of the delivered message and to recover the corrupted data.

Binary codes such as the Low-Density Parity Check (LDPC) [4], [5], Turbo (TC) [6],
and Polar Codes (PC) [7] are standardized for use in different communication standards
such as the Digital Video Broadcasting (DVB) [8], and the Third Generation Partnership
Project (3GPP)[9]. The binary LDPC, turbo, and polar codes can approach the chan-
nel capacity limits under certain scenarios. Nevertheless, with the emergence of novel
communication standards and applications such as the Ultra-Reliable Low-Latency Com-
munication (URLLC) [10], and the Internet of Things (IoT), the communication standards
are more focused on low power, low latency, and high throughput codes with very low-
error floors. Furthermore, small packet communication became more popular in wireless
systems and broadband cellular networks, such as the Fifth Generation (5G) technology
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standard.
Moreover, the coexistence of several radio applications constrains the spectrum re-

sources. The amount of data transmitted in a variety of applications continues to expand,
while the number of users grows at an exponential rate. In this context, operators and
manufacturers strive to maximize the spectral efficiency of the systems. The use of high-
order modulations is the ultimate solution to the paucity of frequency spectrum resources
and the necessity for high data rate transmissions.

Consequently, neither of the present standardized codes is capable of satisfying the
recent requirements simultaneously. Hence, the study of new codes is essential for the
research community. The Non-Binary (NB) codes are one of the novel codes that gained
much attraction in recent years.

Non-binary codes are extensions of the binary codes with symbols and coefficients
represented on a field of GF (q = 2p) with p > 1. Therefore, each symbol or coefficient is
a binary vector of p−bits. The motivation to study non-binary codes is due to two main
reasons. Firstly, the performance of the binary codes degrades at short frames due to the
high correlation experienced in the iterative decoding process [11], [12]. In contrast, the
correlation is reduced in the non-binary codes since a higher number of symbols represent
the data. Therefore, the non-binary decoding outperforms the binary decoding as provided
in [13]. Secondly, the binary codes suffer from binary marginalization when modulated on
q−ary modulation [14]. Therefore, the non-binary codes maintain a better performance
than binary codes when associated with high-order modulations [15]–[17], especially at
low coding rates. The performance gain between binary codes and non-binary codes can
range between 1 dB to 2 dB according to the assessment provided in [15] over different
fields and modulation orders.

On the other hand, the decoding process of the NB codes is much more complicated
than their binary counterparts. Thus, the complexity of the non-binary decoders is the
bottleneck of a widespread standardization of the non-binary codes. Nevertheless, non-
binary LDPC codes, have been adopted in the experimental specification for channel
coding in the Consultative Committee for Space Data Systems (CCSDS) [18]. Addition-
ally, they have been standardized recently for the Chinese Satellite Navigation System,
BeiDou [19].

In addition, the non-binary codes combined with the CCSK modulation [20] provide
several advantages compared to state-of-the-art waveform as it offers self-synchronization
and self-identification capabilities, and can operate at ultra-low Signal-to-Noise Ratios
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(SNR).
In the context of the QCSP project, the objective of this PhD is to study and optimize

the decoding algorithms of non-binary codes such as the LDPC, TC, and PC to allow the
achievement of high-throughput decoders with a hardware-friendly complexity.

During this PhD, the non-binary turbo codes were studied and the state-of-the-art
were reproduced. However, due to the insignificant optimization, the study on non-binary
turbo codes is not discussed in this report.

Thesis Outline

This thesis comprises four key chapters. The initial chapter, Chapter 1, delves into
fundamental subjects, encompassing finite fields and the maximum achievable rate, along
with a brief introduction to a spread spectrum technique known as cyclic-code shift keying.
Subsequently, Chapter 2 is devoted to a comprehensive investigation of non-binary low-
density parity-check codes. Proceeding to Chapter 3, a dedicated exploration of non-binary
polar codes is presented. To round out the thesis, a concluding chapter offers a summary
of the primary content discussed and outlines potential avenues for future research.

Chapter 2 initiates with an exposition on NB-LDPC codes and their decoders in
Section 2.1. Subsequently, Section 2.2 delves into the discussion of iterative decoding
algorithms, encompassing both optimal and sub-optimal solutions. Section 2.3 then intro-
duces the extended min-sum algorithm and elaborates on its implementation techniques.
Furthermore, Section 2.4 presents the trellis extended min-sum algorithm, along with a
discussion of state-of-the-art optimization techniques. The principal contribution to the
NB-LDPC decoder within the scope of this doctoral work is expounded in Section 2.5. This
section outlines the proposed algorithm, known as the BRD (Best, Requested, and De-
fault) algorithm, as introduced in Section 2.5.1. Section 2.5.2 provides a thorough analysis
supported by statistical justification. The implementation of the BRD algorithm, juxta-
posed with state-of-the-art alternatives, is comprehensively detailed from Section 2.5.3 to
Section 2.5.5. The synthesis results of the implemented check node are documented in
Section 2.5.6, specifically for the forward-backward BRD check node. Finally, Section 2.6
encapsulates the chapter’s key insights and findings.

Additionally, Chapter 3 commences with an introductory exploration of non-binary
polar codes in Section 3.1. This section encompasses the concept of channel polarization,
polar coding, and the extension of polar codes into non-binary field orders. Subsequently,
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Section 3.2 introduces the successive cancellation decoding for non-binary polar codes.
Section 3.3 elaborates on the construction of polar codes and the kernel coefficients. In
Section 3.4, state-of-the-art approaches for optimizing successive cancellation decoding
are delineated. Section 3.6 introduces the first optimization contribution for non-binary
successive cancellation decoding, referred to as the asymmetrical extended min-sum. The
exploration of optimization is extended in Section 3.7, where a highly customized de-
coder is designed, with dynamic processing tailored to specific groups of nodes, known as
polarization-aware decoding.

Contributions of the Thesis

This thesis encompasses novel contributions aimed at reducing the decoding complex-
ity using algorithmic optimization on non-binary LDPC and Polar decoders.

The optimization strategy put forth to mitigate the decoding complexity associated
with non-binary LDPC (NB-LDPC) decoders is referred to as the Best, Requested, and
Default (BRD) algorithm. This algorithm represents a novel development and has been
granted a patent. Fundamentally, the BRD algorithm reconfigures the decoding processes
by facilitating bidirectional information exchange through a push-and-pull mechanism, as
opposed to exclusively utilizing a unidirectional push method. This technique leads to a
substantial reduction in communication load when compared to alternative approaches.
Moreover, it achieves a noteworthy reduction in overall memory allocation without intro-
ducing any supplementary computational complexity, while also offering a modest reduc-
tion in computational demands.

In the realm of polar decoders, two optimization approaches have been proposed. The
initial approach involves the integration of asymmetrical processing alongside a reduction
in the internal processing of the decoding units. The second, more intricate approach em-
ploys statistical information to craft a highly personalized polar decoder, wherein diverse
nodes are allocated distinct processing resources and message sizes.

19



List of Publications

J. Jabour, A. C. Al-Ghouwayel, and E. Boutillon, "Asymmetrical Extended Min-
Sum for Successive Cancellation Decoding of Non-Binary Polar Codes," 2023 12th In-
ternational Symposium on Topics in Coding (ISTC), Brest, France, 2023, pp. 1-5, doi:
10.1109/ISTC57237.2023.10273502.

J. Jabour, C. Marchand, and E. Boutillon, "The Best, the Requested, and the Default
Elementary Check Node for EMS NB-LDPC Decoder," 2023 IEEE Wireless Communi-
cations and Networking Conference (WCNC), Glasgow, United Kingdom, 2023, pp. 1-6,
doi: 10.1109/WCNC55385.2023.10118720.

J. Jabour, C. Marchand, and E. Boutillon, "The Best, The Requested, and The Default
Non-Binary LDPC Decoding Algorithm," 2021 11th International Symposium on Topics in
Coding (ISTC), Montreal, QC, Canada, 2021, pp. 1-5, doi: 10.1109/ISTC49272.2021.9594148.

Patents:

E. Boutillon, J. Jabour, and C. Marchand, "A method for decoding a codeword encoded
using a non-binary code, corresponding device, and computer program", WO2023025960A,
2023.

20



Chapter 1

FUNDAMENTALS: FROM FINITE FIELDS

TO SPREAD SPECTRUM.

In this chapter, the fundamental concepts that are mentioned (or used) in this thesis
are described such as the Galois Fields presented in section 1.1, the maximum achievable
rates presented in 1.2, and the cyclic code shift keying modulation presented in 1.3.

1.1 Introduction to Galois Fields

Finite Fields are widely used in digital communication to improve the robustness,
performance, and efficiency of the different blocks in the digital communication chain.
In channel coding, the finite fields are used to enhance the decoding performance of the
error-correction codes. Therefore, in this section, a brief explanation of the finite fields
(also Galois fields) is outlined.

In general, a field is defined as a collection of elements that are subject to addition and
multiplication operations along with some characteristics that control these operations.

1.1.1 Abelian Groups

Definition 1.1.1 An Abelian group G is a set of elements G = {g0, g1, g2, . . . } and an
operation ⊕ that satisfies the following axioms:

— Closure: For any gi and gj ∈ G with i ̸= j, the element gi ⊕ gj ∈ G.
— Associative Law: For any gi, gj, gk ∈ G, if (gi ⊕ gj)⊕ gk = gi ⊕ (gj ⊕ gk).
— Identity: There is an identity element 0 ∈ G for which 0⊕ gi = gi ⊕ 0 = gi.
— There is an inverse element −gi for each element such that gi ⊕ (−gi) = 0.

In addition, a group is called an abelian group if the commutative condition is satisfied
such that gi ⊕ gj = gj ⊕ gi

21



Chapter 1 – Fundamentals: From Finite Fields to Spread Spectrum.

1.1.2 Galois Fields

Definition 1.1.2 A Galois (or finite) field is a set F of at least two elements, with two
operations ⊕ and ⊛, satisfying the following axioms:

— The set F forms an abelian group (whose identity is called 0) under the operation
⊕.

— The set F⊛ = F −{0} = gi ∈ F, gi ̸= 0 forms an abelian group under the operation
⊛.

— For all gi, gj, gk ∈ F, (gi ⊕ gj) ⊛ gk = (gi ⊛ gk)⊕ (gj ⊛ gk).
The operation ⊕ corresponds to field addition, and ⊛ corresponds to the field multiplica-
tion.

The set F = {0, 1} with modulo-2 addition (⊕) and multiplication (⊛) is an example
of a binary Galois Field denoted as GF(2).

⊕ 0 1
0 0 1
1 1 0

⊛ 0 1
0 0 0
1 0 1

Table 1.1 – Addition (⊕) and Multiplication (⊛) Operations over GF(2).

A field of order q = mp is denoted as GF(q) if m is prime and p is a positive number.

Polynomials over Finite Fields

The polynomial g(A) of degree p over a finite field of GF(q) is expressed as

g(A) =
m∑

i=0
gi · αi, (1.1)

where gi ∈ GF(q) and gm ̸= 0.
The addition and multiplication operations follow the ordinary polynomial rules except

that the operations of the coefficients are performed over modulo-q. If a polynomial cannot
be written as a product of two lower-degree polynomials, then it is called an irreducible
polynomial. In addition, if am = 1, the polynomial is called a monic polynomial.

Assume an irreducible and monic polynomial f(A) of degree p. Consider all the poly-
nomials with degrees less than p over GF(q) with ordinary polynomial addition and mul-
tiplication operations performed over modulo-q. The set of the resultant elements of the
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1.1. Introduction to Galois Fields

addition and multiplication operations are the elements of the Galois field GF(q). The
modulo-q multiplication entails multiplying two polynomials, dividing the product by the
irreducible polynomial, and finding the remainder.

As an example, assume the irreducible polynomial α3 + α + 1 for GF(8 = 23), the
elements of GF(8) are {0, 1, α, α+1, α2, α2+1, α2+α, α2+α+1}. Assume the multiplication
operation (α + 1) ⊛ 1, it can be computed as mod ( α+1

α3+α+1), i.e., α3 = α + 1. Similarly,
all elements in GF(8) can be written as powers of α.

Therefore, the elements of GF(8) can be written in three ways, the polynomial form
with a degree less than p, the power form with a degree less than q − 2, or the vector
form which only considers the coefficient of the polynomial gi. The three representations
are depicted in Table 1.2 for GF(8) with the irreducible polynomial f(A) = α3 + α + 1.

Vector Polynomial Power
000 0 α−∞

001 1 α0

010 α α1

100 α2 α2

011 α + 1 α3

110 α2 + α α4

111 α2 + α + 1 α5

101 α2 + 1 α6

Table 1.2 – Representation of Field Elements on GF(8).

The multiple representation of the field elements helps in simplifying the addition (⊕)
and multiplication (⊛) operations. The power representation simplifies the multiplication
operation ⊛ of two elements αi ⊕ αj such that the result is equal to an element with a
power that is the sum of the operands power modulo q− 1, i.e., αi ⊛αj = α(i+j) mod (q−1).
As a proof example, assume α6 ⊛ α = α7 = (α3+1)α

α3+α+1 = 1, i.e., α7 = 1. This can be easily
obtained when using α7 mod 7 = α0 = 1.

On the other hand, the vector representation is used for the field addition operations
which can be seen as the p−bit XOR of the two (vector-represented) elements. As an
example, assume the addition of (α2 + 1)⊕ (α + 1). The polynomial element (α2 + 1) is
represented as (101)2 and the polynomial (α + 1) is represented as (011)2 in the vector
representation. Thus, the sum in polynomial can be performed as (101)2 XOR (011)2 =
(110)2 which is the vector representation of the polynomial α2+α, and the XOR represents
the Exclusive OR logical gate.
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Chapter 1 – Fundamentals: From Finite Fields to Spread Spectrum.

The field multiplication and addition tables on GF(8) are as depicted in Table 1.3 and
1.4 respectively.

⊛ 0 1 α α2 α3 α4 α5 α6

0 0 0 0 0 0 0 0 0
1 0 1 α α2 α3 α4 α5 α6

α 0 α α2 α3 α4 α5 α6 1
α2 0 α2 α3 α4 α5 α6 1 α
α3 0 α3 α4 α5 α6 1 α α2

α4 0 α4 α5 α6 1 α α2 α3

α5 0 α5 α6 1 α α2 α3 α4

α6 0 α6 1 α α2 α3 α4 α5

Table 1.3 – Multiplication (⊛) Operations over GF(8) using Power Representation.

1.2 Asymptotic and Finite Block-Length Achievable
Code Rates

The theoretical bound of the maximal achievable rate plays a major role in assessing
the performance of the error-correction codes. There are two regimes to deduce the upper
bound; The asymptotic and the finite block lengths regimes. The asymptotic regime is
discussed in section 1.2.1 and the finite block length regime is discussed in section 1.2.2
in brief.

1.2.1 Asymptotic Achievable Rate

The asymptotic maximal achievable rate also called the channel capacity, is the maxi-
mum possible coding rate at which information can be reliably transmitted for an asymp-
totic block length.

Channel capacity is defined mathematically as the maximum mutual information be-
tween the channel’s input and output. In the context of channel coding, mutual informa-
tion is defined as the amount of shared information between two random variables. Hence,
the asymptotic maximal achievable rate can be expressed as follows

C ≜ I(X;Y ) = H(X)−H(X|Y ), (1.2)
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Chapter 1 – Fundamentals: From Finite Fields to Spread Spectrum.

where I(X;Y ) is the mutual information between channel input X and channel output
Y , H(X) is the information entropy of X, and H(X|Y ) is the conditional entropy of X
given Y .

1.2.2 Finite-Block Achievable Rate

As known, the asymptotic regime is a theoretical bound that assumes an infinite block
length. But in practice, the block lengths are finite and can be short lengths, medium
lengths, or high lengths. Therefore, a more realistic regime was proposed by Y. Polyaniskiy
in [21] that estimates the maximal achievable rates for finite-block lengths.

In the non-asymptotic regime, the maximal achievable rate is given by

R = C −
√
V

N
Q−1(Pe), (1.3)

where C corresponds to the channel capacity expressed in (1.2), V is the channel disper-
sion, Pe is the desired error probability, and Q−1() is the inverse of the complementary
Gaussian cumulative distribution function.

The channel dispersion V is expressed as

V = H2(X|Y )−H2(X|Y ), (1.4)

where H2(X|Y ) ≜ Ey

(
−∑P (x) log2(P (x))

)
.

Using (1.3), the minimum achievable error rate can be expressed as

Pe = Q

C −R√
V/N

 . (1.5)

Thus, the deduced probability of error Pe is the minimum achievable error probability
for a given code rate R, and code lengthN . It is used to assess the performance of the error-
correcting codes by estimating the performance gap between the studied error-correction
code and the minimum achievable error probability.
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1.3. Cyclic Code Shift Keying Modulation

1.3 Cyclic Code Shift Keying Modulation

The Cyclic-Code Shift Keying (CCSK) modulation [22], [23] is a spread-spectrum
modulation technique. It has been adopted in the Quasi Cyclic Small Packet (QCSP)
project [24] for developing a new coded modulation scheme for IoT networks. In short, the
association of the CCSK and the non-binary decoders has provided self-synchronization,
self-identification, and operation at ultra-low signal-to-noise ratios.

In CCSK modulation, a message of size p−bits denoted as α ∈ GF(q = 2p), is mod-
ulated over a Pseudo-random Noise (PN) sequence of size q. Therefore, the message is
spread by a spreading factor SF = p

q
.

Assume a fundamental PN sequence (corresponds to α = 0) denoted as ψ0 such that
ψ0= (ψ0(0), ψ0(1), . . . , ψ0(q − 1)) with ψ0(k) ∈ {0, 1} ∀ k = 0, . . . , q − 1. A PN sequence
ψα is deduced for any symbol α from ψ0 by circularly shifting the latter as follows:

ψα(k) = ψ0((k + α) mod q) ∀ k = 0, . . . , q − 1. (1.6)

Let ψ = (ψc0 , ψc1 , . . . , ψcN−1) denote the CCSK modulated frame of the codeword
c = (c0, . . . , cN−1) where ci is a symbol of GF(q) (of size p-bits). The length of the frame
is thus Nq bits (or chips). The chips of ψ are modulated over a Binary Phase Shift
Keying (BPSK) and transmitted over a Binary Input Additive White Gaussian Noise
(BI-AWGN) channel with noise variance σ2. The ith transmitted CCSK symbol ψci

is
received as a vector yi = (yi(k))k=0,1,...,q−1 with yi(k) = (2ψci

(k)− 1) +wi(k) where wi(k)
represents a sample of the additive noise.

The LLR vector Li computed from the channel observation is given as Li =
(Li(0), . . . , Li(q − 1)) with

Li(α) =
q−1∑
k=0

2yi(k)
σ2 (ψĉi

(k)− ψα(k)), ∀α ∈ GF(q) (1.7)

where ĉi represents the maximum likelihood decision on yi defined as

ĉi = argmax
α∈ GF(q)

{
q−1∑
k=0

2yi(k)
σ2 ψα(k)}. (1.8)

Note that, by construction, the LLR values are all positive and L(ĉi) = 0. In addition, the
generated LLR vectors Li are inputted to the non-binary decoder as the intrinsic beliefs.
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Chapter 2 – Non-Binary Low-Density Parity Check Codes

2.1 Introduction to NB-LDPC Codes

NB-LDPC Codes were invented by R. Gallager in 1960 [4] and rediscovered by D.
Mackay in 1996 [5], [25]. An NB-LDPC code [26] is a linear block code defined by a sparse
Parity Check Matrix (PCM) H of dimension M × N over a Galois field GF(q = 2p)
with p > 1. Therefore, the ratio of the non-zeros elements and the zero elements of the
PCM tends to zero as the dimension of the PCM tends to infinity. An LDPC code allows
the encoder to transform an information message of K symbols into a codeword of N
symbols (using a generator matrix) by adding redundant information of M = N − K

symbols. The number of parity check constraints, M , represents the number of rows in
H, and the length of the codewords, N , represents the number of columns in H. At the
encoding stage, M redundant symbols are added to the K information symbols to obtain
a codeword of size N . Moreover, the M parity constraints of H are used for verifying the
validity of the received message. A codeword X is valid if and only if X ·HT = 0 where
HT is the transpose of the matrix H.

Consider a PCM H with N = 9, K = 3 as follows

A codeword X = [x0, x1, x2, x3, x4, x5, x6, x7, x8] should satisfy six parity check equa-
tions as follows

x0 ⊛ h0,0 ⊕ x3 ⊛ h0,3 ⊕ x6 ⊛ h0,6 = 0
x1 ⊛ h1,1 ⊕ x4 ⊛ h1,4 ⊕ x7 ⊛ h1,7 = 0
x2 ⊛ h2,2 ⊕ x5 ⊛ h2,5 ⊕ x8 ⊛ h2,8 = 0
x0 ⊛ h3,0 ⊕ x4 ⊛ h3,4 ⊕ x8 ⊛ h3,8 = 0
x1 ⊛ h4,1 ⊕ x5 ⊛ h4,5 ⊕ x6 ⊛ h4,6 = 0
x2 ⊛ h5,2 ⊕ x3 ⊛ h5,3 ⊕ x7 ⊛ h5,7 = 0

(2.1)

where any element of X and H is an element over a Galois field of order q, denoted as
GF(q). The operators ⊕ and ⊛ depict the GF addition and multiplication over GF(q)
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respectively.

2.1.1 Structure of NB-LDPC Decoder

An NB-LDPC decoder consists of VNs (VNs) and CNs (CNs). The interconnections
of those nodes are determined by the PCM H. The interconnections of the variable and
CNs can be visualized as a graph called a bipartite (or Tanner) graph [27] as illustrated
in Fig. 2.1.

The code structure is well described using the Tanner graph such that each row in
H corresponds to a CN. Similarly, each column in H corresponds to a VN. Moreover,
the interconnections between the check and VNs are also determined by H. A CN Ci is
related to a VN Vj if and only if the element of H at row i and column j is a non-zero
element, (hi,j ̸= 0). The number of non-zero elements in each row is denoted as dc and
is known as the CN degree of connectivity, whereas, the number of non-zero elements in
each column is denoted as dv and is known as the VN degree of connectivity.

An LDPC code is said to be a regular or irregular code based on the degree of con-
nectivity of the CNs dc and the VN dv. A regular LDPC code has constant degrees of
connectivity dv for all VNs and dc for all CNs. In addition, the degree of connectivity dc

is expressed as dc = N

M
· dv. Assuming the PCM H is a full rank matrix, the coding rate

r can be expressed in terms of dc and dv as

r = K

N
= 1− dv

dc

(2.2)

The regular NB-LDPC is more hardware-friendly than the irregular due to the static
structure of the nodes (same dc and dv).

Since the PCM H of an NB-LDPC consists of symbols over GF(q = 2p) with p > 1, a
permutation node is added to perform the multiplication of the symbols by the non-zero
element of hi,j between each edge (a connection between a VN Vj and a CN Ci with
hi,j > 0). As illustrated in Fig.2.1, the Tanner graph shows that it consists of N = 9
VNs and M = 6 CNs with the permutation block in the middle of the connections. In
addition, the illustrated graph and hence, the PCM is considered as a regular code since
the number of CNs connected to each VN is constant, dv = 2 and the number of VNs
connected to each CN is constant, dc = N

M
· dc, dc = 9

6 · 2 = 3.
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Figure 2.1 – A Graphical Representation of H with a Tanner Graph

2.1.2 Overview on NB-LDPC Code Construction

The construction of good NB-LDPC codes can be achieved through plenty of methods
in the literature [28]–[33]. The design aims to find a PCM H that allows the decoder
to achieve near-capacity performance with efficient encoding and decoding performance-
complexity trade-off.

The assessment of the asymptotic performance of the NB-LDPC has been estimated
using different approaches. A. Bennatan, et al. studied the error-correcting performance
of NB-LDPC codes by applying the Maximum Likelihood decoding and the Belief Prop-
agation algorithm as presented in [29], the author extended his work by including the
development of extrinsic information transfer charts for arbitrary channels as presented
in [30]. Furthermore, G. Li et al. studied the performance of the NB-LDPC codes using
Gaussian approximation in [31].

The study presented in [33] by X. Hu proved that when the field order, q, increases,
the decoding performance increases with ultra-sparse NB-LDPC codes. In addition, codes
with the minimum VN degree of connectivity of dv = 2 have been proposed and studied
in [28] by C. Pouillat.

The construction of a good NB-LDPC PCM can be performed in two stages. The
first stage consists of finding the positions of the non-zero elements of H that minimize
the error floor. Then, the coefficients of the non-zero elements for a given row of H are
selected based on the decoding performance at the waterfall region and the error floor
region.

Finding the positions of the non-zero elements is related to the girth size of the obtained
matrix H. The girth is the length of the shortest cycle (a path that starts and ends at
the same node and visits no node more than once) in the Tanner graph. The higher the
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girth, the better the decoding performance. This is because a code with a higher girth
decreases the trapping sets in the message-passing algorithm. Thus, the impact of passing
a bad belief is minimized. The work presented in [32] by L. Zeng et al. proposes using a
Quasi-Cyclic PCM constructed from smaller photographs.

The coefficient selection of the non-zero elements can be obtained in an arbitrary
approach (random selection) or concisely. The proposed approach in [28] relies on choosing
almost optimal non-zero coefficients in the PCM for codes with a variable degree of dv = 2.
Once the non-zero coefficients are selected to optimize one PCM row, they are concisely
allocated across the PCM to provide good cycle characteristics.

A large enough database of good performance Quasi-Cyclic NB-LDPC codes has been
designed and allowed for public use in [34]. The performance of all codes provided through-
out this chapter is based on the codes available in the aforementioned database.

2.2 NB-LDPC Iterative Decoding Algorithms

The decoding process of the NB-LDPC decoder is based on iterative message-passing
decoding such that the beliefs are propagated from the VNs toward the corresponding
CNs and vice versa.

2.2.1 Belief Propagation Algorithm

The Belief Propagation (BP) decoding algorithm is based on message passing between
the VNs and the connected CNs at each iteration. The decoding algorithm should converge
before reaching the maximum number of iterations (itermax); otherwise, the decoding
process is considered a failure. The BP algorithm is the decoding algorithm proposed in
[26] to decode an NB-LDPC codeword.

Assume a transmitted codeword X = [x0, x1, x2, · · · , xN−1] such that xi ∈ GF (q), and
a received codeword Y = [y0, y1, · · · , yN−1]. A decoding algorithm should converge from y

towards a valid codeword X̂ = [x̂0, x̂1, · · · , x̂N−1], such that a successful decoding process
is achieved when X̂ = X.

