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Abstract

In this thesis, we are interested in improving the performance of the highly quantized

Low-Density Parity-Check (LDPC) code decoder (3 or 4 bits of precision input). The

first proposed decoder, named Noise-Against-Noise Min-Sum (NAN-MS) decoder,

incorporates a certain amount of random perturbation due to deliberate noise injection

into the decoding process. The other decoder, named Sign-Preserving Min-Sum (SP-

MS) decoder, always preserve the sign of the messages and it uses all the possible

combinations that can be generated for a given precision. We further show that a

SP-MS decoder quantizing its inputs in 3 or 4 bits can reduce the precision of internal

messages respectively to 2 or 3 bits without affecting the threshold of convergence

of the code when the degree of the variable nodes is greater than 4. The NAN-MS

decoder and the SP-MS decoder present a SNR gain of up to 0.43 dB in the waterfall

region of the performance curve. On the other hand, we proposed a modification of an

existing post-processing algorithm which makes it possible to reduce the residual error

rate (region called "error floor") for the decoders with only 2 bits of precision for the

exchanged messages. Applied to the IEEE 10 Gigabit ETHERNET code, the SP-MS

algorithm combined with the post-processing algorithm reduces the error level below a

frame error rate of 10−10. We implemented this decoder in 28 nm ASIC technology with

a completely parallel architecture. The resulting area is 1.76 mm2, and the decoding

rate of 319.34 Gbit/s for a signal-to-noise ratio of 5.5 dB, giving a hardware efficiency

of 181.44 Gbit/s/mm2.
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Chapter 1

Introduction

It is a long way from the formal definition of channel capacity by Shannon in the 50th

and the modern coding theory. Nowadays, capacity (or almost capacity) achieving

codes, like Polar code, Turbo code or LDPC code are available. Nevertheless, the rise

of decoding throughput (up to the Tbit/s) due to emerging applications like optical

fiber, free space laser communications, high speed memory access, push the decoding

throughput at the edge of the deep submicron technology. The problem is no more the

design of a code with good performance but to design of a hardware architecture that

has contradictory requirement: low area print, low power dissipation and still, very

good decoding performance.

This PhD explores solution to this problem with several a priori defined in the

frame of the french funded project “Noise Against Noise Decoder” 1: the use of LDPC

code, the use of low input precision (3 or 4 bits for the channel quantization only) and

finally, the help of some randomness in the decoding process to improve the decoding

performance.

The main contributions of the thesis are the definition of improved decoders for

quantized input channel with only 3 or 4 bits of precision, and a post-processing
1Funded by ANR, grant n° ANR-15-CE25-0006-01
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algorithm for low precision iterative decoders. One of the proposed decoders, named

Noise-Against-Noise Min-Sum (NAN-MS) decoder, incorporates a certain amount of

random perturbation due to deliberate noise injection. The other of the proposed

decoders, named Sign-Preserving Min-Sum (SP-MS) decoder, always preserve the sign

of the messages and it uses all the possible combinations that can be generated for a

given precision. Also, the SP-MS decoder can reduce the precision of its messages by

one bit maintaining the same error correcting performance. The NAN-MS decoder and

the SP-MS decoder present a SNR gain of up to 0.43 dB in the waterfall region of the

performance curve. On the other hand, the proposed post-processing algorithm is very

efficient and easily adaptable in low precision decoders. For the IEEE ETHERNET

code, the post-processing algorithm implemented in a very low precision SP-MS decoder

helps to lower the error floor below a FER of 10−10.

The results of this work lead to two conference papers, one submitted patent, and

one submitted journal paper.

[1] F. Cochachin, E. Boutillon and D. Declercq, "Optimization of Sign-Preserving

Noise-Aided Min-Sum Decoders with Density Evolution," 2018 IEEE 10th Inter-

national Symposium on Turbo Codes & Iterative Information Processing (ISTC),

Hong Kong, Hong Kong, 2018, pp. 1-5.

[2] F. Cochachin, D. Declercq, E. Boutillon and L. Kessal, "Density evolution thresh-

olds for noise-against-noise min-sum decoders," 2017 IEEE 28th Annual Inter-

national Symposium on Personal, Indoor, and Mobile Radio Communications

(PIMRC), Montreal, QC, 2017, pp. 1-7.

[3] F. Cochachin, E. Boutillon "ITERATIVE DECODER FOR DECODING A CODE

COMPOSED OF AT LEAST TWO CONSTRAINT NODES", 03 december 2018,

application number: EP18306599.4
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[4] F. Cochachin, E. Boutillon, D. Declercq, "Sign-Preserving Min-Sum Decoders",

Submitted to IEEE Transactions on Communications, February 2019.

The rest of the thesis is divided in 5 additional chapters.

Chapter II gives the background on regular and irregular LDPC codes, message

passing decoding algorithms for floating point messages and for finite precision messages,

and the asymptotic performance determination using density evolution for finite

precision messages.

Chapter III presents the first contribution of the thesis: the elaboration of a new

message passing decoding algorithm named Noise-Against-Noise Min-Sum (NAN-MS)

decoder. In order to introduce randomness in the NAN-MS decoders, a noise injection

method is proposed. The asymptotic behavior of the NAN-MS is investigated using a

noisy density evolution (DE). Using the decoding thresholds obtained with the noisy

DE, the best location of the noise injection is studied. On the other hand, in order to

make a low cost implementation of the NAN-MS decoder, two finite precision decoders

are defined, the first one called Modified Offset Min-Sum (M-OMS) decoder, and the

second one is a version of M-OMS that uses an optimized offset vector λv and it is

called OMS-λv decoder. The M-OMS and the OMS-λv decoders have an equivalent

hardware complexity to the OMS decoder. It is shown by density evolution and by finite

length simulations that: (i) the best location for the noise injection is in the variable

nodes, and (ii) the NAN-MS, the M-OMS, and OMS-λv significantly outperform the

decoders presented in the state of the art. A SNR gain of up to 0.4 dB is obtained in

the waterfall region for low precision messages represented on 3 or 4 bits.

Chapter IV presents the second contribution of the thesis: the definition of a

new finite precision iterative decoder for low-density parity-check codes named Sign-

Preserving Min-Sum (SP-MS) decoder. The particularity of the SP-MS decoder is

that variable-to-check messages are never set to 0 and always carry a sign information.



4 Introduction

In order to optimize the SP-MS decoder performance, the noise injection method

proposed in Chapter III is adapted to always preserve the sign of the messages and to

cover the case of 2-bit precision message. The SP-MS decoder and its optimization are

investigated in the asymptotic limit of the code length with the noisy DE. The study

performed with DE and validated with finite length simulations presents that: (i) the

SP-MS significantly improves the decoding performance compared to classical Offset

Min-Sum when messages are quantized with only 2, 3 or 4 bits of precision, (ii) the SP-

MS can reduce their precision messages by one bit maintaining the same error-correcting

performance, thereby reducing the hardware complexity of the implementation, and

(iii) the SP-MS decoder shows a SNR gain of up to 0.33 dB for regular codes and 0.43

dB for irregular codes, compared to the OMS.

Chapter V presents the third contribution of the thesis: a post-processing algorithm

for low precision decoders. The first part of this chapter presents a fully parallel

architecture to implement the MS, the OMS, and SP-MS. The proposed architecture

is easily adapted to the implementation of regular and irregular LDPC codes. The

synthesis results are presented for this architecture and reveal that the SP-MS decoder

consumes less area than the OMS decoder, and that a saving of at least 25% of area

used by the SP-MS decoder can be achieved when the precision of the messages is

reduced. The second part of this chapter presents the post-processing algorithm for

the IEEE 802.3 ETHERNET LDPC code. A fully parallel architecture is proposed

to implement the SP-MS decoder and the proposed algorithm. Emulation results on

FPGA exhibit that the error floor is lowered below a frame error rate (FER) level of

10−10, observing only a slight error floor for FER bellow 10−10. Implementation results

on a 28 nm FD-SOI technology are presented showing a hardware efficiency of 181.44

Gbit/s/mm2.
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Background

In a communication system, a transmitter sends information through a noisy channel

to one or more receivers. The channel adds random noise and corrupts the information.

The receiver has the purpose to retrieve the information with the least possible loss.

In order to protect the information against the channel noise, the transmitter adds

redundancy to the information such that the receiver can detect and correct the errors.

Such process is called error correcting coding and decoding.

In the coding process, an error-correcting code converts a sequence of K information

bits into a longer sequence of N bits using a coding function which defines how to

build the N −K redundancy bits. Examples of coding processes include convolutional

codes, block turbo-codes, LDPC codes, algebraic codes, etc.

In convolutional codes, the coding function uses individually each bit of the sequence

of K bits to build the redundancy bits, through a discrete linear filter. The classical

algorithms used for the decoding are the BCJR algorithm and the Viterbi algorithm.

In block codes the encoding is made by block of bits, and in this case the sequence

of K bits is used altogether to build the redundancy bits, through a binary generator

matrix.
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Nowadays, the most popular error-correcting codes are LDPC codes (or Gallager

codes) [1–3], and the turbo-codes, because they have a high performance and practical

decoding algorithms. LDPC codes, first introduced by Gallager in 1963, are widely

used in communications standards like DVB-S2 [4], DVB-S2X [5], IEEE 802.3an [6],

WIMAX (IEEE 802.16) [7], etc, and storage applications [8, 9] because they provide an

exceptional error correction capability. Turbo codes are also used for communications

standards like LTE, DVB-RCS, WIMAX, etc.

LDPC codes can be efficiently decoded by Message-Passing (MP) algorithms that

use a Tanner graph [10] representation of the LDPC codes. One of the best MP

algorithms is the Sum-Product algorithm also called Belief-Propagation (BP) algorithm

[11]. The BP decoder has excellent decoding performance in the waterfall region but

at a cost of a high computational complexity. It is worth noting that a well-designed

LDPC code decoded by the BP decoder can approach the Shannon limit asymptotically

[12, 13].

In the literature there are many BP-based decoders that are simplified versions

of the BP decoder [14, 15]. The Min-Sum (MS) and offset corrected Min-Sum (OMS)

decoders [14, 16], derived from the BP decoder, reduce the computational complexity,

but also have a slight performance degradation, compared to BP, especially when they

are implemented in finite precision. The effect of quantization on the messages of MP

decoders has been extensively studied these past twenty years. In [17], the authors

show that for the BP decoder, at least 6 precision bits should be used for the Binary-

Input Additive White Gaussian Noise (BI-AWGN) channel. The effects of uniform

quantization of the BP decoder over the Binary Symmetric Channel (BSC) is studied

in [18]. As for the MS and OMS decoders, the effects of clipping and quantization for

the BI-AWGN channel are studied in [16, 19]. The Self-Corrected Min-Sum (SC-MS)

decoder [20], derived from the quantized MS decoder, sets to zero any message at
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variable-nodes if the sign of the message changes between two consecutive iterations.

From these works, it can be concluded that although the MS-based decoders are less

sensitive than BP decoder to quantization effects, there is a non-negligible performance

loss when the number of precision bits becomes too small.

It is worth mentioning that the quantized MS-based decoders mimic the BP decoder,

but in the literature there are quantized decoders do not mimic the BP decoder like

Finite Alphabet Iterative decoders (FAIDs) [21, 22], Non-surjective Finite Alphabet

Iterative Decoders (NS-FAIDs) [23], Bit-Flipping decoders [24, 25], etc.

This work will only study LDPC codes and their associated quantized decoders

that mimic the BP decoder.

2.1 Generalities on LDPC codes

An LDPC code is a linear block code defined by a sparse parity-check matrix H = [hmn]

of M rows by N columns, with M <N . The following matrix is an example of a binary

parity-check matrix

H =



1 0 0 0 0 1 1 0 0 0 0 1

0 1 0 1 0 0 0 1 0 1 0 0

0 0 1 0 1 0 0 0 1 0 1 0

0 1 0 1 0 0 0 0 1 0 1 0

0 0 1 0 1 0 1 0 0 0 0 1

1 0 0 0 0 1 0 1 0 1 0 0

0 0 1 0 1 0 0 1 0 1 0 0

1 0 0 0 0 1 0 0 1 0 1 0

0 1 0 1 0 0 1 0 0 0 0 1



(2.1)

The usual graphical representation of an LDPC code is made by a Tanner graph

which is a bipartite graph G composed of two types of nodes, the variable nodes (VNs)

vn,n= 1, ...,N and the check nodes (CNs) cm,m= 1, ...,M . A VN in the Tanner graph

corresponds to a column of H and a CN corresponds to a row of H, with an edge
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connecting CN cm to VN vn exists if and only if hmn ̸= 0, i.e. only CNS are connected

to VNs and vice versa, other types of connection are not allowed.

In figure 2.1, we show a bipartite graph which is related to the sparse parity-

check matrix presented in (2.1). This graph also represents a graph for a (3,4)-regular

LDPC code. Note that a VN is always represented with a circle, while a CN is always

represented with a square.

V N1 V N2 V N3 V N4 V N5 V N6 V N7 V N8 V N9 V N10 V N11 V N12

CN1 CN2 CN3 CN4 CN5 CN6 CN7 CN8 CN9

Fig. 2.1 A Tanner graph for a (dv = 3,dc = 4)-regular LDPC code of length N = 12.
There are 12 VNs, 9 CNs, and 36 edges.

LDPC codes are classified according to their structural properties as regular or

irregular LDPC codes. Additionally, the LDPC codes can also be classified as non-

structured LDPC codes and structured LDPC codes. Non-structured LDPC codes does

not exhibit a specific structure, while in structured LDPC codes, H is generated with

algebraic equations, or constrained by specific topological properties. Usually, those

constraints are introduced in order to help the decoder to have a low cost hardware

implementation. One could further categorize the structured LDPC codes in three

types: (i) quasi-cyclic LDPC codes, (ii) convolutional LDPC codes, and (iii) algebraic

constructions of LDPC codes.

Let us assume that v is any VN and c is any CN. Let us also denote by V(v) the

set of neighbors of a VN v, and denote V(c) the set of neighbors of a CN c. The degree

of a node is the number of its neighbors in G.
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2.1.1 Ensemble of Regular LDPC codes

A code is said to have a regular column-weight dv = |V(v)| if all VNs v have the same

degree dv. Similarly, if all CNs c have the same degree dc = |V(c)|, a code is said to have

a regular row-weight dc. A (dv,dc)-regular LDPC code has all its VNs with the same

degree dv and all its CNs of a fixed degree dc. In the corresponding sparse parity-check

matrix H, dv is the amount of nonzero elements per column, and dc is the amount of

nonzero elements per row. For a regular LDPC code, the density of H, denoted by

dH , is equal to dH = dv/M = dc/N . For example, the matrix in (2.1) has a density dH

equal to dH = 1/3. We can note that, for a fixed dc, when N increases to infinity, dH

converges to zero.

Let us denote by E the number of edges in the Tanner graph, or equivalently

E is the amount of non-zero elements in H. For a regular LDPC code we have

E = dv ×N = dc ×M . The code rate R can be calculated as R = K/N ≥ N−M
N [26],

and if the rows of H are linearly independent, we can write R = 1− (dv/dc), which is

usually defined as the design rate [27].

Now, we introduce the concept of the ensemble of (dv,dc)-regular LDPC codes in

order to do the theoretical analysis: An ensemble or family CN (dv,dc) of LDPC codes

is composed of all the Tanner graphs with N VNs and regular degrees dv and dc.

2.1.2 Ensemble of Irregular LDPC codes

In case of irregular LDPC codes [28], the nodes can have different connection degrees,

defining an irregularity distribution, which is usually characterized by the two polynomi-

als λ(x) =∑dv,max

i=2 λix
i−1, and ρ(x) =∑dc,max

j=2 ρjx
j−1. The parameters λi (respectively

ρj) indicate the fraction of edges connected to degree i VNs (respectively degree j CNs)

[28, 29]. For regular codes, the polynomials reduce to monomials, λ(x) = xdv−1 and
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ρ(x) = xdc−1. Irregular LDPC codes can also be characterized by two other polyno-

mials λ̃(x) =∑dv,max

i=2 λ̃ix
i−1, and ρ̃(x) =∑dc,max

j=2 ρ̃jx
j−1, where λ̃i ∈ [0,1] (respectively

ρ̃j ∈ [0,1]) denotes the number of VNs of degree i (respectively CNs of degree j).

As for the case of regular LDPC codes, E denotes the number of edges in the

Tanner graph. Considering H, the amount of non-zero elements in columns of degree

i is calculated as E×λi or i× λ̃i ×N . Similarly, the amount of non-zero elements

in rows of degree j is given by E × ρj or j × ρ̃j ×M . Hence, it is easy to obtain

E = (i× λ̃i ×N)/λi = (j× ρ̃j ×M)/ρj . The relationship between λi and λ̃i (respectively

ρj and ρ̃j) is giving by λ̃(x) =∑dv,max

i=2
λiE
iN xi−1 (respectively ρ̃(x) =∑dc,max

j=2
ρjE
jM xj−1).

The design rate R(λ,ρ)

For irregular LDPC codes, the design rate can be computed as R(λ,ρ) = N−M
N [28].

We can calculate the number of VNs as E
∫ 1
0 λ(x)dx, similarly, the number of CNs is

equal to E
∫ 1
0 ρ(x)dx. Using λ(x) we have

∫ 1
0 λ(x)dx =

∫ 1
0
∑dv,max

i=2 λix
i−1 =∑dv,max

i=2
λi
i ,

and using ρ(x) we get
∫ 1
0 ρ(x)dx=

∫ 1
0
∑dc,max

j=2 ρjx
j−1 =∑dc,max

j=2
ρj

j . Therefore R(λ,ρ) can

also be computed as R(λ,ρ) = 1 − (
∫ 1
0 ρ(x)dx)/(

∫ 1
0 λ(x)dx) or equivalently R(λ,ρ) =

1− (∑dc,max

j=2
ρj

j )/(∑dv,max

i=2
λi
i ).

In figure 2.2, we show a Tanner graph for an irregular LDPC code. For example,

for this graph we have λ(x) = 2
3x+ 1

3x
2, ρ(x) = 1

2x
2 + 2

9x
3 + 5

18x
4, λ̃(x) = 3

4x+ 1
4x

2,

ρ̃(x) = 3
5x

2 + 1
5x

3 + 1
5x

4, and R(λ,ρ) = 3
8 .

V N1 V N2 V N3 V N4 V N5 V N6 V N7 V N8

CN1 CN2 CN3 CN4 CN5

Fig. 2.2 A Tanner graph for an irregular LDPC code of length 8. There are 9 VNs, 5
CNs, and 18 edges.
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Similar to the case of the (dv,dc)-regular LDPC ensemble, an ensemble

CN (λ(x),ρ(x)) of irregular LDPC codes is composed of all the Tanner graphs of length

N and associated to the degree distribution pair (λ(x),ρ(x)).

2.2 Binary LDPC Decoders

In this Section, we first introduce the notations and terminologies related to binary

LDPC decoders we use throughout this work. Then, we briefly review a number of

important message-passing decoders.

2.2.1 Definitions

In Fig. 2.3, we depict a simple communication system. We assume that the source

produces a vector s = (s1, ..., sK). The encoder adds redundancy to s in order to obtain

an encoded vector x = (x1, ...,xN ), which is a codeword, and which is mapped e.g. by

the binary phase-shift keying (BPSK) modulation, to obtain w = (w1, ...,wN ). After

w is sent through a noisy channel. Based on the channel output y = (y1, ...,yN ), the

decoder produces the vector x̂ = (x̂1, ..., x̂N ) which is an estimation of x. To check if x̂

is a valid codeword, we verify that the syndrome vector is all-zero, i.e. Hx̂T = 0.

Source Encoder Modulator Channel Decoder
K
s

N
x

N
w

N
y

N

x̂

Fig. 2.3 A simple communication system

We denote the channel output alphabet by Ay. For binary LDPC decoders we

have y ∈ AN
y , s ∈ {0,1}K , x ∈ {0,1}N , and x̂ ∈ {0,1}N . The channel output alphabet

depends on the channel model, we consider in this work two models of binary memoryless

channels: the first one, the Binary Symmetric Channel (BSC); and the second one, the

Binary-Input Additive White Gaussian Noise (BI-AWGN) channel.
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Binary Symmetric Channel

In the BSC, a bit transmitted xn ∈ {0,1} is flipped to yn with probability ϵ, referred to

as the error probability or crossover probability of the channel, hence yn ∈ Ay = {0,1}.

The BSC satisfies the following symmetry condition

p(yn = 1 | xn = 0) = p(yn = 0 | xn = 1), (2.2)

where p(y | x) is the channel transition probability.

Binary-Input Additive White Gaussian Noise channel

The BI-AWGN channel is modeled by yn = (1−2xn)+ zn, where 1−2xn ∈ {+1,−1},

and zn is a sequence of independent and identically distributed (i.i.d.) random variables

with probability density function given by the normal (or Gaussian) distribution, hence

yn ∈ Ay = R.

pBIAW GN (zn) = 1√
2πσ

e−(zn)2/2σ2
, (2.3)

where σ2 is the noise variance.

Similarly to the BSC, the BI-AWGN channel satisfies the following symmetry

condition

p(yn = ψ | xn = 0) = p(yn = −ψ | xn = 1),ψ ∈ Ay, (2.4)

where p(y | x) defines the likelihood distribution.

Log-Likelihood Ratio

A log-likelihood ratio (LLR) form for the bit xn with probability p(xn) is defined by

LLR(xn) = log
(
p(xn = 0)
p(xn = 1)

)
, (2.5)
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where p(xn = 0)+p(xn = 1) = 1. If p(xn = 0)> p(xn = 1) then LLR(xn) is positive; if

the inequality is reversed, then LLR(xn) is negative. Therefore, the sign of LLR(xn)

indicates the value of the bit xn (xn = (1−sign(LLR(xn)))/2), and the magnitude

|LLR(xn)| of LLR(xn) give us a measure of its reliability. We consider that the notation

log denotes the logarithm with base e in the rest of the text.

The channel output can be also expressed in a LLR form as follows

LLR(yn) = log
(

Pr(yn | xn = 0)
Pr(yn | xn = 1)

)
. (2.6)

In the case of the BSC, we get LLR(yn) = (1−2yn)log((1− ϵ)/ϵ) where yn ∈ Ay =

{0,1}, and for the BI-AWGN channel with noise variance σ2, we have LLR(yn) = 2yn/σ
2

where yn ∈ Ay = R.

2.2.2 Message-Passing Decoders

Message-Passing (MP) decoders are iterative decoders that use a Tanner graph to pass

messages along the edges. In MP decoders, a VN vn (respectively a CN cm) sends its

message to its neighbors V(vn) (respectively V(cm)). In each iteration, the VN update

(VNU) and the CN update (CNU) compute outgoing messages from all incoming

messages.

Here we present the notations used to describe different MP decoders. We consider

that the message alphabet is AC , while the decoder input alphabet is denoted by AL.

Unless otherwise stated, the decoder input alphabet will be the one of the messages,

i.e AL = AC . Let us denote by ℓ ∈ N the iteration number. Let us also denote by

m
(ℓ)
v→c ∈ AC the message sent from VN v to CN c in the ℓth iteration, denote by

m
(ℓ)
c→v ∈ AC the message sent from CN c to VN v in the ℓth iteration, and denote by

γ(ℓ) = (γ(ℓ)
1 , ...,γ

(ℓ)
N ) the a posteriori probability (APP), where γ(ℓ)

n is associated to the

VN vn, for n= 1,2, ...,N . Let us also denote by m(ℓ),U
v→c the unsaturated variable-to-check
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message in the ℓth iteration. Fig. 2.4 depicts a Tanner graph fragment, showing the

flow of messages in MP decoders. From this figure we have V(vn) = {cm, c1, c2, c3} and

V(cm) = {vn,v1,v2,v3}.

c2

c1

vn

c3

cm v2

v1

v3

m
(`)
cm→vn

m
(`)
vn→cm

m
(`)
c1→vn

m
(`)
v1→cm

LLR(yn) γn

V(vn)\{cm} V(cm)\{vn}

Fig. 2.4 A Tanner graph fragment

In this work, the message will be described in the log-likelihood ratio domain. The

sign of a message m represents the hard-decision value of the VN it is connected to, and

magnitude |m| of m represents its reliability. As a consequence, the message alphabet

AC has to be symmetric around 0, for example AC = R for a continuous alphabet

and AC = {−Nq, ...,−1,0,+1, ...,+Nq} for a discrete alphabet with Nq ∈ N. The LLR

from the channel observation LLR(yn) ∈ AL is usually referred to as the intrinsic

message for the VN vn. The exchanged messages in the decoder are usually referred

to as extrinsic messages. For a successful decoding, the measure of the reliability of

extrinsic messages becomes more and more reliable at each new iteration.

We now define update functions for the VNU and the CNU. Let Ψv : AL ×A(dv−1)
C →

AC denote the function used for the update at a VN v of degree dv. Let Ψc : A(dc−1)
C →

AC denote the function used for the update at a CN c of degree dc. The functions Ψv

and Ψc satisfy the symmetry conditions defined in [27]. Let us denote by Aapp the

alphabet of APPs. Also, let Ψa : AL ×A(dv)
C → Aapp denote the function used for the

APP update at a VN v of degree dv. With those notations, we describe the main steps

of MP decoders:
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1. [Initialization] the LLR LLR(yn) is computed for each VN vn. Then, variable-

to-check messages m(ℓ)
vn→cm are initialized by LLR(yn) at the 0th iteration.

2. [Iteration Loop] Each decoding iteration consists of the following steps:

(a) [CNU] a CN computes the outgoing message based on all the incoming

messages except the one received from the outgoing message.

m
(ℓ)
cm→vn = Ψc

({
m

(ℓ)
v→cm

}
v∈V(cm)\{vn}

)
.

(b) [VNU] a VN computes the outgoing message from the channel observation

and from all the incoming messages except the one which receives the

outgoing message.

m
(ℓ+1)
vn→cm = Ψv

(
LLR(yn),

{
m

(ℓ)
c→vn

}
c∈V(vn)\{cm}

)
.

(c) [APP-update] (a posteriori probability update) the APP is computed

from the channel observation and from all the incoming messages.

γ
(ℓ)
n = Ψa

(
LLR(yn),

{
m

(ℓ)
c→vn

}
c∈V(vn)

)
(d) [Hard decision] makes an estimation of the bits transmitted from the

APP.

x̂n = (1− sign(γ(ℓ)
n ))/2

(e) [Syndrome check] verifies that the syndrome vector is all-zero in order to

check if x̂ is a valid codeword.

Hx̂T = 0.

The decoding stops when either [x̂n]n=1,...,N is a codeword or a maximum number

of iteration Lmax is reached.

In binary LDPC decoders, the MP decoding can be performed either (i) using one

bit of precision to represent messages (hard-decision MP decoders) or (ii) using more

than one bit of precision to represent messages (soft-decision MP decoders). We present

in the next sections the most common examples of such decoders.
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Hard-decision MP decoders

Hard-decision MP decoders use just one bit of precision to represent the messages

propagated in the Tanner graph, i.e. m(ℓ)
v→c and m(ℓ)

c→v ∈ {+1,−1} (which is equivalent

to {0,1}). Hard-decision decoders are more interesting for the BSC than for the AWGN

channel. We restrict in this section the presentation of the decoders to the BSC.

1) Gallager-B decoder: The Gallager-B decoder is a MP decoder [30, 31] with binary

alphabet AC = {+1,−1}. At the initialization step, the LLR from the BSC is equal to

LLR(yn) = 1−2yn ∈ AC , yn ∈ Ay = {0,1}, and m(0)
vn→cm = LLR(yn) at iteration ℓ= 0.

In each decoding iteration, the CNU computes the check-to-variable messages m(ℓ)
cm→vn

as the parity (in ±1 format) of the incoming messages m(ℓ)
v→cm , where v ∈ V(cm)\{vn}:

m(ℓ)
cm→vn

= Ψc

({
m(ℓ)

v→cm

}
v∈V(cm)\{vn}

)
=

∏
v∈V(cm)\{vn}

m(ℓ)
v→cm

(2.7)

The VNU computes the variable-to-check messages m(ℓ+1)
vn→cm by comparing the sum of

LLR(yn) and the incoming messages m(ℓ)
c→vn to a pre-determined threshold t:

m(ℓ+1)
vn→cm

= Ψv

(
LLR(yn),

{
m(ℓ)

c→vn

}
c∈V(vn)\{cm}

)
=


LLR(yn), if

∣∣∣∣m(ℓ+1),U
vn→cm

∣∣∣∣< t

sign
(
m

(ℓ+1),U
vn→cm

)
, otherwise.

(2.8)

where m(ℓ+1),U
vn→cm = LLR(yn)+∑

c∈V(vn)\{cm}m
(ℓ)
c→vn .

The APP γ
(ℓ)
n can be calculated as γ(ℓ)

n = LLR(yn)+∑
c∈V(vn)m

(ℓ)
c→vn . Hence, the

hard decision x̂n can be computed as x̂n = (1 − sign(γ(ℓ)
n ))/2 if γ(ℓ)

n ̸= 0, otherwise

x̂n = (1− sign(LLR(yn)))/2. The decoder stops if either [x̂n]n=1,...,N is a codeword or

a maximum number of iteration is reached.
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To improve the performance of the Gallager-B decoder, the threshold t can be

optimized, could take different values at each iteration, and may vary from a VNU

to another. However, the value of t is most of the time considered as constant. Two

examples of Gallager-B decoders are the Gallager-A decoder and the Majority-Voting

decoder, and we can refer to [32] for more details.

2) Gallager-A decoder: The Gallager-A decoder can be seen as a particular case of

the Gallager-B decoder. In the Gallager-A decoder, the threshold t is equal to dv −2,

where dv is the degree of the VN v.

3) Majority-Voting decoder: The Majority-Voting decoder can be obtained from the

Gallager-B decoder. In this case the threshold t is equal to 1. Hence, the update rule

at a VN is given by

m(ℓ+1)
vn→cm

= Ψv

(
LLR(yn),

{
m(ℓ)

c→vn

}
c∈V(vn)\{cm}

)
=


LLR(yn), if m(ℓ+1),U

vn→cm = 0

sign
(
m

(ℓ+1),U
vn→cm

)
, otherwise.

4) Gallager-B decoder with extended alphabet: The message alphabet for the Gallager-B

decoder with extended alphabet is AC = {−1,0,1}. The value 0 is added to the alphabet

to deal with the ties in the VNU of the Gallager-B and propagate 0 instead of the

likelihood in such case. This decoder is also named erasure decoder. Strictly speaking

this decoder is not a hard-decision decoder, and a least two bits of precision must be

used in the hardware implementation. The update rule at a VN is given by

m(ℓ+1)
vn→cm

= Ψv

(
LLR(yn),

{
m(ℓ)

c→vn

}
c∈V(vn)\{cm}

)
= sign

(
m(ℓ+1),U

vn→cm

)
.
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Some authors have proposed to improve the performance of the erasure decoder by

weighting differently the channel value and the extrinsic contribution. Refer to [32, 33]

for more details.

Soft-decision MP decoders

Soft-decision MP decoders use more than one bit of precision to represent messages in

the Tanner graph. These decoders propagate more information than hard-decision

decoders, and they usually work in the LLR domain using real valued message,

i.e. m(ℓ)
v→c and m

(ℓ)
c→v ∈ R. The performance of soft-decision MP decoders is much

better than the performance of the hard-decision MP decoders, but their hardware

implementation is more complex. The sum-product algorithm, the Min-Sum (MS)

algorithm are some examples of algorithms used for soft-decision MP decoders.

1) Belief Propagation decoder: One important kind of message-passing decoding algo-

rithms is the sum-product algorithm [11], also called Belief-Propagation (BP) algorithm.

This algorithm is commonly used in different applications like artificial intelligence,

information theory, etc.

For the BP decoder presented in this section, we consider that the message alphabet

is continuous, i.e. AC = R. Also, we have obtained that the LLR is equal to LLR(yn) =

(1 − 2yn)log((1− ϵ)/ϵ) for the BSC and LLR(yn) = 2yn/σ
2 for the BI-AWGN channel.

The update rule at a VN is given by

m(ℓ+1)
vn→cm

= Ψv

(
LLR(yn),

{
m(ℓ)

c→vn

}
c∈V(vn)\{cm}

)
= LLR(yn)+

∑
c∈V(vn)\{cm}

m(ℓ)
c→vn

.