Each VN Vj has intrinsic information Ij computed from the channel observation where
Ij is a vector of size q of a posteriori probabilities defined as

Ij = [P(Vj = α0|yj),P(Vj = α1|yj), · · · ,P(Vj = αq−1|yj)], (2.3)
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where P(X|Y ) is the conditional probability of X given Y .
The decoding algorithm can be divided into the following steps:

1. Initialization: Each VN Vj transmits the intrinsic information Ij to its connected
CNs via the message MVj2Ci

.
2. Permutation: The variable-to-check message MVj2Ci

is multiplied by the element
hi,j of the PCM H and a permuted version of the message MVj2Ci

, denoted as
MP

Vj2Ci
is obtained as

MP
Vj2Ci

[α] = MVj2Ci
[α⊛ hi,j] ∀ α ∈ GF (q). (2.4)

3. Check Node Update: The CN update yields the message MP
Ci2Vj

computed as the
combination of all symbols that satisfy the parity check constraint

MP
Ci2Vj

[α] =
∑∑

k ̸=j
hi,k ̸=0

βk=α

∏
k ̸=j

hi,k ̸=0

MP
Vj2Ci

[βk] ∀ α, βk ∈ GF (q). (2.5)

4. Inverse Permutation: The message MP
Ci2Vj

is computed from the permuted variable-
to-check message MP

Vj2Ci
and hence, an inverse permutation is performed by divid-

ing the GF symbols of the message MP
Ci2Vj

by the PCM element hi,j. Therefore,
the check-to-variable message is obtained as

MCi2Vj
[α] = MP

Ci2Vj
[α⊛ h−1

i,j ] ∀ α ∈ GF (q) (2.6)

5. Variable Node Update: A VN Vj receives dv messages and updates them as follows

MVj2Ci
[α] = ηvjci

× Ij[α]×
∏
k ̸=i

hk,j ̸=0

MCk2Vj
[α] ∀α ∈ GF (q). (2.7)

where ηvjci
is a normalization factor such that ∑

α∈GF (q)
MVj2Ci

[α] = 1.

6. Codeword Estimation: At each iteration, the a posteriori probability (APP) vector
is computed as in (2.8), and the decision is taken as the most probable symbol in
the a posteriori probability vector as in (2.9)

APPj[α] = ηvj
× Ij[α]×

∏
hi,j ̸=0

MCi2Vj
[α]. (2.8)
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where ηvj
is a normalization factor such that ∑

α∈GF (q)
APPj[α] = 1.

x̂j = arg max
α∈GF (q)

{APPj[α]}, j = 0, 1, · · · , N − 1. (2.9)

The messages exchanged between a VN and a CN (processed as aforementioned) are
illustrated in Fig. 2.2 for ease of realization. The BP algorithm suffers from high complex-

Figure 2.2 – Messages Exchanged Between a VN and a CN Edge.

ity. Therefore, different algorithms have been proposed to reduce the complexity of the
BP algorithm such as the Logarithmic Belief Propagation.

2.2.2 Belief Propagation in Logarithmic Domain

The Logarithmic Belief Propagation (Log-BP), proposed by H. Wymeersch in [35], is
a simplified BP algorithm that performs the computations of the BP algorithm in the
logarithmic domain, such that a probability belief is represented by a Log-Likelihood
Ratio (LLR).

An LLR value for a symbol α is defined as

LLR(α) = ln P(vj = α|yj)
P(vj = α0|yj)

, α, α0 ∈ GF (q), (2.10)
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where α0 is a reference symbol. Replacing the probability metric with the LLR metric
allows for reducing the hardware complexity of the decoder by converting all multiplication
operations to addition. Moreover, it allows for a better representation of small numbers
in fixed-point precision.

In the Log-BP decoding algorithm, the decoding processes are similar to that in the
Belief Propagation with some modifications to the computations in (2.3), (2.5),(2.7), and
(2.8). The intrinsic information Ij is redefined as

Ij[α] = ln
(
P(vj = ᾱ|yj)
P(vj = α)|yj

)
, (2.11)

where ᾱ = arg maxP(α|yj)
α∈GF (q)

, i.e., ᾱ is the hard decision. The advantage of using the

aforementioned LLR ratio [36] is that all LLR values are positive and the one with a value
of zero corresponds to the highest reliable symbol, i.e., Ij(ᾱ) = 0.

The following equation replaces the VN update in (2.7).

MVj2Ci
[α] = Ij[α] +

∑
k ̸=i

hk,j ̸=0

MCk2Vj
[α] ∀α ∈ GF(q). (2.12)

The CN Ci updates the message MP
Ci2Vj

sent to the VN Vj as follows

MP
Ci2Vj

[α] = ln


∑∑

k ̸=j
hi,k ̸=0

αk=α

exp(
∑
k ̸=j

hi,k ̸=0

MP
Vk2Ci

[αk])

 (2.13)

The message MP
Ci2Vj

is inversely permuted to obtain the message MCi2Vj
. The a pos-

teriori information APPj of the VN Vj is updated as

APPj[α] = Ij[α] +
∑

hi,j ̸=0
MCi2Vj

[α] ∀ α ∈ GF (q) (2.14)

The main drawback of the log-BP algorithm is that the complexity of the decoder
increases to an unimplementable level at high field levels due to the exponential and
logarithmic functions. Therefore, the min-sum algorithm was proposed to approximate
some metrics such that the complexity is further reduced.
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2.2.3 Min-Sum Algorithm

The Min-Sum algorithm, proposed by M. Fossorier in [37], is an approximated decoding
algorithm that approximates the CN update computed as (2.13) such that the exponential
and logarithmic functions are eliminated. This allows for reducing the look-up tables
dedicated to the exponential and logarithmic functions.

The min-sum approximates the CN outputs, the permuted check-to-variable messages,
as follows

MP
Ci2Vj

[α] ≈ min∑
k ̸=j

hi,k ̸=0

αk=α
{
∑
k ̸=j

hi,k ̸=0

MP
Vk2Ci

[αk]} (2.15)

Even though the min-sum algorithm eliminates the logarithmic and exponential func-
tions by using mathematical approximations, the CN processing still suffers from com-
plexity of order O(dcq

2).

2.2.4 Min-Max Algorithm

The min-max algorithm, proposed by V. Savin in [38], is another approximating decod-
ing algorithm that replaces the addition of the min-sum algorithm for further complexity
reduction. The CN processing in (2.15) is modified such that

MP
Ci2Vj

[α] ≈ min∑
k ̸=j

hi,k ̸=0

αk=α
{max

k ̸=j
hi,k ̸=0

MP
Vk2Ci

[αk]} (2.16)

2.3 Extended Min Sum Algorithm and Its Implemen-
tation Approaches

The EMS algorithm aims to reduce the complexity of the MS algorithm which is of
order O(dcq

2) such that a NB-LDPC decoder is implementable at high field orders such
as q ≥ 32. This is achieved by reducing the size of the exchanged messages, which, in
turn, reduces the overall complexity of the CNs.

In this section, the general algorithm of the Extended Min-Sum (EMS) is explained
in section 2.3.1. The algorithm can be implemented using different approaches such as
the Forward-Backward approach discussed in section 2.3.2 or using the Syndrome-Based
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approach discussed in section 2.3.3. In addition, the presorting approach combined with
the EMS CN is discussed in section 2.3.4.

2.3.1 Extended Min-Sum Algorithm

The Extended Min-Sum (EMS) is a truncated version of the min-sum algorithm such
that the messages exchanged are truncated from q-ary into an nm-ary vector [39], [40]
by extracting in a sorted ordered the nm most reliable candidates from the propagated
messages. In Log-BP, an exchanged message A is a vector of LLRs where each LLR(x)
corresponds to its index x. Hence, A = [LLR(α0), LLR(α1), · · · , LLR(αq−1)]. In the EMS
algorithm, the messageA is truncated to the messageB such that the vectorB includes the
most reliable nm GF symbols and their corresponding LLR values sorted in the descending
order of their reliability (ascending order of the LLR values).

For clearer insight, assume a message A including the reliability of q = 8 symbols as
shown in Fig. 2.3. Also, assume that nm = 4 such that the vector B contains the most
reliable elements of vector A. Each element in A is of one tuple which corresponds to the
reliability of the index symbol. On the contrary, each element of B is of two tuples, the GF
symbol, and its corresponding reliability estimate. In the sequel, the vector that includes
the first tuple of all elements (GF symbols) is represented as B⊕. Similarly, the LLR vector
of B is represented as B+. Hence the vector B = (B⊕, B+). In the provided example, the
4 most reliable candidates of A are at indices α2, α5, 0, and α1 and their corresponding
LLR values are 0, 2, 3, and 5 respectively. Therefore, both the indices (symbols) and their
LLR values are copied in the same order to B.

Figure 2.3 – Example of Message Truncation in EMS algorithm

The EMS algorithm can be formalized as follows,
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1. Initialization: Each VN Vj sends the nm most reliable candidates in the intrinsic
information to its connected CNs.

2. Variable Node Update: Each VN receives dv messages MCi2Vj
and a default value

κi from the connected CNs Ci where the default value κi is used to compensate
the degradation resulted due to the truncation, and computed as follows

κi = M+
Ci2Vj

[nm − 1] +O (2.17)

where O is an offset value determined empirically to reduce the error rate. The
reliability of the variable-to-check message M⊕

Vj2Ci
(m)m=0,1,··· ,nm−1 is updated as

M+
Vj2Ci

(m) = Ij[M⊕
Vj2Ci

(m)] +
∑
k ̸=i

hk,j ̸=0

Mk(m) (2.18)

such that

Mk(m) =

M
+
Ck2Vj

[M⊕
Vj2Ci

(m)] if M⊕
Vj2Ci

(m) ∈M⊕
Ck2Vj

κi otherwise
(2.19)

3. Normalization: Each variable-to-check message MVj2Ci
is normalized as follows,

M+
Vj2Ci

(m) = M+
Vj2Ci

(m)−min(M+
Vj2Ci

(m)). (2.20)

The normalization process (in both MS and EMS) is performed after every iteration
to avoid a significant increase in the LLR value which leads to arithmetic overflow.

4. Permutation: Each symbol in MVj2Ci
is multiplied by the non-zero hi,j to obtain

the permuted vector MP ⊕
Vj2Ci

MP ⊕
Vj2Ci

(m) = M⊕
Vj2Ci

(m) ⊛ hi,j for m = 0, 1, · · · , nm − 1 (2.21)

5. Check Node Update: The CN updates the permuted check-to-variable message

39



Chapter 2 – Non-Binary Low-Density Parity Check Codes

MP
Ci2Vj

as

MP +
Ci2Vj

(m) ≈ min∑
k ̸=j

hi,k ̸=0

MP ⊕
Vk2Ci

(ω)=α
{
∑
k ̸=j

hi,k ̸=0

MP +
Vk2Ci

(ω)} for 0 ≤ ω ≤ nm − 1

MP ⊕
Ci2Vj

(m) = α.

(2.22)

6. Inverse Permutation: The symbols of MP
Ci2Vj

are divided by hi,j to obtain the
message MCi2Vj

.
M⊕

Ci2Vj
(m) = MP ⊕

Ci2Vj
(m) ⊛ h−1

i,j (2.23)

7. Codeword Estimation: Each VN Vj updates the a posteriori information vector
APPj as:

APPj[α] = Ij[α] +
∑

hi,j ̸=0
Mi(α) ∀ α ∈ GF (q) (2.24)

where

Mi[α] =

M
+
Ci2Vj

[α], if α ∈M⊕
Ci2Vj

κi Otherwise

The EMS algorithm reduces the complexity of the NB-LDPC decoder down toO(dcn
2
m)

such that the decoder can be implemented on high-field orders such as q ≥ 32.

2.3.2 Forward-Backward CN Processing

The Forward-Backward (FB) approach is an approach proposed in [41] to efficiently
implement the EMS algorithm. It reduces the complexity of the EMS-based CN unit
by exploiting the (commutative and associative) properties of the addition operation in
GF(q). In the FB approach, the CN unit is decomposed into three layers namely, the
forward, the backward, and the merge where each layer consists of dc − 2 Elementary
Check Node (ECNs).

An example is shown in Fig. 2.4 for a degree of dc = 5. In each layer, there are dc−2 = 3
ECNs. As shown, the decomposition of the CN into multiple ECNs reduces the redundant
computations by ensuring that the maximum information is reused (not recomputed) at
the merge layer.

An ECN unit is a processing unit that has two input vectors A and B, and an output
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Figure 2.4 – Forward-Backward Architecture for dc = 5

vector C each of size nm. Each element in the vectors is of two tuples, a GF and an LLR
value. The notation A⊕ represents the GF vector, whereas A+ represents the LLR vector
of the vector A.

An ECN performs three operations sequentially,

1. Addition: An intermediate matrix TΣ is computed as follows

T+
Σ [a][b] = A+[a] +B+[b],
T⊕

Σ [a][b] = A⊕[a]⊕B⊕[b]
: a, b = 0, · · · , nm − 1.

(2.25)

where T⊕
Σ and T+

Σ correspond to the matrices of the GF symbols and the LLR
values respectively.

2. Sorting: After obtaining the matrix TΣ, the matrix is sorted in ascending order
of T+

Σ and therefore, the vector C is obtain by selecting the most reliable nop

candidates of TΣ.

3. Redundancy Elimination: if two elements in the vector C, C⊕[a] and C⊕[b] cor-
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respond to the same GF element with a < b, then the element C+[b] is suppressed
by assigning the highest LLR value (lowest reliability). To ensure that nm valid
candidates are obtained after the redundancy elimination, nop should always be
greater than nm.

The forward-backward approach tries to implement the EMS efficiently. However, the
computation of the matrix TΣ is still intensive since it performs n2

m GF additions and (nm−
1)2 LLR additions. The number of LLR addition operations is less than the GF addition
operations because the first row and column of TΣ corresponds to the (normalized) LLR
input vectors since T+

Σ [a][0] = A+[a] + B+[0] and T+
Σ [0][b] = A+[0] + B+[b] respectively

with A+[0] = 0 and B+[0] = 0.

Simplified ECN Computations

To reduce the computations performed in TΣ required to generate the nm, the authors
in [42] proposed the bubble check processing for the ECNs. The bubble check allows for
reducing the GF and LLR addition operations down to nm

√
nm and nm(√nm − 2) + 1

operations while maintaining the same performance as the conventional ECN processing
of TΣ.

Furthermore, the L-bubble approach presented in [43] considered a fraction of the
computations performed in TΣ to generate the nm output elements. It considers only the
first two rows and columns of TΣ to generate the output vector. Therefore, four regions
R0, R1, R2, and R3 are computed as follows

R0 = A[0] ⊞B[b], b = 0, · · · , nm − 1
R1 = A[a] ⊞B[0], a = 1, · · · , nm − 1
R2 = A[1] ⊞B[b], b = 1, · · · , nm − 1
R3 = A[a] ⊞B[1], a = 2, · · · , nm − 1

: a, b = 0, · · · , nm − 1.

(2.26)

Consequently, the nm most reliable (distinct) candidates are obtained using the regions
mentioned above only. As a result, the number of GF and LLR additions are reduced to
4nm − 4 and 2nm − 3 respectively.

Besides, the authors in [44] proposed an optimized version of the L-bubble, called
the S-bubble sorter. The authors proved that computing only the first row and column,
along with the first half of the second row and column, yields a similar outcome to
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computing the first two rows and columns. Therefore, no degradation is experienced in
the decoding performance. The computed regions R0, R1, R2, and R3 can be re-expressed
as the following

R0 = A[0] ⊞B[b], b = 0, · · · , nm − 1
R1 = A[a] ⊞B[0], a = 1, · · · , nm − 1
R2 = A[1] ⊞B[b], b = 1, · · · , nm/2− 1
R3 = A[a] ⊞B[1], a = 2, · · · , nm/2− 1

: a, b = 0, · · · , nm − 1.

(2.27)

For illustrative purposes, the schematic of the computed regions of TΣ with nm = 10
using the L-bubble and the S-bubble approaches are depicted in Fig. 2.5(a) and Fig. 2.5(b)
respectively.

(a) L-Bubble Sorter (b) S-Bubble Sorter

Figure 2.5 – Potential Elements of TΣ Computed using Bubble Sorters.

2.3.3 Syndrome-Based CN Processing

Syndrome-based (SYN) CN processing is an alternative approach to forward-backward
CN processing proposed in [45] that offers higher parallelism. In this approach, the CN
relies on deviation paths to compute the syndromes.

A syndrome-based CN has a basic structure as illustrated in Fig. 2.6. As shown,
once the processing of the sorting unit is performed, the dc output messages MP

C2Vj
are

generated in parallel. Therefore, a higher level of parallelism can be achieved.
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Figure 2.6 – Syndrome-based EMS Decoder [45]
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The syndrome-based CN relies on the deviation paths for obtaining the syndromes.
A deviation path denoted as δ is a dc-tuple δ = {δ(0), δ(1), · · · , δ(dc − 1)} and δ(j) ∈
0, 1, · · · , nvc − 1, j = 0, · · · , dc− 1 where nvc is the size of the CN input messages MP

Vj2C .
A syndrome S(δ) is the syndrome obtained by adding the elements of the deviation path
δ and defined as (S+(δ), S⊕(δ), SD(δ)).

The syndrome S(δ) is expressed as

S+(δ) =
dc−1∑
j=0

MP +
Vj2C [δ(j)]

S⊕(δ) =
dc−1⊕
j=0

MP ⊕
Vj2C [δ(j)]

SD(δ)(j) =

0 if δ(j) = 0

1 otherwise

(2.28)

where S+(δ) is the LLR value, S⊕(δ) is the GF symbol, and SD(δ) is the Discard Binary
Vector (DBV) of the syndrome S(δ) of size dc bits. The DBV is used at the decorrelation
stage of the syndrome decoder.

Assume ∆A is the set of all possible deviation paths, i.e., ∆A = {0, 1, · · · , nvc − 1}dc .
Then, the set ∆ is a subset of ∆A that reduces the total computed syndromes without
majorly affecting the decoding performance. The output message MP

C2Vj
corresponding

to the VN Vj is computed from the syndromes S(δ), δ ∈ ∆ with SD(δ)[j] = 0 by the
decorrelation unit (DU) and the redundancy elimination block (RE) as follows

MP ⊕
C2Vj

[k] = S⊕(δ)⊕MP ⊕
Vj2C [0];

MP +
C2Vj

[k] = min
δ∈∆, SD(δ)[j]=0

S+(δ); k = 0, · · · , ncv − 1. (2.29)

where ncv denotes the size of the check-to-variable messages.
The size of the deviation paths ∆ is based on the deviation parameters d1 and d2 [45].

The deviation parameters specify the maximum size of the deviation paths such that only
dk elements from each VN can contribute to obtaining a syndrome with a maximum of
k deviations from the zeroth element of the VN messages. As an example, assume that
d1 = 3 and d2 = 2. Since d1 = 3, only the first three elements in the variable-to-check
messages can contribute to one-deviation paths. For clarity, the full deviation paths for
d1 = 3 are as depicted in Table 2.1 for a CN degree dc = 3.

Similarly, the full syndromes set for d2 = 2 is depicted in Table 2.2.
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δ S⊕(δ) S+(δ) SD(δ)

100 MP ⊕
V02Ci

[1]⊕MP ⊕
V12Ci

[0]⊕MP ⊕
V22Ci

[0] MP +
V02Ci

[1] +MP +
V12Ci

[0] +MP +
V22Ci

[0] 100

010 MP ⊕
V02Ci

[0]⊕MP ⊕
V12Ci

[1]⊕MP ⊕
V22Ci

[0] MP +
V02Ci

[0] +MP +
V12Ci

[1] +MP +
V22Ci

[0] 010

001 MP ⊕
V02Ci

[0]⊕MP ⊕
V12Ci

[0]⊕MP ⊕
V22Ci

[1] MP +
V02Ci

[0] +MP +
V12Ci

[0] +MP +
V22Ci

[1] 001

200 MP ⊕
V02Ci

[2]⊕MP ⊕
V12Ci

[0]⊕MP ⊕
V22Ci

[0] MP +
V02Ci

[2] +MP +
V12Ci

[0] +MP +
V22Ci

[0] 100

020 MP ⊕
V02Ci

[0]⊕MP ⊕
V12Ci

[2]⊕MP ⊕
V22Ci

[0] MP +
V02Ci

[0] +MP +
V12Ci

[2] +MP +
V22Ci

[0] 010

002 MP ⊕
V02Ci

[0]⊕MP ⊕
V12Ci

[0]⊕MP ⊕
V22Ci

[2] MP +
V02Ci

[0] +MP +
V12Ci

[0] +MP +
V22Ci

[2] 001

300 MP ⊕
V02Ci

[3]⊕MP ⊕
V12Ci

[0]⊕MP ⊕
V22Ci

[0] MP +
V02Ci

[3] +MP +
V12Ci

[0] +MP +
V22Ci

[0] 100

030 MP ⊕
V02Ci

[0]⊕MP ⊕
V12Ci

[3]⊕MP ⊕
V22Ci

[0] MP +
V02Ci

[0] +MP +
V12Ci

[3] +MP +
V22Ci

[0] 010

003 MP ⊕
V02Ci

[0]⊕MP ⊕
V12Ci

[0]⊕MP ⊕
V22Ci

[3] MP +
V02Ci

[0] +MP +
V12Ci

[0] +MP +
V22Ci

[3] 001

Table 2.1 – Syndrome Set for d1 = 3

δ S⊕(δ) S+(δ) SD(δ)

110 MP ⊕
V02Ci

[1]⊕MP ⊕
V12Ci

[1]⊕MP ⊕
V22Ci

[0] MP +
V02Ci

[1] +MP +
V12Ci

[1] +MP +
V22Ci

[0] 110

011 MP ⊕
V02Ci

[0]⊕MP ⊕
V12Ci

[1]⊕MP ⊕
V22Ci

[1] MP +
V02Ci

[0] +MP +
V12Ci

[1] +MP +
V22Ci

[1] 011

101 MP ⊕
V02Ci

[1]⊕MP ⊕
V12Ci

[0]⊕MP ⊕
V22Ci

[1] MP +
V02Ci

[1] +MP +
V12Ci

[0] +MP +
V22Ci

[1] 101

120 MP ⊕
V02Ci

[1]⊕MP ⊕
V12Ci

[2]⊕MP ⊕
V22Ci

[0] MP +
V02Ci

[1] +MP +
V12Ci

[2] +MP +
V22Ci

[0] 110

012 MP ⊕
V02Ci

[0]⊕MP ⊕
V12Ci

[1]⊕MP ⊕
V22Ci

[2] MP +
V02Ci

[0] +MP +
V12Ci

[1] +MP +
V22Ci

[2] 011

102 MP ⊕
V02Ci

[1]⊕MP ⊕
V12Ci

[0]⊕MP ⊕
V22Ci

[2] MP +
V02Ci

[1] +MP +
V12Ci

[0] +MP +
V22Ci

[2] 101

210 MP ⊕
V02Ci

[2]⊕MP ⊕
V12Ci

[1]⊕MP ⊕
V22Ci

[0] MP +
V02Ci

[2] +MP +
V12Ci

[1] +MP +
V22Ci

[0] 110

021 MP ⊕
V02Ci

[0]⊕MP ⊕
V12Ci

[2]⊕MP ⊕
V22Ci

[1] MP +
V02Ci

[0] +MP +
V12Ci

[2] +MP +
V22Ci

[1] 011

201 MP ⊕
V02Ci

[2]⊕MP ⊕
V12Ci

[0]⊕MP ⊕
V22Ci

[1] MP +
V02Ci

[2] +MP +
V12Ci

[0] +MP +
V22Ci

[1] 101

220 MP ⊕
V02Ci

[2]⊕MP ⊕
V12Ci

[2]⊕MP ⊕
V22Ci

[0] MP +
V02Ci

[2] +MP +
V12Ci

[2] +MP +
V22Ci

[0] 110

022 MP ⊕
V02Ci

[0]⊕MP ⊕
V12Ci

[2]⊕MP ⊕
V22Ci

[2] MP +
V02Ci

[0] +MP +
V12Ci

[2] +MP +
V22Ci

[2] 011

202 MP ⊕
V02Ci

[2]⊕MP ⊕
V12Ci

[0]⊕MP ⊕
V22Ci

[2] MP +
V02Ci

[2] +MP +
V12Ci

[0] +MP +
V22Ci

[2] 101

Table 2.2 – Syndrome Set for d2 = 2
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This yields a total of deviation paths (similarly, syndromes), denoted as nSY N and
deduced as

nSY N = 1 + dc × d1 +
(
dc

d2

)
× (d2)2 (2.30)

The total syndromes size is the size of the two-deviations syndromes, one-deviation
syndromes, and the zero-deviation (only one syndrome) S(δ) = (0,MP ⊕

V02Ci
[0]⊕MP ⊕

V12Ci
[0]⊕

MP ⊕
V22Ci

[0], 000). The value of d1 and d2 is mostly set as nvc−1 and 2 respectively as provided
in [45].

2.3.4 Presorted EMS Algorithm

The presorting algorithm [46], [47] proposed by C. Marchand and H. Harb is an al-
gorithm used to polarize the statistics of the CN input messages such that the internal
processing of the CNs is simplified, hence, the complexity is reduced.

The presorting algorithm relies on presorting the variable-to-check messages
MP

Vj2C , j = 0, · · · , dc − 1 before the CN processing. The statistical polarization of the
inputs is achieved by sorting the messages based on the LLR difference between the first
and second element of MP

Vj2Ci
, MP +

Vj2Ci
[0] and MP +

Vj2Ci
[1] respectively. The presorting helps

in reducing the size of the messages MPVj2Ci by eliminating the elements with high LLR
values that are unlikely to contribute to an output, and hence, reducing the number of
computed bubbles/syndromes.

A concrete example of the presorting algorithm is illustrated in Fig. 2.7. Firstly, assume
a CN with four (dc = 4) input messages MP

Vj2C (denoted also as Uj) for j = 0, · · · , dc− 1.
The second element of the messages MP

Vj2C , i.e., MP
Vj2C [1] is processed by the presorting

block such that the output of the presorter, π is the index of the variable-to-check messages
Uj ordered in an ascending of the LLR value inputted. In the example, the entry U0[1] has
the least LLR value, then, the entry U2[1], after that, the entry U3[1] and lastly, the entry
U1[1]. Therefore, the output of the presorter is π = [0, 2, 3, 1]. The output of the presorter
is an input to the switch which permutes the message Uj to U

′
j based on the indices

vector π. For illustration purposes, assume that j entries are discarded at each message
index j such that the size of the message U ′

0 is the highest and the size of the message
U

′
dc−1 is the least. The reason behind this is that the difference between the hard decision

of the message, i.e., U ′
0[0] and the second reliable element U ′

0[1] is too low, therefore,
both elements should be considered as potential elements since the VN is not reliable.
Contrary, since the gap between the LLR value of the first and the second element of
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U
′
3 is significant, the remaining candidates are unlikely to contribute to obtaining a valid

output since the VN is confident about its hard decision. Furthermore, the permuted
messages are processed by the CN using one of the CN processing algorithms and then,
the output of the CN V

′
j is inversely permuted by π−1 to Vj and sent to the corresponding

VNs as shown.

The presorting technique has been integrated with both the forward-backward algo-
rithm in [46] and the syndrome-based algorithm in [47] for further complexity reduction
of the NB-LDPC decoder.

Figure 2.7 – Presorting Algorithm [47]
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Figure 2.8 – Extended Forward Check Node for dc = 6.

2.3.5 Hybrid Check Node Processing

The CN proposed in [48] is the first hybrid CN that relies on the forward-backward
and the syndrome-based approaches to enhance the efficiency of the CN. This hybrid
processing is named the Extended Forward (EF) approach. In the EF approach, the
forward-layer with dc − 1 ECNs is processed and passed in parallel to dc − 1 decorrelator
units and the redundancy elimination blocks as shown in Fig. 2.8.

Later in [49], C. Marchand et al. extended the hybrid processing by including the
presorting and the backward layer to generate the outputs efficiently. Therefore, the pro-
posed hybrid relies on three processes, the extended forward, the syndrome-based, and the
forward-backward approaches. Hence, three parameters ρSN , ρEF and ρF B are defined that
correspond to the number of inputs processed by the syndrome-based nodes, extended for-
ward block, and the forward-backward layer respectively such that ρSN +ρEF +ρF B = dc.
According to the authors, the hybrid architecture designed for dc = 12 over GF(64) and
GF(256) increased the power and hardware efficiency by a factor of 6.