(2.9)
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And the update rule at a CN is given by

m(ℓ)
cm→vn

= Ψc

({
m(ℓ)

v→cm

}
v∈V(cm)\{vn}

)
= log


1+

∏
v∈V(cm)\{vn}

tanhm
(ℓ)
v→cm

2

1−
∏

v∈V(cm)\{vn}
tanhm

(ℓ)
v→cm

2

 . (2.10)

Considering the function

Φ(x) = log
(

tanhx2

)
= log

(
1+ e−x

1− e−x

)
,∀x > 0,

equation (2.10) can be rewritten as

m(ℓ)
cm→vn

=
 ∏

v∈V(cm)\{vn}
sign

(
m(ℓ)

v→cm

) .Φ
 ∑

v∈V(cm)\{vn}
Φ
(∣∣∣m(ℓ)

v→cm

∣∣∣)
 (2.11)

The APP update at a VN vn of the BP decoder is given by

γ(ℓ)
n = Ψa

(
LLR(yn),

{
m(ℓ)

c→vn

}
c∈V(vn)

)
= LLR(yn)+

∑
c∈V(vn)

m(ℓ)
c→vn

. (2.12)

From the APP, x̂n can be computed as x̂n = (1− sign(γ(ℓ)
n ))/2, for n= 1, ...,N .

The BP decoder is quite tedious to implement because of the function Φ used to

compute check-to-variable messages.

2) Min-Sum decoder: The Min-Sum (MS) decoder [14, 16] is derived from the BP

decoder. The MS decoder reduces the computational complexity at the CNU and is

less sensitive than the BP decoder to message quantization effects.
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In the MS decoder, the update rule at a VN is the same as the BP decoder, equation

(2.9). To obtain the update rule at a CN, the following relation is used

Φ(Φ(a)+Φ(b)) ≤ min(a,b), ∀a > 0 and b > 0. (2.13)

Using this relation, one could replace the CNU of the BP (2.11) by

m(ℓ)
cm→vn

=
 ∏

v∈V(cm)\{vn}
sign

(
m(ℓ)

v→cm

) .( min
v∈V(cm)\{vn}

(∣∣∣m(ℓ)
v→cm

∣∣∣)) . (2.14)

The APP update of the MS decoder is also the same as the BP decoder.

3) Min-Sum-based decoders: There are several Min-Sum-based decoders proposed in the

literature which have been proposed to improve the performance of the MS decoder.

We introduce briefly two of them.

(i) The Normalized-Min-Sum (NMS) decoder [14, 16], in this decoder a factor

γ ∈]0,1[ is used to weight the messages at the output of the CN update. Since the

relation (2.13) leads to a systematic overestimation of the amplitude of the CNU

output message, it makes sense to shrink it with γ ∈]0,1[. The factor γ could be fixed

to a constant value, or vary according to the check-node degree. This factor can be

optimized by Monte-Carlo simulation, or using Density Evolution analysis. For the

NMS decoder, the VNU and APP update are defined in (2.9) and (2.12), respectively,

while the CNU defined in (2.14) is replaced by

m(ℓ)
cm→vn

= γ.

 ∏
v∈V(cm)\{vn}

sign
(
m(ℓ)

v→cm

) .( min
v∈V(cm)\{vn}

(∣∣∣m(ℓ)
v→cm

∣∣∣)) . (2.15)

(ii) The Offset-Min-Sum (OMS) decoder [14, 16], a variant of the MS decoder is

proposed by using an offset value λ> 0 to diminish the message amplitude at the output
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of the CNU. As in the NMS decoder, the offset λ has the objective of compensating

the over-estimation of the MS outputs. The offset λ can be a constant value, or vary

according to the check-node degree, and can be optimized by Monte-Carlo simulation,

or using Density Evolution analysis. The VNU and APP update of the OMS decoder

are the same as the BP decoder, and the CNU defined in (2.14) is replaced by

m(ℓ)
cm→vn

=
 ∏

v∈V(cm)\{vn}
sign

(
m(ℓ)

v→cm

) .max
{(

min
v∈V(cm)\{vn}

(∣∣∣m(ℓ)
v→cm

∣∣∣))−λ,0
}
.

(2.16)

2.3 Quantized Min-Sum-Based Decoders and Den-

sity Evolution

This section is dedicated to the presentation of the main theoretical tool that is used

to analyze the performance of LDPC ensembles and decoders, called Density Evolution

(DE). The concept of DE is to track the evolution of the probability mass function of the

messages during the iterations of LDPC decoders. Although DE has been introduced as

a theoretical approach, it turns out to be a very efficient tool to predict the performance

of LDPC decoders in the waterfall region. This is especially true when the DE can

follow the exact density of the messages (under the independence assumption), which

is the case of quantized decoders, when the message alphabet is small enough.

From now on, and throughout the rest of this work, unless otherwise stated, we

assume that the message is finite, and composed of 2Nq +1 states, with Nq = 2(q−1) −1.

Hence, AC = {−Nq,−(Nq −1), ...,−1,0,+1, ...,+(Nq −1),+Nq}, i.e. the messages are

quantized on q bits of precision.
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2.3.1 Channel Value Quantization

Quantization for the Binary Symmetric Channel

According to Section 2.2.2, for the BSC we have LLR(yn) = (1−2yn)log((1− ϵ)/ϵ) ∈ R,

with yn ∈ Ay = {0,1}. For a given BSC probability ϵ, the decoder input alphabet is

composed of two values in AL = {+|LLR(yn)|,−|LLR(yn)|}. Fig. 2.5 shows the LLR

LLR(yn) as a function of the cross-over probability ϵ, we can see that LLR(yn) is a

real number.

Cross-over probability : ǫ
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LLR for the BSC

L
L
R
(y

n
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log((1− ǫ)/ǫ)
−log((1− ǫ)/ǫ)

Fig. 2.5 LLR(yn) for the BSC.

As we deal with quantized decoders with message alphabet AC , we can consider

without loss of generality that AL ⊆ AC . In the sequel, we denote by C the channel

value which is a positive integer, and consider that |LLR(yn)| is mapped to C. As a

result, the decoder input alphabet becomes AL = {+C,−C}, with C ∈ {+1,+2, ...,Nq}.

In other words yn = 0 is mapped to +C and yn = 1 is mapped to −C. The value of C

can be seen as an extra degree of freedom in the decoder definition. For example, a

MS decoder with C = 1 and a MS decoder with C = 2 are interpreted as two different

decoders. The value of C can be optimized in order to improve the decoder performance.
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Quantization for the Binary-Input Additive White Gaussian Noise channel

According to Section 2.2.2, for the BI-AWGN channel we have LLR(yn) = 2yn/σ
2,

with yn ∈ Ay = R. In the initialization step, variable-to-check messages are initialized

by integer numbers in quantized decoders, hence, LLR(yn) has to be quantized on q

bits of precision considering that AL = AC .

Let us denote the quantizer by Q : R → AL for MS-based decoders, defined as

Q(a) = S (⌊α×a+0.5⌋ ,Nq) , (2.17)

where ⌊.⌋ depicts the floor function and S(b,Nq) is the saturation function clipping

the value of b in the interval [−Nq,Nq], i.e. S(b,Nq) = min(max(b,−Nq),+Nq). The

parameter α is called channel gain factor and is used to enlarge or decrease the

amplitude of LLRs at the decoder input. Similar to C for the BSC, the value of α can

be seen as an extra degree of freedom in the quantized decoder definition that can be

analyzed and optimized for quantized decoders on the BI-AWGN channel.

With those notations, we define the quantized version of the intrinsic LLR that

initialize the MS-based decoders by the vector I = (I1, ..., IN ) ∈ AN
L , with

In = Q(LLR(yn)) ∀n= 1, . . . ,N. (2.18)

Fig. 2.6 shows the distribution of the quantized LLR In using q = 3 bits of precision.

We can note that among 8 levels of a 3 bits representation, only 7 are used.
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Fig. 2.6 LLR(yn) and In of quantized decoders for the BI-AWGN channel and precision
q = 3.

2.3.2 Quantized Min-Sum-Based Decoders

Notations

We keep the notations presented in Section 2.1 and Section 2.2.2, i.e. ℓ ∈ N denotes

the iteration number, m(ℓ)
v→c ∈ AC denotes the message sent from VN v to CN c in

the ℓth iteration, m(ℓ)
c→v ∈ AC denotes the message sent from CN c to VN v in the ℓth

iteration, m(ℓ),U
v→c denotes the unsaturated variable-to-check message in the ℓth iteration.

Also, V(vn) is the set of neighbors of a VN vn in a Tanner graph, and V(cm) is the set

of neighbors of a CN cm in a Tanner graph.

Following the definitions of the VNU and the CNU presented in Section 2.2.2, in

this section we present the discrete update functions for quantized Min-Sum-Based

decoders. Ψv : AL ×A(dv−1)
C → AC denotes the discrete function used for the update

at a VN v of degree dv, and Ψc : A(dc−1)
C → AC denotes the discrete function used for

the update at a CN c of degree dc. Ψv : AL → AC can be written in the 0th iteration.

The functions Ψv and Ψc also satisfy the symmetry conditions presented in [27]. Also,

Ψa : AL × A(dv)
C → Aapp denotes the function used for the APP update at a VN v of

degree dv.

We also consider that γ(ℓ) = (γ(ℓ)
1 ,γ

(ℓ)
2 , ...,γ

(ℓ)
N ) denote the a posteriori probability,

where γ(ℓ)
n ∈ Aapp is associated to the VN vn. For quantized Min-Sum-Based decoders,
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the alphabet of APPs is given by Aapp = {−Nq ×dv −C,...,−1,0,+1, ...,+Nq ×dv +C}

for the BSC, and by Aapp = {−Nq × (dv +1), ...,−1,0,+1, ...,+Nq × (dv +1)} for the BI-

AWGN channel. Also, the likelihoods of the vector I = (I1, ..., IN ) ∈ AN
L are computed

as explained in the previous sections, i.e. In = ±C for the BSC, and In = Q(LLR(yn))

for the BI-AWGN channel.

Update Rules

Two quantized decoders are considered, a quantized Min-Sum decoder and a quantized

Offset Min-Sum decoder with offset value λ ∈ {+1, ...,+(Nq −2)}. The update rule at

a CN is the same for the MS and the OMS decoders, and is given by

m(ℓ)
cm→vn

=
 ∏

v∈V(cm)\{vn}
sign

(
m(ℓ)

v→cm

) .max
{(

min
v∈V(cm)\{vn}

(∣∣∣m(ℓ)
v→cm

∣∣∣))−λ,0
}
.

(2.19)

As the CNU, we can use the same expression for both MS and OMS decoders, since

the OMS decoder with offset value λ= 0 becomes the MS decoder.The VNU expression

is given by

m(ℓ+1)
vn→cm

= Ψv

(
In,

{
m(ℓ)

c→vn

}
c∈V(vn)\{cm}

)
= S

(
m(ℓ+1),U

vn→cm
,Nq

)
. (2.20)

where m(ℓ+1),U
vn→cm = In +∑

c∈V(vn)\{cm}m
(ℓ)
c→vn .

The a posteriori probability update at a VN is given by

γ(ℓ)
n = Ψa

(
In,

{
m(ℓ)

c→vn

}
c∈V(vn)

)
= In +

∑
c∈V(vn)

m(ℓ)
c→vn

. (2.21)

And the decision on the estimated bit x̂n is taken according to the sign of γ(ℓ)
n .
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As we can see, there is not much difference with the decoders presented in Section

2.2.2, except that the messages belong to a discrete alphabet, and then the update

rules require a saturation function S.

2.3.3 Density Evolution for Quantized Min-Sum-Based De-

coders

Density evolution (DE) is a tool which describes the asymptotic behavior of an iterative

MP decoder as a dynamic system, and follows the probability mass function (PMF) of

the messages in the Tanner graph along the iterations. With DE, one can predict if an

ensemble of LDPC codes, parametrized by its degree distribution, decoded with a given

MP decoder, converges to zero error probability in the limit of infinite block length.

This property gives rise to the definition of a density evolution threshold [27, 34, 35].

The DE threshold δ is expressed as a crossover probability (δ = ϵ) for the BSC or as

a standard deviation (δ = σ) for the BI-AWGN channel, with the objective of separating

two regions of decoder convergence. The first region composed of values smaller than δ

corresponds to the region where the DE converges to the zero error probability fixed

point. The second region composed of values greater than δ corresponds to the region

where the DE does not converge. In this later case, the DE converges to a fixed point

which does not represent the zero error probability. Then the DE threshold can be

considered as a point of discontinuity between these two regions.

The value of the DE threshold δ is then an indicator of whether the LDPC codes

ensemble decoded with a MP decoder is good or not. In particular, the DE threshold

can be used to compare different systems and decide which ones are the best in terms

of error correction. The most common utilization of DE in the literature is to compare

different LDPC codes ensembles using the BP decoder [32]. It is used for example to

optimize the degree distributions of irregular LDPC codes, or to design protograph



2.3 Quantized Min-Sum-Based Decoders and Density Evolution 27

LDPC ensembles with good thresholds. Another less common utilization of DE is to fix

the LDPC ensemble (to the same parameters (dv,dc) for example), and compare the

thresholds of different decoders. This can be used for example to optimize the offset

value in OMS decoders, or in the case of this work to analyze and optimize the injected

noise within the noisy MP decoders.

Density Evolution Recursion

In this section, we describe how to implement DE using the discrete update functions

defined in (2.19) and (2.20).

Let Θ(ℓ)(k), k ∈ AC , denote the PMF of check-to-variable messages in the ℓth

iteration. Similarly, let Ω(ℓ)(k), k ∈ AC , denote the PMF of variable-to-check messages

in the ℓth iteration. Also, let Ω(0)(k), k ∈ AL, be the initial PMF of messages sent at

ℓ= 0.

The assumption of infinite block length is useful such that the PMF evolution does

not depend on the iteration number. The infinite block length allows to consider that

the incoming messages to a CNU or a VNU are independent, which is a necessary

condition to ensure that the function Ω(ℓ+1) = function
(
Θ(ℓ)

)
is the same for all

iterations ℓ. In DE, we need also to consider that the all-zero codeword is sent over the

channel.

1) Initialization: DE is initialized with the PMF of the channel as follows.

For the BSC with crossover probability ϵ:

Ω(0)(k) =


1− ϵ, if k = C

ϵ, if k = −C

0, otherwise.

(2.22)
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For the BI-AWGN channel with noise variance σ2:

Ω(0)(k) =


F (k+0.5) if k = −Nq

F (k+0.5)−F ((k−1)+0.5) if −Nq < k <+Nq

1−F ((k−1)+0.5) if k = +Nq

(2.23)

where F (k) is given by [34, 36, 37]:

F (k) = 1√
2πσn

∫ k

−∞
e−(t−µn)2/2σ2

ndt, (2.24)

with σn = (2/σ)×α and µn = (2/σ2)×α.

2) DE update for CNU: To compute the PMF of the output of a check-node of degree dc,

we can decompose the check-node into elementary check-nodes. An elementary check-

node has only three edges, and its output PMF is computed with only two incoming

messages which have the same PMF, because of the independence assumption. The

PMF update for an elementary CN is expressed as

Θ(ℓ)(k) =
∑

(i,j):Ψc(i,j)=k

Ω(ℓ)(i)Ω(ℓ)(j), ∀k ∈ AC (2.25)

This equation is used dc − 2 times in order to compute the PMF of the output of a

check-node of degree dc.

We can note that for a check-node of degree dc > 3, the computational complexity of

the direct PMF update would be (AC)dc−1, while its implementation using elementary

CN updates is (dc −2)(AC)2. This represents a huge complexity reduction, and a large

values of dc is not a limitation to the practical computation of DE.

3) DE update for VNU: We compute the PMF of the output of a variable-node of

degree dv using the following relations.
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For the BSC:

Ω(ℓ+1)(k) =
∑

(−C,i1,...,idv−1):Ψv(−C,i1,...,idv−1)=k

Ω(0)(−C)Θ(ℓ)(i1)...Θ(ℓ)(idv−1)+

∑
(+C,i1,...,idv−1):Ψv(+C,i1,...,idv−1)=k

Ω(0)(+C)Θ(ℓ)(i1)...Θ(ℓ)(idv−1),∀k ∈ AC

(2.26)

For the BI-AWGN channel:

Ω(ℓ+1)(k) =
∑

(t,i1,...,idv−1):Ψv(t,i1,...,idv−1)=k

Ω(0)(t)Θ(ℓ)(i1)...Θ(ℓ)(idv−1),∀k ∈ AC (2.27)

For the VNU, we cannot rely on the decomposition in elementary VNU, because

Ψv cannot be factorized into a sequence of elementary operation. The complexity of

DE implementation grows then rapidly with increasing dv, and becomes a bottleneck

of the DE analysis, especially for irregular LDPC codes. A solution that is usually

proposed in the litterature is then to make use of the Gaussian approximation of DE,

also known as the EXIT charts analysis of MP decoders [32]. We will not address the

Gaussian approximation of DE in this work.

4) DE recursion: By combining equations (2.25) and (2.26) for the BSC, or (2.25) and

(2.27) for the BI-AWGN channel, one gets the so called DE recursion, which expresses

the evolution of the check-to-variable messages PMF from one iteration to another.

This recursion is then computed iteratively to obtain Ω(+∞) or Ω(Lmax) with Lmax

sufficiently large in a practical implementation. It can be shown that when the iteration

number grows to infinity in case of unquantized channel, the PMF should converge

to a dirac mass at +∞ to characterize a zero error probability [38]. For the case of a

quantized MP decoder, the convergence is translated to a dirac mass at the saturation
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value +Nq. In other words, if the PMF converges to

Ω(Lmax)(k) =


0, if k ∈ {−Nq, ...,−1,0,1, ...,+Nq −1},

1, if k = +Nq,
(2.28)

then successful decoding is declared.

2.3.4 Asymptotic Bit Error Probability

The asymptotic bit error probability can be deduced from the PMF of the APPs, which

is obtained from the DE equations. Let Γ(ℓ)(k), k ∈ Aapp, denote the PMF of the APP

at the end of the ℓth iteration. To compute Γ(ℓ) for the BSC we use

Γ(ℓ)(k) =
∑

(−C,i1,...,idv ):Ψa(−C,i1,...,idv )=k

Ω(0)(−C)Θ(ℓ)(i1)...Θ(ℓ)(idv)+

∑
(+C,i1,...,idv ):Ψa(+C,i1,...,idv )=k

Ω(0)(+C)Θ(ℓ)(i1)...Θ(ℓ)(idv),∀k ∈ Aapp

and for the BI-AWGN channel we use

Γ(ℓ)(k) =
∑

(t,i1,...,idv ):Ψa(t,i1,...,idv )=k

Ω(0)(t)Θ(ℓ)(i1)...Θ(ℓ)(idv),∀k ∈ Aapp

Let p(ℓ)
e denote the bit error probability at iteration ℓ. Assuming the transmission

of all-zero codeword, we have

p(ℓ)
e =



1
2Γ(ℓ)(0)+

−1∑
i=−Nq×dv−C

Γ(ℓ)(i), for the BSC,

1
2Γ(ℓ)(0)+

−1∑
i=−Nq×(dv+1)

Γ(ℓ)(i), for the BI-AWGN channel.
(2.29)
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The evolution of p(ℓ)
e with the iterations characterizes whether the MP decoder

converges or diverges in the asymptotic limit of the codeword length. When the number

of iterations ℓ goes to infinity, we obtain the asymptotic error probability p(+∞)
e , and

when p
(+∞)
e = 0, the decoder converges to a zero error probability and successful

decoding is declared. Note that this condition is weaker than condition (2.28) presented

in the previous section, but because of the properties of the functions Ψv and Ψc, both

conditions are equivalent if Lmax = +∞. This work uses the condition on the bit error

probability to define the DE threshold.

2.3.5 Density Evolution threshold

The DE threshold δ is defined as the point of discontinuity between these two regions:

(i) the region of channel noise (ϵ,σ)> δ in which the DE recursion does not converge to

a zero error probability, and (ii) the region of channel noise (ϵ,σ)< δ for which the DE

recursion converges to a zero error probability (see (2.29)) in less than Lmax iterations

of the DE recursion. The most efficient way to compute the DE threshold is to perform

a dichotomic search and stop when the bisection search interval size is lower than some

precision, e.g. prec= 10−10. The procedure is described in the algorithm 1.

A slight modification of the DE estimation procedure is to set a small target bit

error probability η instead of targeting a zero error probability, to declare that the

DE recursion converged. If η is small enough, e.g. η = 10−6, it does not change the

threshold estimation for noiseless decoders. Having η > 0 is however necessary for noisy

decoders, as will be explained in the next Chapter.

In the rest of this work, we consider that the notation δ denotes the DE threshold

for both the BSC or the BI-AWGN channel, and the interpretation will depend on the

context. We describe the main steps to compute the DE threshold for the BSC channel

in the algorithm 1, the DE threshold for the BI-AWGN channel can be easily deduced.
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Algorithm 1 Computation of the DE threshold
1. [Initialization]

Initialize interval limits [δ1, δ2] with δ1 < δ2, such that DE succeeds for δ = δ1
and fails for δ = δ2. Further define δm = (δ1 + δ2)/2.

2. [While |δ2 − δ1|> prec]

(a) [Perform DE]
i. [Initialize DE]

DE is initialized with the equation (2.22) and ϵ= δm.
ii. [Iteration Loop]

A. [Compute PMF]
Apply recursively the sequence of two equations (2.25) and (2.26)
for Lmax iterations.

B. [Break Iteration]
The iteration loop breaks when either the p(ℓ)

e ≤ η or Lmax is reached.
(b) [DE succeeds]

If p(ℓ)
e ≤ η, the DE has converged and we update δ1 = δm, δ2 = δ2 and

δm = (δ1 + δ2)/2.
(c) [DE fails]

If p(Lmax)
e > η, the DE has not converged and we update δ1 = δ1, δ2 = δm

and δm = (δ1 + δ2)/2.
(d) [Tolerance]

Compute the size of the interval |δ2 − δ1| and stops the procedure if it is
smaller than the threshold tolerance (e.g. 10−10).

3. [Threshold]
δ = δm is the DE threshold.
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We show on Fig 2.7 two examples of the use of DE thresholds to compare different

decoding algorithms. We plot the DE threshold of Min-Sum-Based decoders on the

BSC, as a function of the channel value C. As can be seen the optimization of the

channel value yields important gains for all algorithms. We can note also that the use

of an offset is beneficial for the 4-bit MS while it is not for the 3-bit MS.
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(a) Precision q = 3
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(b) Precision q = 4

Fig. 2.7 DE thresholds of MS and OMS decoders using the BSC, as a function of the
channel value C.

This description of the computation of the DE thresholds concludes the presentation

of state of the art tools and main concepts used in the next chapter. Next chapter

introduces a noisy version of the Min-Sum decoder.





Chapter 3

Noise-Against-Noise Min-Sum

Decoders

In recent years, the noise has been used to study the transient hardware noise of a

faulty hardware [39–44]. However, these works do not use the noise to improve the

error correction performance.

Recently, the study of noisy bit-flipping (BF) decoders, the Noisy Gradient Descent

BF (NGDBF) [45] and Probabilistic Gradient Descent BF (PGDBF) [46, 25], have

shown that the noise could help to achieve better performance than noiseless versions

of the same algorithms. The noise in these probabilistic decoders helps the decoder to

escape from a local minima, and therefore improve the error correction performance.

In [47], the authors show that the introduction of randomness in the Belief Propa-

gation (BP) algorithm can improve the performance in the error floor and the waterfall

region. A noisy version of the Min-Sum decoder over the BSC and the BI-AWGN

channel is studied in [35, 48, 40].

In this work, we investigate a modification of MS decoders, with the goal of

improving the error correction performance when the number of precision bits is as

low as 3 or 4, which could be the case when very low implementation complexity is



36 Noise-Against-Noise Min-Sum Decoders

required by the application. Our modification, named Noise-against-Noise Min-Sum

(NAN-MS) decoders, consists in injecting a deliberate random perturbation during the

decoding process, to modify the dynamics of the decoder, and help to correct channel

error events that would not be corrected by a deterministic implementation.

We investigate the asymptotic behavior of our NAN-MS decoders using noisy density

evolution (DE) techniques, as introduced in [43, 35] for the study of fault-tolerance of

BP and Min-Sum decoders. Using the decoding thresholds obtained with the noisy DE,

we propose to study the best localization for the noise injection and to optimize the

noise model parameters. Our study shows that in the case of very low precision, the

NAN-MS can surpass the error correction performance of the MS decoders, for various

regular and irregular LDPC code families. This conclusion is corroborated by finite

length Monte Carlo simulations.

Another aspect investigated in this work is the implementation of the NAN-MS

decoders avoiding the use of Random Generators (RGs). This is because the imple-

mentation of RGs in a hardware realization is very expensive [49, 50]. From the main

conclusions obtained of the NAN-MS decoders, two implementations are proposed that

avoid using RGs maintaining almost the same error correction performance.

The outline of this chapter is as follows. The first section briefly discusses the

noiseless OMS-based decoders. The second section discusses the probabilistic error

model used to inject noise to quantized decoders. In the third section, we present

three methods to inject noise in order to implement NAN-MS decoders. In the fourth

section, we present the noisy density evolution equations of the three methods to inject

noise, and we explain how to optimize the model parameters with density evolution.

In the fifth and sixth sections, we present the results for the optimization of the noise

models for regular and irregular LDPC codes, respectively. The seventh section shown

finite length performance validation of the gains obtained with the proposed NAN-MS
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decoders. In the eighth section, we explain how to implement NAN-MS decoders, and

we define a deterministic decoder called Modified Offset Min-Sum (M-OMS). In the

ninth section, we present another alternative to implement the NAN-MS decoders. We

propose to use the M-OMS decoder and an optimized offset vector. And the tenth

section concludes this chapter.

3.1 Noiseless Offset Min-Sum-Based Decoders

In this section, we will redefine the update rules of the quantized OMS presented

in Chapter 2. The main reason to refine the VNU and CNU of the OMS decoder is

because such decoder is sub-optimal. In order to see why the decoder is sub-optimal,

let us take the example of an OMS decoder quantized on q = 3 bits of precision with

offset value λ= 1, see (2.19) and (2.20). We can note the offset applied in CNUs only

gives us the possibility to use five values ({−2,−1,0,+1,+2}) instead of the seven

values of AC , in other words, the outgoing messages m(ℓ)
cm→vn from the CNU belong to

the set AC\{−Nq = −3,+Nq = +3} = {−2,−1,0,+1,+2}. It can be clearly noted that

all combinations that can be obtained from q = 3 bits are not used (the same analysis

can be done for precision q = 4).

In order to allow c-to-v messages to use all the values of AC , the updates rules of

the quantized OMS decoder need to be changed. Analyzing the update rule of a CN,

the CNU can be written in two equivalent ways:

1) Classical method: The offset is applied after the calculation of the minimum value of

all incoming messages.

∣∣∣m(ℓ)
cm→vn

∣∣∣= max
{

min
v∈V(cm)\{vn}

∣∣∣m(ℓ)
v→cm

∣∣∣−λ,0
}
.
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2) Equivalent method: The offset is applied to each message and then the minimum

value is computed.

∣∣∣m(ℓ)
cm→vn

∣∣∣= min
v∈V(cm)\{vn}

(
max

(∣∣∣m(ℓ)
v→cm

∣∣∣−λ,0
))
.

Therefore, we can move the offset from CNs to VNs and take to integrate the offset

inside the VNU so that v-to-c messages take all values of AC , and thus, c-to-v messages

take also all values of AC . Hence the CNU of OMS-based decoders can be rewritten as

m
(ℓ)
cm→vn = Ψc

({
m

(ℓ)
v→cm

}
v∈V(cm)\{vn}

)
=
 ∏

v∈V(cm)\{vn}
sign

(
m(ℓ)

v→cm

)( min
v∈V(cm)\{vn}

(∣∣∣m(ℓ)
v→cm

∣∣∣)) .
(3.1)

Let us denote by λv the offset value applied at the VNs. Moving the offset from

CNs to VNs, the VNU of OMS-based decoders can be given by

m(ℓ+1)
vn→cm

= Ψv

(
In,

{
m(ℓ)

c→vn

}
c∈V(vn)\{cm}

)
= Λ

(
m(ℓ+1),U

vn→cm

)
, (3.2)

where the function Λ(.) is defined by Λ(a) = sign(a) ×S (max(|a|−λv,0),Nq), and the

unsaturated v-to-c message m(ℓ+1),U
vn→cm is computed as

m(ℓ+1),U
vn→cm

= In +
∑

c∈V(vn)\{cm}
m(ℓ)

c→vn
.

We can observe that the offset λv is subtracted before saturation to allow −Nq and

Nq values in the variable-to-check message. The special case of λv = 0 corresponds to

the MS decoder. The alphabet of the unsaturated v-to-c message m(ℓ+1),U
vn→cm , denoted

AU , is defined as AU = {−Nq ×dv, ...,−1,0,+1, ...,+Nq ×dv}. Moving the offset from

CNs to VNs does not alter the calculation of the APP γ
(ℓ)
n given in (2.21).
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It is worth noting that in the literature the offset is often applied at the CN.

Applying the offset at the VN or at the CN is equivalent only when the saturation

function is not used since mini=1,...,n(|xi|−λ) = mini=1,...,n(|xi|)−λ.

From now on, when we refer to the MS and OMS decoders, we will refer to the

decoders defined by the equations (3.1), (3.2), and (2.21).

3.2 Noise Model for Noise-against-Noise Min-Sum

Decoders

3.2.1 Probabilistic Error Model for Noise-against-Noise Min-

Sum Decoders

In order to define a NAN-MS decoder, we first express the constraints on the noise

models, and then we present a noise model which will be used to perturb noiseless

decoders. Let us denote by ÃC the noisy message alphabet. Noisy messages m̃(ℓ)
v→c ∈ ÃC

and m̃(ℓ)
c→v ∈ ÃC are obtained after corrupting the noiseless messages m(ℓ)

v→c and m(ℓ)
c→v,

respectively, with noise. To simplify the notations in this section, we use the notation

m to denote any c-to-v message m(ℓ)
c→v at iteration ℓ or any v-to-c message m(ℓ)

v→c, and

let sβ be the sign of β.

In order to be able to perform DE analysis of NAN-MS decoders [51], the considered

noise models need to be memoryless, i.e. the noise models are independent on the data

streams processed by the decoders. Also, the considered noise models have to satisfy a

symmetry condition defined as follows

Pr(m̃= β2|m= β1) = Pr(m̃= −β2|m= −β1), ∀(β1,β2) ∈ AC ×ÃC .
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When memoryless and symmetric noise models are used to perturb noiseless

decoders, the noisy-VNU and noisy-CNU are symmetric, allowing to use the all-zero

codeword assumption and the independence assumption necessary in DE [27].

Now, let us denote by Υ : AN → ÃN the symmetric function which transforms a

noiseless message m(ℓ) ∈ AC into a noisy message m̃(ℓ) ∈ ÃC . Unless otherwise stated,

the alphabet of the noise model will be the one of the messages, i.e. AN = ÃN = AC .

The noise model Υ is defined by the conditional probability density function (PDF)

Pr(m̃|m) wich is denoted by pΥ(m,m̃). We propose in this work to analyze a noise

model, defined in the following way:

m̃= Υ(m= β) =



β, with prob. 1−φs, β ∈ {±Nq}

sβ.(|β|−1), with prob. φs, β ∈ {±Nq}

β, with prob. 1−φa, β /∈ {±Nq,±1,0}

sβ.(|β|−1), with prob. φa, β /∈ {±Nq,±1,0}

β, with prob. 1−φ0, β ∈ {±1}

sβ.(|β|−1), with prob. φ0, β ∈ {±1}.

(3.3)

This noise model is parametrized by three different transition probabilities, denoted

φ = (φs,φa,φ0). φs denotes the conditional PDF pΥ(m=Nq, m̃=Nq −1), φa denotes

the conditional PDF pΥ(m = β,m̃ = β− 1), ∀β ∈ {+2, ...,+(Nq − 1)}, and finally φ0

denotes the conditional PDF pΥ(m= +1, m̃= 0).