2.4 Trellis Extended Min-Sum Algorithm and Its
Variants

The Trellis Extended Min-Sum (TEMS) algorithm, initially proposed in [50] by E. Li
et al., is an alternative way to efficiently process the CNs with a high degree of connectivity
dc. It is re-proposed in [51] with a low latency approach as a solution to reduce the high
latency of the EMS algorithm at high code rates, i.e., at high dc. In this section, the
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algorithm description of the Trellis extended min-sum is presented in section 2.4.1. In
addition, two simplification approaches called the One Minimum Only and Two-Extra
Columns are presented in section 2.4.2 and section 2.4.3 respectively.

2.4.1 Trellis Extended Min-Sum Algorithm

The Trellis extended min-sum presented in [50]–[52] is based on transforming the input
messages into another domain called the delta domain which allows the extraction of the
reliable LLR values for each symbol concurrently and building the configuration sets using
the trellis representation of the input messages. In addition, the TEMS, contrary to the
EMS, does not require the truncation and the sorting of the variable-to-check messages.

At the beginning of the CN processing, each variable-to-check message MP
Vj2C is trans-

ferred to another domain called the delta message domain. The delta domain trans-
formation processes the message MP

Vj2C for obtaining the delta messages M∆
Vj2C for all

j = 0, · · · , dc−1 by adding the symbol of the most reliable element (having an LLR value
0), ᾱj, of the message MP

Vj2C to all other elements as follows

M∆
Vj2C [β = ᾱj ⊕ α] = MP

Vj2C [α] ∀ α, ᾱj ∈ GF (q) (2.31)

Since the delta message M∆
Vj2C includes the LLR values of q GF elements, the index of

each entry in the vector represents the corresponding GF symbol. The concatenated delta
messages can be viewed as a dc × q matrix denoted as M∆ where each row corresponds
to dc LLR values (from each VN) of a GF symbol. Moreover, the element at index 0
(β = 0) of the delta messages M∆

Vj2C is always the most reliable GF element of the VNs
Vj. For each row in the remaining q − 1 entries, only nr (lowest) LLR values (out of the
dc available LLR values) are considered for building the configuration sets.

Let A denote the subset of the considered trellis nodes for building the configuration
sets such that a trellis node in A are represented as tuples (η, j) where η is the row
(symbol) index and j is the column (VN) index. Moreover, assume two subsets of A,
Aj and Aη that include the possible row elements (symbols) of the j-th column and the
possible column elements (VNs) of the η-th row (symbol η) respectively such that

A =
dc−1⋃
j=0
Aj =

q−1⋃
η=0
Aη (2.32)

The configuration set that includes up to nc deviations using nr out of dc LLR values
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for each symbol is denoted as Tconfη(nr, nc) and defined as

Tconfη(nr, nc) =

{η = [η0, η1, · · · , ηdc−1]T : η =
dc−1⊕
j=0

ηj, (ηj, j) ∈ A, |{ηj : ηj ≥ 1}| ≤ nc}. (2.33)

To compute the check-to-variable (delta) reliability messages for the q GF symbols,
an extra column denoted as ∆W of size q is defined as

∆W [η] = min
η∈Tη(nr,nc)

dc−1∑
j=0

M∆
Vj2C [ηj] ∀ η ∈ GF (q) (2.34)

Let the most reliable configuration used to obtain ∆W [η] be denoted as ηR =
[ηR0 , · · · , ηRdc−1 ]. The elements M∆

C2Vj
[η] for j = 0, · · · , dc − 1 are updated as follows

M∆
C2Vj

[η] =

∆W [η] if ηRj
= 0

Υ[η] otherwise
(2.35)

Some of the entries of M∆
C2Vj

[η]aren’t updated. Those entries are updated with the
value Υ[η]. The value of Υ[η] is obtained based on the number of deviations in ηR, D =
|{ηRj

: ηRj
≥ 1}|.

Υ[η] =

MΣ[η][Aη(0)]

MΣ[η][Aη(1)] if D==1
(2.36)

where Aη(0) and Aη(1) denote the columns of the first and the second minimum LLR
values of the symbol η in the matrix M∆.

The last step required to obtain the normal domain check-to-variable message MP
C2Vj

is the delta inverse transformation, performed as follows

MP
C2Vj

[β = η ⊕ ι⊕ ᾱj] = M∆
C2Vj

[η] ∀ η ∈ GF (q), j = 0, · · · , dc − 1 (2.37)

where ι = ∑dc−1
j=0 ᾱj.

The symbol β is the normal domain symbol corresponding to the symbol η in the
delta domain. Since the symbol η is obtained using the delta domain symbols ηRj j

=
0, · · · , dc − 1, each symbol ηRj

is permuted at the delta transformation by adding to it
the most reliable symbol ᾱj as in (2.31). Therefore, the symbol β could be obtained from
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the delta domain symbol η by subtracting the symbol of ᾱj from each symbol ηRj
, which

is equivalent to subtracting the symbol ι from η as expressed in (2.37).
A concrete example on GF(4) with a CN degree dc = 5 in Fig. 2.9 illustrates the

T-EMS algorithm. The first step is to transform the variable-to-check messages from the
normal to the delta domain. In the example, the most reliable element of the VNs Vj

for j = 0, · · · , dc − 1 are ᾱ = 1, α, (1 + α), 1, 0 respectively. In addition, the symbol ι is
computed as ⊕dc−1

j=0 ᾱj = 1⊕ α ⊕ (1⊕ α)⊕ 1⊕ 0 = 1. The most reliable element of Vj is
added to all elements to obtain the new message M∆

Vj2C based on (2.31) as depicted in the
figure. The dc columns are aggregated to form the matrix M∆. The nodes of the set A are
depicted in shaded-blue boxes of M∆. The configuration sets are built based on (2.33).
In the example, the vector ∆W is computed based on (2.34). The element ∆W [η = 0] is
always 0 (corresponding to the path with no deviations). For ∆W [η = 1], it is shown in
the figure (blue line) that the configuration that yields the lowest LLR (highest reliability)
is a one-deviation configuration since η(η=1)

R = 0 + 1 + 0 + 0 + 0 with an LLR value equal
to 1. Similarly, the lowest LLR value for η = α is for the two-deviation configuration
η

(η=α)
R = 0 + 1 + 0 + 0 + (1 + α) with an LLR of 3. After updating the vector ∆W , the

vector M∆
C2Vj

is updated based on (2.35). In the example, the row M∆
C2Vj

[β = 0] is all
set to 0 since they are obtained from the 0-order configurations. For M∆

C2Vj
[β = 1], it is

updated by ∆W [1] unless the symbol at index j of the configuration ηη=1
R is different from

0. Therefore, the element M∆
C2V2 [β = 1] is updated with the second minimum since the

configuration ηη=1
R is a one-deviation configuration. For the row M∆

C2Vj
[β = α], since the

configuration ηη=α
K contains two deviation at indices 2 and 5 respectively. The reliability

value at those locations in the row M∆
C2Vj

[β = α] is set with the first minimum LLR value
in M∆

Vj2C . After obtaining the messages M∆
C2Vj

, the messages are inversely transformed
back to the normal domain as depicted in (2.37). As an example, the message M∆

C2V1

is transformed to MC2V0 by subtracting ι and keeping ᾱ0 such that each symbol β is
shifted to β ⊕ ι⊕ ᾱ0. Since ι⊕ ᾱ0 = 0, then the vector MP

C2V0 is a simple copy of M∆
C2V0 .

Moreover, the message MP
C2V1 is generated by permuting the indices β ∈ GF (4) of M∆

C2V1

by ι⊕ ᾱ1 = 1 + α such that the element M∆
C2V1 [0] correspond to the LLR of the element

MP
C2V1 [1 + α] and so on.

2.4.2 One Minimum Only Trellis-EMS

In the Trellis-EMS, the nr = 2 minimum LLR values (most reliable) are extracted
for each symbol α ∀α ∈ GF (q), thus, two minima are extracted per symbol. The second
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Figure 2.9 – Trellis-EMS Example on GF(4)

minimum value is used for updating the one-deviation configurations as in (2.36).
In One-Minimum Only TEMS (OMO-TEMS) proposed in [53] by J. Lacruz et al. ,

the second minimum is never extracted but approximated to reduce the complexity of
the CN processing. This allows for reducing the q− 1 two-minima block by a radix-2 one
minimum finder.

Assume the minimum LLR value for each symbol α is denoted as min1(α), and the
second (estimated) minimum LLR value for the symbol α is then denoted as min∗

2(α). In
OMO-TEMS the value of min∗

2(α) is computed as

min∗
2(α) = min

′′
2(α) +min

′′′
2 (α)

2
min

′′

2(α) = min1(α)× γp

(2.38)

The value of min′′′
2 (α) is obtained by a radix-2 one minimum as shown in Fig. 2.10. The

CS block in the radix-2 one minimum finder corresponds to compare-and-swap where the
output of the block is the ascending values of the inputs. The parameter γp is estimated
by simulation and computed as the mean of the ratio between min2(a) and min1(a).

2.4.3 Two-Extra Column Trellis EMS

The conventional Trellis EMS suffers from high complexity with parameters nr = 2
and nc = 3 due to the large configuration set. Therefore, the Two-Extra Column (TEC)
Trellis, initially proposed by H. Thi et al. for Trellis Min-Max [54], is adopted in [55]
for the Trellis EMS. The TEC approach aims to reduce the number of configurations in
the configuration sets (2.33). This is achieved by the appendage of an additional column
denoted as ∆W2 beside the column ∆W .

In TEC-TEMS, the two columns ∆W and ∆W2 are used for updating the delta check-
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Figure 2.10 – Radix-2 One Minimum Finder

to-variable M∆
C2Vj

. The column ∆W contains the reliability of the most reliable configu-
ration ηR for the symbol, η ∀ η ∈ GF (q) as defined in (2.34). In addition, the column
∆W2 includes the reliability of the second most reliable configuration for the symbol
η, ∀ η ∈ GF (q), and computed as

∆W2[η] = min
η∈Tη(nr,nc),η ̸=ηR

dc−1∑
j=0

M∆
Vj2C [ηj] ∀ η ∈ GF (q) (2.39)

In the original TEMS, the unfilled entries of M∆
C2Vj

, j = 0, · · · , dc − 1 are updated
with the first or the second minimum of their corresponding symbols in M∆

Vj2C depending
on the number of deviations in the configuration as in (2.35) and (2.36). Contrary, in
TEC-TEMS, the unfilled entries (deviated) are filled by the vector ∆W2 hence, the check-
to-variable update equation in (2.35) is modified such that

M∆
C2Vj

[η] =

∆W [η] if ηRj
= 0

∆W2[η] otherwise
(2.40)

The aforementioned appendage allows for reducing the size of the configuration sets
from nr = 2 and nc = 3 as in the conventional TEMS down to nr = 1 and nc = 2. Hence,
reducing the computational complexity of the configuration sets of (2.33). However, even
though the trellis extended-min sum algorithm reduces the complexity at high coding
rates, it still suffers from high complexity that increases as the field order q increases.
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2.5 The Best, The Requested, and The Default Al-
gorithm

This section presents a novel algorithm called the Best, the Requested, and the Default
(BRD) algorithm [56] that has been developed during this PhD. The algorithm has been
published as a general NB-LDPC algorithm in [56] and a patent has been filed [57]. In
addition, the implementation of the BRD algorithm using the forward-backward approach
has been published in [58].

The section includes an introduction to the BRD algorithm in section 2.5.1, then, the
integration of the BRD algorithm with different CN processing algorithms such as the
EMS and TEMS algorithms and their different implementations.

2.5.1 Introduction to the BRD Algorithm

The BRD algorithm is a generic decoding algorithm for the NB-LDPC decoders com-
patible with any CN processing algorithms such as the EMS or TEMS-based decoders.

In the BRD algorithm, the VN requests the reliability of specific symbols from to
the CN. This leads to a check-to-variable message that consists of three subsets, the
best candidates having the highest reliability, the requested candidates, and the default
candidates that are the least reliable among the two subsets.

After the CN processes the information sent from the connected VNs, the CN sends
to each connected VN the LLR values of the requested symbols. The requested symbols
allow for reducing the size of the exchanged messages, i.e., the communication load at the
variable and the CN edges. Hence, allows for reducing the decoding complexity by reducing
the complexity of the sorting processes, arithmetic operations, and memory allocations.

The BRD algorithm includes four processes in between each node edge as shown in Fig.
2.11, used for compressing and decompressing the messages exchanged, and for processing
the requested symbols discussed in the following sections. Note that the CN index i is
omitted in the sequel for simplicity and readability of the notations.

Compression and Decompression of MV 2C Message

The compression block Ω generates the message Ω(MV 2C) from MV 2C by selecting the
nvc smallest LLRs and their associated GF value. Since the smallest LLR is always equal
to 0, Ω(MV 2C) is composed of (n+, n⊕) = (nvc−1, nvc) LLR and GF elements respectively.
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Figure 2.11 – The Best, the Requested, and the Default Decoder

56



2.5. The Best, The Requested, and The Default Algorithm

The compression block Ω also sends to the decompression block Γ−1 the message MR,⊕

that is composed of the nR requested GF symbols, i.e. the GF values of the first nR

couples of Ω(MVj2C) as a result the constraint nR ≤ nvc should be always fulfilled. The
edge multiplicative factor h is applied to each GF element of Ω(MVj2C) to generate the
permuted message Ω(MP

Vj2C).
The decompression module Ω−1 decompresses the message Ω(MP

Vj2C) back to a message
of size q (depending on the used CN processing algorithm) by setting the nvc GF values of
Ω(MVj2C) with their corresponding LLRs and by setting an infinite value for the remaining
GF values (such that they never contribute to an output). Moreover, the decompression
block Ω−1 also sends to the compression block Γ the message MP,R,⊕ containing the nR

permuted requested symbols extracted from the message Ω(MP
Vj2C).

Compression and Decompression of MC2Vj
Message

Once all the variable-to-check messages are received, the CN processes the MP
Vj2C

messages using any processing algorithm such as EMS or TEMS. The generated MP
C2Vj

message is then truncated by the Γ compression block in two steps. Firstly, the nB most
reliable candidates are selected to generate the subset MP,B

C2Vj
of size (n+, n⊕) = (nB −

1, nB). Secondly, the LLR of the nR requested symbols of MP,R⊕ are extracted from
MP

C2Vj
and concatenated with MP,B

C2Vj
to generate the Γ(MP

C2Vj
) message of a total size

(n+, n⊕) = (nB + nR − 1, nB). The nB GF symbols are inversely permuted by h−1 to
generate Γ(MC2Vj

) and sent to Γ−1.
The Γ−1 decompression block reconstructs the q−ary (full-set) message Γ−1(Γ(MC2Vj

))
(depending on the CN processing algorithm). The reconstruction consists of three pro-
cesses. Firstly, the LLRs of the best candidates are placed into their corresponding GF
positions. Then, the LLR of the requested symbols is set into their corresponding GF
positions with a saturation process that prevents the reliability of a requested symbol
from being greater than the default reliability SR. Finally, the remaining positions are
filled with the default LLR value SD. In summary, for a given GF value a ∈ GF (q),

Γ−1(Γ(M+
C2Vj

))[a] =


MB+

C2Vj
[a], a ∈MB⊕

C2Vj

min (MR+
C2Vj

[a], SR), a ∈MR⊕
j

SD, Otherwise

(2.41)

The saturation values of SR and SD significantly impact the decoder performance. By
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empirical analysis, SR and SD are determined as SR = S + OR and SD = S + OD, with
S given as a linear function of the maximum LLR values of MB+

C2Vj
and MR+

C2Vj
, i.e.

S = γB ·max{MB+
C2Vj
}+ γR ·max{MR+

C2Vj
} (2.42)

where the values of γB, γR, OR, OD can be found by empirically estimating the error rate.

Toy Example on the BRD Algorithm over GF(8).

Assume an edge between a VN Vj and a CN Ci as shown in Fig.2.12. The VN Vj

sends a message MVj2Ci
= [7, 1, 12, 4, 18, 9, 0, 8] with each LLR element corresponding to

its associated GF symbol (the index of the vector). The GF symbols are represented in
the figure using distinct colors for better illustration.

The compression block Ω extracts the nvc = 3 most reliable elements within the
vector MVj2Ci

to generate a compressed message Ω(MVj2Ci
). As a result, two vectors

are associated to generate Ω(MVj2Ci
), the GF vector Ω(MVj2Ci

)⊕ = [α5, α0, α2] and the
corresponding LLR vector Ω(MVj2Ci

)+ = [0, 1, 4]. In the example, the coefficient hi,j is
assumed to be 1 for simplicity.

Once the nvc elements are propagated to the CN, the decompression block Ω−1 decom-
presses the message Ω(MVj2Ci

) back to a q−ary vector. The decompression procedure is
dependent on the CN processing such that the decompression is necessary for algorithms
such as the min-sum or the trellis extended min-sum CN processing. However, when using
the extended min-sum algorithm, the decompression can be easily omitted. In the exam-
ple, a q−ary processing is assumed, and therefore, the message Ω(MVj2Ci

) is decompressed
to obtain the message Ω−1(Ω(MVj2Ci

)). The decompressed message is used by the CN to
update the dc − 1 connected VNs.

At the outgoing edge from Ci to Vj, the generated message MP
Ci2Vj

is assumed to be
MP

Ci2Vj
= [0, 9, 4, 7, 11, 10, 8, 3]. The Γ compression block compresses MP

Ci2Vj
by extracting

the nB = 2 most reliable elements along with the LLR values of the nR = 2 requested
symbols. The requested symbols are a subset of the Ω(Mvj2Ci

) message and correspond
to the nR most reliable elements of the nvc elements. As shown in the example illustrated
in Fig. 2.12, the requested message is of size nR = 2, and therefore, the GF values of
the two most reliable elements (α5, α0) are passed to the compression and decompression
blocks, Γ and Γ−1 respectively. The compressed message Γ(MCi2Vj

) consists of nB GF
symbols and nB − 1 (excluding the propagation of LLR 0) LLR elements, along with nR
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LLR elements. After that, the message is propagated to the VN and decompressed based
on (2.42) to assign the default value (depicted as D in the vector) for the q − (nB + nR)
remaining elements.

Figure 2.12 – Toy Example on the BRD Decoder over GF(8).

2.5.2 Statistical and Requested Symbols Analysis

In the proposed BRD algorithm, the variable-to-check messages MVj2C are considered
for obtaining the requested symbols. But the VN Vj has three possible messages that
can be requested, the intrinsic message Ij obtained from the channel observation, the a
posteriori information APPj message, and the variable-to-check message MVj2C sent to a
CN Ci. The variable-to-check messages MVj2C are considered for obtaining the requested
symbols due to the best performance-complexity trade-off.

It has been observed that requesting the nR most reliable symbols of the intrinsic
message Ij degrades the performance of the BRD algorithm by about 0.1 dB compared
to the BRD algorithm with MVj2C symbols being requested. This is justified since the
intrinsic message is generated by observing the channel and is never updated during the
decoding process. Hence, if the transmitted symbol is not included in the nR requested
symbols from the intrinsic message, it will never be requested throughout the decoding
process.
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On the other hand, requesting the nR most reliable symbols of a posteriori APPj

message yields a similar performance to that of the requested variable-to-check message
MVj2Ci

. Nevertheless, the complexity of requesting the APPj message is higher when
compared to the MVj2C due to the additional sorting of the APP message (at each iteration
and for each VN) required to extract the nR reliable symbols. Additionally, the size of
the message sent by the VN to the CN is also increased from nvc GF values and nvc − 1
LLRs to nvc + nR GFs and nvc − 1 LLRs since the nR symbols of the APPj are distinct
from the symbols of the MVj2C . Therefore, they should be sent to the CN in addition to
the message MVj2C .

Therefore, it is believed that the most suitable message to be requested in terms of
complexity and performance is the variable-to-check message MVj2Ci

.
Moreover, a statistical analysis has been carried out to determine the reasoning behind

the performance preservation of the BRD algorithm. The statistical analysis indicates
that the main criterion that affects the performance is not the size of the message but
rather the probability that the encoded symbol xj belongs effectively to the exchanged
message MC2Vj

, i.e, P (xj ∈ MC2Vj
). It is noticed that the requested candidates increase

the probability significantly, thus leading to good decoding performance even with a small
message size.

A Monte-Carlo estimation of P (xj ∈ Γ(MC2Vj
)) is presented in Fig. 2.13 as a function

of the message size for several decoding algorithms. The Monte-Carlo simulations are
performed for a code rate r = 5/6 (dv = 2, dc = 12) over GF(64) NB-LDPC code of size
N = 144 symbols (864 bits). The SNR (per bit) is set at 3 dB (beginning of the waterfall
region) with a maximum of 30 decoding iterations. The probability P (xj ∈ Γ(MC2Vj

)) is
estimated in the whole decoding process as a function of the MC2Vj

message length. For
the EMS algorithm, the message length is given by nm. The algorithm parameters are
nop = nm + 5 and the offset value is equal to 0.3. For the BRD algorithm, the message
length is characterized by ncv = nB +nR. The CN processing is based on the TEC-TEMS
algorithm with the following parameter values: γR = 1/8, γB = 2, OD = 0.4, OR = 0.2
for the BRD decoder. Additionally, the TEC-TEMS is also simulated where only nm = 20
candidates are analyzed from the full-set vector q = 64.

It is noticeable in Fig. 2.13 that the impact of including the requested symbols greatly
enhances the probability that the transmitted symbol xj belongs to the propagated mes-
sage Γ(MC2Vj

), and hence becomes a possible candidate to be processed at both VN and
CN. The probability P (xj ∈ Γ(MC2Vj

)) is around 85% in EMS with nm = 20. The prob-
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Figure 2.13 – Probability that the symbol xj ∈ Γ(MC2Vj
)

ability P (xj ∈ Γ(MC2Vj
)) in TEC-TEMS has a similar percentage (87%) as the EMS

decoder. When truncating the size of considered candidates to nvc = 4, nB = 7, nR = 0,
the probability drops down to 59%. Including one requested symbol (nB = 6, nR = 1)
enhances the overall probability from 59% to 89% with the same message size (ncv = 7).
The proposed decoder with nB = 4, nR = 3 achieves a probability of 96%. Further in-
crease in the size of the requested symbols leads to a minor enhancement in the inclusion
probability. Therefore, the parameters nvc = 4, nB = 4, nR = 3 are assumed to be a good
configuration for the BRD algorithm at rate r = 5/6.

The BRD algorithm is an NB-LDPC algorithm that may be used with any CN pro-
cessing algorithm, including the EMS, TEMS, and SYN. However, some processes must
be altered so that the requested symbols can be well generated. Hence, the application of
the BRD to CN processing algorithms is covered in the following sections.

2.5.3 Trellis BRD Decoder

The Trellis BRD Decoder is a BRD decoder that uses the TEC-TEMS algorithm
proposed in [55] for the CN processing. As discussed in section 2.4.3, the TEMS is well-
efficient for high code rates since the configuration sets are computed independent of the
CN degree of connectivity (dependent on nr instead of dc) this leads to a reduction in the
complexity of the configuration builder block in the CN unit (2.34). However, the main
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drawback of the Trellis EMS is the size of the exchanged messages. The TEMS algorithm
doesn’t truncate the exchanged messages, it exchanges an LLR vector of size q. This leads
to high complexity and routing for high-order fields (q > 64).

The BRD decoder is tested firstly with the Trellis EMS algorithm since the TEMS
algorithm is well compatible with the BRD algorithm by construction. This is because
the output of the CN MP

Ci2Vj
is a vector of q LLR values where the index of the vector

corresponds to the GF element of that LLR value. Therefore, the Γ compression block can
easily extract the LLR value of the requested symbols to generate the message MR+

Ci2Vj
.

In addition, the message MB,P
Ci2Vj

can be generated by extracting the nB most reliable
elements of the message MP

Ci2Vj
.

At a given decoding iteration, the variable-to-check message sent by a VN Vj to the
CN Ci MVj2Ci

is truncated by the Ω compression block from q down to nvc where nvc ≪
q. Moreover, the Ω block sends the symbols of the most reliable nR candidates of the
truncated message Ω(MVj2Ci

) as the requested symbols to the CN where nR ≤ nvc (See
Fig. 2.11.b). The message Ω(MVj2Ci

) is permuted by hi,j to obtain the message Ω(MP
Vj2Ci

).
Before the CN receives the input message, the Ω−1 decompression block expands the

message Ω(MP
Vj2Ci

) to a q-elements vector Ω−1(Ω(MP
Vj2Ci

)) by assigning the maximum
LLR value to the (q−nvc) GF elements, not in Ω(MP

Vj2Ci
) such that they won’t contribute

in the configuration set building process. In addition, similar to the Ω block, the Ω−1

block sends to the Γ block the message MP,R⊕
j which contains the nR GF symbols of the

most reliable candidates of the message Ω(MP
Vj2Ci

).
The CN Ci processes the messages Ω−1(Ω(MP

Vj2Ci
))∀j = 0, · · · , dc − 1 as discussed in

section 2.4.3. The CN outputs the message MP
Ci2Vj

of size q. The message is sent to the Γ
compression block for selecting the best and the requested candidates. The Γ compression
selects the most reliable nB candidates of the message MP

Ci2Vj
and includes them in the

message MP,B
Ci2Vj

. Additionally, the LLR values of the requested message MP,R⊕
j is included

in the message MP,R+
j . The message Γ(MP

Ci2Vj
) is then obtained by concatenating the mes-

sage MP,R+
j after MP,B

Ci2Vj
. After the inverse permutation, the inversely permuted message

Γ(MCi2Vj
) is processed by the block Γ−1 similar to the process discussed in section 2.5.1.

The simulation results illustrated in Fig. 2.14 are estimated for NB-LDPC codes of
size (in symbols) (8, 16), (120, 144), and (189, 210) on GF(64) [34]. The simulated decoder
is based on layered scheduling and a maximum of 10 decoding iterations. In addition, the
noise variance σ is expressed for a Binary Phase Shift Keying (BPSK) over an Additive
White Gaussian Noise (AWGN) channel in terms of SNR per bit Eb/N0 such that σ =
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Figure 2.14 – TEMS-BRD Simulation Results for Code Rates r = 1/2, r = 5/6, r = 9/10.

On the other hand, the implementation of the BRD decoder with the TEMS algorithm
is expected to have a higher complexity due to the sorting processes required at the
variable and CNs. However, it could be a good solution for the routing congestion in fully
parallel implementation. A better integration alternative is the EMS-based decoders (such
as the FB decoder and the SYN decoder) where the sorting processes are already assigned
within the nodes.

2.5.4 Syndrome-based BRD Algorithm

The Syndrome-based algorithm (SYN) is a CN processing algorithm [45] that uses
predefined deviation paths for obtaining the syndromes. In the SYN-BRD algorithm, the
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syndrome algorithm is integrated with the BRD algorithm such that the CN processing is a
hybrid of both algorithms. The basic architecture of the SYN-BRD algorithm is illustrated
in Fig. 2.15. The compressed variable-to-check messages Ω(MP

Vj2Ci
) are received by the

CN and the syndromes are computed as in (2.28). After the syndromes are computed,
they are sorted and inputted in parallel to dc paths. In each path, a decorrelation unit
DU decorrelates the syndromes similar to the decorrelation illustrated in Fig. 2.6. The
decorrelated configurations are sent in parallel to the request-finder and the redundancy
elimination blocks. The nB most reliable configurations are inputted into the redundancy
elimination unit (RE) for eliminating redundant symbols. In parallel, the request-finder
block generates the LLR values for the requested symbols in MP,R⊕

j sent by the VN (see
Fig.2.11). Lastly, the messages MP,B

Ci2Vj
and MP,R+

j are concatenated to form the message
Γ(MP

Ci2Vj
).

Figure 2.15 – SYN-BRD Architecture

The SYN-BRD decoder is simulated over the code N = 144, K = 120 and N =
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60, K = 20 on GF(64) with a CN degree dc = 12 and dc = 3 respectively as shown in Fig.
2.16. The maximum number of iterations itermax is set to 10 over all simulations. The
BRD parameters are set as follows, γR = 1/8, γB = 2, and OD = 0.3. As for the SYN
decoder, the deviation parameters are set as follows, d1 = nvc − 1, d2 = 2 (for N = 144)
and d2 = 3 (for N = 60).

The advantage of using the SYN-BRD decoder is that it allows for reducing the com-
munication load between the variable and the CNs. In addition, the size of the computed
syndromes is further reduced, which allows for reducing the complexity of the main sorter.

For the code N = 144, the size of the variable-to-check message, of the best candidates
and the requested candidates are nvc = 5, nB = 4, and nR = 3 respectively. This yields
a total of 313 computed syndromes (according to (2.30)), whereas in SYN decoder, for
nm = 16, the total syndromes computed is 456.

For the code N = 60, the size of the variable-to-check message, of the best candidates
and the requested candidates are nvc = 14, nB = 7, and nR = 8 respectively. This yields
a total of 67 computed syndromes, whereas in the SYN decoder, for nm = 20, the total
syndromes computed is 70.

The simulation results for N = 144 and N = 60 are shown in Fig. 2.16. The FER
of SYN-BRD is plotted against the FER of the EMS with nm = 20 candidates and no
performance degradation is noticed down to a FER of 10−5.

Presorted SYN-BRD Algorithm

The presorted SYN-BRD decoder is an integration of the three algorithms, the presort-
ing, the syndrome, and the BRD algorithms. The presorting algorithm is used to reduce
the number of syndromes computed by the syndrome unit. In this decoder, the internal
processing of the syndrome CN is similar to that previously described but with reduced
deviation paths ∆R.

The basic structure of the presorted SYN-BRD is illustrated in Fig. 2.17. The inputs
to the CN Ω(MP

Vj2Ci
) are presorted to obtain a presorted version Ω′(MP

Vj2Ci
). The CN

considers reduced deviation paths ∆R obtained offline using a path elimination block.
In the presorted syndrome CN [47], the reduced deviation path ∆R is generated by

counting the occurrence of each deviation path δ ∈ ∆ that yields a syndrome S(δ) included
in any of the dc check-to-variable messages. The occurrence estimation is accumulated over
several decoded codewords for accuracy.

In this proposed approach, the reduced deviation path ∆R is generated by eliminating
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Figure 2.16 – Simulation of the SYN-BRD Decoder

the deviations δ using a cost function that gives a cost for each deviation path δ. To do
so, assume the path elimination block depicted in Fig.2.18. The full deviation paths set
∆ is inputted to the path elimination block, the block assigns for each deviation path a
cost, denoted as ξ(δ). The cost ξ(δ) should reflect the reliability of the deviation path
taking into consideration two factors, the first is the value of δ(i), the index of the symbol
in the message Ω′(MP

Vj2C). Secondly, the value of j specifies the index of the VN. As δ(i)
increases, the LLR value of the element increases since the input messages are sorted. In
addition, with presorting, the symbol obtained from the message is less likely to contribute
to an output element due to the higher LLR value as the value of j increases.

Therefore, the cost function ξ(δ) is found empirically as a linear function that depends
on the element index and the message index, and computed as follows,

ξ(δ) =
dc−1∑
j=0

δ(j) + (3 · j), δ(j) ̸= 0, ∀ δ ∈ ∆. (2.43)

Thus, using the cost function ξ(δ) helps in computing the reduced ∆R on the spot
without any statistical estimation or Monte Carlo simulation.

Any deviation path δ with a cost ξ(δ) greater than ξmax is eliminated and discarded
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Figure 2.17 – Structure of the Presorted SYN-BRD Decoder

Figure 2.18 – Paths Elimination Block
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such that all paths in the new set ∆R have a cost less than ξmax.
The simulation results presented in Fig. 2.19 illustrate the FER performance of the

codes N = 144 and N = 60. The simulation is launched with BRD parameters similar to
that in section 2.5.4 where γR = 1/8, γB = 2. As for the SYN parameters, they are also
similar to that of the SYN-BRD such that the deviation parameters are set as follows,
d1 = nvc− 1, d2 = 2 (for N = 144) and d2 = 3 (for N = 60). The maximum cost could be
determined empirically, and chosen as the value that minimizes the FER. The maximum
cost is set to ξmax = 17 and ξmax = 52 for the codes N = 60 and N = 144 respectively.

For the code N = 144, the size of the variable-to-check messages, of the best candidates
and the requested candidates are nvc = 5, nB = 4, and nR = 3 respectively. This yields
a total of 220 computed syndromes (according to (2.30)), whereas in SYN decoder with
nm = 16, the total syndromes computed is 456 and in SYN-BRD, 313 syndromes. This
results in a reduction of about 52% of the syndromes set compared to the conventional
SYN and about 30% compared to SYN-BRD.

For the code N = 60, the size of the variable-to-check message, of the best candidates
and the requested candidates are nvc = 14, nB = 7, and nR = 8 respectively. This yields
a total of 55 computed syndromes, whereas in the SYN decoder with nm = 20, the total
syndromes computed is 70.

As shown in Fig. 2.19, the performance of the presorted SYN-BRD is quite similar to
that of the EMS with nm = 20. The reduction of the deviation paths had no impact on
decoding performance.

2.5.5 Forward-Backward BRD Decoder

In the FB algorithm, the CN is decomposed into multiple ECNs and layers as described
in section 2.3.2. For the BRD algorithm to be compatible with the FB algorithm, some
of the ECNs (the outer ECNs) are alerted with an additional process for obtaining the
LLR values of the requested symbols. Therefore, the FB-BRD decoder has two types of
ECNs, the conventional (inner) ECN and the BRD (outer) ECN. The location of the
BRD-ECNs is known and static for any degree dc. The right-most ECN in the forward
layer, the left-most ECN in the backward layer, and the dc − 2 ECNs of the merge layer
are all BRD-ECNs. The FB-BRD decoder for dc = 5 is depicted in Fig. 2.20(a), the white
ECNs are the conventional ECNs, whereas the gray-shaded ECNs are the BRD-ECNs.

An edge between a VN and a CN in a FB-BRD decoder excludes the decompression
process of Ω−1 (illustrated in Fig. 2.11) due to unnecessity since the forward-backward
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Figure 2.19 – Simulation Results of Presorted SYN-BRD Decoder

(a) Forward-Backward BRD Architecture for
dc = 5

(b) BRD-ECN Internal Structure

Figure 2.20 – Forward-Backward BRD Decoder
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EMS (by construction) uses truncated messages. Additionally, since the CN is decom-
posed, the Γ compression process is considered one of the internal BRD-ECN processes.

A BRD-ECN consists of two internal blocks as illustrated in Fig. 2.20(b) named as
the best finder and the request finder blocks. The best finder block is responsible for
generating the nB best candidates and the request finder block is responsible for generating
the reliable LLR value of the nR requested symbols. Therefore, a BRD-ECN has (similar
to conventional ECN) two input messages A and B of size nmA

and nmB
respectively.

In addition, the BRD-ECN has an input vector MP,R⊕
j (red connection in Fig. 2.20(a))

of size nR that contains the requested GF symbols where j is the index of the VN. The
output of an BRD-ECN (see Fig. 2.20(b)) is the message Γ(MP

Ci2Vj
) that consists of two

subset messages Γ(MP
C2Vj

) = MP,B
C2Vj
|MR+

C2Vj
.

The message MP,B
Ci2Vj

(a vector of nB GF and LLR couples represented as MB⊕
C2Vj

and
MB+

C2Vj
respectively) is obtained by the best finder block that uses the S-bubble sorter with

inputs A and B of size nB (out of nmA
and nmB

respectively) candidates. The output of the
bubble sorter is inputted to a redundancy elimination block to eliminate any redundant
symbols. Thereafter, the message MP,B

Ci2Vj
is well generated.

The request finder block generated the LLR vector MR+
C2Vj

of the requested candidates
in MP,R⊕

j . The algorithm 1 explains the main process of the request finder block. For a
given requested symbol MP,R⊕

j [k], the full region of the matrix TΣ is explored. The matrix
TΣ is decomposed into nmB

columns, in each column, the nmA
elements are processed

to check if the requested symbol corresponds to one of the elements if found, the LLR
value of the symbol is updated in a temporary vector L of size nR × nmB

. Since the
input messages A and B consist of unique GF symbols, the requested symbol MP,R⊕

j [k]
might have a maximum of nmB

LLR values in TΣ because each column in TΣ can have a
maximum of one symbol that corresponds to the requested symbol MP,R⊕

j [k] (if found).
Therefore, having in a given row (or column) two elements that correspond to the same
GF value is impossible.

Finally, the concatenation of MR+
Ci2Vj

after MB
Ci2Vj

results in obtaining the message
Γ(MP

Ci2Vj
) that is propagated to the decompression block Γ−1 before the VN update

processing.
Integrating the BRD algorithm with the FB algorithm reduces the communication

load of the decoder and hence, reduces the complexity of the sorting process at the CN
and VN level. The algorithm reduces the communication load significantly at high code
rates.
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Algorithm 1: Process of Request Finder
Input: TΣ, M

P,R⊕
j

1 Initialization: L[nR][nmA
]

2 for k = 0 to nR − 1 do
3 for a = 0 to nmA

− 1 do
4 for b = 0 to nmB

− 1 do
5 if T⊕

Σ [a][b] = MP,R⊕
j [k] then

6 L[k][a] = T+
Σ [a][b]

7 break;
8 end
9 end

10 end
11 MP,R+

C2Vj
[k] = min {L[k]}

12 end
Output: MP,R+

C2Vj

For very low code rates (r = 1/3), the size of the exchanged messages is slightly
reduced since the ECN chain in all layers (forward, backward, and merge) depends on
the inputs of the corresponding variable-to-check messages only. Hence, to obtain the
LLR of the requested symbols, sufficient candidates should be considered. The size of the
messages exchanged at low code rates are as follows, the variable to check message MVj2Ci

is nvc = 13 couples of GF and LLR values, the check-to-variable Γ(MCi2Vj
) is nB = 7

best candidates (couples of GF and LLR values) along with nR = 8 requested candidates
(LLR values only).

For the code rate r = 1/2, the size of the exchanged messages is well-reduced. The
variable-to-check message MVj2Ci

is reduced from nm = 20 down to nvc = 8 and the check-
to-variable message is also reduced from nm = 20 down to nB = 6 and nR = 5 candidates.
Moreover, the size of the internal messages (between two ECNs) is also reduced from
nm = 20 to nIN = 10.

The size of the exchanged messages is drastically reduced for high code rates (r ≥ 5/6).
The size of the variable-to-check message MVj2C is reduced from nm = 20 (couples of GF
and LLR values) for the conventional EMS down to nvc = 5 (couples of GF and LLR
values). Moreover, the size of the check-to-variable message is also reduced from nm = 20
(couples of GF and LLR values) down to nB = 4 (couples of GF and LLR values) and
nR = 3 (LLR values only). The size of the internal messages (between the ECN chain) is
reduced from nm = 20 down to nIN = 15.
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Table 2.3 – Size of Exchanged Messages per Edge on GF(64)

Scheme Code Rate Inputs Outputs
n⊕

vc n+
vc n⊕

cv n+
cv

FB-EMS[41] any 20 19 20 19

FB-BRD
r ≥ 5/6 4 3 4 6
r = 1/2 8 7 6 10
r = 1/3 13 12 7 14

Table 2.3 summarizes the size of the exchanged messages for both the FB-EMS and
FB-BRD algorithms. The notations n⊕

cv and n+
cv denote the number of LLR elements and

GF elements respectively, in the message Γ(MP
C2Vj

), and hence, could be computed as
n⊕

cv = nB and n+
cv = nB +nR− 1 (the first element in MP,B+

C2Vj
is always zero, therefore, not

propagated).
The FER performance proposed decoder is simulated over an AWGN channel with a

BPSK modulation scheme for different code rates and lengths as illustrated in Fig. 2.21.
The values of the saturation parameters of (2.42) are common for all codes and set as
γR = 1/8, γB = 2, OR = 0.2 and OD = 0.4.

In addition, the importance of the FB-BRD decoder is seen at high field orders. To
show that, the FB-BRD is simulated over GF(256) with K = 60 and N = 75 symbols
(each symbol of 8 bits) to estimate the communication load required at both the CN
as well as the VN. As shown in Fig. 2.22, the FB-BRD decoder requires only nvc = 18,
nB = 9, nR = 9 and nIN = 20 to achieve similar performance as EMS with nm = 60.
The FB-EMS decoder with a similar communication load to that of the FB-BRD, i.e.,
nm = 20, suffers from a performance degradation of around 0.2 dB.

Presorted FB-BRD Algorithm

The presorting algorithm discussed in section 2.3.4 helps in reducing the complexity
of the FB-BRD algorithm by reducing the number of bubbles processed in each ECN and
hence, the number of internal messages between the ECNs. The aim of using the presorting
algorithm is to reduce the size of the computed candidates in TΣ without affecting the
decoding performance.

The internal processing of the ECNs with the presorting is identical to the conventional
processing of the FB-BRD presented in section 2.5.5 with messages of different sizes. Thus,
instead of having a fixed message size for all variable-to-check messages denoted as nvc,
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Figure 2.21 – Simulation Results for FB-BRD Decoder over GF(64)
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Figure 2.22 – Simulation Results for FB-BRD Decoder over GF(256)
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each variable-to-check message Ω(MVj2C) has a size of nvjc. Moreover, instead of having
a fixed message size for the internal messages (output messages of the non-output ECNs)
denoted as nIN , there are 2×(dc−3) message sizes denoted as nINL,j

where L corresponds
to the ECN layer (forward or backward only), and j corresponds to the index of the VN Vj.
As for the check-to-variable messages Γ(MP

C2Vj
), all messages have a similar size denoted

as ncv that consist of nB best candidates and nR requested candidates.
The presorted FB-BRD algorithm is customized for the codes N = 144, K = 120 and

N = 60, K = 20 with dc = 12 and dc = 3 respectively, and dv = 2 based on the statistical
analysis of each ECN.

For the code N = 60, K = 20, in each layer (forward, backward, and merge), only one
ECN is required. Since dc = 3, there are three variable-to-check messages Γ(MP

Vj2C) where
j = 0, · · · , 2. The presorting is applied to the messages before the CN processes them. The
messages are presorted in the ascending order of the LLR values of the second element
in each message. The first presorted message has size nv1c = 14, the second presorted
message has a size nv2c = 10, and the third presorted message has a size nv3c = 6. The
size of the output messages is similar to the conventional FB-BRD, i.e., nB = 7 and
nR = 8.

Figure 2.23 – Structure of the Presorted FB-BRD for N = 60, K = 20

For the code N = 144, K = 120, the twelve variable-to-check messages have a fixed
size nvc = 4 as shown in Fig. 2.24. The size of the internal messages varies depending
on the input messages, as an example, the ECN F1 outputs a message of size nIN1,1 = 8
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whereas the ECN F10 outputs a message of size nIN1,10 = 15. As shown, the size of the
internal messages in the backward layer could be further reduced compared to the forward
layer. Moreover, in the merge layer, a partial part of the backward internal messages are
processed. As an example, for the ECN M1, the output message size of the ECN B2 is
nIN2,2 = 13, but only the first 10 elements are considered in the ECN M2 as illustrated in
Fig. 2.24.

The size of the output messages Γ(MP
C2Vj

) is similar to the conventional FB-BRD,
where nB = 5, and nR = 3.

Figure 2.24 – Structure of the Presorted FB-BRD for N = 144, K = 120

The simulation results of the aforementioned structures of the codes N = 60, K = 20
and N = 144, K = 120 are illustrated in Fig. 2.25. The maximum number of iterations
are all fixed to itermax = 10. The simulation shows the FER down to 10−5, as illustrated
in the figure, the performance loss is around 0.06 dB for the code N = 144, K = 120,
and no performance loss is noticed for the code N = 60 when both compared to the EMS
algorithm with nm = 20.

2.5.6 Implementation of FB-BRD Check Node

The implementation of the CNs using the FB-EMS and FB-BRD decoders (without
presorting) discussed in sections 2.3.2 and section 2.5.5 respectively have been designed
and implemented on FPGA for dc = 12 on GF(64). The architecture of the FB-EMS
decoder is straightforward to implement due to the same processing behavior of all ECNs.
On the contrary, the architecture of the FB-BRD is more dynamic due to the different
ECN processes.
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Figure 2.25 – Simulation Performance of Presorted FB-BRD for r = 1/3 and r = 5/6
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The L-bubble and the S-bubble [43], [44] are serially implemented. However, they
can be implemented in parallel using the bitonic-sorter [59]. In [60], [61], H. Harb et al.
proposed and implemented a full parallel and pipelined NB-LDPC decoder for N = 144
symbols with dc = 12 using parallel sorters and hybrid architecture mentioned in section
2.3.5.

A sorter consists of multiple comparators that are either compare-swap (CS) or
compare-only (CO) comparators. The compare-swap comparator is represented by a verti-
cal arrow line with the edges connected to the corresponding inputs and the arrow pointing
to the maximum as shown in Fig. 2.26(a). The compare-only comparator is represented
by a vertical line with the edges connected to the corresponding inputs and a rounded
circle representing the minimum as shown in Fig. 2.26(b)

(a) Compare and Swap Comparator (b) Compare Only Comparator

Figure 2.26 – Schematic Representation of Comparators.

Figure 2.27 illustrates a generic architecture of a sixteen-to-sixteen bitonic sorter [59].
The sorter has an unordered input vector U of size 16 and outputs a vector V of size
16 too. The input vectors consist of two-tuple elements that correspond to the GF and
LLR values. The comparison is performed on the corresponding LLR values and the GF
elements are only propagated to the next block. The sorter consists of log2(16) = 4 layers.
Layer L0 consists of 8 compare swap blocks, each block obtains the min and the max of
the corresponding two elements of the input vector A. For example, the first block yields
the outputs min(U [0], U [1]) and max(U [0], U [1]), the second block yields the outputs
max(U [2], U [3]) and min(U [2], U [3]), the third block yields the outputs min(U [4], U [5])
and max(U [4], U [5]), and so on. Moreover, the second layer, L1 has 4 major blocks, each
major block yields an ordered output of the four corresponding inputs. For example,
the first major block of layer L1 yields an output of 4 elements that correspond to the
sorted sequence (ascending order) of the first four input elements, i.e., U [0], U [1], U [2]
and U [3]. Similarly, the second major block of L1 generates the ordered sequence (de-
scending ing order) of U [4], U [5], U [6] and U [7]. Furthermore, layer L2 consists of two
major blocks. Each major block sorts the eight elements inputted from the previous layer.
Hence, the first major block of L2 generates an ordered sequence (ascending order) of
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the input elements U [0], U [1], U [2], U [3], U [4], U [5], U [6] and U [7]. Similarly, the second
major block of L2 generates the ordered sequence (descending order) of the input ele-
ments U [8], U [9], U [10], U [11], U [12], U [13], U [14] and U [15]. At the last layer, L3, the two
ordered set of elements generated by the two major blocks of layer L2 is processed to
generate the ordered sequence of the input elements {U [i]}i=0,··· ,15.

Figure 2.27 – Full Sixteen-to-Sixteen Bitonic Sorter

The sixteen-to-sixteen sorter can be represented as a group of sorters as shown in Fig.
2.28. Each layer Li, consists of 2n−i−1 sorters each of size 2i+1 with n representing the size
of the original sorter, i.e., n = 16. As shown, the 2n−i−1 inputs of any block consist of two
ordered sequences the first 2n−i−2 inputs are ordered in the ascending order (generated
from the corresponding cyan-colored block of the previous layer), and the second 2n−i−2

inputs are ordered in the descending order (generated from the corresponding cyan-colored
block of the previous layer). Thus, if the vector U is assumed to consist of two ordered
subsets A and B each of size 8, the first three layers (L0, L1, andL2) of the full 16-to-16
sorter can be eliminated due to unnecessity. Thus, the top view of the sorter allows for
optimizing the sorting process (by eliminating unnecessary comparisons) based on the
ordered fashion of the inputs inputted to the ECNs.

The FB-EMS decoder has been synthesized for a message size of nm = 17 candidates
(not nm = 20 as in the simulation results) to optimize the design of the parallel sorter.
Therefore, each ECN has two inputs A and B, each of size 17 that are processed using
a parallel implementation of the S-bubble architecture to obtain an output C of size
nm = 17 too.
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Figure 2.28 – Top-Level View of a Full Sixteen-to-Sixteen Sorter

To efficiently implement the parallel S-bubble sorter, the pattern exploration of the
potential candidates computed in TΣ is required to eliminate unnecessary comparisons.
As previously mentioned, the S-bubble sorter computes only the first row and column,
and the half-second row and column of TΣ. Those can be expressed as 4 distinct regions
R0, R1, R2, and R3 as

R1 = {A[0] ⊞B[j]}j=0,··· ,16.

R2 = {A[1] ⊞B[j]}j=1,··· ,16.

R3 = {B[0] ⊞ A[j]}j=1,··· ,8.

R4 = {B[1] ⊞ A[j]}j=2,··· ,9.

(2.44)

As expressed in (2.44), the regions R3 and R4 are altered to include one and two additional
elements compared to the conventional S-bubble proposed in [44] for implementation
reasons.

Since A (similarly B) is a sorted vector, any element A[i] < A[j] for j > i. Therefore,
an element R1[i] (similarly R3[i]) is always lower than the element R2[i] (similarly R4[i]).
This helps in reducing a bunch of comparisons that have known and fixed results. The
sorter has a total of 17 + 16 + 8 + 8 = 49 candidates from the regions R0, R1, R2, and
R3 respectively, and should output 17 unique candidates. Hence, the sorter is a 48-to-16
sorter.

The proposed S-bubble architecture is illustrated in Fig. 2.29. As shown, the first
element of R1, R1[0], is directly outputted as the first sorted element (not included in the
sorting process) since it is the global minimum (addition of A[0] and B[0]). The 48-to-16
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sorter is implemented in two stages, the first stage consists of two sorters, a 32-to-16
sorter, and a 16-to-16 sorter. The 32-to-16 sorter generates the 16 most reliable elements
of R1 and R3. Since R1 and R3 are sorted vectors the 32-to-16 sorter can be simplified as
illustrated in Fig. 2.30. Similarly, since R2 and R4 include sorted elements, the 16-to-16
sorter illustrated in Fig. 2.27 can be simplified as illustrated in Fig. 2.31. The second stage
consists of a 32-to-16 sorter that generates the 16 minimum elements of the two vectors
previously generated. Similar to the 32-to-16 sorter presented in Fig. 2.30, the two 16-
element outputs of the 32-to-16 and the 16-to-16 sorters are inputted to a 32-to-16 sorter
in the opposite order (one in ascending order and another in descending order). Thus,
the 16 most reliable elements are generated in addition to the global minimum R1[0],
and therefore, a total of 17 elements are generated using the parallel S-bubble sorter.
The compare-swap comparators in the sorters are modified such that the redundancy
elimination process is included in a parallel fashion. This can be done by checking the
equality of the two inputs at each comparator, if the inputs are equal, the output of
the maximum is set to saturation (maximum LLR). The output size of the last sorter
can be increased to generate nm + 2 candidates to ensure that nm unique candidates are
generated. In this implementation, the main focus is on the complexity of the FB-BRD,
therefore, assuming a best-case scenario for the FB-EMS CN won’t transform the analysis
outcomes.

For ease of clarification, the FB-BRD architecture is illustrated in Fig. 2.32 for dc = 12.
Therefore, each layer consists of 10 ECNs. The ECNs F10 and B10 are BRD-ECN in
addition to all ECNs of the merge layer.

The implementation of the FB-BRD requires three types of ECNs. The first ECN
type is the ECNs at F1 and B1 where both have an input size of nm = 4 and generate an
output of size nIN = 15. Therefore, the ECNs are not based on the S-bubble but a regular
16-to-16 sorter. The ECN F1 (similarly B1) with two inputs A and B of size nm = 4
computes four regions of TΣ denoted R0, R1, R2 and R3 and expressed as

R0 = {A[0] ⊞B[j]}j=0,··· ,3.

R1 = {A[1] ⊞B[j]}j=0,··· ,3.

R2 = {A[2] ⊞B[j]}j=0,··· ,3.

R3 = {A[3] ⊞B[j]}j=0,··· ,3.

(2.45)

The sorter used at ECNs F1 and B1 is as depicted in Fig.2.33. The blue double-
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Figure 2.29 – Parallel S-Bubble Sorter for ECN with Input Size nm = 17.

Figure 2.30 – Optimized 32-to-16 Sorter for S-bubble.
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Figure 2.31 – Optimized 16-to-16 Sorter for S-bubble.

Figure 2.32 – FB-BRD Architecture for dc = 12.
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arrow lines represent a switch rather than a comparator and are replaced because R0[0] is
the global minimum and therefore, no comparison is required. In addition, the two grey
comparators are eliminated since the comparisons R3[2] > R2[1] and R3[3] > R2[0] are
always satisfied and needless to be checked by dedicated comparators.

Figure 2.33 – Sixteen-to-Sixteen Sorter for ECNs F1 and B1.

The second ECN type includes the non-edge ECNs of the forward and the backward
layers (F2, · · · , F9 and B2, · · · , B10). Assume an ECN of the aforementioned ECNs with
inputs A and B of size nmA

and nmB
and an output of size nIN . The input sizes are

asymmetrical, i.e., nmA
̸= nmB

. Let A be the input vector with fewer elements (nmA
= 4)

and B be the input vector of higher size (nmB
= 15). The ECN computes the nIN = 15

most reliable elements from the following four regions R0, R1, R2, and R3 expressed in
(2.46) that sums up to a total of 24 elements. Thus, a 24-to-17 sorter is required to
generate the output vector C. The 24-to-17 sorter demonstrated in Fig. 2.34 consists of
three stages, the first stage includes two sorters, a 16-to-8 sorter (to generate the most
reliable elements of the first half of R2 and R3), and a 4-to-4 (to generate an ordered
sequence of R1 and two elements of R2) sorter. The second stage includes an 8-to-8 sorter
(to generate the ordered sequence of R1 and the last six elements of R2), and the last
stage includes a 16-to-16 sorter that sorts out the eight minimum elements of the first half
of R2 and R3, and the eight minimum values of R1 and the second half of R2. All sorters
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include the last layer of their corresponding full sorter since the inputs of any n-sorter
consist of two ordered vectors of size n/2. In addition, some comparators are eliminated
based on the relation between the compared elements.

R0 = A[0] ⊞B[0]
R1 = {A[j] ⊞B[0]}j=1,··· ,3.

R2 = {A[0] ⊞B[j]}j=1,··· ,14.

R3 = {A[1] ⊞B[j]}j=1,··· ,7.

(2.46)

Figure 2.34 – Twenty Four-to-Sixteen S-bubble Sorter Architecture

The third type of ECN is the BRD-ECN. The BRD-ECN includes different processing
compared to the conventional ECN based on the input size, the size of the best candidates,
and the size of the requested candidates. As illustrated in Fig. 2.20(b), the BRD-ECN
consists of two blocks: the best finder block, and the request finder block.