The rationale behind this model is to implement a probabilistic offset. Let us discuss

the case of φs = φa = φ0. The MS and the OMS with λv = 1 can be obtained as special

cases of the noise model Υ, i.e. φ = (0,0,0) for the MS and φ = (1,1,1) for the OMS.

For other values of the transition probabilities, the offset is only applied from time to

time during the decoding iterations, leading to a probabilistic weighted combination of

a deterministic MS and a deterministic OMS.
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We have also introduced two other probabilities φs and φ0, in order to study the

effect of the noise on the extreme values of the message alphabet. A special case occurs

when m= 1 because it will be changed to m̃= 0 or it will keep its value m̃= 1. Since

the value m̃= 0 propagates no information about the bit value, φ0 has to be analyzed

differently than φa. Additionally, in quantized decoders, all values which are greater

than Nq at the VNU are saturated to Nq, according to (3.2). As a result, many more

configurations of the VNU states lead to an output message m=Nq compared to other

values of m, and φs should also be analyzed differently than φa. As an example, Υ is

depicted in Fig. 3.1 for (q = 3,Nq = 3).

m

−3

−2

−1

0

+1

+2

+3

m̃
−3

−2

−1

0

+1

+2

+3

ϕs

ϕa

ϕ0

1
1− ϕs

1− ϕa

1− ϕ0

m̃ / m −3 −2 −1 0 +1 +2 +3
−3 1−φs 0 0 0 0 0 0
−2 φs 1−φa 0 0 0 0 0
−1 0 φa 1−φ0 0 0 0 0
0 0 0 φ0 1 φ0 0 0

+1 0 0 0 0 1−φ0 φa 0
+2 0 0 0 0 0 1−φa φs

+3 0 0 0 0 0 0 1−φs

Fig. 3.1 LUT representation and the mapping used for the noise model Υ.

The noise model Υ could then be used to determine whether a NAN-MS can

outperform a noiseless decoder.

3.3 Noise-against-Noise Min-Sum Decoders

The first issue that we would like to analyze is the localization of the noise injection

inside the decoder flow. Indeed, an iterative decoder is composed of several sequential

steps, and the results could be different depending on when the noise is injected. We

decided to restrict the possibilities of noise injection to the main steps of the algorithm,

that are the VNU and the CNU steps. In this section, we present different versions
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of the NAN-MS decoders, depending on the choice of the decoding step in which we

inject the noise.

The noise can be injected in three different ways: (i) during the VNU processing,

(ii) after the VNU processing, or (iii) after the CNU processing. We decide in this

work to analyze the NAN-MS decoders with noise injection only in one of these steps,

although one could easily extend the analysis by injecting noise during more than one

step of the decoding iteration.

3.3.1 Noise Outside the Variable Node Update

The first choice is obtained by perturbing the outgoing message from the VNU, after

the processing of (3.2) is completed. The update rule for the corresponding noisy-VNU

is given by

m̃(ℓ+1)
vn→cm

= Υ
S

In +
∑

c∈V(vn)\{cm}
m(ℓ)

c→vn

 (3.4)

Note that the noise perturbs saturated v-to-c messages, which belong to AC , and

the noise model of (3.3) can be used directly. We define this method to inject noise as

Noise Outside the VNU (NOV). Fig. 3.2 depicts the simplest case of VNU, CNU, and

the NOV model.

vn

∑
S Υ cm

m ∈ AC m̃ ∈ ÃC

ÃC ⊆ AC

In

Fig. 3.2 Noise injected after the VNU processing.
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3.3.2 Noise Inside the Variable Node Update

The second method to inject noise is implemented perturbing unsaturated v-to-c

messages, before the use of function S in (3.2). In this case, the update rule for the

noisy-VNU is given by

m̃(ℓ+1)
vn→cm

= S

Υ
In +

∑
c∈V(vn)\{cm}

m(ℓ)
c→vn

 (3.5)

We label this method to inject noise as Noise Inside the VNU (NIV). Since Υ

perturbs unsaturated values, the alphabet of the noise model AN is larger than AC ,

and equal to AN = ÃN = {−(2(q−1) −1)×dv, . . . ,−1,0,+1, . . . ,+(2(q−1) −1)×dv}, i.e.

AN = ÃN = AU . It follows that there is no advantage in differentiating the transition

probabilities φs and φa, as the largest values of AN will be saturated with function S.

Throughout the work, we will then assume that φs = φa for the NIV model.

The example of the NIV model with the simplest case of VNU and CNU is depicted

on Fig. 3.3.

vn

∑
Υ

S cm

mu ∈ AU

AU ⊂ Z

m̃ ∈ ÃC

AC = ÃC

In

Fig. 3.3 Noise injected during the VNU processing.
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3.3.3 Noise Outside the Check Node Update

The third method to inject noise perturbs the outgoing c-to-v messages from the

CNU, after the processing is completed. Note that because during the CNU, the min

operations leave the messages in the same alphabet AC , there is no need to consider

two cases, like for the VNU. The update rule for a noisy-CNU is given by

m̃(ℓ)
cm→vn

= Υ
(
m(ℓ)

cm→vn

)
(3.6)

where m(ℓ)
cm→vn is obtained with (3.1). We label this method as Noise Outside the CNU

(NOC). Fig. 3.4 shows the simplest case of VNU, CNU, and the NOC model.

vn

cm Υ
∑

S
m ∈ AC m̃ ∈ ÃC

ÃC ⊆ AC

In

Fig. 3.4 Noise injected after the CNU processing.

The APP update of NAN-MS decoders depends on the model used to inject noise,

i.e. NIV, NOV, or NOC. For the NOC model, the noisy c-to-v messages are used to

compute the APP, hence, the APP update is given by γ(ℓ)
n = In +∑

c∈V(vn) m̃
(ℓ)
c→vn . In

the case of NIV and NOV model, c-to-v messages are not corrupted, then the APP

update is computed as γ(ℓ)
n = In +∑

c∈V(vn)m
(ℓ)
c→vn .
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3.4 Noisy Density Evolution for NAN-MS de-

coders

We are interested in obtaining and comparing the DE thresholds of NAN-MS decoders

with the DE thresholds of noiseless decoders.

Noisy DE recursions can be deduced from noiseless DE recursions and the noise

model description of (3.3). To deduce the noisy DE equations, let Θ̃(ℓ)(k), k ∈ AC ,

denote the PMF of noisy check-to-variable messages in the ℓth iteration. Similarly,

let Ω̃(ℓ)(k), k ∈ AC , denote the PMF of noisy variable-to-check messages in the ℓth

iteration. We consider that the all-zero codeword is sent over the BI-AWGN channel.

3.4.1 Noisy Density Evolution for the NOV model

Initialization

like the case of noiseless quantized Min-Sum-Based decoders, the initialization of the

noisy DE for NAN-MS decoders is given by equation (2.23).

Noiseless DE update for CNU

The input of a CNU is the PMF of the noisy messages going out of a noisy VNU, i.e.

Ω̃(ℓ). For a CN of degree dc, Θ(ℓ)
dc

is given by

Θ(ℓ)
dc

(k) =
∑

(i1,...,idc−1):Ψc(i1,...,idc−1)=k

Ω̃(ℓ)(i1)...Ω̃(ℓ)(idc−1), ∀k ∈ AC . (3.7)

Considering the different connection degrees of CNs, we have

Θ(ℓ)(k) =
dc,max∑
dc=2

ρdc ×Θ(ℓ)
dc

(k), ∀k ∈ AC (3.8)
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Similar to the noiseless DE, we can decompose a CNU of NAN-MS decoders into

elementary CNUs to compute (3.7).

Noisy DE update for VNU

Similarly to the calculation made at the VN for the noiseless DE, we compute the

PMF of the output of a VN of degree dv, i.e. Ω(ℓ+1)
dv

. The input of noisy DE for the

VNU are PMF computed with (3.8).

Ω(ℓ+1)
dv

(k) =
∑

(t,i1,...,idv−1):Ψv(t,i1,...,idv−1)=k

Ω(0)(t)Θ(ℓ)(i1)...Θ(ℓ)(idv−1), ∀k ∈ AC . (3.9)

Then the noise effect is added at the output of the VNU.

Ω̃(ℓ+1)
dv

(k) =
∑

i∈AC

Ω(ℓ+1)
dv

(i)×pΥ(i,k), ∀k ∈ AC , (3.10)

where pΥ is the transition probability of the VN noise Υ.

Then the effect of the different connection degrees of VNs is considered using the

following relation

Ω̃(ℓ+1)(k) =
dv,max∑
dv=2

λdv × Ω̃(ℓ+1)
dv

(k), ∀k ∈ AC (3.11)

Fig. 3.5 depicts a simple Tanner graph with a single CN, a single VN, and the PMF

of noiseless and noisy messages.

V N CN

ΥΩ(`)
Ω̃(`)

Θ(`)p̃
(`)
e

Fig. 3.5 Concept of Noisy DE calculation for the NOV model
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3.4.2 Noisy Density Evolution for the NIV model

Initialization

The initialization of DE does not change for the NIV model, hence, (2.23) is used.

Noiseless DE update for CNU

Similarly to the calculation made at the CNU for the NOV model, we compute

Θ(ℓ)(k), ∀k ∈ AC with 3.7 and (3.8).

Noisy DE update for VNU

For the NIV model, we know that Υ perturbs unsaturated values. For this reason,

we first compute the PMF of unsaturated v-to-c messages of a VN of degree dv, i.e.

Ω(ℓ+1),U
dv

, with the following equation

Ω(ℓ+1),U
dv

(k) =
∑

(t,i1,...,idv−1):Ψv(t,i1,...,idv−1)=k

Ω(0)(t)Θ(ℓ)(i1)...Θ(ℓ)(idv−1), ∀k ∈ AU .

(3.12)

Second, the noise effect is added to the PMF of unsaturated v-to-c messages to

obtain the corrupted PMF

Ω̃(ℓ+1)
dv

(k) =
∑

i∈AU

Ω(ℓ+1),U
dv

(i)×pΥ(i,k), ∀k ∈ AU , (3.13)

Finally, the saturation effect on the corrupted PMF is given by

Ω̃(ℓ+1)(k) =



−Nq∑
i=−Nq×dv

Ω̃(ℓ+1)(i), k = −Nq

Ω̃(ℓ+1)(k), ∀k ∈ AC\{±Nq}
+Nq×dv∑
i=+Nq

Ω̃(ℓ+1)(i), k = +Nq

(3.14)
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Similar to the NOV model, the effect of the different connection degrees of VNs is

computed with (3.11).

3.4.3 Noisy Density Evolution for the NOC model

Initialization

Similar to the NOV model and the NIV model, the initialization of DE does not change,

therefore, equation (2.23) is used to initialize the noisy DE.

Noisy DE update for CNU

The input of a noisy CNU is the PMF of the noiseless messages going out of a noiseless

VNU, i.e. Ω(ℓ). The following relation is used the PMF of a CN of degree dc

Θ(ℓ)
dc

(k) =
∑

(i1,...,idc−1):Ψc(i1,...,idc−1)=k

Ω(ℓ)(i1)...Ω(ℓ)(idc−1), ∀k ∈ AC . (3.15)

To make into account the effect of noise on the PMF of the output messages of a

CN, the following relation is used

Θ̃(ℓ)
dc

(k) =
∑

i∈AC

Θ(ℓ)
dc

(i)×pΥ(i,k), ∀k ∈ AC , (3.16)

where pΥ is the transition probability of the CN noise (which can be identical to the

VN probability).

To make into account the different connection degrees of CNs, we use

Θ̃(ℓ)(k) =
dc,max∑
dc=2

ρdc × Θ̃(ℓ)
dc

(k), ∀k ∈ AC (3.17)

Similar to the noiseless DE, we can use the decomposition of CNUs into elementary

CNUs.



3.4 Noisy Density Evolution for NAN-MS decoders 49

Noiseless DE update for VNU

Similarly to the calculation made at the VN for the noiseless DE, we compute the

PMF of the output of a VN of degree dv, i.e. Ω(ℓ+1)
dv

. The input of noisy DE for the

VNU are corrupted PMF computed with (3.19).

Ω(ℓ+1)
dv

(k) =
∑

(t,i1,...,idv−1):Ψv(t,i1,...,idv−1)=k

Ω(0)(t)Θ̃(ℓ)(i1)...Θ̃(ℓ)(idv−1), ∀k ∈ AC . (3.18)

Then the effect of the different connection degrees of VNs is considered using the

following relation

Ω(ℓ+1)(k) =
dv,max∑
dv=2

λdv ×Ω(ℓ+1)
dv

(k), ∀k ∈ AC (3.19)

3.4.4 Noisy DE recursion

Once the noisy DE update for VNUs and CNUs are defined, the rest of the DE principle

is unchanged compared to the noiseless DE of Chapter 2.

3.4.5 Bit Error Probability

Let p̃(ℓ)
e denote the bit error probability at iteration ℓ for NAN-MS decoders, p̃(ℓ)

e is

computed from the PMF of all incoming messages to a VN in the ℓth iteration, and it

is defined as

p̃(ℓ)
e = 1

2Γ̃(ℓ)(0)+
−1∑

i=−Nq×(dv+1)
Γ̃(ℓ)(i), (3.20)

where Γ̃(ℓ)(k), k ∈ Aapp, denotes the PMF of the APP at the end of the ℓth iteration

for NAN-MS decoders. For the three models presented in this work, i.e. NIV, NOV,
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and NOC, Γ̃(ℓ) is computed as follows

Γ̃(ℓ)(k) =
dv,max∑
dv=2

λdv × Γ̃(ℓ)
dv

(k), ∀k ∈ Aapp

In the case of the NOV model and NIV model, Γ̃(ℓ)
dv

is given by

Γ̃(ℓ)
dv

=
∑

(t,i1,...,idv ):Ψa(t,i1,...,idv )=k

Ω(0)(t)Θ(ℓ)(i1)...Θ(ℓ)(idv), ∀k ∈ Aapp

whereas in the case of the NOC model, we have

Γ̃(ℓ)
dv

=
∑

(t,i1,...,idv ):Ψa(t,i1,...,idv )=k

Ω(0)(t)Θ̃(ℓ)(i1)...Θ̃(ℓ)(idv), ∀k ∈ Aapp

In the asymptotic limit of the code-length, p̃(ℓ)
e is the bit error probability of a noisy

decoder at the ℓth iteration.

Contrary to the noiseless case p̃(+∞)
e is not necessarily equal to zero when the noisy

DE converges and corrects the channel noise. It depends mainly on the chosen error

model and the computing units to which it is applied.

A lower bound on the asymptotic error probability can be computed. In [35],

the authors have proposed two error models for a quantized noisy MS decoder, and

confirmed that p̃(+∞)
e is bounded away from zero.

3.4.6 Noisy Density Evolution threshold

The noisy-DE threshold is denoted δ̃. It is a function of the code family, parametrized

by its degree distribution (λ(x),ρ(x)), of the class of NAN-MS decoder as introduced in

the previous section, of the number of precision bits q, of the value of the channel gain

factor α, and the values of the transition probabilities of the noise model (φs,φa,φ0).
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Similar to the noiseless case, the dichotomic search is used to compute noisy-DE

thresholds. The DE estimation procedure is performed choosing a target residual error

probability η, and declaring convergence of the noisy DE recursion when p̃
(+∞)
e is less

than or equal to η, e.g. 10−6. The algorithm 2 describes the procedure to compute δ̃

for the NOV model.

Algorithm 2 Computation of the noisy DE threshold
1. [Initialization]

Initialize interval limits [δ̃1, δ̃2] with δ̃1 < δ̃2, such that DE succeeds for δ̃ = δ̃1
and fails for δ̃ = δ̃2. Further define δ̃m = (δ̃1 + δ̃2)/2.

2. [While |δ̃2 − δ̃1|> prec]

(a) [Perform noisy DE]
i. [Initialize noisy DE]

Noisy DE is initialized with the equation (2.23) and σ = δ̃m

ii. [Iteration Loop]
A. [Compute PMF]

Apply recursively the sequence of five equations (3.7), (3.8), (3.9),
(3.10), and (3.11) for Lmax iterations.

B. [Break Iteration]
The iteration loop breaks when either the p(ℓ)

e ≤ η or Lmax is reached.
(b) [Noisy DE succeeds]

If p(ℓ)
e ≤ η, the noisy DE has converged and we update δ̃1 = δ̃m, δ̃2 = δ̃2 and

δ̃m = (δ̃1 + δ̃2)/2.
(c) [Noisy DE fails]

If p(Lmax)
e > η, the noisy DE has not converged and we update δ̃1 = δ̃1,

δ̃2 = δ̃m and δ̃m = (δ̃1 + δ̃2)/2.
(d) [Tolerance]

Compute the size of the interval |δ̃2 − δ̃1| and stops the procedure if it is
smaller than the threshold tolerance (e.g. 10−10).

3. [Threshold]
δ̃ = δ̃m is the noisy-DE threshold.
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We can use δ̃ to jointly optimize the noise model parameters and the channel gain

factor, for a fixed NAN-MS decoder, a fixed precision, and a fixed degree distribution:

(φ∗
s,φ

∗
a,φ

∗
0,α

∗) = arg max
(φs,φa,φ0,α)

{
δ̃ (λ(x),ρ(x), q,α,(φs,φa,φ0))

}
(3.21)

The optimization of the transition probabilities of the model Υ, and the channel

gain factor is made using a greedy algorithm which computes a local maximum DE

threshold. For noiseless decoders, the optimum channel gain factor α∗ is computed

performing a grid-search.

3.5 Asymptotic Analysis of NAN-MS Decoders for

Regular LDPC codes

In this section, we consider the ensemble of (dv,dc)-regular LDPC codes with variable-

node degree dv ∈ {3,4} and code rate R ∈ {1/2,3/4}, and quantized decoders with

q ∈ {3,4,5}.

3.5.1 Optimization of the Channel Gain Factor of Noiseless

Decoders

The DE thresholds of the noiseless MS and OMS decoders are given in Table 3.1. For

the noiseless decoders, the optimization (3.21) is reduced to the optimum channel gain

factor α∗. It can be seen that the OMS is almost always superior to the MS for the

considered cases, which was expected. The only exception is for regular (dv,dc) = (3,6)

and (dv,dc) = (3,12) LDPC codes with low precision messages q = 3, for which the

MS threshold is better than the OMS’s. We can also note that the largest difference is

obtained for dv = 4 LDPC codes and quantization q ∈ {4,5}.



3.5 Asymptotic Analysis of NAN-MS Decoders for Regular LDPC codes 53

Table 3.1 DE thresholds of noiseless MS decoders and noiseless OMS decoders with
offset value λv = 1.

(dv,dc)-regular LDPC code, BI-AWGN channel
(dv = 3,dc = 6) (dv = 3,dc = 12) (dv = 4,dc = 8) (dv = 4,dc = 16)

q λv α∗ δdb α∗ δdb α∗ δdb α∗ δdb

3 bits
0 0.9375 1.7888 0.625 2.7316 0.8125 2.7360 0.6875 3.1550
1 1.0625 2.2039 0.9375 3.1343 1.25 2.3219 0.9375 3.0632

4 bits
0 2.0 1.6437 1.25 2.5646 1.625 2.5389 1.375 2.9441
1 1.875 1.3481 1.5 2.4484 1.75 1.7509 1.5 2.5292

5 bits
0 4.0 1.6132 2.5 2.5268 3.25 2.4948 2.75 2.8991
1 2.625 1.2154 2.25 2.3040 2.0 1.7061 1.875 2.4606

3.5.2 Localization of the Noise Injection in NAN-MS De-

coders

In this section, we analyze and study the localization of the noise in NAN-MS decoders

without performing the optimization of the channel gain factor, i.e. α. We restrict our

analysis for the ensemble of (dv,dc)-regular LDPC codes with dv ∈ {3,4}, R= 1/2, and

precision q ∈ {3,4}, setting α = 0.9 for q = 3-bit NAN-MS decoders and α = 1.5 for

q = 4-bit NAN-MS decoders.

We consider a special case of the noise model Υ doing the transition probabilities

φs and φ0 equal to φa, hence, we have φ = (φa,φa,φa). The MS decoder is obtained

with φ = (0,0,0) for the NOV, NIV, and NOC model, for this reason DE thresholds of

NAN-MS decoders are equal to the DE threshold of the MS decoder as is shown in

Fig. 3.6 and Fig. 3.7. The OMS decoder with offset λv = 1, which is implemented with

equations (3.1) and (3.2), is also implemented using the NIV model with φ = (1,1,1).

With the NIV model the v-to-c and c-to-v messages belong to the message alphabet

AC . The NOC model with φ = (1,1,1) implements the OMS decoder with offset λ= 1

described in Chapter 2 (equations (2.19) and (2.20)), i.e. the offset is applied at the

CNUs obtaining c-to-v messages belong to the message alphabet AC\{−Nq,+Nq}. In
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the case of the NOV model with φ = (1,1,1), the v-to-c messages also belong to the

message alphabet AC\{−Nq,+Nq} because the offset λ= 1 applied at the VNUs. For

this reason DE thresholds obtained with the NOV and NOC models are different to

the DE threshold of the OMS decoder (implemented with (3.1) and (3.2)). The largest

difference of the models is obtained for the case of the regular dv = 3 LDPC codes and

precision q = 3. Fig. 3.6 and Fig. 3.7 show these results.

An important conclusion derived for φ = (φa,φa,φa) is that the best location for

the noise injection is inside the VNU, i.e. the NIV model, and the worst location is

outside the CNU, i.e. the NOC model. The NOV model exhibits noisy DE thresholds

close to noisy DE thresholds of the NIV model, especially for q = 4 bits of precision.
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Fig. 3.6 Noisy DE thresholds δ̃db of NAN-MS decoders as a function of φa for regular
dv = 3 LDPC codes.
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Fig. 3.7 Noisy DE thresholds δ̃db of NAN-MS decoders as a function of φa for regular
dv = 4 LDPC codes.

3.5.3 Joint Optimization of the Noise Model Parameters and

the Channel Gain Factor of NAN-MS Decoders

In Table 3.2, we indicate the noisy DE thresholds obtained with (3.21), and for the

different noise injection locations, described in Section 3.3. Several conclusions can be

derived from this analysis.

1. When comparing the noisy thresholds for the three methods to inject noise (NOV,

NIV, and NOC), one can see that the best location for the noise injection is

inside the variable node update, i.e. the NIV model of (3.5). When the noise is

injected at the VNU, but after the quantization, i.e. the NOV model of (3.4),

the noisy thresholds are also very good, and close to the NIV model. However,

the injection of the noise after the CNU gives always the worse threshold. This

gives us information about the best way to inject noise in NAN-MS decoders.

2. A second conclusion that can be drawn is that the DE thresholds of the NAN-MS

decoders are always better than the DE thresholds for the noiseless decoders.
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When comparing the best thresholds indicated in bold, the gains for NAN-MS

decoders are quite important for the case of low precision q = 3, around 0.22

dB for (dv ∈ {3,4},R = 1/2), 0.13 dB for (dv = 3,R = 3/4), and 0.25 dB for

(dv = 4,R = 3/4), while the gains are smaller for the precision q = 4, 0.06 dB for

(dv = 3,R = 1/2), 0.07 dB for (dv = 3,R = 3/4), 0.01 dB for (dv = 4,R = 1/2),

and 0.02 dB for (dv = 4,R = 3/4). In the case of the largest precision q = 5

the gains are much smaller, 0.01 dB for (dv = 3,R ∈ {1/2,3/4}), 0.00006 dB for

(dv = 4,R = 1/2), and 0.001 dB for (dv = 4,R = 3/4). From this analysis, we

can conclude that the noise injection for NAN-MS decoders is more and more

beneficial as the decoders are implemented in low precision.

3. A third interesting remark comes from the interpretation of the optimum noise

parameters φ∗ that we obtained through the DE analysis. For almost all cases,

we have φ∗
0 = 0, which means that the decoder should never apply an offset to the

message when the amplitude of the message is equal to 1. This makes sense as

transforming m= ±1 into m̃= 0 would erase the bit value and remove the sign

information contained in the message. An exception appears for regular dv = 4

LDPC codes and precision q ∈ {4,5}, as an example, we draw the evolution of

the NAN-MS threshold versus the value of φ0 for (q = 4, dv = 4, R = 1/2) on Fig.

3.8, while keeping the other parameters constant, one can see that for all models,

there is an optimum value of the threshold around φ∗
0 = 0.5, and each of them is

beating the DE threshold of the OMS. The NIV and NOV models are very much

better than the NOC model for all cases.

4. Finally, some of the obtained NAN-MS decoders are not really probabilistic since

the values of the transition probabilities are very close to 0 or 1. This is the case

for (q = 5, dv = 3, R= 1/2), (q = 5, dv = 3, R= 3/4), and (q = 3, dv = 4, R= 1/2).
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All models are close to (φ∗
s,φ

∗
a,φ

∗
0) = (1,1,0), which correspond to a deterministic

OMS decoder for which the offset is not applied when m= ±1.
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Fig. 3.8 Noisy DE thresholds δ̃db of NAN-MS decoders as a function of φ0 for regular
dv = 4 LDPC codes

3.6 Asymptotic Analysis of NAN-MS Decoders for

Irregular LDPC codes

In the previous section we have seen that the optimum noise parameters (φ∗
s,φ

∗
a,φ

∗
0)

and the respective gains of NAN-MS decoders depend on the VN degree. For LDPC

codes with irregular VN distribution, we propose therefore to extend our approach by

considering a noise injection model Υ with different values of the transition probabilities

for the different connection degrees.

We denote by Υ(2) : φ(2) =
(
φ

(2)
s ,φ

(2)
a ,φ

(2)
0

)
the model which injects noise at VNs

of degree dv = 2. Both the NIV and NOV methods can be considered. Similarly, let

Υ(3) : φ(3) =
(
φ

(3)
s ,φ

(3)
a ,φ

(3)
0

)
denote the noise model for the VNs of degree dv = 3.
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Table 3.2 Noisy DE thresholds of NAN-MS decoders

NAN-MS decoders, (dv,dc)-regular LDPC code, BI-AWGN channel

(dv,dc) q Method α∗ φ∗
s φ∗

a φ∗
0 δ̃db

(3,6)

3 bits
Υ-NIV 0.82 0.475 0.475 0.000 1.5711
Υ-NOV 0.77 0.338 0.313 0.000 1.5995
Υ-NOC 0.77 0.850 0.363 0.000 1.6306

4 bits
Υ-NIV 1.72 0.887 0.887 0.000 1.2877
Υ-NOV 1.7 0.000 0.912 0.000 1.2917
Υ-NOC 1.75 0.000 1.000 0.000 1.2931

5 bits
Υ-NIV 2.49 1.000 1.000 0.000 1.2045
Υ-NOV 2.49 1.000 1.000 0.000 1.2045
Υ-NOC 2.49 1.000 1.000 0.000 1.2045

(3,12)

3 bits
Υ-NIV 0.60 0.413 0.413 0.000 2.5989
Υ-NOV 0.60 0.900 0.338 0.000 2.5989
Υ-NOC 0.61 1.000 0.425 0.000 2.6267

4 bits
Υ-NIV 1.26 0.750 0.750 0.000 2.3777
Υ-NOV 1.25 0.800 0.737 0.000 2.3777
Υ-NOC 1.33 1.000 0.962 0.000 2.3873

5 bits
Υ-NIV 2.15 1.000 1.000 0.000 2.2938
Υ-NOV 2.15 0.800 1.000 0.000 2.2938
Υ-NOC 2.15 1.000 1.000 0.000 2.2938

(4,8)

3 bits
Υ-NIV 0.93 0.950 0.950 0.000 2.1056
Υ-NOV 0.92 1.000 0.912 0.000 2.1105
Υ-NOC 0.92 1.000 1.000 0.000 2.1119

4 bits
Υ-NIV 1.67 1.000 1.000 0.463 1.7411
Υ-NOV 1.67 1.000 1.000 0.450 1.7411
Υ-NOC 1.69 1.000 1.000 0.475 1.7488

5 bits
Υ-NIV 1.95 1.000 1.000 0.825 1.7055
Υ-NOV 1.95 0.800 1.000 0.825 1.7055
Υ-NOC 1.98 1.000 1.000 1.000 1.7060

(4,16)

3 bits
Υ-NIV 0.72 0.900 0.900 0.000 2.8121
Υ-NOV 0.72 0.700 0.887 0.000 2.8121
Υ-NOC 0.71 1.000 1.000 0.000 2.8132

4 bits
Υ-NIV 1.36 1.000 1.000 0.213 2.5077
Υ-NOV 1.36 0.700 1.000 0.213 2.5077
Υ-NOC 1.36 1.000 1.000 0.000 2.5101

5 bits
Υ-NIV 1.81 1.000 1.000 0.662 2.4594
Υ-NOV 1.81 0.500 1.000 0.662 2.4594
Υ-NOC 1.86 1.000 1.000 1.000 2.4606
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Finally, we decide to use the same model for all other VNs with degrees dv ≥ 4, denoted

Υ(≥4) : φ(≥4) =
(
φ

(≥4)
s ,φ

(≥4)
a ,φ

(≥4)
0

)
.

The optimization of the transition probabilities for an irregular LDPC code with

distribution (λ(x),ρ(x)) is still performed by the maximization of the noisy DE thresh-

olds:

(
φ(2)∗,φ(3)∗,φ(≥4)∗,α∗

)
= arg max

(φ(2),φ(3),φ(≥4),α)

{
δ̃
(
λ(x),ρ(x), q,α,φ(2),φ(3),φ(≥4)

)}
(3.22)

For our analysis, we consider the ensemble of irregular LDPC codes which follow

the distribution of the rate R ∈ {1/2,3/4}, length N = 2304 code described in the

WIMAX standard [7]. The degree distribution for the rate 1/2 code is λ(x) = (22/76)x+

(24/76)x2 +(30/76)x5 and ρ(x) = (48/76)x5 +(28/76)x6, while for the rate 3/4 B code

is λ(x) = (10/88)x+ (36/88)x2 + (42/88)x5 and ρ(x) = (28/88)x13 + (60/88)x14. For

these distributions, we indicate in Table 3.3 the DE thresholds of the noiseless MS

decoder and the noiseless OMS decoder.

Table 3.3 DE thresholds of noiseless MS decoders and noiseless OMS decoders with
offset value λv = 1 for the WIMAX degree distribution

Irregular LDPC code, BI-AWGN channel
R = 1/2 R = 3/4

q λv α∗ δdb α∗ δdb

3 bits
0 0.44 1.8310 0.66 2.8236
1 0.40 5.2283 0.50 3.4406

4 bits
0 1.07 1.3941 1.29 2.6150
1 0.80 2.8140 1.42 2.2416

5 bits
0 2.30 1.3013 2.50 2.5654
1 1.55 1.1828 1.97 2.1637

Noisy DE thresholds are summarized in Tables 3.4 and 3.5, where we indicate the

optimum values of α and of the noise parameters for the different degrees. Those results

confirm the conclusions of the regular LDPC codes analysis: (i) the NIV model is again
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the best one, (ii) the optimum value for φ∗
0 is 0 or it is close to 0 for dv = 3 VNs and

(iii) some of the optimized models are not probabilistic since the optimized values of

the transition probabilities are very close to 0 or 1.

Table 3.4 DE thresholds of NAN-MS decoders and the rate 1/2 code.

NAN-MS decoders, Irregular LDPC code, BI-AWGN channel

q Method α∗ dv φ∗
s φ∗

a φ∗
0 δ̃db

3 bits

Υ-NIV
2 0.000 0.000 0.000

0.42 3 0.350 0.350 0.000 1.6236
≥ 4 1.000 1.000 0.225

Υ-NOV
2 0.000 0.013 0.000

0.42 3 0.000 0.063 0.000 1.6302
≥ 4 0.000 1.000 0.300

Υ-NOC 0.44 - 0.000 0.000 0.000 1.8310

4 bits

Υ-NIV
2 0.000 0.000 0.000

1.0 3 1.000 1.000 0.000 0.9995
≥ 4 1.000 1.000 0.000

Υ-NOV
2 0.000 0.000 0.000

0.98 3 0.000 0.988 0.000 1.0077
≥ 4 0.000 1.000 0.000

Υ-NOC 0.83 - 0.000 0.375 0.000 1.2178

5 bits

Υ-NIV
2 0.600 0.600 0.000

1.84 3 1.000 1.000 0.000 0.8233
≥ 4 1.000 1.000 0.000

Υ-NOV
2 0.000 0.613 0.000

1.85 3 0.000 1.000 0.000 0.8233
≥ 4 0.000 1.000 0.000

Υ-NOC 1.66 - 0.000 0.800 0.000 0.8679

Another conclusion can be driven from these tables. From the DE analysis we can

conclude that the noise should not be injected on degree dv = 2 VNs for the case of

low precision q = 3, since we obtain always (φ(2)
s ,φ

(2)
a ,φ

(2)
0 ) ≃ (0,0,0). While in the

case of the two considered precision q = 4 and q = 5, the noise should be injected on
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Table 3.5 DE thresholds of NAN-MS decoders and the rate 3/4 B code.