The best finder generates the nB candidates using only the nB most reliable elements
of the input vectors A and B regardless of the input sizes nmA

and nmB
. The computed
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candidates are expressed by three regions R0, R1, and R2 as follows.

R0 = {A[0] ⊞B[j]}j=0,··· ,3.

R1 = {A[j] ⊞B[0]}j=1,··· ,3.

R2 = A[1] ⊞B[1].

(2.47)

The sorter used to obtain nB = 4 most reliable elements of the regions in (2.47) is a
simple sorter as illustrated in Fig.2.35. R0[0] is the global minimum and hence, propagated
directly to the output. The second minimum is either R0[1] or R1[0], or denoted as min of
CS1. The third minimum is either max of CS1 or min of CO1 which correspond to either
R0[2] or R1[1]. If R0[2] is not min of CO1, then R0[3] is never a potential candidate for
the fourth minimum. Therefore, a multiplexer is added to select between R0[3] and R1[2]
based on if R0[2] > R1[1]. Furthermore, the comparator only CO2 selects the minimum
among the selected element of the multiplexer and R2[0]. Then, the min of CO2 and the
max of CS2 are compared to generate a minimum that corresponds to the fourth reliable
element. Hence, the nB most reliable candidates are efficiently generated.

Figure 2.35 – Architecture of Best Finder Sorter

Furthermore, the request finder block generates the nR LLR values of the requested
message MP,R⊕

j in parallel using nR LLR Finder blocks as illustrated in Fig. 2.36.
Each LLR Finder block generates an LLR value for the requested symbolMP,R⊕

j [k] sent
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Figure 2.36 – Internal Structure of Request Finder Block.

by the VN Vj. The LLR Finder block considers the two inputs of the BRD-ECN, A and B
of size nmA

and nmB
respectively to generate the nR LLR values of the requested symbols.

Internally, the LLR Finder block consists of nmA
Column Finder blocks as depicted in

Fig.2.37.

Figure 2.37 – Internal Structure of LLR Finder Block.

Each Column Finder block generates an LLR value for the requested symbol MP,R⊕
j [k].
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Assume a block Column Finder f , the block generates an LLR value for the requested
symbol MP,R⊕

j [k] using only one column which is obtained as A[f ] ⊞ B. Therefore, the
block should select one LLR value from the column’s nmB

elements. As a result, the block
checks if MP,R⊕

j [k] = A⊕[f ] ⊕ B⊕[b] for b = 0, · · · , nmB
. If MP,R⊕

j [k] = A⊕[f ] ⊕ B⊕[b] is
satisfied, the output LLR is A+[f ] + B+[b]. If neither of the column elements represents
the requested symbols the output LLR corresponds to the maximum column LLR, i.e.,
A+[f ] + B+[nmB

− 1]. The output of the nmA
column blocks is inputted to a minimum

finder to obtain the most reliable LLR value among all generated values. This processing
can be performed using the proposed architecture depicted in Fig. 2.38.

Figure 2.38 – Internal Structure of Column Finder Block.

In the proposed architecture of the Column Finder block, the addition processes are
optimized such that only one LLR adder is required instead of nmB

adders. As discussed,
the block should check if MP,R⊕

j [k] = A⊕[f ] ⊕ B⊕[b] for b = 0, · · · , nmB
− 1 to generate

an output element. The equality check is a p-bit XOR that outputs a p−bit vector. If the
vector is all 0, then the two inputs are equal. Otherwise, unequal inputs. Instead of adding
A⊕[f ]⊕B⊕[b] (which requires nmB

GF adders) to check the equality, the requested symbol
is added to the element A⊕

j , i.e., MP,R⊕
j [k]⊕A⊕[f ] and the equalities are reformulated as

MP,R⊕
j [k]⊕A⊕[f ] = B⊕[b] for b = 0, · · · , nmB

−1. Hence, only one GF addition is required
to check for equalities. In addition, it is known that if MP,R⊕

j [k] ⊕ A⊕[f ] = B⊕[b], the
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output LLR should be A+[f ]+B+[b]. Thus, a NOR gate is added after the equality checker
such that the output of the NOR gate is 1 if and only if the equality check is satisfied.
Otherwise, the NOR gate output is 0. The output of the NOR gate is inputted along with
the LLR value B[b] to an AND gate. The AND gate allows the propagation of the LLR
value B[b] if and only if the output of the NOR gate is 1 (MP,R⊕

j [k] ⊕ A⊕[f ] = B⊕[b] is
satisfied). The output of the nmB

−1 AND gates are propagated to an OR gate (depicted as
OR1 in the figure). As shown, the last element B[nmB

− 1] is excluded from the equality
check since if neither of the first nmB

− 1 equality checks are satisfied, the LLR value
B+[nmB

− 1] is propagated to the output. Hence, a 2-to-1 multiplexer is used to select
between the output of the OR gate and the LLR value B+[nmB

− 1]. The selection is
based on the result propagated from the OR gate (OR1) that considers the NOR gate
output. If one of the equality checks MP,R⊕

j [k]⊕A⊕[f ] = B⊕[b] for b = 0, · · · , nmB
− 2 is

satisfied, one NOR gate will output 1 and the remaining NOR gates will have an output 0
(since B is a vector of distinct GF symbols). Therefore, the output of the OR gate (OR2)
is always 1 if and only if one equality is satisfied, therefore, the multiplexer considered
the output of the OR gate OR1 (that corresponds to the LLR value of B[b]). Thus, the
output of the multiplexer is either one of the nmB

−1 LLRs that satisfied the corresponding
condition MP,R⊕

j [k] ⊕ A⊕[f ] = B⊕[b] or the LLR of the last element in B, B+[nmB
− 1].

In any case, the output of the multiplexer is propagated to an LLR adder that adds the
LLR element A+[f ] to the output of the multiplexer. Consequently, if a symbol B⊕[b]
equals to the resultant symbol A⊕[f ]⊕MP,R⊕

j [k] the output of the column finder block is
A+[j] +B+[b]. Otherwise, the output of the column finder block is A+[j] +B+[nmB

− 1].
This allows replacing the nmB

LLR adders with only one LLR adder.

The hardware complexity of the CN is studied using the Quartus Prime synthesis
tool where different parts of the CN (i.e. ECNs) are synthesized in a fully parallel imple-
mentation for a code rate r = 5/6 with dc = 12 on Cyclone IV FPGA (summarized in
Table 2.4). The synthesis results show that the CN of the FB-EMS requires 109860 logic
elements and 89940 registers. Similarly, for the BRD-based FB architecture with param-
eters nvc = 4, nB = 4, nR = 3, the CN requires 94782 logic elements and 37308 registers.
This shows that the FB-BRD algorithm reduces the memory allocations by around 58%
compared to the FB-EMS, and reduces the computational complexity by around 15%.

Moreover, the study includes the comparison of the synthesis results of the CN units
only, further complexity reduction is expected when considering the VN unit since the
size of the sorter at the VN units is reduced from nm = 17 candidates down to nB = 4
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sorted out of q = 64 total candidates.

Table 2.4 – Synthesis Results for dc = 12 on GF(64)

Scheme Logic Elements Registers
FB-EMS (nm = 16) [41] 109860 89940

FB-BRD (nvc = 4, nB = 4, nR = 3) 94782 37308

2.6 Conclusion

This chapter presented the Non-Binary Low-Density Parity Check (NB-LDPC) codes
and decoders. The chapter begins with section 2.1 which is an introductory section about
NB-LDPC codes. In this section, the NB-LDPC code structure and construction are
explained.

The following section 2.2 presents the main iterative decoding algorithms for the NB-
LDPC decoders. In this section, the optimal algorithms such as the belief propagation
are presented in section 2.2.1, and the logarithmic belief propagation in section 2.2.2. In
addition, the sub-optimal algorithms such as the min-sum and the min-max are presented
in section 2.2.3 and section 2.2.4 respectively.

The min-sum efficiently reduces the number of required look-up tables in the loga-
rithmic belief propagation but still suffers from intensive computations. The min-max
simplifies the complexity more than the min-sum, but it suffers from a higher degradation
in performance. Nevertheless, there are two main algorithms proposed for further sim-
plification by extending the sub-optimal approximations. The first is called the extended
min-sum and the second is the trellis extended min-sum.

The extended min-sum algorithm is presented in section 2.3. The first section 2.3.1
explains the general processing performed in an extended min-sum algorithm such as the
truncated messages of size nm and the performed sorting of the messages. Then some of
the efficient approaches used to implement the extended min-sum CN such as the forward-
backward approach in section 2.3.2. The forward-backward implementation decomposes
the CN into three layers with each layer having dc − 2 ECNs. The decomposition of the
CNs allows for data reuse at the third layer, and hence, allows for a reduced complexity
CN. The syndrome-based decoder is introduced in section 2.3.3 and relies on the concept
of deviation paths that include a reduced set of computed syndromes based on the num-
ber of allowed deviations. Furthermore, the presorted CN is presented in section 2.3.4.
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The presorting of the inputs of the VN reduces the number of computations in both the
forward-backward and the syndrome-based approaches. This is because the presorting
allows to elimination of a significant amount of useless elements from the reliable VNs,
and hence, prunes the unused bubbles or deviation paths. Additionally, the three afore-
mentioned approaches are used to design a hybrid architecture as presented in section
2.3.5.

The trellis extended min-sum algorithm is presented in section 2.4. The trellis ex-
tended min-sum is proposed as an alternative approach to process the CNs at high coding
rates due to the high latency experienced in the EMS-based CNs at high dc. The CN
processing of the trellis extended min-sum is explained in section 2.4.1. Then, two sub-
optimal approaches added to the traditional trellis EMS are presented. In section 2.4.2,
the one-minimum-only approach approximates the second minimum extracted from each
symbol of the delta matrix such that the two-minima finder is simplified into a radix-2
minimum finder. Further, the two-extra column presented in section 2.4.3 reduces the size
of the configuration sets by considering the second most reliable configuration to update
the reliability of the deviated elements.

Additionally, the Best, the Requested, and the Default (BRD) algorithm which is
proposed during this PhD is tackled in section 2.5. In the BRD algorithm, the VN requests
the reliability of particular symbols to be sent back by the CN. As a result, a check-
to-variable message is produced by three subsets: the best candidates, which have the
highest reliability, the requested candidates, and the default candidates which have the
lowest reliability of the two groupings. This allows for reducing the size of the propagated
messages between the variable and the CNs as well as reducing the sorting processes
within the decoding process. The BRD algorithm is explained in section 2.5.1 including
the messages compression and decompression. Then, the statistical justification behind
the BRD concept is presented in section 2.5.2. Moreover, the BRD has been combined with
multiple CN processing algorithms such as the trellis extended min-sum CN as presented in
section 2.5.3, the syndrome-based CN in section 2.5.4 (with and without presorting), and
the forward-backward CN in section 2.5.5 (with and without presorting). The simulation
results of the aforementioned decoders confirm a negligible performance loss compared
to the corresponding extended min-sum decoders. In addition, the implementation of a
parallel forward-backward BRD and forward-backward extended min-sum is presented in
section 2.5.6. The synthesis results show that the forward-backward BRD requires 40% of
the memory allocation and 85% of the computation complexity utilized by the forward-
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backward extended min-sum.
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Chapter 3 – Non-Binary Polar Codes and Decoders

3.1 Introduction to Non-binary Polar Codes

Polar Codes are one of the latest forward-error correction codes proposed by E. Arikan
in 2009 [7] that encodes a message of size K into a codeword of size N . Polar codes
approach the channel capacity as N tends to infinity (at very long code lengths). At
practical code lengths, the decoding performance of the polar codes degrades, therefore,
it is combined with the list decoding [62] and cyclic redundancy check [63] for enhancing
the decoding performance. The polar codes have been adopted in different standards such
as the 5G for control channels. The polar codes are based on channel polarization where
the physical channel is transformed into N virtual channels. The virtual channels are
polarized into either noiseless channels or extremely noisy channels. The encoding process
of the polar codes relies on utilizing the K most reliable (noiseless) channels for encoding
the information block.

3.1.1 Polar Transformation and Channel Polarization

Channel polarization [7] is the phenomenon that allows the existence of polar codes.
Assume a binary discrete memory-less channel W with an input X and an output Y . Let
I(W ) indicate the symmetric capacity (the highest rate that can be achieved with reliable
communication) of channel W and expressed as

I(W ) =
∑
y∈Y

∑
x∈X

1
2W (y|x) log W (y|x)

1
2(W (y|0) +W (y|1))

, (3.1)

where W (y|x) represents the conditional probability of y given x. The value of I(W ) tends
to 1 when the channel is noiseless and tends to 0 when the channel is noisy.

The mutual information between symbols x0 and x1, and the received symbols y0 and
y1 at two independent transmission instances of W can be formulated as

I(y0, y1;x0) = I(W ) = I(y0, y1;x1), (3.2)

However, by transforming u0 and u1 to generate x0 and x1 as

x0 = u0 ⊕ u1

x1 = u1
, (3.3)
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the mutual information between the information and the received symbols is altered such
that

I(y0, y1;x0) ≤ I(W ) ≤ I(y0, y1;x1). (3.4)

The transformation in (3.3) (called also polar transformation) is visualized as in Fig.
3.1. It increases the probability of the correct estimation of u1 while decreasing the proba-
bility of the correct estimate of u0. Hence, polarizing the channel into two virtual channels.
The justification and proof of the polarization phenomenon are deeply discussed in [7].

Figure 3.1 – Polar Transformation

3.1.2 Polar Coding

Polar codes utilize the polar transformation to encode an information block M =
(m0, · · · ,mK−1) of size K into a codeword X = (x0, · · · , xN−1) of size N = 2n. The
information symbols are allocated at the K most reliable channels and the remaining
N−K channels are frozen (set into a fixed and known symbol, usually zero). The encoding
process is based on a generator matrix GN obtained as the nth Kronecker power of the
kernel G2 defined in (3.5), i.e., GN = G⊗n

2 .

G2 =
1 0
1 1

 (3.5)

The codeword X is generated by multiplying the input U with the generator matrix
GN such that X = U · GN . The encoder’s input U is a vector of size N that consists
of the K information symbols being allocated at the most reliable indices of U and the
remaining N −K indices are frozen (set to a known value, usually zero).

As an example, assume a polar code with K = 6 and N = 8. This corresponds to a
polar code with N−K = 2 symbols being frozen (set to 0). Therefore, the frozen symbols
are u0 and u1 and thus, U = (0, 0, u2, u3, u4, u5, u6, u7). The generator matrix G8 can be
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obtained by performing the Kronecker product on the kernel G2 such that

G8 =



1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0
1 1 1 1 0 0 0 0
1 0 0 0 1 0 0 0
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0
1 1 1 1 1 1 1 1



. (3.6)

The generated codeword X is a vector of N symbols and is obtained as X = U · G8

such that

[0, 0, u2, u3, u4, u5, u6, u7]



1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0
1 1 1 1 0 0 0 0
1 0 0 0 1 0 0 0
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0
1 1 1 1 1 1 1 1



=



u2 + u3 + u4 + u5 + u6 + u7

u3 + u5 + u7

u2 + u3 + u6 + u7

u3 + u7

u4 + u5 + u6 + u7

u5 + u7

u6 + u7

u7



T

.

(3.7)

3.1.3 Overview on Non-Binary Polar Codes

Non-Binary Polar Codes (NB-PCs) are extended from binary polar codes using differ-
ent approaches [64]–[67]. In NB-PCs, the symbols and coefficients are all defined over a
Galois field of GF (q = 2p). Therefore, each symbol and coefficient is a vector of p−bits.

R. Mori et al. in [64] constructed NB-PCs based on Reed-Solomon matrices. In [65],
S. Byun et al. constructed NB-PCs using 4 × 4 kernels. Furthermore, the construction
of the NB-PCs proposed by P. Yuan et al. in [66] is based on a 2 × 2 non-binary kernel.
Additionally, in [67], E. Şaşoğlu et al. proposed a kernel transformation using a random
permutation of the non-binary alphabet. Moreover, E. Şaşoğlu et al. also proposed the
construction of the NB-PCs using linear permutations defined by the multiplication with
a non-zero GF element [68].
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However, constructing NB-PCs using higher-dimensional (l × l) non-binary kernels is
more complex because of the increased field order (q) and kernel dimension. Therefore, in
the sequel, the NB-PCs are constructed using the original kernel defined by E. Arikan [7]
with coefficients defined over GF (q). Thus, the adopted non-binary kernel G2 is defined
as

G2 =
1 0
1 γ

 , γ ∈ GF (q) ̸∈ {0}. (3.8)

Consequently, the kernel transforms the symbols u0 and u1 into the symbols x0 and
x1 as in (3.9). Hence, the structure of the non-binary kernel can be represented as shown
in Fig. 3.2

x0 = u0 ⊕ u1

x1 = γ ⊛ u1
∀ u0, u1, x0, x1, γ ∈ GF (q), (3.9)

where ⊕ and ⊛ represent the field addition and multiplication over GF (q) respectively.

Figure 3.2 – Non-binary Kernel Transformation

Like the binary polar codes, a generator matrix GN for a code length of N = 2n can
be generated from the kernel G2 with γ ̸= 0 that varies for each kernel.

For illustration purposes, assume a non-binary generator matrix G4 expressed as
1 0 0 0
1 γ0 0 0
1 0 γ2 0
1 γ1 γ2 γ1γ2

 . (3.10)

Such a generator matrix allows transforming an input U = (u0, u1, u2, u3) into an
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output X = (x0, x1, x2, x3) as follows

x0 = u0 ⊕ u1 ⊕ u2 ⊕ u3

x1 = γ0 ⊛ u1 ⊕ γ1 ⊛ u3

x2 = γ2 ⊛ u2 ⊕ γ2 ⊛ u3

x3 = γ1 ⊛ γ2 ⊛ u3

∀ xi, ui, γj ∈ GF (q). (3.11)

The aforementioned polar transformation (3.11) can be visualized using the factor
graph as depicted in Fig. 3.3. The graph of the polar transformation consists of n = 2
layers with each layer having N/2 = 2 kernels (generator matrix for N = 2).

Figure 3.3 – Non-binary Polar Transformation for N = 4.

The polar encoding process is identical to the polar transformation with the inputs ui

being frozen (set to a known symbol, zero) for all i /∈ AD where AD denotes the set of
indices of the data symbol channels (unfrozen virtual channels).

3.2 Successive Cancellation Decoding for Non-
Binary Polar Codes

The Successive Cancellation (SC) decoder generates an estimated message Û of the
information message U using the received message Y . For easier demonstration, assume
the decoding of an NB-PC kernel. At the kernel encoding stage demonstrated in Fig.
3.4(a), the value of the inputs u0 and u1 is α and β respectively. From those values,
the codeword symbols x0 and x1 are generated as α ⊕ β and γ ⊛ β respectively. At the

98
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(a) Encoding Process (b) Decoding Process

Figure 3.4 – NB-PC Kernel Encoding and Decoding Processes

decoding stage demonstrated in Fig. 3.4(b), the Probability Density Functions (PDFs)
on x0 and x1, denoted as P x

0 and P x
1 respectively, are generated by channel observation

and are inputted to the kernel decoder. The PDFs P x
0 and P x

1 are processed by the kernel
decoder to obtain the a posteriori probability vector P u

0 and P u
1 used at the decision stage

to generate the estimates û0 and û1 respectively.
The a posteriori probability of u0, denoted as P u

0 , is generated using the PDFs P x
0 and

P x
1 as follows

P u
0 (α) =

∑
β∈GF (q)

P x
0 (α⊕ β) · P x

1 (γ ⊛ β) ∀α ∈ GF (q). (3.12)

Moreover, the estimated symbol û0 corresponds to the symbol having the maximum
a posteriori probability in as follows the PDF P u

0 .

û0 = argmax
α∈ GF (q)

P u
0 (α), (3.13)

once the decision is made on û0, the probability density function P u
1 is generated as follows

P u
1 (β) = µ · P x

0 (û0 ⊕ β) · P x
1 (γ ⊛ β) ∀β ∈ GF (q), (3.14)

where µ is a normalization factor obtained such that ∑β∈GF (q) P
u
1 (β) = 1. Furthermore,

the estimated symbol û1 is decided as the symbol having the maximum probability in P u
1 .

The processing of the decoder is more intricate as N increases since the estimation of
a symbol ûi, 0 ≤ i < N , depends on all previous estimates ûj, 0 ≤ j < i. In general, an SC
decoder has n = log2(N) layers, and the PDFs generated at each layer l, 1 ≤ l ≤ n, are
denoted by P (l)

i , with P (l)
i = (P (l)

i (0), P (l)
i (1), · · · , P (l)

i (q− 1)), 0 ≤ i < N . The processing
schedule of a kernel at layer l and position t is illustrated in Fig. 3.5. The kernel has two
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PDF inputs at indices θl−1
t and ϕl−1

t derived as follows

θl−1
t = 2t− (t mod 2n−l)

ϕl−1
t = 2n−l + 2t− (t mod 2n−l).

(3.15)

for t = 0, · · · , N/2 − 1. The kernel node t and layer l are omitted from the indices θl−1
t

and ϕl−1
t in the sequel for better readability of the notations. The two PDF input vectors

of the kernel are denoted P (l−1)
θ and P (l−1)

ϕ which are processed by the kernel t to generate
the output PDFs P (l)

θ (using a single parity CN (CN) represented as F ()) and P (l)
ϕ (using

a repetition node called VN (VN) represented as G()) as shown in Fig. 3.5.

Figure 3.5 – Decoding Process of the tth kernel at layer l

The processing of the CN is identical to the processing expressed in (3.12) and can
be generalized for any kernel t with inputs P (l−1)

θ and P
(l−1)
ϕ , and an output PDF P

(l)
θ as

follows
P

(l)
θ (α) =

∑
β∈GF (q)

P
(l−1)
θ (α⊕ β) · P (l−1)

ϕ (γ ⊛ β) ∀α ∈ GF (q). (3.16)

Similarly, the processing of the VN in (3.14) can be generalized for any kernel t with
inputs P (l−1)

θ and P
(l−1)
ϕ , and an output PDF P

(l)
ϕ such that

P
(l)
ϕ (β) = µ · P (l−1)

θ (û(l)
θ ⊕ β) · P (l−1)

ϕ (γ ⊛ β) ∀β ∈ GF (q). (3.17)

The estimated symbols are back-propagated to obtain the corresponding symbols at
the previous layer by computing the following

û
(l−1)
θ = û

(l)
θ ⊕ û

(l)
ϕ

û
(l−1)
ϕ = γ ⊛ û

(l)
ϕ .

(3.18)
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The hard decision û
(n)
i at layer l = n and for a node i = 0, 1, · · · , N − 1 is estimated

as

û
(n)
i =


0, if i /∈ AD

argmax
α∈ GF (q)

P
(n)
i (α), if i ∈ AD.

(3.19)

Assume an SC decoder for N = 8 as shown in Fig. 3.6. The decoder consists of three
layers, and in each layer, there are four kernel decoders. The digits in red represent the
processing order of the check and VNs and are depicted for explanation purposes. At the
beginning of the decoding process, the decoder processes the first four CNs of layer l = 1
(1), then, the first two CNs of layer l = 2 (2), and after the first CN of layer l = 3 is
processed (3). Once the estimated symbol û(3)

0 is generated, it is propagated to the first
VN of the third layer (4). At this stage, the estimated symbols û(3)

0 and û(3)
1 are obtained

and hence, they are back-propagated to the first two VNs (5) of layer l = 2. Thereafter
the second CN of layer l = 3 is updated and the estimated symbol û(3)

2 is generated
(6). The estimated symbol û(3)

2 is propagated to the second VN of layer l = 3 and then
the estimated symbol û(3)

3 is generated (7). The symbols û(3)
0 , û(3)

1 , û(3)
2 , û(3)

3 are back-
propagated to update the first four VNs of layer l = 1 (8) and the processing proceeds as
the schedule illustrates in the figure.

Figure 3.6 – Factor Graph of SC Decoder for N = 8
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To improve the decoding performance, I. Tal et al. combined the successive cancellation
decoding with list decoding [62]. In brief, the SC List decoding initiates L parallel decoding
paths at each decision node (non-frozen nodes). A path metric is also defined to assess
the reliability of each of the L paths. The SC list decoder suffers from high complexity,
especially for high-field orders. This is due to the intensive processing at the selection
stage of the surviving paths which requires extracting L paths out of L2 paths at each of
the K − 1 decision nodes (except for the first decision node). The list decoding can be
aided with the cyclic redundancy checks to further improve the decoding performance[63].
In addition, the belief propagation is also proposed in [69] to naturally benefit from
parallelism, which can efficiently provide schedule control and high throughput.

3.3 Construction Methodology of NB-PCs

The construction of the NB-PCs depends on two major elements, the coefficients
of the generator matrix GN and the positions of the frozen symbols. In this section,
the generation of good coefficients for the generator matrix is discussed in section 3.3.1,
and the selection of the frozen positions is discussed in section 3.3.2 representing the
comprehensive study presented by V. Savin in [70].

3.3.1 Selection of the Generator Matrix Coefficients Coefficients

The work presented in [67] shows that the random selection of the coefficients pro-
vides good decoding performance, but it might be a sub-optimal method. Therefore, the
aim of selecting specific values for the coefficients is to accelerate the polarization effect
of the virtual channels. The adopted polarizing parameter used for generating the coeffi-
cients is the error rate. Nevertheless, the polarizing parameter could be the Bhattacharyya
parameter [7] or the mutual information.

The technical objective underlying the coefficient selection is to enhance the disparity
between the polarizing parameters of the bad and good synthesized channels. The original
channel is denoted by W , and after one polarization step, the channels W (0) and W (1)
are synthesized as the bad and good channels respectively. This can be generalized for
the synthesized channels at any n = log2(N) as

W (i1 . . . in) :=
(
W (i1 . . . in−1)(in)

)
,∀ (i1 . . . in) ∈ {0, 1}n
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Figure 3.7 illustrates a non-binary polar decoder for N = 8. The decoder consists
of n = 3 polarization steps and the synthesized channels in each polarization step l are
depicted as W (i1 · · · il).

Figure 3.7 – Non-Binary Polar Decoder with n = 3 Polarization Steps.

At the first polarization step, l = 1, All kernels combine two copies of the real channel
W . Therefore, only one coefficient is needed for the four kernels, denoted as γ(0)

0 and
deduced as

γ
(0)
0 = argmax

γ∈ GF (q)
|P (0)(γ)− P (1)(γ)|. (3.20)

where P (0)(γ) and P (1)(γ) denote the polarizing parameter (error rate) of W (0) and W (1)
virtual channels when the coefficient γ(0)

0 = γ.
The coefficients of the second polarization step are estimated recursively after obtain-

ing the coefficient γ(0)
0 . As shown in the figure, the second polarization step consists of two

types of kernels, one combining a bad channel and a good channel (depicted as W (01))
and the other combining two good channels (depicted as W (11)). Hence, two coefficients
are needed and denoted as γ(1)

0 and γ
(1)
1 respectively. Those coefficients can be deduced

as follows
γ

(1)
0 = argmax

γ∈ GF (q)
|P (00)(γ)− P (01)(γ)|.

γ
(1)
1 = argmax

γ∈ GF (q)
|P (10)(γ)− P (11)(γ)|.

(3.21)
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where P (i1i2)(γ) denotes the polarizing parameters of the channel W (i1i2) given that the
corresponding coefficient is set to γ.

The selection of the coefficients proceeds in the same recursive fashion for any desired
polarization steps n.

3.3.2 Selection of Frozen Symbol Channels

The frozen channels are the virtual channels that have the highest error rate among all
virtual channels. An effective approach for quantitatively calculating the error probability
of virtual channels is described below

1. Generate a random vector U = (u0, u1, · · · , uN−1) : ui ∈ GF (q).

2. Encode the vector U using the polar transformation to obtain the codeword X =
(x0, x1, · · · , xN−1).

3. Transmit the codeword over the chosen channel.

4. Run a genie-aided polar decoder to generate the probability density functions of
the virtual channels input U denoted as P (n)

i=0,··· ,N−1.

5. Compute the error probability ϵi for all virtual channels i = 0, · · · , N − 1 as

ϵi = 1− P (n)
i (ui)

6. Repeat the steps (1-5) over many transmissions to estimate the average error prob-
ability Ei of each virtual channel i = 0, · · · , N − 1 such that

Ei = E[ϵi],

where E denotes the expected value.

7. Sort the virtual channels in the ascending order of Ei and use the most reliable
channels to transmit information symbols.

The genie-aided decoder is used to avoid biasing the node error rate when passing the
erroneous decision of a node to the proceeding nodes. Hence, it allows for estimating the
node error rate independent of previous errors. This is achieved by modifying the VN
processing in (3.17) such that

P
(l)
ϕ (β) = µ · P (l−1)

θ (u(l)
θ ⊕ β) · P (l−1)

ϕ (γ ⊛ β) ∀β ∈ GF (q), (3.22)
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where u(l)
θ is the transmitted encoded symbol.

Hence, the set AD can be generated by considering the nodes indices with the lowest
K error rate Ei. The N −K indices are frozen channels with a fixed input known to both
the encoder and the decoder, usually equal to 0.

The channel model used in this work is the additive white Gaussian noise channel with
a standard deviation σ =

√
10−SNR/10 where SNR is the Signal-to-Noise Ratio.

The sorted channel indices in ascending order of their node error rate, also called the
reliability sequence, for different code rates and lengths are provided in section A.1.

3.4 Efficient Implementation of the SC-based Polar
Decoders

The complexity of the successive cancellation decoder is reduced by optimizing dif-
ferent metrics and by introducing minor mathematical approximations. In this section,
state-of-the-art SC decoders are presented and discussed.

3.4.1 Simplified Successive Cancellation Decoder

In the work presented by A. Alamdar-Yazdi et al. in [71], the SC decoder is simplified
by eliminating useless processing nodes. Assume a polar code with K = 4 and N = 8, and
assume that the symbols u0, u1, u2, and u4 are frozen (set to zero). The frozen symbols
are known to the encoder and the decoder and hence, all processing stages required to
generate those symbols can be eliminated without affecting the decoding process or the
performance.

The simplified decoder for N = 8 is demonstrated in Fig. 3.8. The red nodes are the
nodes that can be eliminated with no effect on the following decoding processes.

The first decision to be taken is û3 at the second VN of layer l = 3 (stage 7). To
generate a decision, the VN needs the output of the first two VNs of layer l = 2 (5).
Moreover, the first two VNs of layer l = 2 (5) require the output of the first four CNs
of layer l = 1 (1). Hence, to generate the decision û3, the first four CNs of layer 1, and
the first two VNs of layer 2 should be processed. However, since the first three decision
nodes are frozen, their corresponding nodes (3,4, and 6) can be omitted. Omitting the
processing of stages 3,4, and 6 allows for omitting the processing of the first two CNs of
layer l = 2 (2). Nevertheless, the VNs shaded in yellow correspond to the simplified VNs
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Figure 3.8 – Simplified Polar Decoder for N = 8

that have a symbol feedback equal to zero. In such a case, the VN processing in (3.17)
can be simplified by omitting the field addition (since u(l)

θ = 0) and re-expressed as

P
(l)
ϕ (β) = µ · P (l−1)

θ (β) · P (l−1)
ϕ (γ ⊛ β) ∀β ∈ GF (q). (3.23)

The simplified successive cancellation decoder reduces the complexity of the global
decoder without affecting the decoding performance and schedule.

3.4.2 Min-Sum Successive Cancellation Decoder

The SC decoder has a complexity that is mainly dominated by the CN processing
(3.16). Therefore, a mathematical approximation has been introduced by F. Cochachin
in [72] to reduce the complexity of the check and the VNs. The approximation used
is the min-sum approximation algorithm, originally used for NB-LDPC decoders [37].
The algorithm relies on processing the beliefs from the channel observation in the LLR
domain, and hence, allows for reducing the decoding complexity. Processing the reliability
messages, the LLR values, in the logarithmic domain allows replacing all the multiplication
operations with additions, and hence, no multipliers are required.

In the Min-Sum Successive Cancellation (SC-MS) decoder, the LLR vectors generated
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at each layer l, 1 ≤ l ≤ n, are denoted by L
(l)
i , with L

(l)
i = (L(l)

i (0), · · · , L(l)
i (q − 1)),

0 ≤ i < N . For instance, at layer 1, the input LLR vectors L(0)
i , 0 ≤ i < N , corresponds

to the intrinsic channel observation computed as

L
(0)
i (α) = ln (P(ᾱ|yi)

P(α|yi)
) ∀α ∈ GF(q), (3.24)

where ᾱ = arg maxP(α|yi)
α∈GF(q)

, i.e., ᾱ is the hard decision.

The decoding schedule of the SC-MS decoder is identical to that of the SC decoder.
The major difference is the internal processing of the kernel nodes. The processing of
the CN indicated in (3.16) is modified such that the CN has two LLR vectors L(l−1)

θ and
L

(l−1)
ϕ , and generates an LLR vector L(l)

θ computed as

L
(l)
θ (α) = min

β∈GF (q)
L

(l−1)
θ (α⊕ β) + L

(l−1)
ϕ (γ ⊛ β)) ∀ α ∈ GF (q). (3.25)

Similarly, the VN update in (3.17) is modified such that the VN has two LLR vectors
(L(l−1)

θ and L
(l−1)
ϕ ), and generates an LLR vector L(l)

ϕ computed as

L
(l)
ϕ (β) = L

(l−1)
θ (û(l)

θ ⊕ β) + L
(l−1)
ϕ (γ ⊛ β) ∀ β ∈ GF (q). (3.26)

Normalizing the LLR vectors generated in (3.26) should be constantly maintained to
prevent arithmetic overflow due to data accumulation. The normalization is performed on
an LLR vector L(l)

ϕ by subtracting the minimum LLR value of the vector from all elements
as follows

L
(l)
ϕ (β) = L

(l)
ϕ (β)−min(L(l)

ϕ ) ∀ β ∈ GF (q). (3.27)

Furthermore, the hard decision û
(n)
i at layer l = n and for a node i = 0, 1, · · · , N − 1

is estimated as

û
(n)
i =


0, if i /∈ AD

argmin
α∈ GF (q)

L
(n)
i (α), if i ∈ AD.

(3.28)

Hence, in an SC-MS decoder, each CN requires q2 addition operations and each VN
requires q additions.
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3.4.3 Simplified Min-Sum SC Decoder

Based on the min-sum algorithm, a simplified MS algorithm is presented in [73]. The
authors, F. Cochachin et al, proposed simplifying the non-binary SC decoder based on two
aspects. The first is optimizing the coefficients of the generator matrix, and the second is
simplifying the internal processing of the check and VNs.

The authors proved that while using CCSK modulation (described in section 1.3), the
coefficients γ of the generator matrix GN can be all set to one, yielding a kernel that
is similar to the kernel of the binary polar codes (3.5). This simplifies the encoding and
decoding processes by eliminating all field multiplications.

In addition, the authors proposed a truncation scheme based on truncating one of the
two inputs of the CNs from q down to n0 with 0 < n0 ≪ q which allows reducing the
complexity order of the CN from O(q2) down to O(q × n0) (for a kernel of order 2).

Assume a CN with two LLR inputs L
(l−1)
θ and L

(l−1)
ϕ . The second input L(l−1)

ϕ is
truncated from q elements down to n0 elements. Let the vector M (l−1)

ϕ represent a vector
of n0 sorted elements that correspond to the n0 most reliable elements. Thus, each element
of M (l−1)

ϕ is a two-tuple element, one for the GF symbol and the other for the LLR value.
For clarification, the GF vector of the message M (l−1)

ϕ is denoted as M (l−1)⊕
ϕ and the LLR

vector is denoted as M (l−1)+
ϕ .

The CN processing in (3.25) is simplified as follows

L
(l)
θ (α⊕M (l−1)⊕

ϕ (i)) = min (L(l−1)
θ (α) +M

(l−1)+
ϕ (i)) ∀ α ∈ GF (q), i = 0, · · · , n0 − 1.

(3.29)
Moreover, the VN processing in the simplified SC-MS decoder is not modified and

kept as it is expressed in (3.26).

3.4.4 Extended Min-Sum Successive Cancellation Decoder

The authors C. Peiyao et al. proposed the utilization of the EMS algorithm [74] to
reduce the complexity of the successive cancellation decoder. The main contribution is
to reduce the size of the propagated messages from q down to nm where nm < q. Thus,
reducing the complexity of the CN from O(q2) down to O(nm

√
nm) as in [42].

Assume a CN with two inputs M (l−1)
θ and M

(l−1)
ϕ that correspond to the nm sorted

elements of the vectors L(l−1)
θ and L

(l−1)
ϕ . Each element of M (l−1)

i is a two-tuple element,
one for the GF symbol and the other for the LLR value. The GF vector of the message
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M
(l−1)
i is denoted as M (l−1)⊕

i and the LLR vector is denoted as M (l−1)+
i . The CN processes

the inputs to generate the output message M (l)
θ that consists of nm elements.

An intermediate matrix TΣ is computed as follows

T⊕
Σ (i, j) = M

(l−1)⊕
θ (i)⊕ γ ⊛M

(l−1)⊕
ϕ (j)

T+
Σ (i, j) = M

(l−1)+
θ (i) +M

(l−1)+
ϕ (j),

: 0 ≤ i, j < nm, (3.30)

where T⊕
Σ and T+

Σ denote the GF and the LLR matrices respectively. The concurrent
GF and LLR addition operation is denoted by ⊞ such that the equation (3.30) can be
rewritten simply as

TΣ = M
(l−1)
θ (i) ⊞M

(l−1)
ϕ (j) : 0 ≤ i, j < nm. (3.31)

On the other hand, the VN processing at kernel t is similar to that in (3.26) with two
vectors L̄(l−1)

θ and L̄(l−1)
ϕ of size q that are obtained using the messages M (l−1)

θ and M (l−1)
ϕ

as follows
L̄

(l−1)
θ (M (l−1)⊕

θ (i)) = M
(l−1)+
θ (i)

L̄
(l−1)
ϕ (M (l−1)⊕

ϕ (i)) = M
(l−1)+
ϕ (i)

: 0 ≤ i < nm. (3.32)

The remaining q − nm elements of L̄(l−1)
θ and L̄

(l−1)
ϕ are assigned a default value that

corresponds to the maximum LLR of the truncated vectors M (l−1)
θ and M (l−1)

ϕ respectively
with an added offset O to compensate the truncation as follows

L̄
(l−1)
θ (α) = M

(l−1)+
θ (nm − 1) +O

L̄
(l−1)
ϕ (β) = M

(l−1)+
ϕ (nm − 1) +O

∀ α /∈M (l−1)⊕
θ , β /∈M (l−1)⊕

ϕ . (3.33)

3.5 Performance and Complexity Comparison of NB-
LDPC and NB-PC Decoder

This section provides a glance at the performance and complexity comparison between
the NB-LDPC and NB-PC decoders.
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3.5.1 Performance Comparison

The FER performance of the NB-LDPC and NB-PC is simulated over an AWGN with
CCSK modulation over GF(64) for different code lengths N and coding rates r.

In the figures Fig. 3.9, Fig. 3.10, Fig. 3.11, and Fig. 3.12, the FER performance is
plotted for NB-LDPC and NB-PC at comparable code lengths N and coding rate r. The
polar code is not punctured and therefore, the code length should be a power of 2. Also,
since the CCSK modulation has a spreading factor of p/q, then the effective coding rate
re = rp/q.
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Figure 3.9 – FER Performance at N ≈ 64 and r ≈ 1/3.

In Fig. 3.9, the simulation results show an outperformance of the NB-LDPC with K =
20, N − 60 over NB-PC with K = 21, N = 64. The remaining simulation results indicate
that the NB-PC outperformed the NB-LDPC by a maximum of 0.45 dB as in Fig.3.12 for
an NB-LDPC code with K = 160, N = 240 and an NB-PC with K = 171andN = 256.

3.5.2 Complexity Comparison

The complexity comparison between the NB-LDPC and NB-PC decoders can be ex-
plored by analyzing the CN processes performed within the decoders.

110



3.5. Performance and Complexity Comparison of NB-LDPC and NB-PC Decoder

-9 -8.5 -8 -7.5 -7 -6.5 -6
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

NB LDPC K=40 N=60

NB Polar K=42, N=64

Figure 3.10 – FER Performance at N ≈ 64 and r ≈ 1/2.
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Figure 3.11 – FER Performance at N ≈ 128 and r ≈ 2/3.
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Figure 3.12 – FER Performance at N ≈ 256 and r ≈ 2/3.

Since the polar decoder, i.e. the SC decoder, is already discussed in section 3.2, it
can be recognized that the processing of the check nodes in the SC decoder is similar to
the elementary check nodes in the FB approach proposed to the NB-LDPC decoder as
discussed in 2.3.2. Therefore, the number of ECNs in an NB-LDPC and NB-PC decoder
can give an insight into the complexity of each decoder.

In the NB-LDPC decoder, the decoding processes iterate for itermax iterations. In each
iteration, a variable node is updated dv = 2 times, and a check node updates dc connected
variable nodes. Hence, an average of dv

dc
CN processing is required per VN. As a result,

for a total of N VNs, the total CN processing required TCN can be expressed as below

TCN = 2N
dc

(3.34)

Using the FB approach, the CN processing is decomposed into 3(dc − 2) ECNs. This
leads to a total of TECN ECN processing per iteration which can be expressed

TECN = 2N
dc

× 3(dc − 2) (3.35)
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For itermax iterations, the total ECNs performed in an LDPC decoder is

TLDP C = itermax

(
6N − 2N

dc

)
. (3.36)

On the other hand, an SC decoder for a given code length N has N/2 CNs per each of
the n layers. The CNs of the last layer are used to generate a hard decision and therefore
consist of only a GF addition. This results in a total CNs TP C as expressed below

TP C = (n− 1)N2 . (3.37)

This assessment excludes the simplification of the polar decoding that can achieved
using the simplified approach noted in section 3.4.1. However, even without using the
simplified SC decoding, it is obvious that the complexity of the polar decoder is much less
than that of the LDPC decoder.

3.6 Asymmetrical Extended Min-Sum SC Decoders

This section includes the first contributed work to NB-PCs accomplished during this
Ph.D. project [75]. The CN processing of the non-binary polar decoder is similar to the
NB-LDPC CN for dc = 3, and thus, the earned expertise can be efficiently exploited to
simplify the non-binary polar decoder. The Asymmetrical Extended Min-Sum Successive
Cancellation (SC-AEMS) decoder is an SC decoder with an optimized CN that considers
two inputs of different sizes (asymmetrical inputs). The asymmetrical processing is in-
spired by the presorting algorithm [46], [47] used for NB-LDPC codes which presort the
dc CN inputs to reduce the complexity of the elementary CNs in the forward-backward
approach (see section 2.3.4).

3.6.1 Introduction to Asymmetrical Extended Min-Sum CN

Assume a CN of kernel t at layer l with two sorted input messages M (l−1)
θ and M (l−1)

ϕ

(most reliable candidates of L(l−1)
θ and L(l−1)

ϕ respectively) of size nL. The CN processing
can be reduced by eliminating the bubbles (elements) computed in TΣ (3.31) that are
rarely used to generate the output M (l)

θ bubbles.
To do so, unlike the EMS-based CN, the asymmetrical CN processes the inputs in

an asymmetrical manner with two asymmetrical sizes nL and nH with nL > nH . The
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messages ML and MH of size nL and nH respectively are defined as the least and the
highest (relatively) reliable input vector of the inputs M (l−1)

θ and M
(l−1)
ϕ . For clarity,

relative reliability represents the reliability of one input with respect to the other.
The estimation of the relative reliability is accomplished by comparing the zth LLR

element of the two messages, i.e., M (l−1)+
θ (z) and M (l−1)+

ϕ (z). The LLR element M (l−1)+
θ (z)

reflects the reliability of the zth most reliable symbol compared to the most reliable symbol
at index zero, M (l−1)+

θ (0). Hence, the higher the LLR element M (l−1)+
θ (z), the higher will

be the reliability of M (l−1)+
θ (0). Therefore, lower candidates are needed from M

(l−1)
θ and

vice versa. Comparing the M (l−1)+
θ (z) and M (l−1)+

ϕ (z) helps in assessing which of the two
vectors can be further truncated down to nH since the elements of the highest reliable
input at indices j > nH are less likely to contribute to the output M (l)

θ .
The input with the highest reliability is allocated in MH with a size of nH elements

(instead of the nL inputted elements). Similarly, the input with the least reliability is
allocated in ML with a size of nL elements. This can be expressed as follows

(M⊕
L ,M

⊕
H )←

(M (l−1)⊕
θ , γ ⊛M

(l−1)⊕
ϕ ) If (M (l−1)+

θ (z) < M
(l−1)+
ϕ (z))

(γ ⊛M
(l−1)⊕
ϕ ,M

(l−1)⊕
θ ) Otherwise

,

(M+
L ,M

+
H )←

(M (l−1)+
θ ,M

(l−1)+
ϕ ) If (M (l−1)+

θ (z) < M
(l−1)+
ϕ (z))

(M (l−1)+
ϕ ,M

(l−1)+
θ ) Otherwise

.

(3.38)

The allocation of the messages MH and ML allows for redefining the computed region
TΣ in (3.31) to T ′

Σ which is expressed as

T
′⊕
Σ (i, j) = M⊕

H (i)⊕M⊕
L (j),

T
′+
Σ (i, j) = MH(i) +ML(j)

: i = 0, · · · , nH − 1; j = 0, · · · , nL − 1. (3.39)

3.6.2 Determination of the Asymmetrical Sizes

The sizes nL and nH can be found using empirical and statistical approaches using
Monte-Carlo simulation. The size of the least reliable message ML, nL, and the most
reliable message MH , nH can be determined using the statistical estimation of the con-
tribution rate matrix at the CNs of layer l = 1. To do so, compute T ′

Σ as in (3.39) with
an initial size of the field order, i.e., nL = nH = q. Let the contribution rate matrix C of
size q × q be the matrix that includes the probability of each element T ′

Σ being selected
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at any element of M (l)
θ such that

C(i, j) = C(i, j) +

1 If T ′
Σ(i, j) ∈M (1)

θ

0 Otherwise
∀ t = 0, 1, · · · , N/2− 1; 0 ≤ i, j < q. (3.40)

The estimation of the contribution rate matrix C to an output element is aggregated
over the CN of kernels t = 0, · · · , N/2 − 1 at layer l = 1 (since they exhibit similar
polarization levels, it helps in increasing the estimation accuracy) as expressed in (3.40).

For better accuracy, the estimation of the contribution rate matrix C is considered
when the decoded codeword is valid and is accumulated over Nr successfully decoded
frames. Therefore, the estimation of an element C(i, j) is amplified by Nr × N/2. Con-
sequently, to get a normalized contribution rate, all elements of the matrix C should be
divided by Nr ×N/2 as follows

C = 2C
(Nr ×N) . (3.41)

The contribution rate is illustrated in Fig. 3.13 for K = 42 symbols and N = 256
symbols over CCSK modulation and on GF (64) at SNR of -17 dB with z = 2 and
Nr = 100. It can be noticed that the size of the elements from the least reliable input
contributes much more to the output than the elements of the most reliable input. Based
on both the statistical study presented and the empirical results, the values nL = 20 and
nL = 8 show a good performance-complexity trade-off.

3.6.3 Computation Reduction Using L-bubble Approach

The internal processing of T ′
Σ computed in (3.39) can be reduced using the L-bubble

approach, initially proposed for NB-LDPC (see section 2.3.2). The L-bubble only considers
the elements computed in the first two rows and columns of T ′

Σ. The computed elements
can be categorized into four regions R0, R1, R2, and R3, where each region is expressed
as follows

R0 = {MH(0) ⊞ML(j)}j=0,··· ,nL−1,

R1 = {MH(i) ⊞ML(0)}i=0,··· ,nH−1,

R2 = {MH(1) ⊞ML(j)}j=1,··· ,nL−1,

R3 = {MH(i) ⊞ML(1)}i=2,··· ,nH−1.

(3.42)

The complete structure of the AEMS CN is presented in Fig. 3.14 and formalized as
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Figure 3.13 – Contribution Rate Matrix C for Layer l = 1 CNs.

116



3.6. Asymmetrical Extended Min-Sum SC Decoders

depicted in Algorithm 2.

Figure 3.14 – Schematic Structure of an AEMS CN.

Algorithm 2: Asymmetrical EMS-based CN
Input: M (l−1)

θ , M (l−1)
ϕ , nL,nH , z.

1 Pre-processing Steps: Comparison of the zth most reliable LLR value:
2 if M (l−1)

θ (z) < M
(l−1)
ϕ (z) then

3 (ML,MH)← (M (l−1)
θ ,M

(l−1)
ϕ )

4 else
5 (ML,MH)← (M (l−1)

ϕ ,M
(l−1)
θ )

6 end
7 Processing Steps:
8 Step 1: Generate T ′

Σ as in (3.39).
9 Step 2: Extract nL most reliable distinct bubbles in TΣ to obtain M

(l)
θ .

Output: M l
θ

On the other hand, the VN processing at kernel t is similar to the VN processing for
the SC-EMS as in (3.32) and (3.33) with nm = nL elements.

3.6.4 Complexity Analysis and Simulation Results

The complexity of the SC-AEMS can be estimated by estimating the arithmetic op-
erations per CN over the different decoders. In all algorithms that use both sorting and
normalization, the real addition operations are less than the GF additions. This is because
the first LLR element in both inputs is equal to zero. Therefore, the LLR values of the
first row and the first column are identical to their corresponding non-zero input elements
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(see R0 and R1 with MH(0) = 0 and ML(0) = 0 in (3.42)). The GF and LLR addition
operations for the SC-AEMS are compared with the SC-MS and SC-EMS. In addition,
the L-bubble EMS-based SC decoder (denoted as SC-LEMS) is also considered in the
comparison, and the results are provided in Table 3.1.

Table 3.1 – Arithmetic Operations Performed per CN

Algorithm GF Additions Real Additions
SC-MS q2 q2

SC-EMS nm
√
nm nm

√
nm − (2nm − 1)

SC-LEMS 4nm − 4 2nm − 3
SC-AEMS 2(nH + nL)− 4 nH + nL − 3

Using Monte-Carlo simulation over GF (64), an SC-AEMS decoder with nH = 8,
nL = 20, and z = 2 is found to perform as well as the SC-LEMS with nm = 20 and
is negligibly degraded compared to the performance of the SC-MS decoder. Therefore,
the CN processing can be realized by performing the arithmetic and logic (over GF (64))
operations as indicated in Table 3.1. The required GF and LLR additions for the MS
decoder are 4096 operations for each. Furthermore, the required GF and LLR addition
operations for the SC-EMS decoder with nm = 20 are 90 and 51 respectively. For the
SC-LEMS with nm = 20, the required GF and LLR addition operations are 76 and 37
respectively. Lastly, in the proposed SC-AEMS decoder with nH = 20, nL = 8, the total
GF additions are only 52 operations and 25 LLR additions.

Compared to the SC-EMS CN, the total computed candidates by an SC-AEMS CN is
reduced by 42% for GF operations, and by 72% for LLR addition operations. Additionally,
when compared to the SC-LEMS CN, the SC-AEMS CN achieves a reduction of 30% in
terms of GF addition and 32% in terms of LLR addition operations.

On the other hand, the SC-AEMS decoder requires a comparator at each CN. This
sums up to N/2 CNs in each layer over the n−1 layers (at the last layer, only one element
from each input is required to get a hard decision). Therefore, N/2× n− 1 comparators
and multiplexers are required as demonstrated in Fig. 3.14.

The proposed decoder is simulated over a BI-AWGN channel with CCSK modulation
and a sequence of size q = 64 chips. The coefficient γ is set to 1 for all codes based on the
results provided in [73], and the frozen positions are obtained by analyzing the error rate
at each channel position i = 0 · · ·N − 1 using a genie-aided decoder [7].
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The simulation results for codes N = 64, N = 256, and N = 1024 in Fig.3.15, Fig.
3.16, and Fig 3.17 respectively. The continuous black plot corresponds to the finite-block
achievable rate computed as in (1.5). The performance of the SC-MS is plotted dashed-
black, and the SC-LEMS performance with nm = 20 and nm = 14 are plotted in dashed
and dotted blue plots respectively. Lastly, the SC-AEMS with nH = 8 and nL = 20 is
plotted in dashed-cyan.

The effective code rate over a CCSK modulation is deduced as re = r × SF where
r = K/N is the coding rate and SF is the spreading factor. Since the simulations are
performed over GF (q = 64), the effective code rate is re = r × 6

64 .
The performance of the SC-LEMS decoder with nm = 14 is provided to compare

the difference in decoding capability between the SC-LEMS and SC-AEMS at a similar
arithmetic complexity (nm = (nH + nL)/2). As shown in Fig.3.15 and Fig. 3.16, the
performance of the SC-LEMS decoder with similar complexity to that of the SC-AEMS
has an additional degradation in performance of around 0.15 dB. Thus, the asymmetrical
EMS algorithm maintains the performance with fewer candidates.
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Figure 3.15 – Simulation Results over GF (64) for N = 64, r ≈ 1/3 (re ≈ 1/32) and
r ≈ 2/3 (re ≈ 1/16) respectively.

Nevertheless, the SC-AEMS decoder with nH = 8 and nL = 20 is simulated over
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Figure 3.16 – Simulation Results over GF (64) for N = 256, r ≈ 1/3 (re ≈ 1/32) and
r ≈ 2/3 (re ≈ 1/16) respectively.
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Figure 3.17 – Simulation Results over GF (64) for N = 1024, r ≈ 1/3 (re ≈ 1/32) and
r ≈ 2/3 (re ≈ 1/16) respectively.
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BI-AWGN channel with Binary Phase Shift Keying (BPSK) modulation for K = 42 and
N = 128 on GF(64). In Fig. 3.18, the performance of the SC-MS is plotted in black,
SC-EMS with nm = 20 in blue, SC-LEMS with nm = 20 in red, and SC-AEMS with
nL = 20 and nH = 8 in cyan.
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Figure 3.18 – Performance Simulation of SC-AEMS Decoder with BPSK Modulation

As shown, the SC-AEMS decoder has a degraded performance of around 0.3 dB to
that of the SC-MS decoder. It can be noticed that the performance of the SC-EMS
experiences a degradation of about 0.125 from that of the SC-MS performance. In addition,
the performance of the SC-LEMS decoder is degraded by around 0.25 dB from the SC-
MS decoder. Focusing on the performance of both the SC-EMS and SC-LEMS justifies
the reason behind the degraded performance. Firstly, the message size nm = 20 of the
SC-EMS is insufficient for good convergences under BPSK modulation (similar behavior
experienced in NB-LDPC CN with dc = 3). Secondly, the L-bubble region is inappropriate
for generating the output messages under BPSK modulation. Lastly, the asymmetrical
sizes approach has no major impact on performance degradation.