NAN-MS decoders, Irregular LDPC code, BI-AWGN channel

q Method α∗ dv φ∗
s φ∗

a φ∗
0 δ̃db

3 bits

Υ-NIV
2 0.038 0.038 0.000

0.67 3 0.713 0.713 0.000 2.5323
≥ 4 0.925 0.925 0.025

Υ-NOV
2 0.025 0.000 0.000

0.63 3 0.000 0.025 0.000 2.5930
≥ 4 0.013 1.000 0.238

Υ-NOC 0.60 - 0.025 0.788 0.000 2.6172

4 bits

Υ-NIV
2 1.000 1.000 0.838

1.39 3 1.000 1.000 0.000 2.2138
≥ 4 1.000 1.000 0.000

Υ-NOV
2 0.000 0.513 0.000

1.23 3 0.000 1.000 0.138 2.2284
≥ 4 0.838 1.000 0.000

Υ-NOC 1.16 - 1.000 1.000 0.000 2.2341

5 bits

Υ-NIV
2 1.000 1.000 0.000

1.89 3 1.000 1.000 0.288 2.1611
≥ 4 1.000 1.000 1.000

Υ-NOV
2 0.400 1.000 0.000

1.89 3 0.500 1.000 0.288 2.1611
≥ 4 0.500 1.000 1.000

Υ-NOC 1.97 - 1.000 1.000 1.000 2.1637
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degree dv = 2 VNs for almost all cases. These observations, combined with the fact that

the optimum values for φ(≥4)∗ are almost always 0 or 1, lead to the conclusion that

injecting noise in NAN-MS decoders for irregular LDPC codes is especially important

for the degree dv = 3 VNs (inject the noise on degree dv = 2 VNs will be depend on

the degree distribution and the precision used)

Finally, the NAN-MS decoders obtain higher gains using irregular codes. The gain

of the rate 1/2 code is 0.2074 dB for the lower precision q = 3, 0.3946 dB for the

precision q = 4, and 0.3595 dB for the largest precision q = 5. In the case of the rate

3/4 B code, the gains for the three considered precision q = 3, q = 4 and q = 5 are

smaller than the rate 1/2 code, a gain of 0.2913 dB for q = 3, a gain of 0.0278 dB for

q = 4, and a gain of 0.0026 dB for q = 5.

3.7 Finite Length Performance of NAN-MS De-

coders

In this chapter we present the frame error rate (FER) performance for noiseless

and NAN-MS decoders. In order to corroborate the asymptotic results obtained in

the previous chapter, we analyze the quantized decoder performance over the BI-

AWGN channel. For this purpose, we designed a (3,6)-regular QC-LDPC code and

a (4,8)-regular QC-LDPC code (respectively a (3,12)-regular QC-LDPC code and

a (4,16)-regular QC-LDPC code) with length N = 1296 and circulant size L = 54

(respectively L= 27), using the PEG algorithm from [52]. The considered decoders are

the ones with the best DE thresholds, indicated in bold in Tables 3.1 and 3.2. The

OMS decoder performance for q = 5 and λv = 1 is considered as benchmark.

Fig. 3.9 shows the FER performance comparisons between the noiseless MS, noiseless

OMS, and best NAN-MS decoders, for the three considered precisions q = 3, q = 4,
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and q = 5, and for the regular dv = 3 QC-LDPC code. A maximum of 100 iterations

has been set for all decoders. Fig. 3.10 draws the same curves for the regular dv = 4

QC-LDPC code. A first conclusion is that the finite length FER performances are in

accordance with the gains predicted by the DE analysis.

For low precision messages q= 3 and for regular dv = 3 LDPC codes, the MS decoder

is better than the OMS decoder. This result is surprising, but it can be justified by

the fact that the variable degree is small (dv = 3), while an offset of λv = 1 represents

a significant amount of the total available dynamic when 3 bits is used (Nq = 3). In

those conditions, the OMS does not help extrinsic messages to be more reliable at each

new decoding iteration.
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Fig. 3.9 FER performance of NAN-MS decoders for the dv = 3 regular LDPC codes.

We observe in the waterfall (i.e. at FER = 10−2) an SNR gain for the NAN-MS

decoders which corresponds to the threshold differences: around 0.2 dB for (q = 3, dv =

3, R= 1/2), and 0.05 dB for (q= 4, dv = 3, R= 1/2). The others SNR gains are provided

in Table 3.6.

Additional simulation results are provided in Fig. 3.11 which shows the FER

performance comparisons between NAN-MS decoders implemented with the NIV,
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Table 3.6 DE gains and SNR gains of NAN-MS decoders.

(dv,dc)-regular LDPC code, BI-AWGN channel
(dv = 3,dc = 6) (dv = 3,dc = 12) (dv = 4,dc = 8) (dv = 4,dc = 16)

q DE gain SNR gain DE gain SNR gain DE gain SNR gain DE gain SNR gain
3 bits 0.2177 0.2 0.1327 0.1 0.2163 0.2 0.2511 0.25
4 bits 0.0604 0.05 0.0707 0.08 0.0098 0.000 0.0215 0.02
5 bits 0.0109 0.000 0.0102 0.000 0.0006 0.000 0.0012 0.000

NOV, and NOC models. For the regular dv = 3 QC-LDPC code and precision q = 3, it

is evident that the NIV model clearly outperforms the NOV and NOC models (which

exhibit poor performance) in the error-floor region. In the case of the regular dv = 4

QC-LDPC code and q = 3, the NIV model achieves slightly better FER performance

in the error-floor region compared to the NOV and NOC models. For the two regular

QC-LDPC codes and q = 4 bits of precision, the three models exhibit almost the same

FER performance.
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Fig. 3.10 FER performance of NAN-MS decoders for the dv = 4 regular LDPC codes.

Simulation results for the WIMAX rate 1/2 LDPC code and the WIMAX rate 3/4 B

LDPC code are provided on Fig. 3.12. Again, the SNR gains in the waterfall correspond

to what was predicted with the DE analysis, with a 0.4 dB gain for (q = 4,R = 1/2), a

0.2 dB gain for (q = 3,R = 1/2), a 0.32 dB gain for (q = 4,R = 3/4), and a 0.24 dB
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Fig. 3.11 FER performance of NAN-MS decoders implemented with the NIV, NOV,
and NOC model.

gain for (q = 3,R = 3/4). For the largest precision q = 5, the gain for R = 1/2, which is

0.08 dB, is much smaller than was predicted with the DE analysis, while for R = 3/4

the same performance is achieved.

The NIV model is the best model because after the noise injection, the noisy

v-to-c messages and c-to-v messages always belong to the alphabet AC . In the case

of the NOC model, the noise perturbs the saturated c-to-v messages obtaining in

some iterations the noisy c-to-v messages belonging to the alphabet AC\{−Nq,+Nq},

and in other iterations the noisy messages belonging to the alphabet AC . Similarly,

in the NOV model, the noise perturbs the saturated v-to-c messages obtaining in

some iterations the noisy v-to-c messages belonging to AC\{−Nq,+Nq} and in other

iterations the noisy messages belonging to AC . For the NOC and NOV models, not

using the saturation values in some decoding iterations causes the degradation of the

decoder performance, especially for low precision messages.

As a last remark, we can also see that the injection of errors with the proposed

models Υ do not seem to have an influence in the error floor of the decoders, since all
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the curves have similar slopes in the low FER region. This means that the proposed

models do not correct the dominant error events due to trapping sets.
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Fig. 3.12 FER performance of NAN-MS decoders for the WIMAX LDPC code.

3.8 Implementation of NAN-MS Decoders as De-

terministic Decoders

This section is dedicated to a simple implementation of NAN-MS decoders as determin-

istic decoders. From the analysis made in Section 3.5 and 3.6, an important conclusion

obtained was that the offset should not be applied to messages whose magnitude is 1

(m= ±1), i.e. (φ∗
s,φ

∗
a,φ

∗
0) should be equal to (1,1,0), but for some cases analyzed φ∗

0

is not close or equal to 0. In order to make a trade-off between FER performance and

cost of implementation, we set (φ∗
s,φ

∗
a,φ

∗
0) = (1,1,0) for all cases. Considering the NIV

model with (φ∗
s,φ

∗
a,φ

∗
0) = (1,1,0), we define the Modified Offset Min-Sum (M-OMS)

decoder. For this decoder, the update rule at a CNU is given by equation (3.1), and
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the update rule at a VNU is written as

m(ℓ+1)
vn→cm

= Ψv

(
In,

{
m(ℓ)

c→vn

}
c∈V(vn)\{cm}

)
= Λ

(
m(ℓ+1),U

vn→cm

)
, (3.23)

where the function Λ(.) is redefined by

Λ(a) =


S(a+1,Nq), if a <−1

a, if a ∈ {−1,0,+1}

S(a−1,Nq), if a >+1

We can note that the M-OMS decoders have similar cost of implementation than

the OMS decoders because both use the same function Ψc to perform the update rule

at CNUs, and also because the update rule at VNUs is almost the same except for the

case where the unsaturated v-to-c message is −1, 0, or +1, i.e. m(ℓ+1),U
vn→cm ∈ {−1,0,+1}.

3.8.1 Density Evolution thresholds

In this section, we present DE thresholds for the M-OMS decoders considering the four

(dv,dc)-regular QC-LDPC codes presented in Section 3.5, and the two WIMAX LDPC

codes studied in Section 3.6.

Density Evolution Thresholds for Regular LDPC Codes

The optimization (3.21) is used to find the optimum channel gain factor α∗ for regular

LDPC codes. In Table 3.7, we show the DE thresholds of M-OMS decoders. When

comparing the best thresholds indicated in bold in Table 3.1 and Table 3.7, we can

observe: (i) the DE thresholds of the M-OMS decoders are always better than the

DE thresholds of the MS and OMS decoders for dv = 3, (ii) for almost all cases

when q ∈ {3,4} and dv = 4, the M-OMS decoders give us always better DE thresholds
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than OMS decoders, an exception appears for (q = 4,dv = 4,R = 1/2), and (iii) for

(q = 5,dv = 4) the DE thresholds of the OMS decoders are always better than the

DE thresholds of the M-OMS decoders. From this analysis, we can conclude that the

M-OMS decoders are better decoders than the MS and OMS in low precision q ∈ {3,4}.

On the other hand, when comparing the best thresholds indicated in bold in Table

3.2 and Table 3.7, we observe that the NAN-MS decoders (using the NIV model) give

us always better DE thresholds than M-OMS decoders, hence, one can conclude that

NAN-MS decoders are better decoders than the M-OMS decoders especially for dv = 3

and precision q = 3.

Table 3.7 DE thresholds of M-OMS decoders.

(dv,dc)-regular LDPC code, BI-AWGN channel
(dv = 3,dc = 6) (dv = 3,dc = 12) (dv = 4,dc = 8) (dv = 4,dc = 16)

q α∗ δdb α∗ δdb α∗ δdb α∗ δdb

3 bits 0.78 1.7012 0.53 2.6715 0.93 2.1061 0.71 2.8131
4 bits 1.78 1.2906 1.35 2.3869 1.64 1.7514 1.35 2.5101
5 bits 2.49 1.2045 2.15 2.2938 1.88 1.7213 1.77 2.4657

Density Evolution Thresholds for Irregular LDPC Codes

In the case of WIMAX LDPC codes and considering the NIV model, we set φ(≥4) =

φ(3) = (1,1,0), and we decide to analyze two cases for φ(2): (i) the first one setting

φ(2) = (0,0,0) and (ii) the second one setting φ(2) = (1,1,0).

The optimum channel gain factor α∗ is computed using the optimization (3.22).

Table 3.8 and Table 3.9 summarize the DE thresholds of the M-OMS decoders. From

the results obtained, we can note: (i) φ(2) has to be equal to (0,0,0) for R = 1/2, (ii)

for R = 3/4, φ(2) has to be equal to (0,0,0) for low precision q = 3, while for R = 3/4

and precision q ∈ {4,5}, φ(2) has to be equal to (1,1,0), and (iii) the DE thresholds of

the M-OMS decoders are always better than the DE thresholds of the MS and OMS
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decoders. Comparing the best thresholds indicated in bold showed in Tables 3.4, 3.5,

3.8, and 3.9, one can note that NAN-MS decoders achieve slightly better DE thresholds

than M-OMS decoders.

We can conclude that in low precision q = 3, φ(2) has to be equal to (0,0,0) in

order to implement better decoders than MS and OMS decoders. Hence, the function

Λ(.) of (3.23) can be redefined by

Λ(a) =



S(a,Nq), if dv = 2

S(a+1,Nq), if dv ≥ 3,and if a <−1

a, if dv ≥ 3,and if a ∈ {−1,0,+1}

S(a−1,Nq), if dv ≥ 3,and if a >+1

Table 3.8 DE thresholds of M-OMS decoders and the rate 1/2 code.

Irregular LDPC code, BI-AWGN channel

q α∗ φ
(2)
s φ

(2)
a φ

(2)
0 δ̃db

3 bits 0.4100 0.0 0.0 0.0 1.6688
0.3600 1.0 1.0 0.0 4.4922

4 bits 1.0000 0.0 0.0 0.0 0.9995
0.7800 1.0 1.0 0.0 2.5934

5 bits 1.8400 0.0 0.0 0.0 0.8767
1.5300 1.0 1.0 0.0 1.1266

3.8.2 Finite Length Performance

In this section, we present the FER performance of noiseless MS and OMS, NAN-MS,

and M-OMS decoders. In order to corroborate the asymptotic results obtained in the

previous section, we analyze the quantized decoder performance over the BI-AWGN

channel. For this purpose, we use the four (dv,dc)-regular QC-LDPC codes presented
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Table 3.9 DE thresholds of M-OMS decoders and the rate 3/4 B code.

Irregular LDPC code, BI-AWGN channel

q α∗ φ
(2)
s φ

(2)
a φ

(2)
0 δ̃db

3 bits 0.6600 0.0 0.0 0.0 2.5324
0.4500 1.0 1.0 0.0 2.7331

4 bits 1.3100 0.0 0.0 0.0 2.2338
1.3800 1.0 1.0 0.0 2.2148

5 bits 1.7200 0.0 0.0 0.0 2.1937
1.8600 1.0 1.0 0.0 2.1647

in Chapter 3.5. The considered decoders are the ones with the best DE thresholds,

indicated in bold in Tables 3.1, 3.2, and 3.7. The noiseless 5-bit OMS decoder with

offset λv = 1 is also shown as benchmark.

Fig. 3.13 and Fig. 3.14 show the FER performance comparisons between the 5-bit

OMS decoder, the noiseless quantized decoders, the NAN-MS decoders which use the

NIV model, and the M-OMS decoders, as a function of Eb/N0 over the BI-AWGN

channel.

FER performance results for the regular dv = 3 QC-LPDC codes are drawn in Fig.

3.13. We observe that the 3-bit M-OMS decoders have better FER performance than

3-bit OMS decoders, but 3-bit NAN-MS decoders achieve better FER performance than

3-bit M-OMS decoders, as it was predicted by the DE analysis. In the case of q = 4,

the FER performance of NAN-MS decoders achieve slightly better FER performance

results than the M-OMS decoders, as predicted by the DE threshold analysis.

Simulation results for the regular dv = 4 QC-LPDC codes are provided in Fig.

3.14a. For the two considered precisions q = 3 and q = 4, we can see that both the

M-OMS decoders and NAN-MS decoders have almost the same performance in the

waterfall region and in the error-floor region. We can also note that the 4-bit NAN-MS
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decoders and the 4-bit M-OMS decoders achieve slightly better FER performance

results than the 4-bit noiseless OMS decoders. It is also evident that both the 3-bit

NAN-MS decoders and the 3-bit M-OMS decoders are capable of outperforming the

3-bit noiseless OMS decoders in both the waterfall region (as was predicted by the DE

analysis) and the error-floor region.
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Fig. 3.13 FER performance of M-OMS and NAN-MS decoders for the regular dv = 3
regular LDPC codes.
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Fig. 3.14 FER performance of M-OMS and NAN-MS decoders for the regular dv = 3
regular LDPC codes.
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3.9 Implementation of NAN-MS Decoders Using

an Offset Vector

This section presents an alternative way to implement NAN-MS decoders using an

offset vector. From the analysis made in Section 3.5 and 3.6, the noise is injected into

the NAN-MS decoders at each decoding iteration. We can relax the way of injecting

noise to the decoder considering the transition probabilities equal to 0 or 1 at each

decoding iteration, in other words, an offset equal to 0 or 1 can be applied to the

decoder at each decoding iteration.

Let λv denote the offset vector defined as λv =
(
λ

(1)
v ,λ

(2)
v , . . . ,λ

(Lmax)
v

)
, where

λ
(ℓ)
v ∈ {0,1}, and Lmax is the maximum number of iterations. Let also denote OMS-λv

the Offset Min-Sum decoder applying the offset value λ(ℓ)
v at iteration ℓ, the update

rule at a CNU is given by equation (3.1), and the update rule at a VNU is written as

m(ℓ+1)
vn→cm

= Ψv

(
In,

{
m(ℓ)

c→vn

}
c∈V(vn)\{cm}

)
= Λ

(
m(ℓ+1),U

vn→cm

)
, (3.24)

where the function Λ(.) is redefined by

Λ(a) =


S(a+λ

(ℓ)
v ,Nq), if a <−1

a, if a ∈ {−1,0,+1}

S(a−λ
(ℓ)
v ,Nq), if a >+1

We can implement 2Lmax different decoders because λ(ℓ)
v can only be 0 or 1. We

obtain the M-OMS decoder of Section 3.8 setting λv = (1,1, . . . ,1). Also, the special

case of λv = (0,0, . . . ,0) corresponds to the classical MS decoder.

The OMS-λv decoders have similar cost of implementation than the M-OMS

decoders because both use the same function Ψc to perform the update rule at CNUs,
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and also because the update rule at VNUs is almost the same, except for the offset

vector. In order to save the offset vector λv, we need a very small memory, specifically

a memory that stores Lmax bits of information.

3.9.1 Density Evolution thresholds

The OMS-λv decoder is analyzed with DE relaxing one of the DE constraints, specif-

ically, the number of iterations used to compute the DE threshold will change from

a very large value (Lmax = 1000) to a small value (Lmax = 20). In other words, the

behavior of the OMS-λv decoder is analyzed using only 20 iterations.

We consider the ensemble of (dv,dc)-regular LDPC codes with dv ∈ {3,4} and

R= 1/2 presented in Section 3.5, and the two WIMAX LDPC codes studied in Section

3.6.

Density Evolution Thresholds for Regular LDPC Codes

The DE equations of the NIV model are used to compute the DE thresholds considering

λ
(ℓ)
v = φs = φa and φ0 = 0. We use the DE threshold δ to jointly optimize the offset

vector for a fixed number of iterations, and a fixed precision:

(
α∗,λ

(1)∗
v ,λ

(2)∗
v , ...,λ

(Lmax)∗
v

)
= arg max(

α,λ
(1)
v ,λ

(2)
v ,...,λ

(Lmax)
v

){δ̃(dv,dc, q,α,
(
λ

(1)
v ,λ

(2)
v , ...,λ

(Lmax)
v

))}
.

(3.25)

Table 3.10 shows the DE thresholds and the optimum channel gain factor α∗ for the

MS and the OMS using the optimization (3.21) with Lmax = 20. The DE thresholds of

the M-OMS decoders are shown in Table 3.11 using the optimization (3.25).

In Fig. 3.15 and Fig. 3.16, we show the DE thresholds of 220 OMS-λv decoders for

the regular LDPC codes with dv = 3 and dv = 4. The results are obtained considering

a fixed channel gain factor α, and varying the offset vector from (λ(1)
v = 0, ...,λ(20)

v = 0)
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Table 3.10 DE thresholds of noiseless MS decoders and noiseless OMS decoders with
offset value λv = 1 using Lmax = 20.

(dv,dc)-regular LDPC code, BI-AWGN channel
(dv,dc) q λv α∗ δ δdb

(3,6)
3 bits

0 0.75 0.7870784477 2.0796
1 1.00 0.7314404398 2.7164

4 bits
0 1.51 0.8028499898 1.9073
1 1.76 0.8174758297 1.7505

(4,8)
3 bits

0 0.75 0.7277239691 2.7607
1 1.15 0.7433918740 2.5756

4 bits
0 1.49 0.7449151475 2.5579
1 1.70 0.7969916843 1.9709

to (λ(1)
v = 1, ...,λ(20)

v = 1). We denote the first decoder if (λ(20)
v = 0, ...,λ(2)

v = 0,λ(1)
v = 1),

the second decoder if (λ(20)
v = 0, ...,λ(3)

v = 0,λ(2)
v = 1,λ(1)

v = 0), and so on. From the

results, we can see that there are many offset vectors that help the OMS-λv decoder

beat the MS and OMS. In Table 3.12, we show the best DE thresholds of OMS-λv

decoders, we also show the DE gains obtained comparing the best thresholds indicated

in bold in Table 3.10 and the thresholds of OMS-λv decoders.

When comparing the best thresholds indicated in bold in Table 3.10 and Table 3.12,

we can observe: (i) the DE thresholds of the OMS-λv decoders are always better than

the DE thresholds of the MS and OMS decoders, (ii) the offset equal to 1 is applied

mainly during the first iterations, while in the rest of iterations the offset equal to 1

is applied from time to time, (iii) for the regular dv = 3 LDPC code, about 50% of

the applied offset is equal to 1 for both precisions q = 3 and q = 4, (iv) for the regular

dv = 4 LDPC code, about 25% of the applied offset is equal to 1 precisions q = 3, while

for the largest precision q = 4, almost always the offset equal to 1 is applied, and (v)

the DE gains for low precision is quite important, the largest gain obtained is around

0.2773 dB. While the DE gains are smaller for the largest precision q = 4.
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From this analysis, we can conclude that the OMS-λv decoders are better decoders

than the MS and OMS when the same precision is used.

On the other hand, when comparing the best thresholds indicated in bold in Table

3.11 and Table 3.12, we observe that the OMS-λv decoders give us always better

DE thresholds than the M-OMS decoders, hence, one can conclude that the OMS-λv

decoders are better decoders to implement the NAN-MS decoders.

Table 3.11 DE thresholds of the M-OMS decoders using Lmax = 20.

(dv,dc)-regular LDPC code, BI-AWGN channel
(dv,dc) q α δdb λ

(20)
v λ

(19)
v ...λ

(2)
v λ

(1)
v

(3,6)
3 bits 0.78 2.1352 11111111111111111111
4 bits 1.78 1.6612 11111111111111111111

(4,8)
3 bits 0.93 2.3196 11111111111111111111
4 bits 1.64 1.9483 11111111111111111111
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Fig. 3.15 DE thresholds δdb of 220 OMS-λv decoders for the regular dv = 3 LDPC code.

Density Evolution Thresholds for Irregular LDPC Codes

Similar to Section 3.6, for LDPC codes with irregular VN distribution, we con-

sider an offset vector for the different connection degree. Hence, Υ(2) : λv
(2) =
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Table 3.12 DE thresholds of the OMS-λv decoders using Lmax = 20.

(dv,dc)-regular LDPC code, BI-AWGN channel
(dv,dc) q α∗ δdb λ

(20)∗
v λ

(19)∗
v ...λ

(2)∗
v λ

(1)∗
v DE gain

(3,6)

3 bits 0.75

1.8853 00000000100101010111 0.1943
1.8858 00010000100101010111 0.1938
1.8853 00100000100101010111 0.1943
1.8848 01000000100101010111 0.1948
1.8853 10000000100101010111 0.1943
1.8858 10010000100101010111 0.1938
1.8853 10100000100101010111 0.1943
1.8848 11000000100101010111 0.1948

4 bits 1.47

1.6098 01001010101011011111 0.1407
1.6094 01010010101011011111 0.1411
1.6097 01100010101011011111 0.1408
1.6096 01101010101011011111 0.1409
1.6098 11001010101011011111 0.1407
1.6094 11010010101011011111 0.1411
1.6097 11100010101011011111 0.1408
1.6096 11101010101011011111 0.1409

(4,8)

3 bits 0.88

2.2986 00100101011111111111 0.2770
2.2985 01000101011111111111 0.2771
2.2983 01010101011111111111 0.2773
2.2984 01100101011111111111 0.2772
2.2986 10100101011111111111 0.2770
2.2985 11000101011111111111 0.2771
2.2983 11010101011111111111 0.2773
2.2984 11100101011111111111 0.2772

4 bits 1.60

1.9468 01010111111111111111 0.0241
1.9470 01011011111111111111 0.0239
1.9469 01101011111111111111 0.0240
1.9467 01110111111111111111 0.0242
1.9468 11010111111111111111 0.0241
1.9470 11011011111111111111 0.0239
1.9469 11101011111111111111 0.0240
1.9467 11110111111111111111 0.0242
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Fig. 3.16 DE thresholds δdb of 220 OMS-λv decoders for the regular dv = 4 LDPC code.

(
λ

(2,1)
v ,λ

(2,2)
v , ...,λ

(2,Lmax)
v

)
is the offset vector at VNs of degree dv = 2, Υ(3) : λv

(3) =(
λ

(3,1)
v ,λ

(3,2)
v , ...,λ

(3,Lmax)
v

)
is the offset vector for the VNs of degree dv = 3, and finally,

for all other VNs with degrees dv ≥ 4, Υ(≥4) : λv
(≥4) =

(
λ

(≥4,1)
v ,λ

(≥4,2)
v , ...,λ

(≥4,Lmax)
v

)
is the offset vector.

The optimization of the offset vector for an irregular LDPC code with distribution

(λ(x),ρ(x)) is still performed by the maximization of the DE thresholds:

(
λv

(2)∗,λv
(3)∗,λv

(≥4)∗,α∗
)

= arg max
(λv

(2),λv
(3),λv

(≥4),α)

{
δ̃
(
λ(x),ρ(x), q,α,λv

(2),λv
(3),λv

(≥4)
)}
.

(3.26)

For two WIMAX LDPC codes studied in Section 3.6, we indicate in Table 3.13 the

DE thresholds of the noiseless MS and noiseless OMS decoders using Lmax = 20.

Table 3.14 summarizes the DE thresholds of the OMS-λv decoders using Lmax = 20.

From the results obtained, we can note: (i) the offset vector λv
(2) has to be all-zero

for low precision q = 3 and R ∈ {1/2,3/4}, (ii) for the degree dv > 2 VNs, λv
(3)∗ and

λv
(≥4)∗ show that the offset equal to 1 is applied mainly during the first iterations,

while in the last iterations the last iterations the offset equal to 1 is not applied. The
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Table 3.13 DE thresholds of noiseless MS decoders and noiseless OMS decoders with
offset value λv = 1 for the WIMAX degree distribution using Lmax = 20.

Irregular LDPC code, BI-AWGN channel
R q λv α∗ δ δdb

1/2
3 bits

0 0.53 0.7871453339 2.0789
1 0.54 0.6148141689 4.2251

4 bits
0 1.05 0.8124462941 1.8041
1 1.17 0.7676937113 2.2962

3/4
3 bits

0 0.58 0.5830334538 2.9252
1 0.71 0.5568327660 3.3246

4 bits
0 1.12 0.5969529723 2.7203
1 1.39 0.6109303460 2.5193

same happens for the largest precision q = 4 and λv
(2), (iii) the offset vector λv

(3)

(resp. λv
(2)) is almost all-zero for (R = 1/2, q = 3) (resp. (R = 1/2, q = 4)).

Comparing the best thresholds indicated in bold showed in Tables 3.14 and Table

3.13, we can note that the OMS-λv decoders achieve better DE thresholds than the

MS and OMS decoders.

Table 3.14 DE thresholds of the OMS-λv decoders for the WIMAX degree distribution
using Lmax = 20.

Irregular LDPC code, BI-AWGN channel
R q Υ α∗ λ

(20)∗
v λ

(19)∗
v ...λ

(2)∗
v λ

(1)∗
v δdb

1/2

3 bits
λv

(2)∗ 00000000000000000000
λv

(3)∗ 0.52 00000000000000001011 2.0173
λv

(≥4)∗ 00000000000111111111

4 bits
λv

(2)∗ 00000000000000001001
λv

(3)∗ 1.03 00000000010010101011 1.6718
λv

(≥4)∗ 00000000011011101111

3/4

3 bits
λv

(2)∗ 00000000000000000000
λv

(3)∗ 0.63 00000000000010111111 2.7511
λv

(≥4)∗ 00000011111111111111

4 bits
λv

(2)∗ 00000011110111111111
λv

(3)∗ 1.25 00000000011111111111 2.4595
λv

(≥4)∗ 00001011010111111111
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3.9.2 Finite Length Performance

In this section, we present the FER performance of noiseless MS and OMS, M-OMS,

and OMS-λv decoders. We analyze the OMS-λv decoder performance over the BI-

AWGN channel using a maximum of 20 iterations. We use the (dv = 3,dc = 6)-regular

QC-LDPC code, and the (dv = 4,dc = 8)-regular QC-LDPC code presented in Chapter

3.5. The considered decoders are the ones with the best DE thresholds, indicated in

bold in Tables 3.10, 3.11, and 3.12. The noiseless 5-bit OMS decoder with offset λv = 1

is also shown as benchmark.
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(b) OMS-λv and M-OMS decoders

Fig. 3.17 FER performance of OMS-λv and M-OMS decoders for the regular dv = 3
LDPC code.

Fig. 3.17 and Fig. 3.18 show the FER performance comparisons between the 5-bit

OMS decoder, the noiseless quantized decoders, the M-OMS decoders, and the OMS-λv

decoders, as a function of Eb/N0 over the BI-AWGN channel. From the results, we

conclude that the finite length FER performances are in accordance with the DE gains.

We observe that the 3-bit OMS-λv decoders have better FER performance than 3-bit

MS and 3-bit OMS decoders. For the regular dv = 3 LDPC code, the FER performance

of the 4-bit OMS-λv decoder is better than the FER performance of the 4-bit MS
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(b) OMS-λv and M-OMS decoders

Fig. 3.18 FER performance of OMS-λv and M-OMS decoders for the regular dv = 4
LDPC code.

and the 4-bit OMS decoder. In the case of the regular dv = 4 LDPC code, the 4-bit

OMS-λv decoder and the 4-bit OMS have the same FER performance.

We can also note that the OMS-λv decoders have better FER performance than

the M-OMS decoders for dv = 3. On the other hand, for dv = 4, the M-OMS decoders

and OMS-λv decoders have almost the same performance.
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Fig. 3.19 FER performance of OMS-λv decoders for the WIMAX LDPC code.
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Simulation results for the WIMAX LDPC code with R ∈ {1/2,3/4} are provided

in Fig. 3.19. For the two considered precisions q = 3 and q = 4, we can see that the

OMS-λv decoders are better decoders than the MS and OMS decoders.

3.10 Conclusions

In this Chapter, we have first proposed a model to introduce randomness in highly

quantized message passing decoder. Thanks to density evolution, we obtained the

optimal parameters of “noise injection” in the asymptotic regime. The result shows

that, for highly quantized decoder (3 or 4 bit of input quantization), the proposed Noise-

Against-Noise Min-Sum decoder can improve significantly the decoding performance

in the waterfall region (up to 0.4 dB). The finite-length Monte Carlo simulations for

several code rates and degrees of variable node have corroborated the DE analysis.