Therefore, a more dynamic and sophisticated approach should be developed that con-
siders the effect of polarization on the CN processing.
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3.7 Polarization-Aware SC Decoder

The Polarization-Aware Successive Cancellation (SC-PA) decoding algorithm is the
second contribution to the non-binary polar decoder during this PhD. The SC-PA is a
rate-dependent simplified decoding approach of the EMS-decoding algorithm for NB-PC.
It is based on investigating the statistical behavior of the computations performed within
the CNs at different polarization levels.

At first, the notion of node cluster is defined in section 3.7.1. Then, the notion of
potential regions assigned to the node cluster is derived in section 3.7.2. In addition, the
proposed pruning process is explained in section 3.7.3. Further, the proposed design of
the polarization-aware decoding is discussed in section 3.7.4. Lastly, the complexity and
the simulation analysis are discussed in section 3.7.5.

3.7.1 Definition of Nodes Clusters

In a polar decoder of size N , each of the n layers comprises N/2 kernels, with each
kernel consisting of a CN and a VN. In [70], nodes are clustered based on their polarization
level to determine optimal polarizing coefficients γ for the polar code.

Following a similar pattern, the kernel cluster S(l)
s at layer l can be defined as a set of

kernels with indices t = s × (2n−l) up to t = (s + 1) × (2n−l) − 1, where s ranges from
0 to 2l−1 − 1. Consequently, cluster S(l)

s encompasses 2n−l kernels, with all CNs sharing
similar polarization levels and similarly, all VNs having similar polarization levels (albeit
different from those of the CNs). The reason for including VNs in the same cluster as CNs
is their shared inputs. As a result, any optimization applied to the CNs will also affect
the corresponding VNs.

Thus, the definition of these clusters serves as the foundation for dynamic computation
and message size determination for the kernels within each cluster, based on statistical
estimations made at the CNs.

3.7.2 Statistical Computation Using EMS CNs

Estimating the potential elements in T ′
Σ (3.39) helps in reducing the overall complexity

of the SC decoder. This can be achieved by the computation of the bubble pattern matrices
B(l)

t . A bubble pattern matrix is defined as a matrix of size nm × nm which includes the
probability of the element (bubble) of T ′

Σ(i, j) (with symmetrical inputs, i.e., nL = nH =
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nm) being selected at any output element of M (l)
θ at layer l and CN at kernel index t.

To do so, for a decoded codeword, a bubble pattern matrix B(l)
t can be computed as

follows

B(l)
t (i, j) =

1 If T ′
Σ(i, j) ∈ M

(l)
θ

0 Otherwise
,

∀ 0 ≤ t < N/2; 1 ≤ l < n.

(3.43)

Estimating the average behavior of the bubble pattern of a given CN gives useful
insight into partitioning its bubbles (the elements of T ′

Σ) into two sets: the set of useful
bubbles (i.e. the ones that are frequently used) and the set of useless bubbles (i.e., the
ones that are never, or only rarely used). This partition allows for reducing the complex-
ity of the CN processing by only computing the set of useful bubbles. Experimentation
shows that the CNs within the same cluster S(l)

s have similar sets of useful bubbles. It is
thus logical to accumulate the statistical information from the CNs, first to increase the
accuracy of estimation of the average behavior of bubbles, and to apply to each cluster
an identical truncation pattern. Aggregating the nodes into clusters helps in reducing
the total customized regions of T ′

Σ from (n − 1) × N/2 down to N/2 − 1. To do so, the
contribution rate matrices C(l)

s are defined as the aggregated statistical information B(l)
t

of the CNs at t = s × (2n−l) up to t = (s + 1) × 2n−l − 1. Hence, the contribution rate
matrix C(l)

s at layer l and cluster s can be expressed as

C(l)
s = 1

2n−l

(s+1).2n−l−1∑
t=s.2n−l

B(l)
t . (3.44)

The contribution rate matrices C(l)
s are taken into account if and only if the frame

is successfully decoded to avoid biasing the statistical results by a faulty decision. The
estimation of C(l)

s can be accumulated for Nr well-decoded frames to generate accurate
statistics as

C(l)
s = C

(l)
s

Nr

. (3.45)

The last layer l = n includes simple CNs that perform one field addition of the most
reliable element of the two inputs to obtain the estimate ûi ∀ i mod 2 = 0. Therefore,
they are excluded from the CN simplification process.
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3.7.3 Bubbles Pruning Process

The pruning process is performed offline to get the pruned form of T ′
Σ denoted as

T
′(l)
Σs

for all node clusters s = 0, . . . , 2l−1 − 1 in layers l = 1, . . . , n − 1. In the pruning
process, a threshold Pt is defined as the minimum contribution rate value for a bubble
to be computed. Therefore, any bubble with a contribution rate C(l)

s (i, j) < Pt is omitted
from the CN processing of cluster S(l)

s .
The indicator matrices R(l)

s can be found for all clusters s = 0, . . . , 2l−1 − 1 over the
l = 1, . . . , n− 1 layer as follows

R(l)
s =

1 If C(l)
s (i, j) > Pt

0 Otherwise
. (3.46)

These R(l)
s matrices indicate which bubbles of T ′(l)

Σs
should be exclusively computed to

generate M (l)
θ , i.e.,

T
′(l)
Σs

(i, j) =

MH(i) ⊞ML(j) If R(l)
s (i, j) = 1

(0,+∞) Otherwise
: 0 ≤ i, j < n

(l−1)
s′ , (3.47)

where n(l−1)
s′ is the size of the input messages (output size of the connected cluster in the

previous layer), i.e., s′ = ⌊s⌋.
The tuple (0,∞) correspond to the GF and LLR values given to GF tuple T ′(l)⊕

Σs
(i, j)

and LLR tuple T ′(l)+
Σs

(i, j) of the element T ′(l)
Σs

(i, j) respectively.
Moreover, since the bubbles of the first row (having maximum contribution) are di-

rectly generated from the corresponding input M (l−1)
L , the omitted bubbles consequently

reduce the maximum size of the propagated messages such that the CNs within the node
cluster S(l)

s

n(l)
s =

n
(l−1)
s′∑
j=0
R(l)

s (0, j). (3.48)

In addition, the size of inputs at layer l = 1 denoted as n(0)
0 is equal to the chosen

EMS size nm, i.e., n(0)
0 = nm.

As a result, both the check and VNs in cluster S(l)
s have an output size of n(l)

s elements
but different input sizes. The CN in cluster S(l)

s generates an output of n(l)
s and has an

inputs of size n(l−1)
s′ . Therefore, only n(l)

s among the n(l−1)
s′ elements of the inputs are con-
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sidered (sufficient) to generate n(l)
s reliable elements (see summation boundaries of (3.47)).

The reason behind generating the n(l−1)
s′ elements from the nodes in the previous layer is

that the VNs belonging to cluster S(l)
s process the n(l−1)

s′ elements of the corresponding
inputs to generate n(l)

s reliable elements at the output. This is due to the processing na-
ture of the VN processing which relies on the intersection between the inputs to generate
reliable (meaningful) elements.

For further clarification, the contribution rate matrix C(2)
1 is depicted for N = 64 with

K = 11 in Fig. 3.19(a) and K = 42 in Fig. 3.19(b) estimated at SNR of -13.5 dB and -7.5
dB respectively. As shown, the two matrices have different potential regions.
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(b) K = 42

Figure 3.19 – Contribution Rate C(2)
1 (in %) at Layer l = 2 and node cluster s = 1 for

N = 64.

When applying the pruning process as in (3.46) to the contribution rates in Fig. 3.19
with a threshold Pt = 0.12, the region R(2)

1 is deduced for K = 11 as in Fig. 3.20(a) and
for K = 42 as in Fig. 3.20(b). As shown, the two regions have different potential elements
even though they correspond to the same node cluster and layer, but over different code
rates. It can be noticed that the potential region of K = 42 is the first row and column,
which means that no LLR additions are required to generate the output since M+

L (0) and
M+

H (0) are equal to zero. Furthermore, the output size is deduced using (3.48 such that
n

(2)
0 = 16 for K = 11, and n

(2)
0 = 18 for K = 42.

Additionally, algorithm 3 summarizes the aforementioned approach used for designing
a polarization-aware decoder.
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Figure 3.20 – Pruned Computed Region R(2)
1 (in %) at Layer l = 2 and node cluster s = 1

for N = 64 over GF(64).

Algorithm 3: Designing Procedure for Polarization-Aware Polar Decoder.
Input: q,N,K, nm, Nr,Pt

1 Initialization Step:
2 Set C(l)

s to the nm × nm null matrix, l = 1, 2, . . . , n− 1, s = 0, 1, . . . , 2l − 1.
3 Pre-Processing Step: Determine SNR µ required to have a FER of 10−2 using

EMS-based SC with nm.
4 while i < Nr do
5 Step 1: Receive a codeword Y through an AWGN at SNR µ.
6 Step 2: Decode Y with the EMS-based SC decoder with parameter nm.
7 Step 3: Trace useful bubbles for statistical analysis
8 Compute (3.39) and (3.43).
9 Step 4: Computation of Contribution Rate Matrix

10 if decoding success then
11 Compute (3.44)
12 end
13 Step 4: Normalization of C(l)

s as in (3.45)
14 Step 5: Pruning Process: Deduce R(l)

s and n(l)
s as in (3.46) and (3.48).

Output: R(l)
s ∀ l = {1, . . . , n− 1}, s = {0, . . . , 2l−1 − 1}.
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The schematic graph for a polar decoder with N = 8 is depicted in Fig. 3.21.

Figure 3.21 – SC Decoder for N = 8 with Node Clusters Illustration

3.7.4 Proposed Design of SC-PA Decoders

As it can be noticed, the design of the polarization-aware decoder depends on two
parameters, the first is the maximum input size denoted as n(0)

0 , and the second is the
inclusion threshold Pt. The former can be found by estimating the decoding performance
of the conventional EMS-based decoder at different sizes nm. Once the good nm is found in
the EMS-based decoder, it can be adopted in the designing stage of the polarization-aware
decoder, i.e., n(0)

0 = nm.
As an example, let the desired code be N = 64 with K = 42 on GF(64). The first

requirement is to find the decoding performance for different nm using Monte-Carlo sim-
ulation (or mathematical approximation as in [70]). The decoding performance of the
EMS-based decoder over different sizes nm is depicted in Fig. 3.22. As shown, the param-
eter nm = 18 is the minimum size that maintains a good performance at a FER ≈ 10−4.
Hence, the parameter nm is set to 18 for the statistical analysis held at a FER region of
10−2, i.e., at SNR of -7.5 dB.
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Figure 3.22 – EMS-based SC Decoder with K = 42 and N = 64 over Different nm sizes.
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Furthermore, once the contribution rate matrices C(l)
s are obtained, the pruning process

is launched offline. The threshold value Pt impacts both the complexity and the perfor-
mance such that choosing a high threshold reduces the complexity and the decoding
performance, and vice versa.

In Fig. 3.23, the FER performance of the proposed SC-PA over different threshold
values is depicted. For Pt = 0.05 up to Pt = 0.12, the decoding performance is negligibly
degraded compared to the performance of the SC Min-Sum decoder (SC-MS). At Pt ≥
0.15, the degradation increases to 0.25 dB. Hence, the threshold Pt = 0.12 is considered
to have a good performance-complexity trade-off.
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Figure 3.23 – Performance of SC-PA Decoder over Different Threshold Values Pt for
N = 64 and K = 21.

Based on the described algorithm in Algo. 3, the design parameters n(0)
0 and Pt have

been found for different codes as shown in Table 3.2.
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3.7.5 Complexity Analysis and Simulation Results

The global complexity reduction of the SC-PA decoder can be estimated by estimating
the savings in the computation operations saved at the CNs compared to an EMS-based
decoder with nm elements at each input. In addition, the Asymmetrical Extended Min-
Sum CN (AEMS) [75] with nL and nH elements is also considered in the comparison.

An EMS-based CN [42] with nm candidates requires computing OGF GF additions and
OLLR LLR additions that can be estimated as follows

OGF = nm

√
nm,

OLLR = nm

√
nm − 2nm + 1.

(3.49)

Furthermore, the AEMS-based CN has two inputs of sizes nL and nH and uses the
L-bubble [43]. Therefore, the total computed GF candidates OGF and LLR candidates
OLLR can be expressed as follows

OGF = 2(nL + nH)− 4,
OLLR = nL + nH − 3.

(3.50)

In an SC decoder of size N , there are N/2 CNs in each layer l = 1, . . . , n − 1 that
perform OGF GF additions and OLLR LLR additions. Therefore, the total GF and LLR
addition operations over an SC decoder of size N are as follows:

TGF = OGF × (n− 1)×N/2
TLLR = OLLR × (n− 1)×N/2

, (3.51)

where OGF and OLLR depends on the CN processing.
In [75], the adopted value of nL and nH in an AEMS-based CN is 20 and 8 respectively

for any code length N . As for the EMS-based CN, the minimum value of nm that maintains
a good performance is nm = 18 for N ≤ 512 and nm = 22 for N = 1024. On the other
hand, the total operations performed by the SC-PA decoder cannot be formulated in an
equation due to the dynamic computations in each node cluster.

Based on the aforementioned complexity analysis, the SC-PA decoder saves around
half the computation resources compared to the asymmetrical EMS-based SC decoder.
This excludes the savings in the complexity of the repetition (variable) nodes and sorting
procedures at CNs since they are not taken into consideration in this assessment. Never-
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Table 3.2 – Design Parameters for SC-PA Decoder and Required Arithmetic Operations
over Different Codes.

K µ
SC-PA SC-AEMS SC-EMS

TGF TLLR TGF TLLR TGF TLLR

N = 64,Pt = 0.12, n(0)
0 = 18 nL = 20, nH = 8 nm = 18

11 -13.5 dB 3776 916

8320 4000 12160 656021 -10.5 dB 4082 788
42 -7.5 dB 4370 424
58 -5 dB 4168 56
N = 256,Pt = 0.08, n(0)

0 = 18 nL = 20, nH = 8 nm = 18
42 -14 dB 22362 6048

46592 22400 68096 3673685 -11.5 dB 24294 5744
17 -8 dB 24742 3180
213 -6.5 dB 23526 1878
N = 1024,Pt = 0.09, n(0)

0 = 25 nL = 20, nH = 8 nm = 22
171 -15 dB 151986 45756

239616 115200 474264 276480341 -12 dB 180396 45420
683 -8.5 dB 222488 33314
922 -6 dB 223104 11916

theless, the SC-PA decoder requires additional N/2×(n−1) comparators and multiplexers
for the reallocation of the inputs as expressed in (3.38).

The proposed decoder is simulated over a BI-AWGN channel with CCSK modulation
for a bunch of code rates and lengths on GF(64). For better readability, the proposed
work is depicted in dashed red and denoted as SC-PA in all provided simulation plots.
In addition, the min-sum SC decoder is denoted as SC-MS and depicted in a plain black
plot. The SC-EMS with nm = 18 is depicted for N ≤ 256 and nm = 22 for N = 1024.
The performance of the SC-AEMS is similar to that of the SC-EMS [75] and hence, is
not provided for simpler illustration of figures. The offset value (3.33) is set to 0.5 for the
SC-EMS, and 0.5 for the SC-AEMS, and 0.7 for the SC-PA.

The simulation results for N = 64 with K = 11, K = 21, K = 42, and K = 58 are
depicted in Fig. 3.24 from left to right respectively using the parameters in Table 3.2.

Moreover, the simulation results in Fig. 3.25 correspond to N = 256 with K = 43,
K = 85, K = 171, and K = 213 respectively from left to right using the parameters in
Table 3.2.

Lastly, for N = 1024, the simulation results in Fig. 3.26 include the following infor-
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Figure 3.24 – Simulation Results for N = 64 over GF(64).
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Figure 3.25 – Simulation Results for N = 256 over GF(64).
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mation block lengths (from left to right in order) K = 171, 341, 683, and 922.
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Figure 3.26 – Simulation Results for N = 1024 over GF(64).

The polarization-aware decoder has a similar performance as the SC-EMS with nm =
18 and nm = 22 for code lengths N ≤ 512 and N ≥ 1024 respectively. Compared to
the min-sum SC decoder, the degradation is at a maximum of 0.2 dB at a FER of 10−4.
Moreover, the SCL decoder using the first approach has a similar performance at a low
code rate but outperforms the NB SC decoder at high code rates. This is expected since
at a very high code rate r = 9/10, the effective coding rate is re = 27/320 due to CCSK
spreading. However, for the binary SCL32 it has a coding rate of 27/320, thus, the effect
of the decoding error correction is much more effective than that of the CCSK spreading.
As for the second approach, the NB SC always outperforms the SCL32 with the same
code rate and repetition for compensating the CCSK spreading.

The FER performance of the binary SCL decoder is also compared with the non-
binary SC decoder plotted using two approaches. The first approach (denoted as A1-
SCL32) assumes a binary polar code with a similar payload (in bits) and the same code
rate as the effective code rate of the NB-PC, i.e., Kb = Kp and rb = re. Therefore, the
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simulated binary polar code has Kb = K × 6 and Nb = Kb/rb. The FER performance of
the aforementioned binary decoder is illustrated via the continuous red plots. The second
approach (denoted as A2-SCL32) assumes a binary polar code with the same payload as
the NB-PC and the same coding rate (instead of the effective code rate), i.e., Kb = Kp

and rb = r, along with a repetition of 1/SF (shifting the plot to left by 10 log10(SF ) dB)
such that the effective coding rate is similar to that of the NB-PC. The FER performance
of this approach is depicted via the continuous blue plots. The comparison with binary
SCL is to show the decoding capabilities of each configuration and not to assess the
performance of binary and non-binary polar decoders since different modulation schemes
are used.

For better comparison, the SC-PA decoder has been simulated using BPSK modulation
over a BI-AWGN channel. For BPSK-modulated symbols, the kernel coefficient γ should
be greater than 1. Thus, the coefficients are generated based on the methodology described
in [70] which depends on selecting the GF coefficient that maximizes the polarization
difference between the CN (bad channel) and VN (good channel) of the same kernel
(provided in section A.2).

The performance of the SC-PA with BPSK modulation is illustrated in Fig. 3.27
for K = 42 symbols and N = 128 on GF(64). The performance of the SC-MS decoder is
plotted in black. Similarly, the performance of the SC-EMS decoder with nm = 20, 25, 32 is
represented in starred red, blue, and green plots respectively. In addition, the performance
of the SC-PA decoder is depicted in squared plots over different nm and Pt. Furthermore,
the performance of (SC and SC List (SCL) decoding [62] with a list size of 32) 5G binary
polar code (using Aff3ct Simulator [76]) with Nb = Np = 768 bits and Kb = Kp = 252
bits.

As shown, the non-binary SC decoder outperforms the binary SC decoder by 0.75 dB
at a FER of 10−2. The SCL decoder slightly outperforms the non-binary SC decoder but
experiences an error floor at FER of 10−3 leading to the outperformance of the non-binary
SC.

Furthermore, the SC-EMS decoder with BPSK requires a higher size of inputs than
the SC-EMS decoder with CCSK. For a performance degradation of less than 0.2 dB, the
SC-EMS decoder requires messages of size nm = 25 (contrary to CCSK+SC-EMS which
requires nm = 18). As for the SC-PA, the required size at the first layer is n(0)

0 = 32 with
Pt = 0.1. The SC-PA requires 32 candidates at the first layer only. The two clusters in
the second layer have a size of n(2)

0 = 26 and n
(2)
0 = 21. Therefore, only the CNs at the
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first layer require additional sorting. Based on (3.49) and (3.51) the total GF additions
and LLR additions for N = 128 is TGF = 48000 and TLLR = 29184. As for the SC-PA
decoder, the total computed GF and LLR elements are TGF = 18872 and TLLR = 7616
respectively. This leads to a reduction of around 60% in terms of GF additions and 70%
in terms of LLR additions.
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Figure 3.27 – Simulation Results of SC-PA for N = 128 and K = 42 over BPSK Modu-
lation.

Lastly, it is worth mentioning that the obtained complexity results are based on the
computed bubbles in all CNs at all layers. This introduces a bias in favor of the SC-PA
decoder since the useless CNs that are considered can be omitted using the simplified
successive cancellation mentioned in section 3.4.1. As a result, there might be a decrease
in the mentioned complexity reduction ratio.

3.8 Conclusion

This chapter includes the study of the NB-PCs and decoders. The polar codes are
introduced in section 3.1, the introduction explains the channel polarization and the
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polar transformation in section 3.1.1, and the polar encoding in section 3.1.2. In addition,
section 3.1.3 introduces the NB-PCs.

Moreover, section 3.2 explains the (non-binary) successive cancellation decoding. The
successive cancellation can be combined with the list decoding to enhance the decoding
performance. The list decoding for non-binary decoder suffers from much higher complex-
ity than its binary counterpart.

Furthermore, section 3.4 presents the state-of-the-art simplifications applied to the
successive cancellation decoder to reduce its complexity. The simplified successive cancel-
lation decoder is presented in section 3.4.1. The simplified successive cancellation decoder
simplifies the global decoder by eliminating some nodes having deterministic outputs due
to the known frozen channels. However, the internal processing of the nodes is complex.
Therefore, the min-sum algorithm has been applied to the nodes processing within the
successive cancellation decoder as presented in section 3.4.2. The min-sum successive can-
cellation decoder reduces the complexity by withdrawing the multiplication operations
and replacing them with additions. But still, the complexity is high and dominated in the
CNs. The complexity of a min-sum CN is of order O(q2), therefore, the decoder suffers
from high complexity at high field orders q > 32. The min-sum CN is simplified using a
partial truncation scheme as presented in section 3.4.3. In the partial min-sum process-
ing, one of the two inputs is truncated from q down to n0 yielding a complexity of order
O(q × n0). In addition, the authors proved that under the CCSK modulation, the kernel
coefficients γ can be unitary coefficients (set to 1) with no degradation in decoding per-
formance. Nevertheless, in section 3.4.4, the extended min-sum (EMS) has been adopted
as a CN processing to reduce the complexity of the CN to an order of O(nm

√
nm) with

nm being the size of the propagated messages.
Besides, in section 3.5, a brief performance and complexity comparison between the

NB-LDPC and NB-PC decoder is illustrated and mentioned. The simulation results shows
an outperformance of NB-PC over NB-LDPC codes over CCSK modulation and AWGN
channel. Also, the complexity comparison that is based on the total check node processing
units also indicates that the NB-PC decoder is simpler than that of the NB-LDPC.

Section 3.6 discusses the first proposed work on successive cancellation decoding, called
the Asymmetrical Extended Min-Sum Successive Cancellation (SC-AEMS) decoder. An
AEMS CN has two asymmetrical inputs and a reduced bubbles computation. The assign-
ment of the asymmetrical inputs is based on the assessment of the relative reliability of
the input vectors. The input with the highest reliability is found to contribute less (to any
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output) than the input with the least reliability. Therefore, the two asymmetrical sizes are
assigned, one for the least reliable input denoted as nL, and another for the most reliable
input, denoted as nH with nL > nH . The internal processing of the asymmetrical CN is
based on the L-bubble approach presented in section 2.3.2. The proposed SC-AEMS de-
coder performs well with CCSK modulation. However, the SC-AEMS decoder experiences
a significant degradation in performance ( 0.3 dB) when using BPSK modulation. Thus,
a more dynamic approach is proposed, called polarization-aware polar decoding.

The Polarization-Aware Successive Cancellation (SC-PA) decoder tackled in section
3.7 is the second proposed work accomplished during this PhD on non-binary polar de-
coder. The SC-PA decoder considers the polarization level of the CNs to simplify the
internal computation performed. To do so, the notion of node clusters is defined and jus-
tified in section 3.7.1. In short, a cluster is a group of kernels that have CNs with similar
levels of polarization. Then, the statistical analysis is demonstrated in section 3.7.2. A
bubble pattern matrix is defined to include the elements that are used at the output of the
CN. In addition, the contribution rate matrix is also defined as the accumulated bubble
pattern matrices of all CNs within the same cluster. Once the contribution rate matrices
are obtained for all clusters, the pruning process is launched. The bubble pruning process
is discussed in section 3.7.3, which prunes the computed region of the clusters based on a
predefined threshold. If any bubble has a contribution rate below the defined threshold,
it is pruned and omitted from being processed. Thus, a small fraction of bubbles are pre-
served since their contribution rate to an output is higher than the threshold. This allows
for reducing the internal processing of all CNs with the clusters, and also, reducing the
size of the input messages in the following layers. The configuration of the proposed SC-
PA decoder is provided comprehensively in section 3.7.4. Lastly, the complexity analysis
is addressed in section 3.7.5. The performance of the SC-PA decoder is simulated over a
set of code lengths and rates over CCSK modulation. It achieves a similar performance to
the SC-EMS decoder with a degradation of around 0.2 dB compared to the min-sum SC
decoder. The 0.2 dB degradation in performance allowed for achieving a reduction in the
total computed field additions and real additions by around 50% and 90% compared to
the SC-EMS decoder. Furthermore, the SC-PA decoder has been designed and simulated
over BPSK modulation with similar performance and computation reduction. However,
the required size of the messages to have a degradation that is less than 0.2 dB is 25 can-
didates for the SC-EMS decoder and 32 candidates for the SC-PA. The SC-PA requires
32 candidates at the first layer only, at the following layers the sizes are even less than
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the SC-EMS decoder.
To sum up, the complexity analysis focuses on the arithmetic operations performed at

the CN level. However, the implementation of the proposed decoder and the state-of-the-
art decoder should be done to achieve an accurate complexity comparison. Nevertheless,
a deep study of the performance/complexity trade-off should be performed to compare
the NB-PCs and their binary counterparts over non-binary modulations.
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CONCLUSION AND PERSPECTIVES

This thesis investigates and proposes new techniques to optimize the decoding algo-
rithms of NB-LDPC codes and NB-PCs. Algorithmic optimization is essential because
hardware optimization is insufficient alone to meet the current and future latency con-
straints of communication systems.

During this PhD, state-of-the-art decoders for NB-LDPC codes, NB-TCs, and NB-PCs
were implemented. However, no significant contributions were made to the optimization of
NB-TC decoders. As a result, the manuscript doesn’t include the study of the non-binary
turbo codes.

The BRD algorithm is the first algorithmic optimization made for NB-LDPC decoders.
The BRD algorithm is designed to reduce the size of the messages propagated between
the variable and check nodes and the number of sorting operations required within the
decoding process. The BRD algorithm does this by generating reliability beliefs for the
requested symbols asked by the variable nodes.

The BRD algorithm has been combined with various check node processing algorithms,
such as the trellis extended min-sum, forward-backward, and syndrome-based check node
algorithms. The simulation results of these decoders have shown that they achieve similar
performance to the extended min-sum decoder over GF(64) and GF(256), at a lower
complexity. Additionally, the forward-backward BRD check node (with a degree dc = 12)
algorithm has been implemented and synthesized using a Quartus Cyclone IV FPGA. The
synthesis results showed that the forward-backward BRD algorithm reduces the memory
allocation by 60% and the logical elements by 15% compared to the forward-backward
extended min-sum check node algorithm.

The non-binary polar codes have been also studied and optimized during this PhD.
A non-binary polar code of code length N = 2n consists of n layers and N/2 kernels in
each layer. During this Ph.D., two optimization approaches were proposed to reduce the
complexity of the non-binary decoder. The first is the asymmetrical extended min-sum
check node, and the second is the polarization-aware decoding.