Then, the we have constraint the proposed NAN-MS decoder to become a deterministic

decoder to simplify its hardware implementation. The obtained Modified Offset-Min-

Sum decoder has performance closed to the NAN-MS and outperform classical MS

and OMS when input message are quantized on 3 or 4 bits of precision. Moreover, the

M-OMS decoder has equivalent complexity than the OMS decoder. Finally, in case

where the decoder unrolled the decoding iterations, DE tool helps up to find optimal

parameters of the decoder where each iteration uses the same type of Variable Node

Unit. The obtained decoder is called OMS-λv where λv is a binary vector of the size

of the maximum number of iterations.





Chapter 4

Sign-Preserving Min-Sum Decoders

This work proposes a new finite precision iterative decoder for low-density parity-

check (LDPC) codes and for low complexity hardware implementation. The proposed

decoder, named Sign-Preserving Min-Sum (SP-MS), significantly improves the decoding

performance compared to classical Offset Min-Sum (OMS) decoder when messages

are quantized on q = 2, 3 or 4 bits of precision. The particularity of the SP-MS

decoder is that all messages can take profit of the full dynamic given by q bits of

precision and, corollary, that the 0 value is never used. In other words, the SP-MS

decoder forbids the 0 value in its message alphabet during the iterative decoding,

i.e. a message cannot be erased. In order to achieve a high-throughput with low

complexity hardware implementation, we investigate the SP-MS decoder defining a

message alphabet constructed from 2, 3, or 4 bits of precision. In our research we also

define a decoder input alphabet to quantize the Log-Likelihood Ratios (LLRs) values

constructed from 3 or 4 bits of precision.

In order to optimize the SP-MS decoder performance, the optimization methodology

using injection of noise during the iterative process (see Chapter 3) is also applied

in the context of SP-MS decoders. The SP-MS decoder and its optimization are

investigated in the asymptotic limit of the code length using a noisy version of density
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evolution (DE). We use the optimization method proposed in the previous chapter.

After optimization we can obtain two kinds of decoders: (i) a probabilistic decoder that

keeps some randomness named Sign-Preserving Noise-Aided Min-Sum (SP-NA-MS)

decoder, or (ii) a deterministic decoder that combines MS and OMS behaviors, named

Sign-Preserving Min-Sum (SP-MS) decoder.

The outline of this chapter is as follows. The first section briefly analyzes the classical

OMS-based decoders. In the second section, we present a quantification method used

in SP-MS decoders. In the third section, we introduce the SP-MS decoders and we

explain how to preserve the sign of exchanged messages of SP-MS decoders. In the

fourth section, we explain how to optimize the SP-MS decoders. In the fifth section, we

present the density evolution equations of SP-MS decoders. The sixth section shows

how to compute the the asymptotic bit error probability. The seventh section explains

how to compute the DE threshold. In the eighth section, we present the results of

the asymptotic analysis of SP-MS decoders for regular and irregular LDPC codes.

The ninth section shows finite length performance validation of the gains obtained

with the proposed SP-MS decoders. In the tenth section, we present the convergence

performance analysis of the SP-MS decoders, and the eleventh section concludes this

chapter.

4.1 classical OMS-based Decoders

The message alphabet AC = {−Nq, ..,−1,0,+1, ...,+Nq} of classical quantized decoders

only uses 2q −1 levels of a total of 2q levels that can be used for a precision of q bits.

For example, using q = 3 bits of precision, only 7 levels are used for AC .

In Chapter 3, the offset of the OMS decoders was moved from CNs to VNs allowing

the c-to-v messages and v-to-c messages to use all values of AC . But the transfer of
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the offset does not allow the decoder to use all the combinations that can be obtained

for q bits of precision.

Analyzing the VNU of the classical OMS-based decoders, see 3.2, we can see that

the value of the v-to-c message can be zero. In that case, the erased message, i.e.

m
(ℓ+1)
vn→cm = 0, does not carry any information and does not participate in the convergence

of the decoder. In this work, we propose a new type of decoder that always preserves

the sign of the messages, with a modified VNU using a sign preserving factor, so that

VNU never generates null or erased messages.

4.2 Quantization used for SP-MS Decoders

Using the sign-and-magnitude representation one can obtain a decoder input al-

phabet which is symmetric around zero and which is composed of 2qch states.

Hence the decoder input alphabet for SP-MS decoders is redefined as AL =

{−Nch, ...,−1,−0,+0,+1, ...,+Nch}. Similarly, the message alphabet for SP-MS de-

coders denoted by AS is defined as AS = {−Nq, ...,−1,−0,+0,+1, ...,+Nq}, consists

of 2q states. The sign of a message m ∈ AS indicates the estimated bit value associ-

ated with the VN to or from which m is being passed while the magnitude |m| of m

represents its reliability. In this work, it is assumed that 2 ≤ q ≤ qch. The alphabets

AL and AS can be easily implemented in hardware because each value of AL and

AS has a natural (sign, magnitude) binary representation. An example of the binary

representation of AC and AS for q = 3 is shown in Table 4.1, one can see that −0 is

represented by 1002, +0 is represented by 0002, etc. The distribution of the quantized

LLR In using q = 3 bits of precision for the SP-MS decoder is depicted in Fig. 4.1.
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Fig. 4.1 LLR(yn) and In of the SP-MS decoder for the BI-AWGN channel and precision
q = 3.

Table 4.1 Binary representation of the quantized values.

Classical Decoder Sign Preserving Decoder
m ∈ AC q = 3 bits m ∈ AS q = 3 bits (sign(m), |m|)

−3 101 −3 111 (−1,3)
−2 110 −2 110 (−1,2)
−1 111 −1 101 (−1,1)
− 100 −0 100 (−1,0)
0 000 +0 000 (+1,0)

+1 001 +1 001 (+1,1)
+2 010 +2 010 (+1,2)
+3 011 +3 011 (+1,3)

In order to obtain the quantized version of the LLRs belonging to AL, the quanti-

zation process defined in (2.17) is replaced by

Q∗ (a) = (sign(a),S (⌈α×|a|⌉−1,Nch)) , (4.1)

where ⌈.⌉ depicts the ceiling function.

Then, In is thus defined as In = Q∗ (LLR(yn)) ∈ AL for n = 1, . . . ,N . In the ini-

tialization stage of the SP-MS decoders, i.e. at ℓ= 0, the variable-to-check messages

m
(ℓ)
vn→cm are computed as m(0)

vn→cm = S(In,Nq) where vn ∈ V(cm), for n= 1, ...,N .

Let us define the update rules for Sign-Preserving Min-Sum decoders.
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4.3 Sign-Preserving Min-Sum Decoders

The discrete functions Ψv, Ψc, and Ψa of SP-MS decoders are redefined by Ψv :

AL ×A(dv−1)
S → AS , Ψc : A(dc−1)

S → AS , and Ψa : AL ×A(dv)
S → Aapp, respectively.

One can note from (3.1) that the CNU by construction determines the sign of each

outgoing message, thus the CNU generates outgoing messages that always belong to

AS , therefore, the CNU remains identical.

In the case of the VNU, (3.2) should be modified to ensure that the outgoing

message will always belong to AS . To preserve always the sign of the messages, let us

denote by µ(ℓ)
vn→cm the sign-preserving factor of the message m(ℓ+1)

vn→cm , defined as

µ(ℓ)
vn→cm

= ξ× sign(In)+
∑

c∈V(vn)\{cm}
sign

(
m(ℓ)

c→vn

)
, (4.2)

where the values of ξ depends on the value of the column-weight dv of a VN vn, thus

we have

ξ =


0, if dv = 2,

1, if dv > 2 and (dv mod 2) = 1,

2, if dv > 2 and (dv mod 2) = 0.

(4.3)

From (4.2), one can note that, by construction, µ(ℓ)
vn→cm takes its values among

{−1,+1} for the special case of dv = 2, {−dv,−dv +2, ...,−1,+1, ...,+dv} for dv odd,

and {−dv −1,−dv +1, . . . ,−1,+1, ...,+dv +1} for dv even and dv > 2. Thus, µ(ℓ)
vn→cm is

always an odd number.

Let us now redefine the unsaturated variable-to-check message m(ℓ+1),U
vn→cm as

m(ℓ+1),U
vn→cm

= µ
(ℓ)
vn→cm

2 + In +
∑

c∈V(vn)\{cm}
m(ℓ)

c→vn
.
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We can note that the fractional part of (µ(ℓ)
vn→cm)/2 is 0.5. Hence, the

alphabet of m
(ℓ+1),U
vn→cm is given by AU = {−Nq × (dv − 1) − Nch − (dv − 1 +

ξ)/2, ...,−1.5,−0.5,+0.5,+1.5, ...,+Nq × (dv −1)+Nch +(dv −1+ ξ)/2}.

Then, the update rule at a VNU of the SP-MS decoder with offset value λv is given

by

m
(ℓ+1)
vn→cm = Ψv

(
In,

{
m

(ℓ)
c→vn

}
c∈V(vn)\{cm}

)
=
(

sign
(
m

(ℓ+1),U
vn→cm

)
,S
(

max
(⌊∣∣∣∣m(ℓ+1),U

vn→cm

∣∣∣∣⌋−λv,0
)
,Nq

))
.

(4.4)

The APP update at a VN vn of the SP-MS decoder is defined as follows

γ
(ℓ)
n = Ψa

(
In,

{
m

(ℓ)
c→vn

}
c∈V(vn)

)
= In + 1

2 × ξ× sign(In)+
∑

c∈V(vn)

(
m(ℓ)

c→vn
+ 1

2 × sign
(
m(ℓ)

c→vn

))
.

(4.5)

The alphabet of APPs for SP-MS decoders is given by Aapp = {−Nq ×dv −Nch −

(dv + ξ)/2), ...,−1,0,+1, ...,+Nq ×dv +Nch + (dv + ξ)/2)}. From the APP, x̂n can be

computed as x̂n = sign(In) if γ(ℓ)
n = 0, otherwise, x̂n = sign(γ(ℓ)

n ) for n= 1, ...,N .

4.4 Optimization of Sign-Preserving Min-Sum De-

coders

In order to optimize the Sign-Preserving Min-Sum decoders, we use the optimization

method proposed in [51], i.e., we introduce a certain level of randomness in the decoder

during the optimization process. In this work, the optimization process is defined

by injecting some randomness during the VNU processing, i.e. the noise perturbs

unsaturated v-to-c messages m(ℓ+1),U
vn→cm . Hence, the optimization process is given by

m̃(ℓ+1)
vn→cm

= Υ
(
m(ℓ+1),U

vn→cm

)
, (4.6)
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where Υ is a noise model that also performs the saturation function.

After optimization we can obtain two kinds of decoders: (i) a decoder that keeps

some randomness named Sign-Preserving Noise-Aided Min-Sum (SP-NA-MS) decoder,

or (ii) a deterministic decoder named Sign-Preserving Min-Sum (SP-MS) decoder.

Let us now introduce the constraints on the noise models, and then let us present a

noise model that we use to perturb the unsaturated v-to-c messages m(ℓ+1),U
vn→cm .

4.4.1 Probabilistic Error Model to Optimize SP-MS De-

coders

We assume that the noisy message alphabet is denoted by ÃS . The noisy message

m̃
(ℓ+1)
vn→cm is obtained after corrupting the noiseless message m(ℓ+1),U

vn→cm with noise. To

simplify the notations in this section, we use mu to denote any m
(ℓ+1),U
vn→cm and m̃ to

denote any m̃(ℓ+1)
vn→cm .

In order to be able to perform DE analysis to optimize SP-MS decoders, the con-

sidered noise model need to be memoryless, i.e. the noise model has to be independent

on data streams processed by the SP-MS decoders. Also, the considered noise model

must satisfy the following condition of symmetry

Pr(m̃= ψ2|mu = ψ1) = Pr(m̃= −ψ2|mu = −ψ1),∀ψ1 ∈ AU and ψ2 ∈ ÃS .

When the noise model is memoryless and symmetric, it can be used to inject some

randomness at the VNU during the optimization process of the SP-MS decoders, so

the noisy-VNU is symmetric, allowing to use the all-zero codeword assumption and the

independence assumption necessary in DE [27]. Since the addition of noise in VNUs is

independent of the sign of the messages, we will suppose in the sequel without loss of

generality that the messages mu and m̃ are always positive.
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Now, let us denote by Υ : AU → ÃS the function which transforms mu ∈ AU into

m̃ = Υ(mu) ∈ ÃS with the random process defined by the conditional probability

density function (CPDF) Pr(m̃ | mu). Unless otherwise stated, the noisy message

alphabet will be the one of the messages, i.e. AS = ÃS . We propose in this work to

analyze a noise model Υ whose CPDF Pr(m̃ |mu), denoted by pΥ(mu, m̃), is given by

pΥ (mu, m̃) =



1, if m̃= +0,mu = +0.5 or if m̃= +Nq,mu >+Nq +0.5,

φ(mu), if m̃= ⌊mu⌋−1,∀mu ∈ {+1.5,+2.5, ...,+Nq +0.5},

1−φ(mu), if m̃= ⌊mu⌋,∀mu ∈ {+1.5,+2.5, ...,+Nq +0.5},

0, otherwise,
(4.7)

where φ(mu) is defined as

φ(mu) =


φ0, if mu = +1.5,

φa, if mu ∈ {+2.5,+3.5, ...,+Nq −0.5},

φs, if mu = +Nq +0.5,

(4.8)

The noise model analyzed is parametrized by three different transition probabilities

φ = (φs,φa,φ0). The choice of these three transition probabilities is a trade-off between

complexity and the process of the border effects in the message alphabet AS .

The reasoning behind Υ is to implement a probabilistic offset with the purpose

of always keeping the sign of the messages. Let us discuss the case of φs = φa = φ0,

the SP-MS decoder with offset value λv = 1 can be obtained as special case of Υ

setting φ = (1,1,1), similarly, the SP-MS without offset, i.e. λv = 0, can be obtained

setting φ = (0,0,0). Thanks to Υ, we can implement a probabilistic SP-MS decoder

whose behaviour is a probabilistic weighted combination of a SP-MS decoder without

offset and a SP-MS decoder with offset λv = 1. The effect of the noise on the extreme

values of the message alphabet AS is studied introducing two other probabilities φs
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and φ0. A special case occurs when mu = ±1.5 because it will be mapped to m̃= ±0

with probability φ0. Since m̃= ±0 propagates the sign but with a reliability of zero,

therefore, φ0 has to be analyzed differently than φa. Additionally, in finite precision

messages, all values greater than Nq are saturated to Nq. As a result, many more

configurations of the VNU states lead to an output message m̃=Nq compared to other

values of m̃, and φs should also be analyzed differently than φa. As an example, Υ is

depicted in Fig. 4.2a for (q = 3,Nq = 3).

mu

+5.5
+4.5
+3.5
+2.5
+1.5
+0.5

m̃
+3
+2
+1
+0

ϕs
ϕa
ϕ0

1
1− ϕs
1− ϕa
1− ϕ0

(a) Precision q = 3

mu

+5.5
+4.5
+3.5
+2.5
+1.5
+0.5

m̃

+1
+0

ϕs

1− ϕs

1

(b) Precision q = 2

Fig. 4.2 The mapping used for the noise model Υ.

It must be noted that the noise model Υ defined above is for the precision messages

q ≥ 3. In the case of very low precision messages q = 2, the noise model Υ is given

only by one transition probability φ = (φs) because the saturation value is Nq = 1,

hence mu = ±1.5 will be mapped to m̃= ±0 with probability φs. For this special case,

the message alphabet, which is only composed of four different values, is given by

AS = {−1,−0,+0,+1}. Fig. 4.2b shows the noise model Υ for (q = 2,Nq = 1).

4.5 Density Evolution for Sign-Preserving De-

coders

The goal of DE [27, 28, 35] is to recursively compute the probability mass function

(PMF) of the exchanged messages in the Tanner graph along the iterations. DE allows
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us to predict if an ensemble of LDPC codes, parametrized by its degree distribution,

decoded with a given MP decoder, converges to zero error probability in the limit of

infinite block length.

In order to derive the DE equations for Sign-Preserving decoders, let Θ(ℓ)(k), k ∈ AS ,

denote the PMF of noiseless c-to-v messages in the ℓth iteration. Similarly, let Ω(ℓ)(k),

k ∈ AS , denote the PMF of noiseless v-to-c messages in the ℓth iteration. Also, let

Ω(0)(k), k ∈ AL, be the initial PMF of messages sent at ℓ = 0. To deduce the noisy

DE equations, let Ω̃(ℓ)(k), k ∈ AS , denote the PMF of noisy v-to-c messages in the ℓth

iteration. We consider that the all-zero codeword is sent over the BI-AWGN channel.

4.5.1 Initialization

DE is initialized with the PMF of the BI-AWGN channel with noise variance σ2 as

follows

Ω(0)(k) =



F (k) if k = −Nch

F (k)−F (k−1) if −Nch < k ≤ −1

F (0)−F (−1) if k = −0

F (1)−F (0) if k = +0

F (k+1)−F (k) if +1 ≤ k <+Nch

1−F (k) if k = +Nch

(4.9)

where F (k) is given by [34, 36, 37]:

F (k) = 1√
2πσn

∫ k

−∞
e−(t−µn)2/2σ2

ndt, (4.10)

with σn = (2/σ)×α and µn = (2/σ2)×α.
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4.5.2 DE update for CNU

The input of a CNU is the PMF of the noisy messages going out of a noisy VNU, i.e.

Ω̃(ℓ). For a CN of degree dc, Θ(ℓ)
dc

is given by

Θ(ℓ)
dc

(k) =
∑

(i1,...,idc−1):Ψc(i1,...,idc−1)=k

Ω̃(ℓ)(i1)...Ω̃(ℓ)(idc−1), ∀k ∈ AS . (4.11)

Considering the different connection degrees of CNs of irregular LDPC codes, we

have

Θ(ℓ)(k) =
dc,max∑
dc=2

ρdc ×Θ(ℓ)
dc

(k), ∀k ∈ AS (4.12)

4.5.3 DE update for VNU

We know that Υ perturbs unsaturated values. For this reason, we first compute the

PMF of unsaturated v-to-c messages of a VN of degree dv, i.e. Ω(ℓ+1),U
dv

, with the

following equation

Ω(ℓ+1),U
dv

(k) =
∑

(t,i1,...,idv−1):Ψv(t,i1,...,idv−1)=k

Ω(0)(t)Θ(ℓ)(i1)...Θ(ℓ)(idv−1), ∀k ∈ AU .

(4.13)

And second, the noise effect is added to the PMF of unsaturated v-to-c messages to

obtain the corrupted PMF

Ω̃(ℓ+1)
dv

(k) =
∑

i∈AU

Ω(ℓ+1),U
dv

(i)×pΥ(i,k), ∀k ∈ AS , (4.14)

where pΥ, expressed in (4.7), is the transition probability of the VN noise.

In this work we use only the transition probabilities of the noise model Υ defined

in Section 4.4. Although of course other noise models can be used.
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Then the effect of the different connection degrees of VNs is considered using the

following relation

Ω̃(ℓ+1)(k) =
dv,max∑
dv=2

λdv × Ω̃(ℓ+1)
dv

(k), ∀k ∈ AS (4.15)

In the optimization process of SP-MS decoders, where the effect of noise injection

is added at VNUs, the DE update of noisy-VNU is implemented with (4.13), (4.14),

and (4.15). The DE update of VNU for SP-MS decoders without noise injection can

be obtained setting pΥ(i,k) = 1 if i= k, otherwise pΥ(i,k) = 0, i.e. φ = (0,0,0) which

corresponds to the offset λv = 0.

4.6 Asymptotic Bit Error Probability

The asymptotic bit error probability can be deduced from the PMF of the APPs,

which is obtained from the DE equations. Let p(ℓ)
e denote the bit error probability at

iteration ℓ, which is computed from the PMF of all incoming messages to a VN in the

ℓth iteration, and defined by

p(ℓ)
e = 1

2Γ(ℓ)(0)+
−1∑

i=−(Nq×dv,max+Nch+(dv,max+ξ)/2)
Γ(ℓ)(i), (4.16)

where Γ(ℓ)(k), k ∈ Aapp, denotes the PMF of the APP at the end of the ℓth iteration

for Sign-Preserving decoders. We can compute Γ(ℓ)(k) as follows

Γ(ℓ)(k) =
dv,max∑
dv=2

λdv ×Γ(ℓ)
dv

(k), ∀k ∈ Aapp
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where Γ(ℓ)
dv

(k) is computed as

Γ(ℓ)
dv

(k) =
∑

(t,i1,...,idv ):Ψa(t,i1,...,idv )=k

Ω(0)(t)Θ(ℓ)(i1)...Θ(ℓ)(idv), ∀k ∈ Aapp.

The evolution of p(ℓ)
e with the iterations characterizes whether the Sign Preserving

decoder converges or diverges in the asymptotic limit of the codeword length. When

the number of iterations ℓ goes to infinity, we obtain the asymptotic error probability

p
(+∞)
e .

For the SP-MS decoder which is a noiseless decoder, the decoder converges to zero

error probability and successful decoding is declared, i.e. p(+∞)
e = 0. In the case of

SP-NA-MS decoders, contrary to the noiseless case, p(+∞)
e is not necessarily equal to

zero when the noisy DE converges and corrects the channel noise. For noisy decoders,

the value of p(+∞)
e depends mainly on the chosen error model and the computing units

to which it is applied [35].

4.7 Density Evolution threshold

The concepts and procedure for calculating the DE thresholds are given in Chapter 3

(Section 3.4.6). In this work, we use δ̃ to jointly optimize the noise model parameters

(φs,φa,φ0) and the channel gain factor α for a fixed precision (qch, q) and a fixed degree

distribution (λ(x),ρ(x)) as follows

(φ∗
s,φ

∗
a,φ

∗
0,α

∗) = arg max
(φs,φa,φ0,α)

{
δ̃ (λ(x),ρ(x), qch, q,α,(φs,φa,φ0))

}
. (4.17)

The optimization of the transition probabilities of the noise model Υ, and the channel

gain factor α is made using a greedy algorithm which computes a local maximum DE



96 Sign-Preserving Min-Sum Decoders

threshold. For noiseless decoders, the optimization (4.17) is reduced to the optimum

channel gain factor α∗ which is computed performing a grid-search.

4.8 Asymptotic Analysis of Sign-Preserving Min-

Sum Decoders

This section presents the asymptotic analysis of SP-MS decoders with the values of ξ

defined in (4.3). One can note that other values of ξ (different from those defined in

(4.3)) give worse decoding performance.

4.8.1 Asymptotic Analysis of SP-MS Decoders for Regular

LDPC codes

For all results presented in this section, we consider the ensemble of (dv,dc)-regular

LDPC codes with various code rate R for dv ∈ {3,4,5,6}, and quantized decoders with

precision qch ∈ {3,4} and q ∈ {2,3,4}.

We draw the evolution of SP-MS thresholds versus the check-node degree dc on

Fig. 4.3, while keeping the variable-node degree dv constant. We also show on Fig. 4.4

the DE threshold of SP-MS decoders as a function of the variable-node degree dv for

dc ∈ {12,20,32}. Several conclusions can be derived from Fig. 4.3 and Fig. 4.4.

1. First, the DE thresholds of the SP-MS decoders are always better than the DE

thresholds for noiseless classical decoders when the same precision is used. Also,

the (qch = 4, q = 4)-bit SP-MS decoders can almost achieve the same performance

as 5-bit OMS decoders because the DE thresholds of (qch = 4, q = 4)-bit SP-MS

decoders are very close to the DE thresholds of the 5-bit OMS decoders.
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2. Second, one can see that for regular LDPC codes with dv > 2, the DE thresholds of

(qch = 4, q = 4)-bit SP-MS decoders are almost equal or equal to the DE thresholds

of (qch = 4, q = 3)-bit SP-MS decoders, except for the regular dv = 3 LDPC codes

with dc < 16, in that case the DE thresholds of the (qch = 4, q = 3)-bit SP-MS

decoders are worse than the (qch = 4, q = 4)-bit SP-MS decoders. We can also

observe that the (qch = 3, q = 3)-bit SP-MS decoders have the same DE thresholds

as (qch = 3, q = 2)-bit SP-MS decoders for the regular dv ≥ 4 LDPC codes, except

for the regular dv = 4 LDPC codes with dc < 24 that exhibit worse DE thresholds,

while in case of dv = 3 LDPC codes, the (qch = 3, q = 3)-bit SP-MS decoders

exhibit better DE thresholds than the (qch = 3, q = 2)-bit SP-MS decoders.

From this analysis, we can conclude that the SP-MS decoders with precision

qch can be implemented using very low precision q = qch − 1 for the extrinsic

messages. This implies a considerable reduction in the complexity of the CNs

and the VNs, as well as a reduction in the number of wires in an implementation,

e.g an ASIC implementation.

3. Third, one can note that the difference between the DE thresholds of the (qch, q =

qch)-bit SP-MS decoders and (qch, q = qch −1)-bit SP-MS decoders decreases as

dc increases, this phenomenon is very evident when the precision qch = 3 is used.

In Table 4.2 and 4.4, we present more detailed results for the ensemble of (dv,dc)-

regular LDPC codes with code rate R ∈ {1/2,3/4} for dv ∈ {3,4,5}, R = 0.8413 and

dv = 6 for the IEEE 802.3 ETHERNET code [6], R = 0.94 and dv = 4 for Flash

Memory [9]. The DE thresholds of the noiseless classical MS and OMS decoders are

given in Table 4.2. It can be seen that the OMS is almost always superior to the MS

for the considered cases, except for the regular dv = 3 LDPC codes and the regular

(dv = 4,dc = 64) LDPC codes with low precision qch = q = 3.
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Fig. 4.3 DE thresholds of optimized SP-MS decoders for (dv,dc)-regular LDPC codes.
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Fig. 4.4 DE thresholds of optimized SP-MS decoders, as a function of the VN degree
dv.
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Table 4.2 DE thresholds of classical MS and OMS decoders.

(dv,dc)-regular LDPC code, BI-AWGN channel
(dv = 3,dc = 6) (dv = 4,dc = 8) (dv = 5,dc = 10) (dv = 6,dc = 32)

qch = q λv α∗ δdb α∗ δdb α∗ δdb α∗ δdb

3 bits
0 0.9375 1.7888 0.8125 2.7360 0.63 3.4117 0.455 4.0812
1 1.0625 2.2039 1.25 2.3219 1.15 2.7079 0.84 3.5928

4 bits
0 2.0 1.6437 1.625 2.5389 1.25 3.1772 1.035 3.8154
1 1.875 1.3481 1.75 1.7509 1.59 2.2306 1.28 3.1685

5 bits
0 4.0 1.6132 3.25 2.4948 2.30 3.1126 1.985 3.7506
1 2.625 1.2154 2.0 1.7061 1.69 2.2089 1.45 3.1400

(dv = 3,dc = 12) (dv = 4,dc = 16) (dv = 5,dc = 20) (dv = 4,dc = 64)
qch = q λv α∗ δdb α∗ δdb α∗ δdb α∗ δdb

3 bits
0 0.625 2.7316 0.6875 3.1550 0.56 3.6449 0.50 4.7599
1 0.9375 3.1343 0.9375 3.0632 0.92 3.2312 0.69 4.9036

4 bits
0 1.25 2.5646 1.375 2.9441 1.40 3.3917 1.06 4.5723
1 1.5 2.4484 1.5 2.5292 1.39 2.7620 1.15 4.4211

5 bits
0 2.5 2.5268 2.75 2.8991 2.47 3.3373 2.20 4.5340
1 2.25 2.3040 1.875 2.4606 1.61 2.7238 1.73 4.3380

In Table 4.4, we indicate the noisy and noiseless DE thresholds obtained with (4.17)

for optimized Sign-Preserving decoders, we also show the DE gains obtained comparing

the best thresholds indicated in bold in Table 4.2 and the noisy (resp. noiseless)

thresholds of SP-NA-MS decoders (resp. SP-MS decoders) for different precision qch

and q. Many more conclusions can be derived from this analysis.

4. Fourth, the DE thresholds of the SP-MS decoders are very close or equal to

the DE thresholds of the SP-NA-MS decoders, specially for the regular dv > 3

LDPC codes, since the values of the transition probabilities are close or equal to

0 or 1. This implies that the noise injected to the SP-MS decoders during the

optimization process can be ignored in a hardware realization, thus avoiding the

implementation of Random Generators (RGs) to perturb the v-to-c messages. Of

course, in all cases the injection of noise cannot be ignored, this depends on the

VN degree and the precision used.
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The DE gains for the SP-MS decoders are quite important for low precision

(qch = 3, q = 3), and very low precision (qch = 3, q = 2). The largest gain obtained

is around 0.3399 dB for the regular (dv = 4,dc = 8) LDPC code and precision

(qch = 3, q = 3). While the DE gains are smaller for the largest precision (qch =

4, q = 4) and (qch = 4, q = 3). We can observe a loss of around 0.0102 dB for the

regular (dv = 6,dc = 32) LDPC code and precision (qch = 4, q = 4).

From this analysis, we can conclude that the preservation of the sign of messages

is more and more beneficial as the decoders are implemented in low precision.

5. A Fifth remark comes from the interpretation of the optimum φ∗ obtained

through the DE analysis. For the case of precision messages q > 2, we have φ∗
0 = 0

for regular dv = 3 LDPC codes, this makes sense because dv = 3 is small enough

to transform mu = ±1.5 into m̃= ±0, which gives to m̃(ℓ)
vn→cm a reliability of zero

and which could not help to extrinsic messages become more and more reliable at

each new decoding iteration. In the case of very low precision messages q = 2 and

regular 2< dv < 5 LDPC codes, we obtain φ∗
s close to 0 for SP-NA-MS decoders

and φ∗
s = 0 for SP-MS decoders, this also makes sense because q = 2 is too small

and transform mu = ±1.5 into m̃= ±0 sets the maximum reliability (which is 1)

to zero.

For SP-MS decoders, when using the precision q > 2 and regular dv > 3 LDPC

codes, we have always φ∗
0 = 1. In the case of very low precision q = 2 we obtain

always φ∗
s = 1 for regular dv = 5 and dv = 6 LDPC codes. Hence, one can conclude

that for (dv > 3, q > 2), the transformation from mu = ±1.5 to m̃= ±0, does not

affect the decoding process, a similar conclusion is obtained for dv = 5 and dv = 6

using very low precision q = 2.
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6. Finally, for SP-MS decoders and precision messages q > 2, the optimum noise

parameters φ∗ are equal to (φ∗
s,φ

∗
a,φ

∗
0) = (1,1,0) for the regular dv = 3 LDPC

codes, while in the case of the regular dv > 3 LDPC codes, φ∗ are equal to

(φ∗
s,φ

∗
a,φ

∗
0) = (1,1,1) which correspond to a deterministic SP-MS decoder with

offset λv = 1.

For very low precision messages q = 2, the only transition probability φ∗ is equal

to (φ∗
s) = (0) for the regular dv < 5 LDPC codes which correspond to a SP-MS

decoder without offset, while for the regular dv ≥ 5 LDPC codes, we obtain that

φ∗ is equal to (φ∗
s) = (1) which correspond to a SP-MS decoder with offset λv = 1.

When comparing the DE thresholds of the SP-MS decoders (see Table 4.4) and

the NAN-MS decoders (see Table 3.2 and Table 4.3), one can observe that the SP-MS

decoders achieve better DE thresholds for almost all (dv,dc)-regular LDPC codes tested,

the only exception appears for the regular (dv = 6,dc = 32) LDPC code and q = 4. The

largest gain obtained, when comparing the SP-MS thresholds and NAN-MS thresholds,

is around 0.1803 dB for the regular (dv = 6,dc = 32) LDPC code and q = 3. We can

conclude that the SP-MS decoders are better decoders compared to the NAN-MS, the

OMS, and the MS decoders.

Table 4.3 Noisy DE thresholds of NAN-MS decoders using the NIV model

NAN-MS decoders, (dv,dc)-regular LDPC code, BI-AWGN channel

(dv,dc) (qch, q) Method α∗ φ∗
s φ∗

a φ∗
0 δ̃db

(4,64) (3,3) Υ-NIV 0.57 0.988 0.988 0.000 4.6171
(4,4) 1.07 1.000 1.000 0.000 4.3872

(5,10) (3,3) Υ-NIV 0.94 1.000 1.000 0.338 2.6417
(4,4) 1.59 1.000 1.000 1.000 2.2306

(5,20) (3,3) Υ-NIV 0.74 0.987 0.987 0.225 3.1400
(4,4) 1.36 1.000 1.000 0.775 2.7596

(6,32) (3,3) Υ-NIV 0.69 1.000 1.000 0.425 3.5766
(4,4) 1.28 1.000 1.000 0.975 3.1685
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Table 4.4 Noisy DE thresholds of SP-NA-MS decoders and DE thresholds of SP-MS
decoders.

SP-NA-MS decoders SP-MS decoders

(dv,dc) (qch, q) α∗ φ∗
s φ∗

a φ∗
0 δ̃db DE gain α∗ (φ∗

s,φ
∗
a,φ

∗
0) δdb DE gain

(3,6)

(3,2) 0.48 0.050 − − 1.9033 − 0.48 (0,−,−) 1.9315 −
(3,3) 0.96 0.987 0.712 0.000 1.4994 0.2894 0.95 (1, 1, 0) 1.5096 0.2792
(4,3) 1.18 0.912 0.625 0.000 1.3726 − 1.16 (1, 1, 0) 1.3910 −
(4,4) 1.79 1.000 1.000 0.000 1.2688 0.0793 1.79 (1, 1, 0) 1.2688 0.0793

(3,12)

(3,2) 0.43 0.038 − − 2.7558 − 0.43 (0,−,−) 2.7696 −
(3,3) 0.72 1.000 0.725 0.000 2.5421 0.1895 0.71 (1, 1, 0) 2.5468 0.1848
(4,3) 1.04 0.888 0.500 0.000 2.3973 − 1.01 (1, 1, 0) 2.4115 −
(4,4) 1.34 1.000 0.938 0.000 2.3596 0.0888 1.36 (1, 1, 0) 2.3600 0.0884

(4,8)

(3,2) 0.67 0.350 − − 2.1952 − 0.74 (0,−,−) 2.2353 −
(3,3) 1.01 0.900 1.000 1.000 1.9820 0.3399 1.01 (1, 1, 1) 1.9824 0.3395
(4,3) 1.44 1.000 1.000 1.000 1.7720 − 1.44 (1, 1, 1) 1.7720 −
(4,4) 1.54 1.000 1.000 1.000 1.7306 0.0203 1.54 (1, 1, 1) 1.7306 0.0203

(4,16)

(3,2) 0.61 0.313 − − 2.8115 − 0.66 (0,−,−) 2.8411 −
(3,3) 0.75 1.000 0.962 0.712 2.7448 0.3184 0.78 (1, 1, 1) 2.7459 0.3173
(4,3) 1.27 1.000 1.000 1.000 2.5092 − 1.27 (1, 1, 1) 2.5092 −
(4,4) 1.30 1.000 1.000 1.000 2.4941 0.0351 1.30 (1, 1, 1) 2.4941 0.0351

(4,64)

(3,2) 0.53 0.300 − − 4.6034 − 0.57 (0,−,−) 4.6235 −
(3,3) 0.53 1.000 0.988 0.338 4.6015 0.1584 0.57 (1, 1, 1) 4.6120 0.1479
(4,3) 1.05 1.000 1.000 1.000 4.3791 − 1.05 (1, 1, 1) 4.3791 −
(4,4) 1.04 1.000 1.000 1.000 4.3790 0.0421 1.04 (1, 1, 1) 4.3790 0.0421

(5,10)

(3,2) 1.02 0.825 − − 2.5371 − 1.05 (1,−,−) 2.5445 −
(3,3) 1.12 1.000 1.000 0.987 2.4908 0.2171 1.12 (1, 1, 1) 2.4908 0.2171
(4,3) 1.64 1.000 1.000 1.000 2.2149 − 1.64 (1, 1, 1) 2.2149 −
(4,4) 1.57 1.000 1.000 1.000 2.2196 0.0110 1.57 (1, 1, 1) 2.2196 0.0110

(5,20)

(3,2) 0.86 0.800 − − 3.0164 − 0.88 (1,−,−) 3.0219 −
(3,3) 0.87 1.000 1.000 0.838 3.0106 0.2206 0.89 (1, 1, 1) 3.0137 0.2175
(4,3) 1.42 1.000 1.000 1.000 2.7379 − 1.42 (1, 1, 1) 2.7379 −
(4,4) 1.39 1.000 1.000 1.000 2.7412 0.0208 1.39 (1, 1, 1) 2.7412 0.0208

(6,32)

(3,2) 0.74 1.000 − − 3.3979 − 0.74 (1,−,−) 3.3979 −
(3,3) 0.74 1.000 1.000 1.000 3.3963 0.1965 0.74 (1, 1, 1) 3.3963 0.1965
(4,3) 1.22 1.000 1.000 1.000 3.1740 − 1.22 (1, 1, 1) 3.1740 −
(4,4) 1.18 1.000 1.000 1.000 3.1787 −0.0102 1.18 (1, 1, 1) 3.1787 −0.0102
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4.8.2 Asymptotic Analysis of SP-MS Decoders for Irregular

LDPC codes

Analyzing the regular LDPC codes we have seen that the optimum noise parameters

(φ∗
s,φ

∗
a,φ

∗
0) and the respective gains of SP-MS and SP-NA-MS decoders depend on the

VN degree. Therefore, in order to optimize the SP-MS decoders for the LDPC codes

with irregular VN distribution, we extend our optimization approach by considering

a noise injection model Υ with different values of the transition probabilities for

the different connection degrees. The precision considered for this optimization is

qch = q ∈ {3,4}.

Similar to Chapter 3 (Section 3.6), we consider Υ(2) : φ(2) =
(
φ

(2)
s ,φ

(2)
a ,φ

(2)
0

)
for dv =

2, Υ(3) : φ(3) =
(
φ

(3)
s ,φ

(3)
a ,φ

(3)
0

)
for dv = 3, and Υ(≥4) : φ(≥4) =

(
φ

(≥4)
s ,φ

(≥4)
a ,φ

(≥4)
0

)
for dv ≥ 4.

The optimization of the transition probabilities for an irregular LDPC code with

distribution (λ(x),ρ(x)) is still performed by the maximization of the noisy DE thresh-

olds:

(
φ(2)∗,φ(3)∗,φ(≥4)∗,α∗

)
= argmax(φ(2),φ(3),φ(≥4),α)

{
δ̃
(
λ(x),ρ(x), qch, q,α,φ

(2),φ(3),φ(≥4)
)}
.

(4.18)

The two WIMAX LDPC codes studied in Chapter 3 are used for our analysis, i.e.

the WIMAX codes with rate R ∈ {1/2,3/4} and length N = 2304.

Noisy DE thresholds are summarized in Table 4.5, where we indicate the optimum

channel gain factor α∗ and the optimum noise parameters
(
φ(2)∗,φ(3)∗,φ(≥4)∗

)
obtained

during the optimization process. Those results confirm the conclusions of the regular

LDPC codes analysis: (i) the DE thresholds of SP-MS and SP-NA-MS decoders are

better than the DE thresholds of NAN-MS, MS, and OMS decoders using the same

precision (see Tables 3.4, 3.5, and 4.5), (ii) the DE thresholds of SP-MS decoders are
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very close or equal to the DE thresholds of SP-NA-MS decoders since the optimized

values of the transition probabilities are very close to 0 or 1, and (iii) the optimum

value for φ∗
0 is 0 or it is close to 0 for dv = 3 VNs and for precision q = 3.

Table 4.5 DE thresholds of SP-NA-MS and SP-MS decoders for the WIMAX degree
distribution.

SP-NA-MS decoders SP-MS decoders
R qch = q α∗ dv φ∗

s φ∗
a φ∗

0 δ̃db DE gain α∗ (φ∗
s,φ

∗
a,φ

∗
0) δ̃db DE gain

1/2

3 bits
2 0.000 0.000 0.000 (0,0,0)

0.65 3 0.000 0.162 0.000 1.3997 0.4313 0.65 (0,0,0) 1.4003 0.4307
≥ 4 1.000 1.000 1.000 (1,1,1)

4 bits
2 0.000 0.000 0.000 (0,0,0)

1.24 3 0.250 1.000 0.375 0.9547 0.4394 1.24 (0,1,0) 0.9582 0.4359
≥ 4 1.000 1.000 1.000 (1,1,1)

3/4

3 bits
2 0.000 0.000 0.000 (0,0,0)

0.81 3 1.000 0.687 0.000 2.4433 0.3803 0.81 (1,1,0) 2.4451 0.3785
≥ 4 1.000 1.000 1.000 (1,1,1)

4 bits
2 1.000 0.788 0.000 (1,1,0)

1.48 3 1.000 1.000 1.000 2.2110 0.0306 1.49 (1,1,1) 2.2111 0.0305
≥ 4 1.000 1.000 1.000 (1,1,1)

Another conclusion can be derived from these tables for SP-MS decoders. From the

DE analysis we can conclude that the offset λv = 1 should not be applied on degree dv = 2

VNs for the case of low precision q= 3, since we obtain always (φ(2)
s ,φ

(2)
a ,φ

(2)
0 ) = (0,0,0).

While for the largest precision q = 4, the offset λv = 1 should be applied on degree

dv = 2 VNs for some cases. These observations, combined with the fact that the

optimum values for φ(≥4)∗ are always 1 which correspond to the offset λv = 1, lead to

the conclusion that the offset λv = 1 in SP-MS decoders must be chosen carefully for

irregular LDPC codes, especially for the VN degree dv = 2 and dv = 3.

Finally, the gains of the SP-MS decoders are greater when using irregular codes.

The gain of the rate 1/2 code is 0.4313 dB for the lower precision q = 3, and 0.4394 dB

for the largest precision q = 4. In the case of the rate 3/4 code, the gains for the two

considered precision q = 3 and q = 4 are smaller than for the rate 1/2 code. Obtaining

gains of 0.3803 dB and 0.0306 dB for q = 3 and q = 4, respectively.
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4.9 Finite Length Performance of Sign-Preserving

Min-Sum Decoders

In this section we present the frame error rate (FER) performance for noiseless

classical MS, noiseless classical OMS, SP-NA-MS, and SP-MS decoders. We analyze

the performance of these quantized decoders over the BI-AWGN channel in order to

corroborate the asymptotic results obtained in the previous section.

For this purpose, the PEG algorithm from [52] is used to design the regular

QC-LDPC codes. We designed:(i) two (dv,dc)-regular QC-LDPC codes with length

N = 1280, R ∈ {1/2,3/4} for dv = 5, and L= 128 for R = 1/2 and L= 64 for R = 3/4,

and (ii) one (dv,dc)-regular QC-LDPC codes with length N = 10240, R = 3/4 for

dv = 5, and L= 512. In addition, the four (dv,dc)-regular QC-LDPC codes presented

in Chapter 3 are used.

The considered decoders are the ones with the best DE thresholds, indicated in

bold in Table 4.2 and Table 4.4. The noiseless classical OMS decoder performance with

the largest precision q = 5 is also shown as benchmark.

A maximum of 100 iterations has been set for the regular (dv = 3,dc = 6) QC-LDPC

code. Fig. 4.5 shows the FER performance comparisons between the classical MS,

classical OMS, SP-MS, and SP-NA-MS decoders, for three considered precisions of

messages q ∈ {2,3,4}, and for the regular (dv = 3,dc = 6) QC-LDPC code. Fig. 4.6

draws the same curves for the regular (dv = 4,dc = 8) QC-LDPC code.

A first conclusion is that the finite length FER performances are in accordance

with the gains predicted by the DE analysis. We observe in the waterfall region (i.e. at

FER = 10−2) an SNR gain for the SP-MS decoders which corresponds to the threshold

differences (Table 4.4): around 0.27 dB for (qch = q = 3, dv = 3, R = 1/2) and 0.06 dB
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(3, 6)-regular LDPC, N = 1296

Classic OMS (5-bit),α = 2.625
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(3, 2)-bit, SP-NA-MS,α = 0.48
(4, 4)-bit, SP-MS,α = 1.79
(4, 3)-bit, SP-NA-MS,α = 1.18

(b) Precision q = qch and q = qch −1

Fig. 4.5 FER performance for (3,6)-regular QC-LDPC code.

for (qch = q = 4, dv = 3, R = 1/2), 0.32 dB for (qch = q = 3, dv = 4, R = 1/2), and the

same performance for (qch = q = 4, dv = 4, R = 1/2).
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(a) Precision q = qch
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(b) Precision q = qch and q = qch −1

Fig. 4.6 FER performance for (4,64)-regular QC-LDPC code.

Simulation results for the regular (dv = 4,dc = 64) QC-LDPC code of [9] are provided

on Fig. 4.7 with a maximum of 30 iterations. Again, the SNR gains in the waterfall

correspond to what was predicted with the DE analysis, with a 0.16 dB gain for

qch = q = 3 and 0.04 dB for qch = q = 4.
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(b) Precision q = qch and q = qch −1

Fig. 4.7 FER performance for (4,64)-regular QC-LDPC code.

On the other hand, from Fig. 4.5b, it is evident that the SP-MS decoders that use

the precision q = qch −1 exhibit very poor performance having an early error floor. In

the case of dv = 4 QC-LDPC decoders, see Fig. 4.7b, we can confirm again that the

SNR gains in waterfall correspond to the DE gains for the precision message q = qch −1,

but we can observe that the dv = 4 QC-LDPC decoders exhibit an early error floor.
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(b) Precision q = qch and q = qch −1

Fig. 4.8 FER performance for (5,20)-regular QC-LDPC code.

More simulation results for the case of the dv = 5 QC-LDPC decoders are shown in

Fig. 4.8. Once again it can be confirmed that gains predicted by DE correspond to the
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SNR gains, 0.20 dB for (qch = q = 3, dv = 5, R = 1/2), and 0.02 dB for (q = 4, dv = 5,

R = 1/2). Similarly, when the precision of messages equals q = qch −1, the SNR gains

correspond to the DE gains with a 0.20 dB gain for (qch = 3, q = 2) and a 0.02 dB gain

for (qch = 4, q = 3).

Simulation results for the IEEE 802.3 ETHERNET code are provided on Fig. 4.9

with a maximum of 30 iterations. Again, the SNR gains in the waterfall correspond

to what was predicted with the DE analysis, with a 0.19 dB gain for (qch = 3, q = 3)

and (qch = 3, q = 2), and the same performance is achieved for (qch = 4, q = 4) and

(qch = 4, q = 3).
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Fig. 4.9 FER performance for the ETHERNET code.

From Fig. 4.8b for dv = 5 QC-LDPC decoders and Fig. 4.9b for dv = 6 Reed-Solomon

LDPC (RS-LDPC) decoders, we can confirm and conclude that the (qch, q = qch −1)-bit

SP-MS decoders have the same performance as the (qch, q = qch)-bit SP-MS decoders,

except for the dv = 5 QC-LDPC decoders and precision (qch = 3, q = 2), in that case a

negligible loss of performance is observed. In the implementation part this has a great

impact, since it goes from the precision message q = qch to the precision q = qch − 1,

this implies a considerable reduction in the complexity of the CNs and VNs, as well as

a reduction in the number of wires in an ASIC implementation.
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We have made the same analysis for the other LDPC codes designed with rate

R= {1/2,3/4}, i.e. (dv = 4,dc = 8,N = 1296), (dv = 5,dc = 10,N = 1280), (dv = 3,dc =

12,N = 1296), (dv = 4,dc = 16,N = 1296), and (dv = 5,dc = 20,N = 1280), and obtained

the same conclusions.

Similarly, Fig. 4.10 and Fig. 4.11 present simulation results for the WIMAX rate

1/2 LDPC code and the WIMAX rate 3/4 B LDPC code, respectively, for a maximum

of 100 iterations. We observe again that the SNR gains in the waterfall region are

in agreement with the gains predicted by the DE analysis, with a 0.40 dB gain for

(qch = q = 3,R = 1/2), a 0.40 dB gain for (qch = q = 4,R = 1/2), a 0.37 dB gain for

(qch = q = 3,R = 3/4), and a 0.03 dB gain for (qch = q = 3,R = 3/4).

Additionally, for the WIMAX rate 1/2 LDPC code, the (qch = 3, q = 3)-bit SP-MS

decoder has the same FER performance as the 4-bit MS decoder. In the waterfall region,

the (qch = 4, q = 4)-bit SP-MS decoder has the same FER performance as the 5-bit

OMS decoder, while in the error floor region, the 5-bit OMS decoder has better FER

performance than the (qch = 4, q = 4)-bit SP-MS decoder. In the case of the WIMAX

rate 3/4 B LDPC code, the SP-MS decoders have better FER performance than the

MS and the OMS decoders in the error floor region using the same precision.
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Fig. 4.10 FER performance for the WIMAX LDPC code with R = 1/2.
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Fig. 4.11 FER performance for the WIMAX LDPC code with R = 3/4.

On the other hand, one can note that for regular and irregular LDPC codes, the

SP-MS decoders have a performance very close or even the same as the SP-NA-MS

decoders when the same precision is used, this means that the noise injected in SP-NA-

MS decoders can be ignored without affecting the performance of the SP-MS decoders

which is the same conclusion obtained in the previous section. Therefore, the most

important thing about SP-MS decoders is their nature, which is the preservation of the

sign of the messages exchanged between VNs and CNs during the decoding process.

Comparing the FER performance of the SP-MS decoders and the NAN-MS decoders,

we can clearly see that the SP-MS decoders have a better performance for both regular

codes and irregular codes, especially when the precision of the messages is low. We can

confirm again that the FER performances are in accordance with the gains predicted

by the DE analysis.

As a last remark, we can also see that the preservation of the sign of messages does

not seem to have an influence in the error floor of the decoders, since all the curves

have similar slopes in the low FER region. This means that the preservation of the

sign of messages does not correct the dominant error events due to trapping sets.
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4.10 Convergence Performance Analysis

In this section, we present the FER convergence performance for the (dv,dc)-regular

QC-LDPC codes, for the IEEE 802.3 ETHERNET code [6], and the two WIMAX

LDPC codes [7] used in Section 4.9. The FER is evaluated at each decoding iteration

for the classical MS, the classical OMS, the SP-NA-MS, and the SP-MS decoders over

the BI-AWGN channel.

FER Convergence results are presented on Fig. 4.12 for the regular (dv = 3,dc = 6)

QC-LDPC code, on Fig. 4.13 and Fig. 4.14 for the dv = 4 QC-LDPC codes, and on Fig.

4.15, Fig. 4.16, and 4.17 for the dv = 5 QC-LDPC codes. Also, Fig. 4.18 shows the FER

convergence performance for the IEEE 802.3 ETHERNET code. Similarly, Fig. 4.19

and Fig. 4.20 present FER convergence results for the WIMAX LDPC code. These

figures show that the SP-NA-MS and the SP-MS decoders are faster to find the correct

solution compared with classical MS and classical OMS decoders for a fixed precision

q = qch, a fixed degree distribution (λ(x),ρ(x)), and a fixed Eb/N0. It can be seen that

the FER curves of the SP-MS decoders decrease faster than the MS and the OMS

decoders. In addition, for low precision (qch, q = 3), the SP-MS decoders perform much

better than MS and OMS decoders along with the number of iterations increasing.

It can also be observed that the SP-MS decoders have the same FER convergence

performance as the SP-NA-MS decoders for a fixed precision q = qch.

One can note that for regular LDPC codes with dv > 4, the FER convergence

performance of the (qch, q = qch −1)-bit SP-MS decoders are almost equal or equal to

the FER convergence performance of (qch, q = qch)-bit SP-MS decoders, see Fig. 4.15b,

Fig. 4.16b, Fig. 4.17b, and Fig. 4.18b. In the case of the regular LDPC codes with

dv = 3 and dv = 4, the SP-MS decoders implemented with precision q = qch −1 exhibit
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Fig. 4.12 FER convergence comparison on (3,6)-regular QC-LDPC code at Eb/N0 = 3.0
dB.
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Fig. 4.13 FER convergence comparison on (4,8)-regular QC-LDPC code at Eb/N0 = 3.25
dB.
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Fig. 4.14 FER convergence comparison on (4,64)-regular QC-LDPC code at Eb/N0 = 5.2
dB for qch = {4,5} and at Eb/N0 = 5.3 dB for qch = 3.
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Fig. 4.15 FER convergence comparison on (5,10)-regular QC-LDPC code at Eb/N0 =
3.75 dB.
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Fig. 4.16 FER convergence comparison on (5,20)-regular QC-LDPC code at Eb/N0 =
4.25 dB.
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Fig. 4.17 FER convergence comparison on (5,20)-regular QC-LDPC code at Eb/N0 = 3.3
dB for qch = {4,5} and at Eb/N0 = 3.5 dB for qch = 3.
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Fig. 4.18 FER convergence comparison on the IEEE 802.3 ETHERNET code at
Eb/N0 = 4.75 dB.

worse FER convergence performance than the SP-MS decoders using q = qch due to

the early appearance of the error floor.

On the other hand, for all decoders tested using QC-LDPC codes with length

N ∈ {1296,1280}, one can set the maximum number of iterations to 20 because after

20 iterations the slopes of the curves change drastically. For the ETHERNET code,

a maximum of 10 iterations can be used for the SP-MS and decoders and precision

q ∈ {3,4}, while for the SP-MS decoders using precision q ∈ {2,3}, a maximum of

15 iterations can be used. In the case of the WIMAX code, 30 and 20 iterations as

maximum can be set for R = 1/2 and R = 3/4, respectively. From this analysis we can

say that the maximum number of iterations allowed in a SP-MS decoder will depend on

the length of the LDPC code N , the degree distribution (λ(x),ρ(x)), and the precision

used (qch, q).

Let us analyse further the FER convergence performance for the case of the IEEE

802.3 ETHERNET code. During the first 10 decoding iterations, the (4,4)-bit SP-

MS and the (4,3)-bit SP-MS decoders have almost the same FER performance as

the 5-bit OMS decoders. We can observe that the SP-MS, MS, and OMS decoders
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decrease slowly and in some cases they do not decrease after 15 iterations. Also, at

Eb/N0 = 4.75 dB (Fig. 4.18), the (3,3)-bit SP-MS and the (3,2)-bit SP-MS decoders

with 15 iterations reach the FER= 10−6. Similarly, the 4-bit OMS decoder with 9

iterations, the (4,4)-bit SP-MS and the (4,3)-bit SP-MS decoders with 8 iterations,

and the 5-bit OMS decoder with 7 iterations reach the FER= 10−6. We can also see

that during the first 10 decoding iterations, the FER curve of the (4,3)-bit SP-MS

decoder is almost an iteration away from the FER curve of the 5-bit OMS decoder.

In the case of the WIMAX rate 1/2 LDPC code at Eb/N0 = 2.0 dB (Fig. 4.19), we

can see that (4,4)-bit SP-MS decoder has the same FER performance as the 5-bit OMS

decoder throughout the first 30 iterations. It can also be seen that the (3,3)-bit SP-MS

can achieve the same FER performance as the 4-bit MS decoder using 5 iterations

more on average. For the WIMAX rate 3/4 B LDPC code at Eb/N0 = 3.25 dB (Fig.

4.20), we observe that the SP-MS decoders have better FER performance than the MS

and the OMS decoder throughout the iterations using the same precision (qch, q).
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Fig. 4.19 FER convergence comparison on the WIMAX rate 1/2 LDPC code at
Eb/N0 = 2.0 dB.

From all the results presented, we can conclude that (i) the SP-MS and the SP-

NA-MS decoders have almost the same convergence speed, (ii) the SP-MS decoders
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Fig. 4.20 FER convergence comparison on the WIMAX rate 3/4 B LDPC code at
Eb/N0 = 3.25 dB.

converge faster than the MS and the OMS decoders when the same precision is used,

(iii) the SP-MS decoder uses fewer iterations than the the MS and the OMS to reach

at a fixed value of FER.

The SP-NA-MS and the SP-MS decoders are the best decoders because these

decoders use the sign information of the messages. Specifically at the VNs, the sign of

the c-to-v messages is used to increase the reliability of the v-to-c messages and the

APP, this causes the decoder to converge faster, i.e. a smaller number of iterations is

used. We can note that if the reliability of the APPs increases then the reliability of

the estimated bits also increases, i.e. the estimated codeword is more reliable.

4.11 Conclusion

In this chapter we have proposed a new message passing iterative LDPC decoder

defining a sign-preserving factor which helps the decoder to keep the sign information

of extrinsic messages during the VNU processing. The sign-preserving factor helps to

improve the error-correcting performance of finite precision iterative decoders. We have

also proposed a noise model to introduce randomness in the optimization process of
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the proposed decoder. Density Evolution was used to optimize our SP-MS decoder

performance. The analysis conducted with DE has shown that the preservation of

sign of messages is always beneficial for low precision SP-MS decoders. Further DE

analysis has shown that the noise injected in the SP-NA-MS decoders can be ignored

without degrading their error-correcting performance, specially when the optimized

transition probabilities are very close or equal to 0 or 1. Also, the DE thresholds results

have shown that the precision of messages can be reduced by one bit maintaining the

same error-correcting performance. The finite-length Monte Carlo simulations have

corroborated the DE analysis and DE thresholds. We have also shown that the SP-MS

decoders converge faster and use fewer iterations than the MS and OMS decoders.

From our study, an efficient implementation of SP-MS decoders can be made in a

full-parallel architecture because the reduction of one bit in the precision of messages

implies a considerable reduction in the complexity of the CNU and the VNU, and a

great reduction in the total number of wires in the architecture. The cost that is paid

for reducing the precision of the messages is the early appearance of the error floor,

specially for the regular dv = 3 and dv = 4 LDPC codes.

The next chapter discusses the implementation of the (qch, q)-bit SP-MS decoders

for regular LDPC codes, for the IEEE 802.3 ETHERNET code, and for the WIMAX

LDPC code with rate R = 1/2.



Chapter 5

Implementation of Sign-Preserving

Min-Sum Decoders

This Chapter presents the hardware implementation results of SP-MS decoders, first

several LDPC decoders are studied, then the case of the IEEE 802.3 ETHERNET

code is studied in detail. In particular, we presents two methods (one of them new)

to efficiently mitigate the error floor at high levels of SNR. The resulting design of

a 28 nm place and route ASIC shows very good results compared to state of the art

implementations.

The outline of this chapter is as follows. The first section of this chapter presents

rapidly the state of the art of highly parallel decoders. In the second section, we propose

a fully parallel architecture to implement the MS, the OMS, and the SP-MS decoders

for regular and irregular LDPC codes. The third section reports the the implementation

results of the various regular and irregular LDPC decoders. The fourth section briefly

discusses the trapping-sets for the IEEE 802.3 ETHERNET code. In the fifth section,

we propose a post-processing architecture using the same precision for messages and

LLRs. We also propose an architecture that implements the SP-MS decoder for the

IEEE 802.3 ETHERNET code. In the sixth section, we introduce a new post-processing
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algorithm for low precision decoders. Also, we present a fully parallel architecture that

implements the proposed algorithm. The architecture is conceived for SP-MS decoders

that use different precision for messages and LLRs. The seventh section reports the

implementation results of the two proposed post-processing architectures. Also, the

place and route results for two SP-MS decoders are listed, and the eighth section

concludes this chapter.

5.1 Overview of Existing Hardware Implementa-

tions

In the past twenty years, the implementation of the OMS-based decoders in FPGAs

and in CMOS technologies (ASIC implementations) has been studied and reported

[53–58]. In the literature, we can find works that implement quantized decoders using

a fully parallel architecture [55, 56, 58, 57]. A parallel architecture is desirable for

high-throughput applications, but it does not efficiently use the implementation area

and presents routing congestion problems. In [59], the authors have show that the

area of a parallel architecture is determined by routing congestion and not by the gate

count. The routing congestion problem of a parallel LDPC decoder can be reduced

using a layer architecture [23, 60, 61]. In [62] a bit serial architecture is proposed to

alleviate the routing problem, but bit serial architecture greatly reduces the decoding

throughput. In [54], the authors use a grouping strategy of wires to reduce the routing

congestion, the strategy consists of dividing the wires into global wires and local

wires obtaining a partial-parallel architecture. Another strategy to reduce the routing

congestion is to reduce the precision of messages, this strategy is used in [23] using

the nonsurjective finite alphabet iterative decoder (NS-FAID), and in [63] using the

FAID and an unrolled full-parallel architecture [64, 65] . The stochastic-based decoders
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[66, 58] and the noisy gradient descent bit flipping decoder [67] use 1 bit of precision

for the messages helping to solve the problem of routing congestion.

Although it is true that quantized decoders have good error correction performance

at low SNR levels (waterfall region), at high SNR levels the slope of the FER curve

often changes drastically degrading the error correction capability (error floor region).

This phenomenon called floor error is usually caused by small trapping-sets [68]. In

communication standards such as the IEEE 802.3 standard (10GBASE-T ETHERNET)

that requires an error-free operation below the FER level of 10−10, the early appearance

of the error floor degrades the service. Many algorithms have been proposed in the

literature in order to lower the error floor [54, 69–73]. The IEEE 802.3 ETHERNET

code is one of the most studied regular LPDC codes to perform an implementation,

several architectures and decoders have been proposed [63, 54–58, 74, 67]. The WIMAX

LDPC code with rate R = 1/2 and length N = 2304 has also received important

attention to carry out its implementation [60, 23, 61, 75–77].

In this work, in order to achieve high decoding speeds, we propose a fully parallel

architecture to implement the MS, the OMS, and the SP-MS decoders for regular

and irregular LDPC codes. We investigate whether the SP-MS decoder uses an area

equivalent to or greater than the area used by the MS and the OMS decoder. We also

investigate in what percentage the area of the SP-MS decreases when the precision

of the messages goes from q = qch bits to q = qch − 1 bits. On the other hand, the

error floor of the IEEE 802.3 ETHERNET code is studied because the SP-MS decoder

exhibit an error floor at a FER level of 10−8 making the SP-MS unacceptable.

In order to lower the error floor of SP-MS decoders, this work proposes a new

post-processing algorithm based on the algorithm of [69, 54]. In addition, this work

proposes two fully parallel post-processing architectures: (i) the first architecture adapts

the post-processing algorithm of [69, 54] and uses the same precision for messages and
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for LLRs, and (ii) the second architecture incorporates the proposed post-processing

algorithm and uses different precision for messages and for LLRs.

Almost all the results of the area used and the power consumed by the decoders

are obtained by making only the synthesis (FPGA and ASIC) of the decoders. At the

moment that the place and route results are presented, it will be clearly stated.

5.2 Hardware Architecture of Sign-Preserving

Min-Sum Decoders

In this section, we propose a fully parallel architecture for Sign-Preserving Min-Sum

decoders that can be easily adaptable to implement the MS or the OMS decoders. The

proposed architecture performs a decoding iteration per clock cycle in order to achieve

very high throughput and ensure efficient use of hardware resources.

The input and output signals of the architecture are shown in Fig. 5.1. We can

observe that the input signals are clk which is the global clock, rst which is a signal

that puts the architecture in initial conditions, go which is a signal that allows the

decoding process, and DecInput (of qch ×N bits) which is the quantized version of the

LLRs computed by In = Q∗ (LLR(yn)) ∈ AS for n= 1, . . . ,N . We can also see that the

output signals are Codeword which is an estimated codeword x̂ = (x̂1, ..., x̂N ) ∈ {0,1}N ,

EndIter indicates the end of the current decoding process, it can be set to 1 if a valid

codeword is obtained or if the maximum number of iteration is reached, and EndSyndr

which is a signal equal to 0 if and only if a valid codeword is obtained. At the beginning

of the architecture’s operation, the reset signal is set to rst= 1 in order to initialize

all signals. To start the decoding process, the signal go is set to 1 while reset equals

rst= 0.
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Our architecture is composed of four main components: VNU, CNU, Count of

Iterations, and Compute Syndrome. For a fixed degree distribution (λ(x),ρ(x)),

it is sufficient to change the component VNU to implement the MS or the OMS

for regular or irregular LDPC codes. It should be noted that for a regular code

(ρ(x) = xdc−1), only one type of CNU is implemented, while in the case of irregular

codes (ρ(x) = ∑dc,max

j=2 ρjx
j−1), various types of CNUs are implemented. It is worth

mentioning that a C code has been written to generate the architecture from the

description of a sparse parity-check matrix H. Those components are shown in Fig. 5.1

and they are discussed as follows.

5.2.1 Count of Iterations

This component is responsible for counting the decoding iterations. From Fig. 5.1, we

can see that the input signals are clk, rst, and initialize, and the output signal is maxIter.