The AEMS check node is an optimized check node with asymmetrical processing of
the input messages. The internal (asymmetrical) processing is simplified by using the
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L-bubble sorter that was initially proposed for the NB-LDPC decoders. The simulation
results are obtained for GF(64) codes at different lengths and rates with cyclic-code shift
keying modulation using successive cancellation decoding. The performance degradation
is around 0.15 dB compared to the successive cancellation min-sum decoding. However,
the performance degradation of the proposed approach increases to 0.3 dB when using
the binary phase shift keying. This is due to the L-bubble computed region that doesn’t
fit the potential region of the check nodes. Therefore, an alternative approach called
polarization-aware decoding has been proposed.

A polarization-aware decoder is a highly customized decoder that considers the polar-
ization level of the check nodes to generate the output size and potential region. To do so,
a kernel cluster is defined to include all kernels with check nodes of similar polarization
levels. Each cluster has a fixed output size and specific computed region of the check
nodes. The estimation of the potential region is performed using a statistical analysis and
a pruning process. In the pruning process, the rare elements that contribute to an output
are excluded if they contribute less than the predefined threshold. The pruning process
leads to a huge reduction of the total field and real additions performed within the po-
lar decoder as well as the size of the propagating messages. The simulation results over
cyclic-code shift keying on GF(64) are obtained for different code lengths and rates. A 0.2
dB performance degradation allows for reducing the number of field and real additions by
around 50% and 90% compared to the successive cancellation extended min-sum decoder.
The polarization-aware decoder has been simulated over BPSK modulation. The simula-
tion results showed that the 0.2 dB degradation allows for reducing the total arithmetic
field and real addition operations by around 60% in terms of GF additions and 70% in
terms of LLR additions.

Moreover, the performance of NB-PC decoders is compared to that of binary polar
decoders. The comparison includes the successive cancellation decoding for the non-binary
and the successive cancellation list decoding for the binary decoder with a list size of 32.
Since the encoded symbols are CCSK modulated in NB-PC and the binary PC is BPSK
modulated, the comparison is held in two approaches. The first approach is to maintain
a coding rate of the binary polar code similar to the effective coding rate, and the second
approach is to assume the same coding rate for the NB-PC and the binary PC in addition
to repetition codes that compensate for the rate difference of the BPSK and the CCSK
modulations. At a low coding rate, the successive cancellation decoding of the NB-PC
outperforms the successive cancellation list using the two approaches. However, at high
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coding rates, the successive cancellation list decoding of the binary PC outperforms the
successive cancellation of NB-PC using the first approach. This is expected since the
decoding effect of the successive cancellation is more significant than the spreading effect
of the cyclic-code shift keying modulation.

Perspective and Future Work

The work through this PhD research has not only provided answers but has also ignited
the flame of curiosity, leading to a host of exciting questions for the future. Initially, the
proposed decoders were put to the test using floating-point simulations. However, the
real thrill comes from exploring the quantization effect to understand how these decoders
(both NB-LDPC and NB-PC) behave in more realistic scenarios.

Moreover, while the initial estimation of complexity reduction is motivating, they
remain somewhat abstract, focusing on arithmetic operations only. However, What is truly
interesting is to implement the proposed decoder alongside the state-of-the-art decoders to
yield tangible, comprehensive results that consider all aspects of decoding, from scheduling
and sorting to memory allocation and variable node processing.

As the research delves deeper into the intricate interplay of complexity and perfor-
mance, a compelling challenge unfolds. The assessment of the delicate balance between
complexity and performance of the non-binary polar and binary polar decoders within
non-binary modulation. Specifically, when considering polar codes at low coding rates,
where the omission of specific nodes from both binary and non-binary codes streamlines
hardware implementation.

Furthermore, concerning the polarization-aware decoding. The proposed optimization
strategy has thus far been centered on check node statistics, offering a glimpse into effi-
ciency. However, there’s another uncharted region to explore – the variable node statistics.
It is believed that further exploration of variable node behavior holds the potential for
significant complexity reduction, promising a new and exciting chapter in this research
journey.

In the grand finale, the non-binary turbo codes can steal the spotlight with their
impressive decoding performance among all other non-binary codes to date. However,
this thesis couldn’t dive deeper into the depths of the non-binary turbo decoders due
to time constraints and the intricate interdependencies among their decoding metrics.
Nevertheless, the optimization of non-binary turbo decoders is a compelling avenue for
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future research.
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Titre : Optimisation Algorithmique Des Codes Non-Binaires.

Mot clés : Codes non-binaires, Low-Density Parity-Check Codes, Polar Codes, Turbo Codes.

Résumé : Les codes non binaires sont
des codes correcteurs d’erreurs très efficaces
pour les petites tailles de message. Ils sont
de plus naturellement adapté aux modulations
codées et permettent ainsi de s’approcher de
la capacité du canal. Toutefois, les décodeurs
non binaires construit sur des ensembles de
cardinalité élevée (supérieure ou égale à 64)
sont encore marginalement utilisés dû à leur
grande complexité de décodage. Cette thèse
étudie et propose de nouveaux algorithmes
de simplification du traitement des noeuds de
parités pour deux types de codes correcteurs
d’erreur Non-Binaire : les codes Low Density
Parity Check non-binaire (NB-LDPC) et les
codes polaire Non-Binaire (NB-PC).

Pour les codes NB-LDPC, une nouvelle
technique de décodage appelée "algorithme
Best-Request-Default" (BRD) a été proposée.
Dans un contexte d’échange de messages
tronquées, il devient intéressant de relaxer
le principe d’information extrinsèque et de
rendre interdépendants les messages échan-
gés sur une connection entre un noeud de va-
riable et un noeud de parité. Plus précisement,
une partie du traitement du noeud de parité
sera dédié pour fournir une réponse aux sym-

boles "demandés" par le noeud de variable
(terme "request" de l’algorithme). L’algorithme
BRD permet de réduire très significativement
la taille des messages échangés, et donc, la
complexité du décodeur, et ce, sans dégrada-
tion significative de performances.

Le décodage de code NB-PC de grande
cardinalité est un domaine encore très peu
exploré et l’état de l’art consiste à l’adapta-
tion de l’algorihtme Extended Min-Sum déve-
loppé pour les codes NB-LDPC aux codes
NB-PC. Nous proposons deux optimisations
nouvelles : d’une part, une réduction de la
complexité du traitement noeud de parité
par un traitement asymétrique de ses en-
trées basés sur un critère de fiabilité rela-
tive (algorithme Asymmetrical Extended Min-
Sum), d’autre part, une simplification ad-hoc
de chaque contrainte de parité en fonction
de la polarisation des messages lui arrivant
(Polarisation Aware Polar Code Decoder). La
combinaison de ces deux optimisations per-
mettent de réduire la complexité d’un facteur
2 par rapport à l’état de l’art, de nouveau sans
dégradation notable des performances de dé-
codage.

Title: Algorithmic Optimization of Non-Binary Codes

Keywords: Non-Binary Codes, Low-Density Parity-Check Codes, Polar Codes, Turbo Codes.

Abstract: Non-binary codes are highly ef-
ficient error-correcting codes for short mes-
sage sizes. They are also naturally adapted
to coded modulations, and therefore, can be
used to approach channel capacity. However,
non-binary decoders built on sets of high

cardinality (greater than or equal to 64) are
still marginally used due to their high decod-
ing complexity. This thesis studies and pro-
poses new algorithms for simplifying the pro-
cessing of the parity nodes for two types of
non-binary error-correcting codes: Non-Binary



Low-Density Parity Check (NB-LDPC) and
Non-Binary Polar Codes (NB-PC).

For NB-LDPC codes, a new decoding
technique called the Best-Request-Default
(BRD) algorithm has been proposed. In the
context of truncated message exchange, it
becomes interesting to relax the extrinsic in-
formation principle and make messages ex-
changed over a connection between a variable
node and a parity node interdependent. More
precisely, part of the parity node’s process-
ing will be dedicated to responding to the "re-
quested" symbols by the variable node (the al-
gorithm’s "request" term). The BRD algorithm
makes it possible to significantly reduce the
size of the messages exchanged, and there-
fore the complexity of the decoder, without any
significant degradation in performance.

The decoding of high-cardinality NB-PC
codes is still a largely unexplored field, and
the state-of-the-art consists of adapting the
Extended Min-Sum algorithm developed for
NB-LDPC codes to NB-PC codes. We pro-
pose two new optimizations: firstly, a reduc-
tion in the complexity of parity node process-
ing through asymmetrical processing of its in-
puts based on a relative reliability criterion
(Asymmetrical Extended Min-Sum algorithm),
and secondly, an ad-hoc simplification of each
parity constraint according to the polarization
of the messages arriving at it (Polarization-
Aware Polar Decoder). The combination of
these two optimizations reduces complexity by
a factor of 2 compared with the state-of-the-
art, again without any noticeable degradation
in decoding performance.
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Appendix A

SUPPLEMENTARY MATERIAL FOR

NON-BINARY POLAR CODES

This chapter includes the supplementary material required to simulate a non-binary
polar code. Section A.1 includes the reliability sequence for different code lengths. In
addition, the coefficients used for simulating the polar codes over BPSK modulation
are provided in section A.2.

A.1 Reliability Sequences

The reliability sequences for K = 11, 21, 42, and 58 at FER of ≈ 10−3 and for N = 64
on GF(64) are provided in Table A.1.

Table A.1 – Reliability Sequences for N = 64 over CCSK Modulation

K = 11 0 1 2 4 8 16 32 3 5 6 17 9 24 12 10 18 20 33 34 36 40 14 7 48 13 11 22
21 19 26 25 28 35 37 38 41 15 42 23 27 44 29 49 39 30 50 43 52 45 56
46 31 51 53 54 47 57 58 60 55 59 61 62 63

K = 21 0 1 2 4 8 16 32 3 5 6 9 10 12 17 18 20 24 33 7 11 34 13 14 19 36 21 22
25 40 35 26 15 37 48 28 23 38 41 27 42 44 29 49 39 30 50 52 56 43 45
46 31 51 53 54 58 57 60 47 55 59 61 62 63

K = 42 0 1 2 4 8 3 5 16 6 9 10 32 12 17 7 18 11 20 33 13 24 34 14 19 36 40 21
48 22 25 35 26 15 28 37 38 41 42 23 44 49 50 56 52 27 29 30 39 31 43
45 46 47 51 53 54 55 57 58 59 60 61 62 63

K = 58 0 1 2 4 8 16 32 3 5 6 9 10 12 17 33 18 24 20 34 36 40 48 7 11 14 13 19
21 35 22 25 37 26 28 42 41 38 50 49 44 56 52 15 23 27 29 30 31 39 43
45 46 47 51 53 54 55 57 58 59 60 61 62 63

In addition, the reliability sequences for K = 43, 85, 171, and 213, at FER of ≈ 10−3
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A.1. Reliability Sequences

and for N = 256 on GF(64) are provided in Table A.2.

Table A.2 – Reliability Sequences for N = 256 over CCSK Modulation

K = 43 0 1 2 4 8 16 32 3 5 6 20 64 132 34 36 130 10 136 12 68 24 18 144 40 72
80 160 66 48 96 9 17 129 33 65 8 128 5 192 7 11 14 13 67 19 22 25 35
69 97 21 26 56 28 70 49 38 37 98 81 88 41 44 50 73 131 42 52 76 74 82
104 84 100 112 133 134 137 145 138 140 152 146 148 161 162 164 168
15 23 27 30 29 60 46 58 54 71 45 57 53 43 78 92 193 39 51 77 90 86 75
89 85 83 99 102 101 106 108 105 194 135 113 139 141 142 114 147 150
149 176 153 116 154 163 31 47 55 59 196 61 79 62 165 87 91 156 93
166 103 94 107 169 120 109 143 170 110 151 200 115 63 195 155 117
172 177 95 197 157 118 167 208 178 121 198 158 111 171 180 201 122
224 173 202 184 124 119 174 179 204 209 199 159 210 181 123 212
182 225 203 216 185 125 226 175 186 126 205 228 188 206 232 211
240 183 213 214 217 218 227 220 187 127 229 189 190 230 207 241
233 236 234 242 244 248 215 191 219 221 222 223 231 235 237 238
239 243 245 246 247 249 250 251 252 253 254 255

K = 85 0 1 2 4 8 16 32 3 5 6 12 10 18 34 66 24 20 64 48 9 40 36 17 128 65 33
68 72 80 96 129 130 132 136 7 144 11 13 14 22 19 21 35 28 26 25 49
56 37 67 50 38 42 41 44 52 69 70 74 73 76 81 82 84 88 97 131 98 133
134 137 15 100 138 27 29 30 23 39 45 43 46 51 53 54 160 71 57 75 58
77 78 83 140 85 60 145 86 104 31 146 47 89 135 55 99 90 148 192 139
59 101 112 79 161 92 102 141 61 152 162 87 105 142 147 62 106 164
91 149 193 108 113 168 150 93 103 194 114 153 163 94 176 143 63 196
154 116 107 165 156 120 200 166 109 208 151 169 110 224 115 195
170 95 172 177 155 117 197 178 118 198 180 157 121 184 158 201 167
122 202 124 204 111 209 210 225 212 171 216 226 228 240 173 232
119 174 199 179 182 181 188 185 186 159 206 203 123 125 126 127
175 183 187 189 190 191 205 207 211 213 214 215 217 218 219 220
221 222 223 227 229 230 231 233 234 235 236 237 238 239 241 242
243 244 245 246 247 248 249 250 251 252 253 254 255
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K = 171 0 1 2 4 8 16 32 3 5 6 9 10 12 17 18 20 64 33 24 34 7 11 13 14 36 19 21
128 22 65 40 25 66 35 26 15 37 48 68 28 38 129 23 72 41 130 67 42 27
80 132 49 44 69 96 29 39 50 70 136 30 52 73 144 56 74 131 43 160 76
192 81 45 133 82 46 134 84 97 51 71 88 98 137 31 100 138 53 104 140
54 145 112 75 146 57 58 148 60 161 152 77 162 78 164 193 176 83 168
196 47 200 194 208 86 89 135 85 224 99 92 90 101 139 105 55 102 141
59 61 62 63 79 87 91 93 94 95 103 106 107 108 109 110 111 113 114
115 116 117 118 119 120 121 122 123 124 125 126 127 142 143 147
149 150 151 153 154 155 156 157 158 159 163 165 166 167 169 170
171 172 173 174 175 177 178 179 180 181 182 183 184 185 186 187
188 189 190 191 195 197 198 199 201 202 203 204 205 206 207 209
210 211 212 213 214 215 216 217 218 219 220 221 222 223 225 226
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
243 244 245 246 247 248 249 250 251 252 253 254 255

K = 213 0 1 2 4 8 3 5 16 6 9 10 32 12 17 7 64 18 11 20 128 33 24 13 34 14 36 19
65 40 66 21 48 68 22 129 72 25 35 130 80 26 132 15 96 28 136 37 144
38 160 41 192 67 42 44 49 23 50 69 52 70 56 74 73 29 27 97 76 131 81
133 82 84 30 88 137 98 161 134 100 148 43 138 104 112 145 146 140
39 162 164 193 31 45 46 47 51 53 54 55 57 58 59 60 61 62 63 71 75 77
78 79 83 85 86 87 89 90 91 92 93 94 95 99 101 102 103 105 106 107
108 109 110 111 113 114 115 116 117 118 119 120 121 122 123 124
125 126 127 135 139 141 142 143 147 149 150 151 152 153 154 155
156 157 158 159 163 165 166 167 168 169 170 171 172 173 174 175
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
242 243 244 245 246 247 248 249 250 251 252 253 254 255

In addition, the reliability sequences for K = 171, 341, 683 and 922, at FER of ≈ 10−3
and for N = 1024 on GF(64) are provided in Table A.3.
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Table A.3 – Reliability Sequences for N = 1024 over CCSK Modulation

K = 171 0 1 2 4 8 16 32 3 5 6 9 10 12 17 18 64 20 33 24 34 7 11 13 14 36 19 21
128 22 65 40 25 66 35 26 15 256 37 48 68 28 38 129 23 72 41 512 130
67 42 80 27 132 49 44 69 257 96 29 39 136 50 70 258 30 52 73 144 260
131 513 74 56 160 43 264 76 514 192 81 272 133 45 516 82 288 134 46
520 84 97 320 51 71 88 528 137 98 384 259 544 31 138 100 53 576 140
104 145 54 640 112 261 57 75 146 768 148 262 161 58 152 60 162 77
265 193 515 164 266 78 268 176 194 273 276 83 517 168 196 289 208
135 524 290 545 224 532 522 274 296 89 280 518 200 521 99 47 292
322 85 86 102 328 529 139 108 385 321 304 324 530 536 92 90 101 392
548 336 386 546 105 388 400 448 352 141 577 552 142 416 580 584 55
59 61 62 63 79 87 91 93 94 95 103 106 107 109 110 111 113 114 115
116 117 118 119 120 121 122 123 124 125 126 127 143 147 149 150
151 153 154 155 156 157 158 159 163 165 166 167 169 170 171 172
173 174 175 177 178 179 180 181 182 183 184 185 186 187 188 189
190 191 195 197 198 199 201 202 203 204 205 206 207 209 210 211
212 213 214 215 216 217 218 219 220 221 222 223 225 226 227 228
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
245 246 247 248 249 250 251 252 253 254 255 263 267 269 270 271
275 277 278 279 281 282 283 284 285 286 287 291 293 294 295 297
298 299 300 301 302 303 305 306 307 308 309 310 311 312 313 314
315 316 317 318 319 323 325 326 327 329 330 331 332 333 334 335
337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 353
354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369
370 371 372 373 374 375 376 377 378 379 380 381 382 383 387 389
390 391 393 394 395 396 397 398 399 401 402 403 404 405 406 407
408 409 410 411 412 413 414 415 417 418 419 420 421 422 423 424
425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
441 442 443 444 445 446 447 449 450 451 452 453 454 455 456 457
458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473
474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489
490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505
506 507 508 509 510 511
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cont. 519 523 525 526 527 531 533 534 535 537 538 539 540 541 542 543
547 549 550 551 553 554 555 556 557 558 559 560 561 562 563 564
565 566 567 568 569 570 571 572 573 574 575 578 579 581 582 583
585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600
601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616
617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632
633 634 635 636 637 638 639 641 642 643 644 645 646 647 648 649
650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665
666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681
682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697
698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713
714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729
730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745
746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761
762 763 764 765 766 767 769 770 771 772 773 774 775 776 777 778
779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794
795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810
811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826
827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842
843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858
859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874
875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890
891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906
907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922
923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938
939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954
955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970
971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986
987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002
1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015
1016 1017 1018 1019 1020 1021 1022 1023
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K = 341 0 1 2 4 8 3 5 16 6 9 10 32 12 17 7 64 18 11 20 128 33 24 13 34 256 14
36 512 19 65 40 66 21 48 68 22 129 72 25 130 35 80 26 132 257 96 15
28 136 258 37 144 260 38 513 160 264 514 192 41 272 42 516 67 288
44 520 320 49 384 528 23 50 544 69 52 576 70 640 76 56 768 81 73 74
131 82 133 84 27 97 134 98 104 88 29 100 145 148 140 259 137 138
265 146 39 30 112 261 193 161 208 262 268 290 545 31 43 45 46 47 51
53 54 55 57 58 59 60 61 62 63 71 75 77 78 79 83 85 86 87 89 90 91 92
93 94 95 99 101 102 103 105 106 107 108 109 110 111 113 114 115 116
117 118 119 120 121 122 123 124 125 126 127 135 139 141 142 143
147 149 150 151 152 153 154 155 156 157 158 159 162 163 164 165
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
182 183 184 185 186 187 188 189 190 191 194 195 196 197 198 199
200 201 202 203 204 205 206 207 209 210 211 212 213 214 215 216
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
249 250 251 252 253 254 255 263 266 267 269 270 271 273 274 275
276 277 278 279 280 281 282 283 284 285 286 287 289 291 292 293
294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
310 311 312 313 314 315 316 317 318 319 321 322 323 324 325 326
327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
375 376 377 378 379 380 381 382 383 385 386 387 388 389 390 391
392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423
424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487
488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503
504 505 506 507 508 509 510 511
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cont. 515 517 518 519 521 522 523 524 525 526 527 529 530 531 532 533
534 535 536 537 538 539 540 541 542 543 546 547 548 549 550 551
552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567
568 569 570 571 572 573 574 575 577 578 579 580 581 582 583 584
585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600
601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616
617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632
633 634 635 636 637 638 639 641 642 643 644 645 646 647 648 649
650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665
666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681
682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697
698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713
714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729
730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745
746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761
762 763 764 765 766 767 769 770 771 772 773 774 775 776 777 778
779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794
795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810
811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826
827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842
843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858
859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874
875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890
891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906
907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922
923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938
939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954
955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970
971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986
987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002
1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015
1016 1017 1018 1019 1020 1021 1022 1023
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K = 683 0 1 2 4 8 16 3 5 6 9 10 32 12 17 18 7 64 20 11 33 13 24 34 14 19 128 36
21 65 256 40 22 66 25 35 512 48 15 68 26 129 37 72 28 130 38 80 23
132 41 257 96 67 136 42 258 144 44 49 260 513 69 27 160 50 264 514
70 192 52 272 516 29 73 56 288 520 74 30 131 39 320 528 76 384 81
544 82 133 576 640 134 97 84 88 43 768 98 137 104 100 45 259 138 145
140 148 112 46 261 146 265 193 262 208 161 162 51 71 515 152 268
524 54 194 164 290 266 545 224 532 517 60 276 273 176 274 289 168
53 296 521 522 196 58 57 518 200 75 280 292 31 328 322 529 47 55 59
61 62 63 77 78 79 83 85 86 87 89 90 91 92 93 94 95 99 101 102 103 105
106 107 108 109 110 111 113 114 115 116 117 118 119 120 121 122
123 124 125 126 127 135 139 141 142 143 147 149 150 151 153 154
155 156 157 158 159 163 165 166 167 169 170 171 172 173 174 175
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 195
197 198 199 201 202 203 204 205 206 207 209 210 211 212 213 214
215 216 217 218 219 220 221 222 223 225 226 227 228 229 230 231
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
248 249 250 251 252 253 254 255 263 267 269 270 271 275 277 278
279 281 282 283 284 285 286 287 291 293 294 295 297 298 299 300
301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
317 318 319 321 323 324 325 326 327 329 330 331 332 333 334 335
336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464
465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
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Chapter A – Supplementary Material for Non-Binary Polar Codes

cont. 519 523 525 526 527 530 531 533 534 535 536 537 538 539 540 541
542 543 546 547 548 549 550 551 552 553 554 555 556 557 558 559
560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575
577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592
593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608
609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624
625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 641
642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657
658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673
674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689
690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705
706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721
722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737
738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753
754 755 756 757 758 759 760 761 762 763 764 765 766 767 769 770
771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786
787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802
803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818
819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834
835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850
851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866
867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882
883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898
899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914
915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930
931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946
947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962
963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978
979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994
995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008
1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021
1022 1023
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A.1. Reliability Sequences

K = 922 0 1 2 4 8 16 32 64 128 256 3 512 5 6 9 10 17 12 18 20 33 65 24 34 129
36 66 48 40 72 68 130 258 132 96 513 257 80 520 272 264 136 160 144
260 288 514 192 516 384 320 528 544 576 7 768 640 14 11 35 13 19 28
37 22 21 69 25 38 26 41 42 67 49 70 44 50 131 73 56 82 134 74 88 133
52 76 145 81 84 259 97 265 104 146 138 137 100 193 98 289 140 274
290 148 545 515 261 532 266 517 112 262 524 276 268 162 161 152
164 208 273 521 296 194 518 176 280 196 200 168 522 529 328 292
530 304 321 536 548 224 546 385 322 324 336 400 448 386 352 392
577 388 552 580 584 560 578 641 15 23 27 29 30 31 39 43 45 46 47 51
53 54 55 57 58 59 60 61 62 63 71 75 77 78 79 83 85 86 87 89 90 91 92
93 94 95 99 101 102 103 105 106 107 108 109 110 111 113 114 115 116
117 118 119 120 121 122 123 124 125 126 127 135 139 141 142 143
147 149 150 151 153 154 155 156 157 158 159 163 165 166 167 169
170 171 172 173 174 175 177 178 179 180 181 182 183 184 185 186
187 188 189 190 191 195 197 198 199 201 202 203 204 205 206 207
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 225
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
242 243 244 245 246 247 248 249 250 251 252 253 254 255 263 267
269 270 271 275 277 278 279 281 282 283 284 285 286 287 291 293
294 295 297 298 299 300 301 302 303 305 306 307 308 309 310 311
312 313 314 315 316 317 318 319 323 325 326 327 329 330 331 332
333 334 335 337 338 339 340 341 342 343 344 345 346 347 348 349
350 351 353 354 355 356 357 358 359 360 361 362 363 364 365 366
367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
383 387 389 390 391 393 394 395 396 397 398 399 401 402 403 404
405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
437 438 439 440 441 442 443 444 445 446 447 449 450 451 452 453
454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469
470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485
486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
502 503 504 505 506 507 508 509 510 511
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Chapter A – Supplementary Material for Non-Binary Polar Codes

cont. 519 523 525 526 527 531 533 534 535 537 538 539 540 541 542 543
547 549 550 551 553 554 555 556 557 558 559 561 562 563 564 565
566 567 568 569 570 571 572 573 574 575 579 581 582 583 585 586
587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602
603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618
619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634
635 636 637 638 639 642 643 644 645 646 647 648 649 650 651 652
653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668
669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684
685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700
701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716
717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732
733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748
749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764
765 766 767 769 770 771 772 773 774 775 776 777 778 779 780 781
782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797
798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813
814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829
830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845
846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861
862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877
878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893
894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909
910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925
926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941
942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957
958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973
974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989
990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004
1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
1018 1019 1020 1021 1022 1023
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A.2. Kernels Coefficients for Non-Binary Polar Codes with BPSK Modulation

A.2 Kernels Coefficients for Non-Binary Polar Codes
with BPSK Modulation

The coefficient of the polar kernels used for simulating the polar codes with BPSK
modulation at a code length of N = 128 on GF(64) is given in Table A.4 in the decimal
form of the vector representation (with an irreducible polynomial of α6 + α + 1) for the
N/2 kernel coefficients at each layer l.

Table A.4 – Coefficients for N = 128 over BPSK Modulation

l = 1 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23
23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23
23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23

l = 2 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41
41 41 41 41 41 41 41 41 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15

l = 3 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 37 37 37 37 37 37 37 37
37 37 37 37 37 37 37 37 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21

l = 4 34 34 34 34 34 34 34 34 11 11 11 11 11 11 11 11 55 55 55 55 55 55 55 55
29 29 29 29 29 29 29 29 9 9 9 9 9 9 9 9 22 22 22 22 22 22 22 22 43 43 43
43 43 43 43 43 28 28 28 28 28 28 28 28

l = 5 38 38 38 38 19 19 19 19 16 16 16 16 43 43 43 43 15 15 15 15 38 38 38 38
17 17 17 17 45 45 45 45 11 11 11 11 46 46 46 46 23 23 23 23 51 51 51 51
19 19 19 19 23 23 23 23 4 4 4 4 28 28 28 28

l = 6 35 35 19 19 52 52 43 43 35 35 1 1 40 40 1 1 7 7 42 42 52 52 16 16 29 29 27
27 33 33 60 60 16 16 17 17 53 53 43 43 52 52 2 2 34 34 25 25 45 45 38 38
21 21 27 27 34 34 14 14 63 63 63 63

l = 7 25 53 43 55 60 63 29 15 28 15 60 37 46 7 19 43 2 63 36 49 45 45 61 31 61
28 45 39 43 61 60 15 30 33 20 28 49 47 25 53 54 37 55 54 16 5 43 43 60 43
36 42 35 31 29 29 22 51 10 10 6 6 6 6
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