The count of the iterations is controlled by the signal initialize. When initialize= 1, the

v-to-c messages are initialized with the quantized LLRs In using S(In,Nq), therefore, no

iteration is counted and maxIter = 0. In the case that initialize= 0, the architecture

performs the decoding process and one iteration is counted per each clock cycle, it

should be noted that maxIter = 1 if and only if the maximum number of iteration is

reached, otherwise maxIter = 0.

5.2.2 Compute Syndrome

This component is an asynchronous circuit and computes the syndrome at each decoding

iteration. Its input signals are rst, go, maxIter, and decision which has N information

bits, and its output signals are EndSyndr, EndIter, and codeword which is an estimation

of the transmitted codeword over a noisy channel.
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When the decoding process is enabled, i.e. rst = 0 and go = 1, the syndrome

vector is computed in each decoding iteration using decision x̂. A correct codeword

is obtained when the syndrome vector is all-zero, i.e. Hx̂T = 0, in this conditions

we have EndIter = 1 and EndSyndr = 0. If a valid codeword is not computed, the

value of EndSyndr is equal to 1. When the decoder reach the maximum number of

iterations, i.e. maxIter = 1, we set EndIter = 1, and decision can be a valid codeword

(EndSyndr = 0 ) or not (EndSyndr = 1).

5.2.3 VNU Component

The proposed architecture uses N VNU components. A VNU vn component is a

synchronous circuit that has as input signals to clk, rst, initialize, c-to-v messages

mc→vn , c ∈ V(vn), of q bits, and the quantized LLR In of qch bits, while the output

signals are v-to-c messages mvn→c of q bits and the estimated bit x̂n.

In order to implement the equations (4.6) and (4.5) in hardware we define the map-

ping functions T , Tch, and T −1. The c-to-v messages are mapped with T (a) = sign(a)×

(2×|a|+1), while the quantized LLR is mapped using Tch (a) = sign(a)× (2×|a|+ ξ).

A v-to-c message is obtained using the function T −1 (a) = (sign(a),(|a|−1)/2). These

functions are shown in Fig. 5.1, as well as the function Υ∗. The function Υ∗ is defined

as Υ∗ (a) = (sign(a),S (max(|a|−λ∗
v,0),2Nq +1)), where λ∗

v ∈ {0,2} is the offset value.

From Table 4.4 and Table 4.5, λ∗
v = 0 if the transition probability (φ∗

s, φ∗
a, or φ∗

0) of

SP-MS decoders is 0, in the case that the transition probability is 1 we have λ∗
v = 2.

In the decoding process, i.e. initialize= 0, at each new clock cycle, the APP value

γ∗
n is computed by γ∗

n = Tch (In) + T (mc1→vn) + ...+ T
(
mcdv →vn

)
. Then, each v-to-c

message is computed by subtracting the corresponding c-to-v message from the APP

value γ∗
n and by applying the functions Υ∗ and T −1 to the result of the subtraction,

i.e. mvn→ci = T −1 (Υ∗ (γ∗
n −T (mci→vn))) for i= 1, ...,dv.
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The estimated bit x̂n is obtained from the sign of γ∗
n and the sign of the quantized

LLR In as follows: if γ∗
n = 0 we have x̂n = sign(In), otherwise x̂n = sign(γ∗

n).

5.2.4 Check Node Component

The proposed architecture uses M CNU components. Each CNU cm is an asynchronous

circuit that receives v-to-c messages mv→cm from the neighboring VNs v ∈ V(cm). Note

that each received message is represented by q bits. Among all received messages, the

CNU cm computes the smallest element min1 and the second smallest element min2

(min2 ≥ min1), as well as the product of signs sign1of these messages. With those

values, the function W is defined as W (a,sign,min1,min2) = (sign(a) × sign,min2)

if |a| = min1, otherwise W (a,sign,min1,min2) = (sign(a) × sign,min1). The c-to-v

messages mcm→v, which are the outputs of the CNUs, are computed using mcm→v =

W (mv→cm , sign,min1,min2) and sent to the VNUs v, with v ∈ V(cm).

Fig. 5.2 shows a timing diagram of the main signals of the proposed architecture.

The decoding process starts only when go = 1. When the architecture is enabled to

perform the decoding, go= 1 and rst= 0, only for one clock cycle the signal initialize

is 1 and it is used to initialize the registers of the VNUs with the quantized LLRs

In. The decoding process is performed when initialize= 0 and go= 1. When a valid

codeword is obtained (EndSyndr = 0) or the maximum number of iteration is reached

(maxIter = 1), the signal EndIter is equal to 1 and the decoding process ends and

other codeword can be decoded. One should note that at the same time that a codeword

is decoded (EndIter = 1), e.g. I − b, another codeword, e.g. I − c, can initialize the

registers of the VNUs (see Fig. 5.2 at clock cycle 12).

1 In binary representation sign can be obtained performing the xor function between the MSBs of
m

(ℓ)
v→cm , with v ∈ V(cm).
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We define the decoding throughput of the fully parallel architecture as

Throughput = N ×Freq
Lmax

, Gbit/s (5.1)

where Freq (in GHz) is the operating frequency and Lmax is the maximum number of

clock cycles to decode a codeword.

5.3 Implementation Results of SP-MS Decoders

and MS-Based Decoders

5.3.1 Synthesis results on FPGA

In this section, we present the synthesis result of the proposed architecture on the Xilinx

XC7V2000T-1FLG1925 FPGA chip for various LDPC codes with different rates and

lengths. The main available resources of the FPGA are: (i) 2,443,200 Slice Registers,

(ii) 1,221,600 Slice LUTs, and (iii) 351,321 LUT-FF pairs.

The FPGA resource utilization of the MS, OMS, and SP-MS decoders is listed in

Table 5.1 for the (dv,dc)-regular LDPC codes considering fully parallel architecture. In

addition, the maximum frequency that each decoder can reach is listed. The length of

the regular LDPC code is N = 1296 for dv ∈ 3,4, N = 1280 for dv = 5, and N = 2048

for dv = 6 (ETHERNET code).

From the results obtained, one can see that the maximum frequency of (qch = 3, q =

3)-bit SP-MS decoders is slightly higher compared to the maximum frequency of the

(qch = 3, q = 3)-bit MS and (qch = 3, q = 3)-bit OMS decoders. For the precision (qch =

4, q= 4), the maximum frequency of SP-MS decoders is close or slightly higher compared

to the maximum frequency of the MS and the OMS decoders. When comparing the

use of FPGA resources by different decoders, one can observe that on average (in
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Table 5.1 Synthesis results on FPGA of the MS, OMS, and SP-MS decoders for the
(dv,dc)-regular LDPC codes.

(dv,dc)-regular LDPC code
Precision (qch = 3, q = 3) Precision (qch = 4, q = 4)

(dv,dc) Decoder
Max. Number Number Number of Max. Number Number Number of
Freq. of slice of slice fully used Freq. of slice of slice fully used

(MHz) registers LUTs LUT-FF pairs (MHz) registers LUTs LUT-FF pairs

(3,6)
MS 150.524 16854 152030 16854 128.295 22038 248147 16854

OMS 143.184 16854 144252 12966 105.303 22038 205812 16854
SP-MS 153.566 16854 148212 16854 120.613 22038 268019 16854

(4,8)
MS 127.389 20742 219608 16854 114.666 27222 284670 22038

OMS 129.618 20742 212316 16854 107.968 27222 263046 22038
SP-MS 133.631 20742 139741 16854 113.891 27222 250546 22038

(5,10)
MS 121.575 24326 285527 20486 98.338 32006 330973 26886

OMS 122.066 24326 260454 20486 104.819 32006 318941 26886
SP-MS 134.174 24326 294016 24326 103.864 32006 303822 26886

(6,32)
MS 112.705 45061 482236 45061 73.451 59397 696906 51205

OMS 111.100 45061 463739 38917 87.790 59397 666300 51205
SP-MS 114.071 45061 358221 45061 90.435 59397 638093 59397

some cases a little more and in other cases a little less) the SP-MS decoder uses as

many resources as the MS and the OMS decoder. Therefore, we can conclude that the

complexity increment of the SP-MS decoder is negligible compared to the MS and

OMS decoders when the same precision is used.

Table 5.2 shows the case of SP-MS decoders in which the message precision is

different from the LLR precision for the IEEE ETHERNET code. From the obtained

synthesis results, we can clearly see that the (qch, q = qch −1)-bit SP-MS decoders use

less resources than the (qch, q = qch)-bit SP-MS decoders. A large savings of FPGA

resources can be observed: around 27% of slice registers and 35% of slice LUTs for the

precision (qch = 3, q = 2) compared to (qch = 3, q = 3), and 20% of slice registers and

10% of slice LUTs for the precision (qch = 4, q = 3) compared to (qch = 4, q = 4).

The synthesis results of the WIMAX rate 1/2 LDPC code is listed in Table 5.3.

The results show that the maximum frequency reached by the SP-MS decoders is a

little higher than the maximum frequency of the MS and OMS decoders. Also, for both
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Table 5.2 Synthesis results on FPGA of the SP-MS decoders for the IEEE 802.3
ETHERNET code.

IEEE 802.3 ETHERNET code, SP-MS decoders

(qch, q)
Max. Number Number Number of Throughput
Freq. of slice of slice fully used with 10 iter

(MHz) registers LUTs LUT-FF pairs (Gbps)
(3,3) 114.071 45061 (0.0%) 358221 (0.0%) 45061 (0.0%) 23.3617
(3,2) 123.843 32773 (−27.27%) 232797 (−35.01%) 32773 (−27.27%) 25.3630
(4,4) 90.435 59397 (0.0%) 638093 (0.0%) 59397 (0.0%) 18.5211
(4,3) 91.329 47109 (−20.68%) 571194 (−10.48%) 38917 (−34.48%) 18.7042

precisions qch = q = 3 and qch = q = 4, when comparing the use of FPGA resources,

the SP-MS decoders use a little less resources compared to the MS and OMS decoders.

In this case, the complexity of the SP-MS decoder architecture is not increased.

Table 5.3 Synthesis results on FPGA of the SP-MS decoders for the WIMAX LDPC
code.

WIMAX LDPC code with R = 1/2
Precision (qch = 3, q = 3) Precision (qch = 4, q = 4)

Decoder
Max. Number Number Number of Max. Number Number Number of
Freq. of slice of slice fully used Freq. of slice of slice fully used

(MHz) registers LUTs LUT-FF pairs (MHz) registers LUTs LUT-FF pairs
MS 121.730 31110 234400 31110 106.646 40710 361542 31494

OMS 123.844 31110 250685 24198 103.659 40710 397438 31494
SP-MS 130.316 31110 223382 31110 111.557 40710 342105 31494

5.3.2 ASIC synthesis results

This section reports the ASIC synthesis results for the MS, OMS, and SP-MS decoders

using the 28 nm Fully Depleted of Silicon-on-Insulator (FDSOI) library at 0.9 V supply

voltage and temperature of 125 ◦C.

The timing constraints used to perform the synthesis of all decoders are: (i) 0.05

ns of clock skew, (ii) 0.5 ns of output delay, and (iii) T −0.2 ns of input delay, where
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T is the clock period (in ns) obtained from the operating frequency of the decoder, i.e.

T = 1/Freq.

In order to measure the increase or decrease in complexity and power consumption

of the SP-MS decoders, we list the area and power of each VNU/CNU of the MS, OMS,

and SP-MS decoders in Table 5.4, Table 5.5, and Table 5.6. It must be taken into

account that these tables were obtained considering an isolated VNU and an isolated

CNU. One can note that for a fixed precision (qch, q) and a fixed degree distribution

(λ(x),ρ(x)), the same CNU is used to implement the MS, the OMS, and the SP-MS

decoder. Therefore, the difference of the MS, OMS, and SP-MS decoders lies in the

VNU.

From the results presented in Table 5.4, we can observe that a VNU of the SP-MS

decoder uses less area than a VNU of the OMS decoder and more area than a VNU of

the MS decoder. In other words, the VNU of the proposed decoder (SP-MS) helps to

reduce the area used by the architecture of the OMS decoder. Also, when comparing

the power consumption of the VNU, the SP-MS consumes less power than the OMS and

more power than the MS. Fig 5.3 shows the area utilization and power consumption of

a VNU of degree dv = 6 for the MS, OMS, and SP-MS decoders.

Table 5.5 and Fig. 5.4 show the area utilization and power consumption of a VNU

of the SP-MS decoder when the precision of the messages goes from q = qch bits to

q = qch − 1 bits. One can note that a VNU/CNU of the (qch, q = qch − 1)-bit SP-MS

decoder helps to reduce the area used and the power consumed by a VNU/CNU of the

(qch, q = qch)-bit SP-MS decoder. For the case of the precision (qch = 3, q = 2) : (i) the

CNU reduces an area of 459.73 µm2 by 59.82% to 184.74 µm2, i.e. a saving of around

60% is achieved, and (ii) the VNU reduces an area of 446.2 µm2 by 24.47% to 337.0

µm2. In the case of the precision (qch = 4, q = 3), (i) the CNU helps to reduce an area

of 883.24 µm2 by 47.95% to 459.73 µm2 (saving approximately 50% of the area), and
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Table 5.4 ASIC synthesis results using the 28 nm FDSOI library for only one VNU of
degree dv and only one CNU of degree dc.

(dv,dc)-regular LDPC code
Precision (qch = 3, q = 3) Precision (qch = 4, q = 4)

(dv,dc) Decoder
Variable-Node Check-Node Variable-Node Check-Node

Freq. Area Power Area Power Freq. Area Power Area Power
(MHz) (µm2) (µW) (µm2) (µW) (MHz) (µm2) (µW) (µm2) (µW)

(3,6)
MS 186.05 92.375 239.25 121.0

OMS 800 225.05 101.90 81.76 20.396 800 291.15 140.2 173.64 44.724
SP-MS 195.51 100.70 258.84 134.7

(4,8)
MS 269.28 124.3 337.66 162.9

OMS 700 338.80 143.9 110.81 29.005 700 420.57 189.8 228.15 58.902
SP-MS 306.0 141.7 384.17 182.6

(5,10)
MS 328.36 140.7 411.75 185.1

OMS 600 415.99 167.0 139.86 38.437 600 515.38 220.0 282.66 74.726
SP-MS 362.47 161.2 456.63 207.5

(6,32)
MS 394.8 178.4 494.2 232.6

OMS 600 499.2 214.0 459.73 165.7 600 618.5 280.5 883.24 237.3
SP-MS 446.2 208.9 558.8 266.1

Table 5.5 ASIC synthesis results using the 28 nm FDSOI library for only one VNU of
degree dv = 6 and only one CNU of degree dc = 32.

IEEE 802.3 ETHERNET code, SP-MS decoders
Precision Variable-Node Check-Node

(qch, q)
Freq. Area Power Area Power

(MHz) (µm2) (µW) (µm2) (µW)
(3,3)

600 446.2 (0.0%) 208.9 (0.0%) 459.73 (0.0%) 165.7 (0.0%)
(3,2) 337.0 (−24.47%) 137.1 (−34.37%) 184.74 (−59.82%) 121.8 (−26.49%)
(4,4)

600 558.8 (0.0%) 266.1 (0.0%) 883.24 (0.0%) 237.3 (0.0%)
(4,3) 450.6 (−19.36%) 209.9 (−21.12%) 459.73 (−47.95%) 165.7 (−30.17%)
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Fig. 5.3 The area utilization and power consumption of a VNU of the IEEE 802.3
ETHERNET code for the MS, OMS, and SP-MS decoders.
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(ii) the VNU reduces the area by 19.36%, i.e., from 558.8 µm2 to 450.6µm2. When

comparing the power consumption, one can see a power consumption saving of 34.37%

(from 208.9 µW to 137.1 µW) for the VNU and very low precision (qch = 3, q = 2).

More results are shown in the Table 5.5.

We can conclude that using one bit less to represent the messages, The VNU and

especially the CNU can greatly reduce the area used to implement the (qch, q = qch −1)-

bit SP-MS decoder compared to the area used by the (qch, q = qch)-bit SP-MS decoder.

Table 5.6 ASIC synthesis results using the 28 nm FDSOI library for the degree
distribution (λ(x),ρ(x)), with λ(x) = 22

76x+ 24
76x

2 + 30
76x

5 and ρ(x) = 48
76x

5 + 28
76x

6

WIMAX rate 1/2 LDPC code

q Decoder
VN of dv = 2 VN of dv = 3 VN of dv = 6 CN of dc = 6 CN of dc = 7

Freq. Area Power Area Power Area Power Area Power Area Power
(MHz) (µm2) (µW) (µm2) (µW) (µm2) (µW) (µm2) (µW) (µm2) (µW)

3
MS 132.35 51.979 186.05 81.314 394.78 206.7

OMS 700 158.47 55.339 225.05 89.759 499.23 247.8 81.76 20.396 93.84 24.760
SP-MS 117.83 48.683 162.06 76.941 446.19 242.1

4
MS 171.36 67.890 239.25 106.5 494.17 269.6

OMS 700 205.96 75.328 291.15 123.4 618.53 325.0 173.64 44.724 195.19 52.270
SP-MS 156.83 63.223 259.98 116.2 558.79 308.6
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Fig. 5.5 The area utilization and power consumption of VNUs of the WIMAX rate 1/2
LDPC code for the MS, OMS, and SP-MS decoders using q = 3 bits of precision.
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The ASIC synthesis results for the WIMAX rate 1/2 LDPC code are shown in

Table 5.6 considering three VNUs of degree dv = 2 ∈ {2,3,6}, and two CNUs of degree

dc ∈ {6,7}. Similar to the case of regular LDPC codes, the CNUs are the same for

the MS, OMS, and SP-MS decoders, hence, the complexity of the architecture lies

in the VNUs. From the results, one can see that: (i) for dv = 2, the VNU of the

SP-MS decoders is the smallest (compared to the other two VNUs) and is the one that

consumes less power, the same is true for (dv = 3, q = 3), and (iii) for the VNU with

(dv = 3, q = 4), the SP-MS decoder uses less area than the OMS and more area than

the MS, the same happens for the VNU of dv = 6. Fig 5.5 shows the area utilization

and power consumption of the three VNUs for the MS, OMS, and SP-MS decoders.

Let us now present the ASIC synthesis results for the fully parallel architecture.

One should note that for a fixed precision (qch, q) and a fixed degree distribution

(λ(x),ρ(x)), the total number of wires is the same for the MS, OMS, and SP-MS

decoders. To implement the three decoders (MS, OMS, and SP-MS), we only need to

use the appropriate VNU in the architecture presented in Fig. 5.1. Hence, the area used

by the decoders is linear to the area used by a single VNU. But the power consumption

of the decoder is not linear to the power consumption of a single VNU, this is because

in the decoder a VNU is no longer isolated but interacts with the CNUs.

In order to measure the energy needed to decode a bit for the fully parallel

architecture, we define the energy per decoded bit (EpB) given by

EpB = Power
Throughput , pJ/bit (5.2)

where Throughput (in Gbps) is the decoding throughput, and Power (in mW) is the

power dissipation of the quantized decoder.

Analyzing the results obtained for (dv,dc)-regular LDPC decoders listed in Table

5.7, two conclusions can be stated: (i) the SP-MS decoder helps reduce the area used
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by the OMS decoder when the same precision is used, and (ii) the SP-MS decoder

always consumes slightly more power than the MS and OMS, i.e. the SP-MS decoder

uses slightly more energy to decode a bit. To compute the decoding throughput, we

consider Lmax = 20 for dv ∈ {3,4,5} and Lmax = 10 for dv = 6.

Table 5.7 ASIC synthesis results using the 28 nm FDSOI library for (dv,dc)-regular
LDPC codes, with N = 1296 for dv ∈ {3,4}, N = 1280 for dv = 5, and N = 2048 for
dv = 6

(dv,dc)-regular LDPC code, BI-AWGN channel
Precision (qch = 3, q = 3) Precision (qch = 4, q = 4)

(dv,dc) Decoder
Freq. Area Power EpB Throughput Freq. Area Power EpB Throughput

(MHz) (mm2) (mW) (pJ/bit) (Gbps) (MHz) (mm2) (mW) (pJ/bit) (Gbps)

(3,6)
MS 0.298417 114.56 2.2099 0.426875 171.52 3.3086

OMS 800 0.352821 102.10 1.9695 51.84 800 0.551994 182.48 3.5201 51.84
SP-MS 0.310467 127.62 2.4618 0.508916 193.39 3.7305

(4,8)
MS 0.428281 134.71 2.9698 0.588991 203.17 4.4791

OMS 700 0.522132 119.08 2.6252 45.36 700 0.738115 200.73 4.4253 45.36
SP-MS 0.475490 151.35 3.3366 0.714808 225.82 4.9784

(5,10)
MS 0.519925 137.64 3.5844 0.714616 211.81 5.5159

OMS 600 0.631893 121.01 3.1513 38.40 600 0.850135 197.48 5.1427 38.40
SP-MS 0.561353 168.54 4.3891 0.778968 224.12 5.8365

(6,32)
MS 1.007180 189.64 1.5433 1.365748 299.58 2.4380

OMS 600 1.221662 211.45 1.7208 122.88 600 1.658770 290.65 2.3653 122.88
SP-MS 1.105530 336.91 2.7418 1.540191 419.17 3.4112

Let us now study the SP-MS decoders considering that the message precision

is different from the LLR precision. Table 5.8 shows the area utilization and power

consumption for the dv = 6 RS-LDPC decoders, also, the decoding throughput and the

energy per decoded bit are listed. For a frequency of 600 MHz with a maximum of 10

iterations, the minimum throughput reached is 122.88 Gbps. The average number of

decoding iterations in a SP-MS decoder at Eb/N0 = 4.75 dB is around 3, hence, the

decoding throughput reached is around 409.60 Gbps.

From the results, we can confirm and conclude that the (qch, q = qch −1)-bit SP-MS

decoder uses less area and consumes less power than the (qch, q = qch)-bit SP-MS

decoder. We can observe that the (qch = 3, q = 2)-bit SP-MS decoder reduces an area

of 1.105 mm2 by 29.96% down to 0.774 mm2, i.e. a saving of around 30% is achieved,
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and the (qch = 4, q = 3)-bit SP-MS decoder reduces an area of 1.540 mm2 by 27.60%

to 1.115 mm2 (saving approximately 28% of the area). When comparing the power

consumption, one can see a power consumption saving of 28.11% (from 336.91 mW to

242.19 mW) for very low precision (qch = 3, q = 2), while for precision (qch = 4, q = 3),

the reduction of power consumption is 22.73%, i.e., from 419.17 mW to 323.91 mW.

Table 5.8 ASIC synthesis results using the 28 nm FDSOI library for the (qch, q)-bit
SP-MS decoders.

IEEE 802.3 ETHERNET code, SP-MS decoders
Precision Freq. Area Power EpB Throughput
(qch, q) (MHz) (mm2) (mW) (pJ/bit) (Gbps)
(3,3)

600 1.105530 (0.0%) 336.91 (0.0%) 2.7418 (0.0%) 122.88
(3,2) 0.774331 (−29.96%) 242.19 (−28.11%) 1.9709 (−28.11%)
(4,4)

600 1.540191 (0.0%) 419.17 (0.0%) 3.4112 (0.0%) 122.88
(4,3) 1.115132 (−27.60%) 323.91 (−22.73%) 2.6360 (−22.73%)

Precision : (qch, q)
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Fig. 5.6 Total number of wires of a fully parallel architecture for the (qch, q)-bit SP-MS
decoders.

As we implement the decoders using a fully parallel architecture (N VNUs and M

CNUs), the total number of wires used for the SP-MS decoder depends on the precision

used, specifically of the precision used by the messages, i.e the total number of wires

depends on q. Fig. 5.6 depicts the total number of wires of the ETHERNET code for
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the (qch, q)-bit SP-MS decoders. When the precision q goes from 3 bits to 2 bits, the

reduction of wires is 33.33%, in the case that the precision q goes from 4 bits to 3 bits,

a reduction of 25% of wires is obtained. One can note that the (4,3)-bit SP-MS and

the (3,3)-bit SP-MS use the same amount of wires.

Fig. 5.7 illustrates the area used for the (qch, q)-bit SP-MS decoders. We can see that

the (3,2)-bit SP-MS decoder is the smallest decoder, the (4,4)-bit SP-MS decoder is the

biggest decoder, and the (4,3)-bit SP-MS decoder occupies an area slightly greater than

the (3,3)-bit SP-MS decoder. Fig. 5.8 shows the area used and the power consumption

for the MS, OMS, and SP-MS decoders. One can observe that the (qch, q = qch −1)-bit

SP-MS decoder is the smallest decoder, and it consumes slightly more power than the

MS and OMS decoder.
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Fig. 5.7 The area utilization and power consumption of the (qch, q)-bit SP-MS decoders.

From the analysis of the SP-MS decoders using qch bits LLRs and q bits messages,

with q ∈ {2,3,4} and qch ∈ {3,4}, we can conclude that: (i) the (3,2)-bit SP-MS decoder

will always be the smallest decoder, (ii) the (qch, q = qch)-bit SP-MS decoder always

occupies an area smaller than the (qch, q = qch)-bit OMS decoder, and (iii) the (4,3)-bit
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Fig. 5.8 The area utilization and power consumption of the MS, OMS, and SP-MS
decoders considering the IEEE 802.3 ETHERNET code.

SP-MS decoder occupies an area slightly greater than the (3,3)-bit SP-MS decoder

(both decoders have the same number of wires).

Although it is true that the results presented, considering q = qch −1, are for the

(dv = 6,dc = 32)-regular LDPC code (IEEE 802.3 ETHERNET code), the conclusions

(i) and (ii) can be extended for other (dv,dc)-regular LDPC codes.

Table 5.9 ASIC synthesis results using the 28 nm FDSOI library for the WIMAX
LDPC code with R = 1/2 and N = 2304

Irregular LDPC code, BI-AWGN channel
Precision (qch = 3, q = 3) Precision (qch = 4, q = 4)

Decoder
Freq. Area Power EpB Throughput Freq. Area Power EpB Throughput

(MHz) (mm2) (mW) (pJ/bit) (Gbps) (MHz) (mm2) (mW) (pJ/bit) (Gbps)
MS 0.598627 227.76 2.4714 0.816824 289.99 3.5961

OMS 800 0.747223 209.81 2.2766 92.16 700 1.003706 293.92 3.6448 80.64
SP-MS 0.608703 247.91 2.6900 0.913862 306.86 3.8053

Table 5.9 summarizes the ASIC synthesis results for the WIMAX rate 1/2 LDPC

code. The decoding throughput is computed considering Lmax = 20. Those results

confirm the conclusions of the regular LDPC codes analysis: (i) the (qch, q = qch)-bit

SP-MS decoder occupies less area than the (qch, q = qch)-bit OMS decoder, (ii) the

SP-MS decoder consumes slightly more power than the MS and OMS, i.e. the SP-MS
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decoder uses slightly more energy to decode a bit when using q = qch. Fig. 5.9 depicts

the area utilization and power consumption of the decoders considered.
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Fig. 5.9 The area utilization and power consumption of the WIMAX rate 1/2 LDPC
code for the MS, OMS, and SP-MS decoders

5.4 The (8,8) absorbing set in SP-MS decoders

It is well known that trapping sets [68] are responsible for the loss of performance with

the appearance of the error-floor of MP decoders in high SNR values. It is worth noting

that the effect of quantization and saturation of messages can exacerbate the effect

of the trapping sets. Of course the appearance of the error depends on the precision

and the decoding algorithm used [17]. In the literature, a general (a,b) trapping set is

defined as a set of a VNs which induces a subgraph with exactly b odd-degree CNs

and an arbitrary number of even-degree CNs.

Absorbing sets were introduced in [78, 69, 79]. The authors have defined an absorbing

set as a particular kind of trapping set [68]. Let us take the notations for an (a,b)
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absorbing set given in [78, 69, 79]: (i) D denotes the absorbing set of size a, (ii) O(D)

denotes the set of unsatisfied CNs, where the size of O(D) is b, (iii) N(D) denotes

the set of VNs connected to the unsatisfied CNs in O(D), and (iv) S(D) denotes

the set of neighboring satisfied CNs to the VNs in N(D), and it is composed for the

falsely satisfied CNs and for the correctly satisfied CNs. An example of of an (4,4)

fully absorbing set is depicted in Fig. 5.10b.

This chapter studies and analyzes the (8,8) trapping sets of the IEEE 802.3

ETHERNET ((2048,1723) RS-LDPC code). It has been shown that all (8,8) trapping

sets are fully absorbing sets [69], hence |O(D)| = 8, |N(D)| = 256, and |N(D)\D| = 248.

Also, the error-floor exhibited by quantized (2048,1723) RS-LDPC decoders (without

an post-processing algorithm) is around 10−8 of FER and is mainly due to (8,8)

trapping-sets [69, 80]. The (qch, q)-bit SP-MS decoder also exhibits the appearance

of the error between 10−7 and 10−8 of FER as shown in Fig. 5.11. The IEEE 802.3

ETHERNET code is selected to provide an error-free operation below the bit error rate

(BER) level of 10−12 which corresponds to a frame error rate (FER) ≈ 10−10. Hence,

the need to correct the (8,8) absorbing set errors that are the dominant trapping sets

and are the main responsible for the error-floor.

5.5 SP-MS Decoder with Post-Processing Using

the Same Precision for Messages and LLRs

5.5.1 Post-Processing

In high-speed quantized decoders, the decoder can not know the absorbing set D,

it is only possible to know the sets N(D), O(D), and S(D) in order to correct the

absorbing set errors. In [69, 54], the authors have defined a post-processing algorithm
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ERNET code.

implemented in a 4-bit OMS decoder (with qch = q = 4). The post-processing algorithm

consists in biasing messages, specifically all messages from CNs in O(D) to VNs in

N(D) are set to a strong value, denoted strong, and all messages from CNs in S(D)

to VNs in N(D) are set to a weak value, denoted weak.

The post-processing algorithm implemented in the (qch, q = qch)-bit SP-MS decoder

uses the same principle as the algorithm proposed in [69]. In SP-MS decoders, it is

sufficient to know the set of unsatisfied CNs O(D) to correct the (8,8) absorbing set

errors. It is worth noting that knowing the set O(D) one can identify all the VNs

connected to the unsatisfied CNs.

Two decoding steps are performed to correct the absorbing set errors:

1. [SP-MS decoder]

Decode a codeword with the SP-MS decoder for a fixed number of iterations. If

the syndrome vector is not all-zero, continue with the next step.
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2. [Post-processing]

(a) Only in a single iteration, all messages from CNs in O(D) to VNs in N(D)

are set to strong, and all messages from CNs in S(D) to VNs in N(D) are

set to weak.

(b) The decoding process continues with the SP-MS decoder until the syndrome

vector is all-zero or the maximum number of iterations is reached.

Note that step (a) can be done locally at the VNU level and its procedure is

described in the following section.

5.5.2 Post-Processing Architecture

This section presents an architecture designed mainly to correct the (8,8) absorbing set

errors. The (qch, q = qch)-bit SP-MS decoder and the message biasing are implemented

together, thus adding only a little complexity to the decoder. Fig. 5.12 shows the

proposed fully parallel architecture to correct the (8,8) absorbing set errors knowing

only the unsatisfied CNs. The input signals of the architecture are clk, rst, go, DecInput

of q×N bits, while the output signals are Codeword, EndIter, and EndSyndr. These

input and output signals behave the same as the signals of the architecture shown in

Fig. 5.1, i.e. the decoding process is enabled when go= 1 and rst= 0, a valid codeword

is obtained when EndSyndr = 0, and the decoding process ends when EndIter = 1.

The proposed architecture is composed of five main components: VNU, CNU,

Count of Iterations, Compute Syndrome, and Usatisfied CNs. The VNU com-

ponent implements the post-processing, and the CNU component sends information

about whether a CN is a satisfied CN or an unsatisfied CN. Let us discuss the five

main components of the proposed architecture.
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Count of Iterations

The input signals of this component are clk, rst, and initialize, and the output signals

are maxIter, and Itpp. Let us denote by Lpp ∈ N the iteration number where the post-

processing is enabled. One iteration is counted per each clock cycle when initialize= 0,

in the case of initialize = 1 the v-to-c messages are initialized and no iteration is

counted. Only when the count of iterations is equal to Lpp, the signal Itpp is set to 1,

otherwise Itpp is always 0. Similarly, we have maxIter = 1 if and only if the maximum

number of iterations is reached, otherwise we have maxIter = 0.

CNU Component

The proposed architecture uses M = 384 CNU components. Each CNU cm is an

asynchronous circuit that sends information about whether a CN is a satisfied CN or

an unsatisfied CN.

Let us denote by S = (S1,S2, ...,SM ) ∈ {0,1}M the syndrome vector, given by

S =Hx̂T , where x̂ is an estimation of a codeword x. When the vector x̂ (computed

from the APPs) is a valid codeword, the syndrome vector is all-zero (S = 0), i.e. each

CNU cm is a satisfied CN. Each element Sm of the syndrome vector informs us about

whether the CN is a satisfied CN (Sm = 0) or an unsatisfied CN (Sm = 1).

We can compute Sm as Sm = [hmn]x̂T for n= 1, ...,N , but this calculation can be

replaced by Sm = ∏
vn∈V(cm) sign(mvn→cm) avoiding calculating the APPs and thus

relaxing the computation of the syndrome vector S. In other words, one can use the

v-to-c message mvn→cm instead of the APP γn to compute S. This is because mvn→cm

and γn are estimates of the bit value associated with the VN vn, of course, γn give us

a higher reliability than mvn→cm .

The CNU cm also computes min1 and min2, with min2 ≥ min1. It is worth

mentioning that the product of signs sign of all incoming messages to the CN cm is
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equal to Sm, i.e. sign = Sm. Fig. 5.12 shows sign as an output signal. Note that in

binary representation, the sign product of the v-to-c messages is determined by the

XOR logic of the MSBs of the v-to-c messages. Using those notations, the function W ∗

at a CNU cm is defined as W ∗(a,Sm,min1,min2) = (Sm,min2) if |a| =min1, otherwise

W (a,Sm,min1,min2) = (Sm,min1).

In the proposed architecture, the c-to-v messages m∗
cm→v, with v ∈ V(cm), are

computed as m∗
cm→v = W (mv→cm ,Sm,min1,min2). The most significant bit of the

c-to-v message m∗
cm→v carries information about whether the CNU cm is a satisfied

CN or an unsatisfied CN.

Compute Syndrome

This component is an asynchronous circuit. Its input signals are rst, go, maxIter, and

SyndrVect of M bits (syndrome vector S), and its output signals are EndSyndr and

EndIter which are computed at each decoding iteration.

When the decoding process is enabled, i.e. rst= 0 and go= 1, EndSyndr is deter-

mined with the OR logic of all the values of the syndrome vector, hence, a correct

codeword is obtained when EndSyndr= 0 and the decoding process ends (EndIter= 1).

When EndSyndr = 1, a valid codeword is not computed and the decoding process

continues (EndIter = 0). When maxIter = 1, we have EndIter = 1, and EndSyndr

can be 0 or 1.

VNU Component

The proposed architecture uses N = 2048 VNU components. A VNU vn component

is a synchronous circuit that has as input signals to clk, rst, initialize, post, c-to-v

messages m∗
c→vn

, c ∈ V(vn), and the quantized LLR In, while the output signals are

v-to-c messages mvn→c and the estimated bit x̂n.
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The mapping functions T , Tch, and T −1 defined to implement SP-MS de-

coders do not change, see Section 5.2. The function V of Fig. 5.12 is defined as

V (a,b) = (sign(a)× sign(b), |b|). The correct c-to-v message mc→vn is obtained as

mc→vn = V
(
mvn→c,m

∗
c→vn

)
.

Let denote bi, with i= 1,2, ...dv, the sign of the c-to-v message m∗
ci→vn

, bi carries

information about whether the CNU ci is a satisfied CN or not. The product of signs

(prd) of the c-to-v message, i.e. prd = ∏
i∈{1,...,dv} bi, gives us the information about

whether the VN vn is connected to an unsatisfied CN ci. Specifically, if prd= −1 (in

binary representation prd= 1) then the VN vn is connected to 1, 3, or 5 unsatisfied

CNs.

The architecture shown in Fig. 5.12 is designed to correct the (8,8) absorbing set

errors. Only when the signal post = 1 (obtained in iteration Lpp) and when prd =

−1, the message biasing is applied, i.e. the message mci→vn is mapped to strong if

bi = −1 (in binary representation bi = 1), otherwise, the message mci→vn is mapped

to weak. Let us take the example of a VN vn connected to an unsatisfied CN c1,

and five satisfied CNs ci with i = 2, ...,6. Considering post = 1, we have: (i) γ∗
n =

Tch (In) + T (strong) + 5 × T (weak), and (ii) mvn→c1 = T −1 (Υ∗ (γ∗
n −T (strong))),

and mvn→ci = T −1 (Υ∗ (γ∗
n −T (weak))) for i= 2, ...,6.

For the proposed architecture, we determine by simulation that the optimal value of

weak and strong are: (i) weak = (sign(m),00) and strong = (sign(m),11) for precision

qch = q = 3, and (ii) while for precision qch = q = 4, weak = (sign(m),001) and strong =

(sign(m),111), where m=mc→vn . It must be taken into account that weak and strong

always keep the sign of the c-to-v message mc→vn .
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Unsatisfied CNs

This component is a synchronous circuit. Its input signals are clk, rst, and SyndrVect of

M bits (S), and its output signal is UnCN. Let us denote by Sx̂ the sum of all values of

the syndrome vector S (computed from x̂), i.e. Sx̂ is given by Sx̂ = S1 +S2 + ...+SM .

In other words, Sx̂ gives us the number of unsatisfied CNs, for example, in an (8,8)

fully absorbing set, we have Sx̂ = 8.

In a VNU vn when post = 1 and when prd = −1, the c-to-v message mc→vn can

be mapped to weak or strong. The change in the magnitude of the message mc→vn is

adequate if the codeword has converged into an (8,8) absorbing set (or others absorbing

sets like the (7,12), (11,6) absorbing sets, etc), that is, when the decoder operates in

the error-floor region at high values of SNR (Eb/N0 > 4.5 dB). In the case that the

codeword has not yet converged into an absorbing set, i.e. the decoder operates in the

waterfall region, the change in the magnitude of c-to-v message mc→vn will corrupt

the decoding process making decoding much more complicated.

Unsatisfied CNs component adds a control signal UnCN to the architecture and

it is used to control the enabling of post-processing. The signal UnCN is set to 1 if

and only if the number of unsatisfied CNs is less than a threshold τ (e.g. τ = 31), i.e.

Sx̂ < τ .

Using the signals UnCN and Itpp, the signal post is calculated as post= UnCN

AND Itpp. Therefore, the message biasing is applied only when UnCN = 1 and Itpp= 1.

Fig. 5.13 shows a timing diagram of the main signals of the proposed post-processing

architecture. We consider 9 iterations of SP-MS and 6 iterations of message biasing, a

maximum of 15 iterations, Sx̂ < 21.
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5.5.3 Performance results

In this section, we present the FER performance of the proposed architecture for the

two considered precisions qch = q = 3 and qch = q = 4.

Fig. 5.14 shows the FER convergence results at Eb/N0 = 4.5 dB for the SP-MS,

SP-MS + post-processing (PP) without the unsatisfied CNs component, and SP-MS

+ PP considering Sx̂ < 21 and Sx̂ < 31. We can see that the SP-MS + PP without

controlling the number of unsatisfied CNs give us the worst FER/BER performance

after enabling post-processing. The FER/BER performance of the SP-MS + PP is not

degraded when the number of unsatisfied CNs is controlled considering Sx̂ < 21. In the

case of Sx̂ < 31, a slight degradation of FER/BER performance is observed. Therefore,

Unsatisfied CNs component with τ = 21 helps the SP-MS decoder + PP to avoid

decoding performance degradation in the waterfall region.

Iterations
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(6, 32)-regular LDPC, N = 2048, SNR = 4.5 dB

(3, 3)-bit SP-MS, LLR(yn) = 5× yn
(3, 3)-bit SP-MS(9 iter) + PP
(3, 3)-bit SP-MS(9 iter) + PP, Sx̂ < 31
(3, 3)-bit SP-MS(9 iter) + PP, Sx̂ < 21

(a) Precision q = qch = 3.
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(4, 4)-bit SP-MS(9 iter) + PP, Sx̂ < 31
(4, 4)-bit SP-MS(9 iter) + PP, Sx̂ < 21

(b) Precision qch = 4.

Fig. 5.14 FER (solid lines) and BER (dashed lines) convergence comparison on the
IEEE 802.3 ETHERNET code at Eb/N0 = 4.5 dB using a maximum of 9 iterations of
(qch, q = qch)-bit SP-MS and 21 iterations as maximum of post-processing.

The average number of iterations to correct the (8,8) absorbing set errors is listed

in Table 5.10. We can see that approximately 4 (resp. 3) iterations are required for

post-processing when qch = q = 3 bits (resp. qch = q = 4) of precision is considered.
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Table 5.10 Average number of iterations for post-processing using (Lpp −1) iterations
as maximum of the (qch, q = qch)-bit SP-MS + (Lmax −Lpp +1) iterations as maximum
of post-processing.

Average number of iterations for post-processing

SNR (dB)
(3,3)-bit SP-MS, Lmax = 15 (4,4)-bit SP-MS, Lmax = 15
Lpp −1 = 9 Lpp −1 = 10 Lpp −1 = 9 Lpp −1 = 10

4.75 3.43 3.37 3.18 3.12
4.8 3.49 3.44 3.10 3.07
4.9 3.40 3.37 3.22 3.17
5.0 3.36 3.30 3.04 2.99

The proposed architecture of Fig. 5.12 for precision (qch = 3, q = 3) is implemented

in an FPGA to evaluate its performance. Two decoders are emulated: (i) the first one

using a maximum of 11 iterations of the (3,3)-bit SP-MS + 8 iterations as maximum

of post-processing, and the second one using a maximum of 9 iterations of the (3,3)-bit

SP-MS + 6 iterations as maximum of post-processing. Emulations results show that the

error-floor is lowered below the FER of 10−10 in the error-floor region, as is shown in

Fig. 5.15. Also, the emulation confirms that in the waterfall region, the error correction

performance is not degraded.

Simulation results for precision (qch = 4, q = 4) are provided in Fig. 5.16 using

a maximum of 9 iterations of the (4,4)-bit SP-MS + 6 iterations as maximum of

post-processing. Again one can see that the FER performance is not degraded in the

waterfall region, and the error floor can be lowered below the FER of 10−10. The point

at SNR level of 5.0 dB is obtained by dividing the number of error frames collected by

the total number of frames. Similarly for the point at SNR level of 4.75 dB.

The emulation and simulation results show that the proposed architecture can be

used for the IEEE 802.3 ETHERNET code.
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Fig. 5.15 FER performance of the (3,3)-bit SP-MS decoder with post-processing
obtained by FPGA emulation for the IEEE 802.3 LDPC code.
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Fig. 5.16 FER performance of (4,4)-bit SP-MS decoder with post-processing for the
IEEE 802.3 ETHERNET code..
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5.6 SP-MS Decoder with Post-Processing Using

Different Precision for Messages and LLRs

5.6.1 Post-Processing

In the previous section, the post-processing (message biasing) proved to be very

effective in correcting the (8,8) absorbing set errors for precision qch = q ∈ {3,4}. But

for precision (qch = 3, q = 2), message biasing can only correct around 30% of all the

(8,8) absorbing set errors collected at high SNR levels, as is shown in Table 5.11. For

example, from the 281 (8,8) absorbing set errors obtained from the (3,2)-bit SP-MS

decoder at an SNR of 4.9 dB, the message biasing can only correct 92 (8,8) absorbing

set errors, i.e. 67.26% of the (8,8) absorbing set errors are not corrected. Since more

than 60% of all the (8,8) absorbing set errors are not corrected, an error floor emerges

at a FER level of 10−8, this makes the (3,2)-bit SP-MS decoder unacceptable for the

IEEE 802.3 ETHERNET code.

The (3,2)-bit SP-MS decoder is a very special case because the mes-

sage alphabet AS = {−1,−0,+0,+1} and the decoder input alphabet AL =

{−3,−2,−1,−0,+0,+1,+2,+3} are very small. Fig. 5.17 shows the LLR distribu-

tion of the (8,8) fully absorbing sets for the (3,2)-bit SP-MS decoder. The results

are obtained considering the all-zero codeword sent over the BI-AWGN channel. We

can see that the quantized LLR associated with the bits in the set D (|D| = 8) are in

majority −3, −2, and −1. When message biasing is used, the maximum magnitude of

strong can only be |strong| =Nq = 1, while the minimum magnitude of weak can only

be |weak| = 0. With these values, an erroneously estimated bit could not be corrected if

the associated LLR is very large (−3 or −2). It is for this reason that message biasing

can not correct all the (8,8) absorbing set errors.
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Fig. 5.18 depicts the behavior of the APPs (γ) for an (8,8) absorbing set when

post-processing (message biasing) is enabled in the (3,2)-bit SP-MS decoder. We can

see the 8 APPs associated with the 8 wrong bits in iteration Lpp −1. In iteration Lpp,

the message biasing changes the APP values as is shown in Fig. 5.18b. In iteration

Lpp + 1, two bits of the (8,8) absorbing set are corrected because the two APPs

associated with these two bits are positive. While in iteration Lpp +2, one bit corrected

in iteration Lpp + 1 becomes an incorrect bit again. Finally, after 4 iterations since the

post-processing started, the same (8,8) absorbing set is obtained again as is shown in

Fig. 5.18e.

In order that the (3,2)-bit SP-MS decoder meets with the performance requirement

of the ETHERNET standard, a new post-processing algorithm is introduced based on

message biasing. The proposed post-processing algorithm to correct the (8,8) absorbing

set errors of the (qch, q = qch −1)-bit SP-MS decoder is described below:

1. [SP-MS decoder]

Decode a codeword with the SP-MS decoder for a fixed number of iterations. If

the syndrome vector is not all-zero, continue with the next step.

2. [Post-processing]

(a) [Only in a single iteration]

i. Message biasing: map all messages from CNs in O(D) to VNs in N(D)

to |strong| =Nq, and map all messages from CNs in S(D) to VNs in

N(D) to |weak| = 0.

ii. Compute the APP: for each VN vn in N(D), the APP is computed from

the channel observation In and from all c-to-v messages whose magni-

tudes are |strong| =Nq or |weak| = 0, i.e. γ∗
n = Tch (In)+T (strong)+

5×T (weak) .
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iii. Compute a new LLR: for each VN vn, a new LLR is computed if the

APP γ∗
n and the quantized LLR In satisfy the inequalities A∗

1 ≤ |γ∗
n| ≤A∗

2

(A1 ≤ |γn| ≤A2) and L1 ≤ |In| ≤ L2, respectively. The magnitude of the

new LLR is always equal to 0, and its sign is obtained flipping the sign

of In.

(b) [For a few more iterations]

The decoding process continues with the SP-MS using the new LLRs until

the syndrome vector is all-zero or a maximum number of iterations is reached.

We determine by simulation that the optimal values used in the inequalities are

A∗
1 = 4 (A1 = 2), A∗

2 = 14 (A2 = 7), L1 = 0, and L2 = 2 for the (3,2)-bit SP-MS decoder.

In the case of the (4,3)-bit SP-MS decoder, we have A∗
1 = 0 (A1 = 0), A∗

2 = 14 (A2 = 7),

L1 = 0, and L2 = 4.

The proposed post-processing algorithm is very efficient to correct the (8,8) ab-

sorbing set errors compared to the message biasing, especially for very low precision

(qch = 3, q = 2). Table 5.11 shows the number of uncorrected (8,8) absorbing set errors

considering Sx̂ < 21. We can see that for very low precision (qch = 3, q= 2), the proposed

post-processing corrects all the (8,8) absorbing errors at SNR = 4.9 dB and SNR = 5.0

dB, while the message biasing can not correct around 68% of the (8,8) absorbing set

errors. For the case of the (4,3)-bit SP-MS decoder, the message biasing can also be

used as post-processing, but a slight amount of the (8,8) absorbing set errors can not

be corrected using message biasing, as is shown in Table 5.11.

Using the proposed post-processing, Fig. 5.19 shows the behavior of the APPs to

correct the (8,8) absorbing set used in Fig. 5.18. In iteration Lpp − 1, we observe the 8

APPs associated with the 8 wrong bits. In iteration Lpp, all messages from CNs in O(D)

to VNs in N(D) are set to strong, and all messages from CNs in S(D) to VNs in N(D)

are set to weak. Hence, the APP γn is computed for each VN vn, as is shown in Fig.
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5.19b. The LLR In is mapped to (−sign,0) if 2 ≤ |γn| ≤ 7 and 0 ≤ |In| ≤ 2. In iteration

Lpp + 1, the first two bits of the (8,8) absorbing set are corrected. Also, the APPs

associated with the 6 wrong bits are close to 0. With 3 iterations of post-processing,

five bits are already corrected. Finally, all bits of the (8,8) absorbing set are corrected

after 4 iterations of the proposed post-processing algorithm, as is shown in Fig. 5.19e.

Table 5.11 Number of uncorrected (8,8) absorbing set errors by the proposed post-
processing and by message biasing (11 iterations of the (3,2)-bit SP-MS + 9 iterations
of post-processing, and 9 iterations of the (4,3)-bit SP-MS + 6 iterations of post-
processing).

IEEE 802.3 ETHERNET code, (qch, q)-bit SP-MS Decoder
Before post-processing After post-processing

Precision SNR run the SP-MS proposed post-proc. message biasing

(qch, q) (dB) Number of Average Number of Average Number of Average
(8,8) sets Sx̂ (8,8) sets Sx̂ (8,8) sets Sx̂

(3,2)

4.75 193 8.11 3 10 130 8.12
4.8 257 8.12 3 10 162 8.27
4.9 281 8.05 0 0 189 8.29
5.0 88 8.09 0 0 61 8.23

(4,3)

4.75 369 8.10 9 8.67 26 9.62
4.8 384 8.13 11 14.36 24 10.75
4.9 88 8.05 2 8 2 8
5.0 118 8 2 11 8 9

5.6.2 Post-Processing Architecture

The proposed post-processing architecture is a full parallel architecture which performs a

decoding iteration per clock cycle. This architecture only needs to know the unsatisfied

CNs in order to correct the (8,8) absorbing set errors. Fig. 5.20 shows the main

components and main signals of the proposed architecture, the input and output

signals behave the same as the signals of the architecture shown in Fig. 5.12.

The behaviour of the main signals of the proposed post-processing architecture

is depicted in Fig. 5.21. We consider 9 iterations of SP-MS and 6 iterations of post-

processing with a maximum of 15 iterations. Also, the number of unsatisfied CNs is less
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Fig. 5.17 LLR distribution of the (8,8) fully absorbing sets obtained using the (3,2)-bit
SP-MS decoder. The results provided are for 281 (8,8) absorbing set at SNR = 4.9 dB,
and for 88 (8,8) absorbing set at SNR = 5.0 dB.
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Fig. 5.18 A posteriori probability of the (3,2)-bit SP-MS decoder for an (8,8) absorbing
set. Behavior of the APPs in each iteration after enabling the post-processing (message
biasing).
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Fig. 5.19 A posteriori probability of the (3,2)-bit SP-MS decoder for an (8,8) absorbing
set. Behavior of the APPs in each iteration after enabling the new post-processing.
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than 21 (Sx̂ < 21). The post-processing starts when the iteration number ℓ equals Lpp.

Only when the signal post is equal to 1, i.e. when the number of unsatisfied CNs is less

than 21 (UnCN = 1) and when ℓ= Lpp (Itpp= 1), the messages from CNs in O(D) to

VNs in N(D) are mapped to strong, the messages from CNs in S(D) to VNs in N(D)

are mapped to weak, and the new LLRs are computed. Similar to the architecture

of Fig. 5.12, the architecture for precision (qch, q = qch −1) is composed of five main

components.

Count of Iterations

Like the case of precision (qch, q = qch), this component counts one iteration per each

clock cycle when initialize = 0. Only when the count of iterations equals Lpp, the

output signal Itpp is set to 1, otherwise Itpp is always 0. Similarly, only when the

maximum number of iteration is reached, maxIter = 1, otherwise maxIter = 0.

Compute Syndrome

This component is an asynchronous circuit that computes the syndrome vector S

in each decoding iteration using the input signal decision (x̂). The decoding process

ends when a valid codeword is obtained (S = 0), in this case the output signals are

EndIter= 1 and EndSyndr= 0. In the case that S ̸= 0, the decoding process continues

(EndIter = 0) until the maximum number of iterations is reached (maxIter = 1).

One should note that the output signal SyndrVect (S) carries information about

how many CNs are unsatisfied CNs. Also, unlike the architecture of Section 5.5 where

the CNUs compute the signal SyndrVect, in this case the Compute Syndrome

component is responsible for calculating the signal SyndrVect.
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CNU Component

Similar to the architecture of Section 5.5, the proposed architecture consists of M = 384

CNU components. Each CNU cm sends information about whether a CN is a satisfied

CN or an unsatisfied CN, specifically, the most significant bit (sign) of the c-to-v

messages (m∗
cm→v) carries that information. The value of sign is computed as sign=∏

vn∈V(cm) sign(mvn→cm), obtaining sign= +1 (in binary representation sign= 0) for

a satisfied CN or sign = −1 (in binary representation sign = 1) for an unsatisfied

CN. The CNU cm also computes min1 and min2, with min2 ≥ min1. Using those

values, the function W ∗ at a CN cm is given by W ∗(a,sign,min1,min2) = (sign,min2)

if |a| = min1, otherwise W (a,sign,min1,min2) = (sign,min1). The c-to-v messages

m∗
cm→v, with v ∈ V(cm), are computed using m∗

cm→v =W (mv→cm , sign,min1,min2).

VNU Component

The proposed architecture uses N = 2048 VNU components. The VNU component for

precision (qch, q = qch −1) is very similar to the VNU component of the architecture

presented in Section 5.5. Let us explain the two differences: (i) in the initialization

stage, i.e. initialize= 1, the v-to-c messages (mvn→c) are obtained by saturating the

quantized LLR In with the function S(In,Nq), and (ii) during the decoding process,

i.e. initialize= 0, and when the signal post= 1, a new LLR is computed if the APP γ∗
n

and the quantized LLR In satisfy the inequalities A∗
1 ≤ |γ∗

n| ≤ A∗
2 and L1 ≤ |In| ≤ L2,

respectively.

Unsatisfied CNs

This component is equal to the Usatisfied CNs component of the architecture

presented in Section 5.5, i.e. this component produces the signal UnCN = 1 if and

only if the number of unsatisfied CNs is less than τ (Sx̂ < τ).
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5.6.3 Performance results

In this section, we present the FER performance of the proposed architecture for

(qch = 3, q = 2) and (qch = 4, q = 3).

Fig. 5.22 shows the FER convergence results at Eb/N0 = 4.5 dB for the SP-MS,

and SP-MS + PP considering Sx̂ < 21. We can see that the FER/BER performance of

the SP-MS + PP is not degraded when the number of unsatisfied CNs is controlled

considering Sx̂ < 21. Therefore this confirms that the Unsatisfied CNs component

helps the SP-MS decoders to avoid decoding performance degradation in the waterfall

region when using post-processing.
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(3, 3)-bit SP-MS(9 iter) + PP, Sx̂ < 21
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(b) Precision qch = 4.

Fig. 5.22 FER (solid lines) and BER (dashed lines) convergence comparison on the
IEEE 802.3 ETHERNET code at Eb/N0 = 4.5 dB using a maximum of 9 iterations of
(qch, q = qch −1)-bit SP-MS and 21 iterations as maximum of post-processing.

Table 5.12 lists the average number of iterations to correct the (8,8) absorbing set

errors. Similar to the message biasing, the proposed post-processing requires 4 and 3

iterations for precision (qch = 3, q = 2) and (qch = 4, q = 3), respectively.

The architecture of Fig. 5.20 that implements our post-processing algorithm is

implemented in an FPGA for the case of very low precision (qch = 3, q= 2). Two decoders

are emulated to evaluate the performance of the architecture: (i) the first one using a
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Table 5.12 Average number of iterations for post-processing using (Lpp −1) iterations as
maximum of the (qch, q = qch −1)-bit SP-MS + (Lmax −Lpp +1) iterations as maximum
of post-processing.

Average number of iterations for the proposed post-processing

SNR (dB)
(3,2)-bit SP-MS, Lmax = 19 (4,3)-bit SP-MS, Lmax = 15
Lpp −1 = 9 Lpp −1 = 11 Lpp −1 = 9 Lpp −1 = 10

4.75 3.86 3.82 3.36 3.29
4.8 3.85 3.76 3.29 3.25
4.9 3.79 3.76 3.19 3.16
5.0 3.89 3.78 3.27 3.27

maximum of 9 iterations of the (3,2)-bit SP-MS + 10 iterations as maximum of post-

processing, and the second one using a maximum of 11 iterations of the (3,2)-bit SP-MS

+ 8 iterations as maximum of post-processing. Fig. 5.23 shows the emulations results,

one can see that the error-floor is lowered and excelled error correction performance

is obtained below the FER of 10−10, which renders the proposed architecture of the

(3,2)-bit SP-MS decoder acceptable for the IEEE 802.3 ETHERNET code. Also, the

emulations results confirm that the error correction performance is not degraded in

the waterfall region.

Fig. 5.24 shows the simulation results for precision (qch = 4, q = 3) using a maximum

of 9 iterations of the (4,3)-bit SP-MS + 6 iterations as maximum of post-processing.

One confirms again that the FER performance is not degraded in the waterfall region,

and the error floor can be lowered below the FER of 10−10. The point at SNR level

of 5.0 dB is obtained by dividing the number of error frames collected by the total

number of frames. Similarly for the point at SNR level of 4.75 dB.
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Fig. 5.23 FER performance of the (3,2)-bit SP-MS decoder with post-processing
obtained by FPGA emulation for the IEEE 802.3 LDPC code.
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Fig. 5.24 FER performance of (4,3)-bit SP-MS decoder with post-processing for the
IEEE 802.3 ETHERNET code..
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5.7 Implementation Results of SP-MS Decoder

with Post-Processing

In this section we present the implementation results of the post-processing architectures

considering Sx̂ < 21 for all decoders. Also, We consider 19 iterations as maximum for

precision (3,2), and 15 iterations as maximum for precision (3,3), (4,3), and (4,4).

5.7.1 Synthesis results on FPGA

This section reports the synthesis result of the proposed post-processing architectures

on the Xilinx XC7V2000T-1FLG1925 FPGA chip for the IEEE 802. LDPC code.

The FPGA resource utilization of the (qch, q = qch)-bit SP-MS and (qch, q = qch −1)-

bit SP-MS decoders is listed in Table 5.13 for the (dv = 6,dc = 32)-regular LDPC

code. Also, the maximum frequency that each decoder can reach is listed. From the

results obtained, one can see that the (qch = 3, q = 2)-bit SP-MS decoder reaches the

maximum frequency among the 4 SP-MS decoders. For the precision qch = 4, the

maximum frequency of the (qch = 4, q = 3)-bit SP-MS decoder is higher compared to

the maximum frequency of the (qch = 4, q = 4)-bit SP-MS decoder.

Comparing the resources used by the decoders on the FPGA, the (qch, q = qch −1)-

bit SP-MS decoders use less resources than the (qch, q = qch)-bit SP-MS decoders. We

can clearly see a large savings of FPGA resources: around 27% of slice registers and

31% of slice LUTs for the precision (qch = 3, q = 2), and 20% of slice registers and 37%

of slice LUTs for the precision (qch = 4, q = 3).
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Table 5.13 Synthesis results on FPGA of the SP-MS decoders with post-processing for
the IEEE 802.3 ETHERNET code.

IEEE 802.3 ETHERNET code, SP-MS decoders

(qch, q)
Max. Number Number Number of Throughput
Freq. of slice of slice fully used with 15 iter

(MHz) registers LUTs LUT-FF pairs (Gbps)
(3,3) 99.975 45064 (0.0%) 319809 (0.0%) 38920 (0.0%) 13.6499
(3,2) 103.659 32777 (−27.27%) 218923 (−31.55%) 32777 (−15.78%) 14.1529
(4,4) 87.987 59400 (0.0%) 587153 (0.0%) 51208 (0.0%) 12.0132
(4,3) 99.440 47112 (−20.69%) 366031 (−37.66%) 47112 (−8.0%) 13.5769

5.7.2 ASIC synthesis results

This section reports the ASIC synthesis results of the four SP-MS decoders with post-

processing using the 28 nm FDSOI library at 0.9 V supply voltage and temperature of

125 ◦C. The timing constraints used to perform the synthesis of the post-processing

architectures are the same as Section 5.3.

Table 5.14 ASIC synthesis results using the 28 nm FDSOI library for only one VNU of
degree dv = 6 and only one CNU of degree dc = 32, the post-processing algorithm is
implemented in the VNU.

IEEE 802.3 ETHERNET code, SP-MS decoders
Precision Variable-Node Check-Node

(qch, q)
Freq. Area Power Area Power

(MHz) (µm2) (µW) (µm2) (µW)
(3,3)

600 498.74 (0.0%) 276.1 (0.0%) 403.10 (0.0%) 105.7 (0.0%)
(3,2) 395.27 (−20.75%) 196.4 (−28.87%) 127.78 (−68.30%) 60.537 (−42.73%)
(4,4)

600 612.33 (0.0%) 340.2 (0.0%) 826.60 (0.0%) 177.5 (0.0%)
(4,3) 503.31 (−17.80%) 271.5 (−20.19%) 402.77 (−51.27%) 104.2 (−41.30%)

We list the area and power of an isolated VNU and an isolated CNU of the four

SP-MS decoders with post-processing in Table 5.14. One can note that a VNU/CNU

of the (qch, q = qch −1)-bit SP-MS decoder helps to reduce the area used and the power

consumed by a VNU/CNU of the (qch, q = qch)-bit SP-MS decoder. When the precision

of the messages goes from q = qch = 3 bits to q = qch − 1 = 2 bits, we can see that

(i) the CNU reduces an area of 403.10µm2 by 68.30% to 127.74µm2, i.e. a saving of
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around 70% is achieved, and (ii) the VNU reduces an area of 498.74µm2 by 20.75% to

395.27µm2. In the case that the precision goes from q = qch = 4 bits to q = qch −1 = 3

bits, (i) the CNU helps to reduce an area of 826.60µm2 by 51.27% to 402.77µm2 (saving

approximately 51% of the area), and (ii) the VNU reduces the area by 17.80%, i.e.,

from 612.33µm2 to 503.31µm2. When comparing the power consumption, one can see

a power consumption saving of 28.87% (from 276.1µW to 196.4µW) for the VNU and

very low precision (qch = 3, q = 2). More results are shown in the Table 5.14.

Like the SP-MS decoders without post-processing, for the SP-MS decoders with

post-processing, we can conclude that using one bit less to represent the messages, the

VNU and (especially) the CNU can greatly reduce the area used to implement the

(qch, q = qch −1)-bit SP-MS decoder compared to the area used by the (qch, q = qch)-bit

SP-MS decoder. Fig. 5.25 illustrates the are used for the power consumption by a single

VNU/CNU of the SP-MS decoders with post-processing.
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Fig. 5.25 The area utilization and power consumption by a single VNU/CNU of the
IEEE 802.3 ETHERNET code for q ∈ {2,3,4} bits of precision.

Let us now present the ASIC synthesis results for the fully parallel post-processing

architecture. Table 5.15 shows the area utilization and power consumption for the

dv = 6 RS-LDPC decoders, also, the decoding throughput and the energy per decoded
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bit are listed. We can observe that the (qch = 3, q = 2)-bit SP-MS decoder reduces an

area of 1.185 mm2 by 25.93% to 0.878 mm2, i.e. a saving of around 26% is achieved,

and the (qch = 4, q = 3)-bit SP-MS decoder reduces an area of 1.619 mm2 by 24.12%

to 1.229 mm2 (saving approximately 24% of the area). When comparing the power

consumption, one can see a power consumption saving of 22.59% (from 307.41 mW to

237.98 mW) for very low precision (qch = 3, q = 2), while for precision (qch = 4, q = 3),

the reduction of power consumption is 20.57%, i.e., from 383.25 mW to 304.41 mW.

For a frequency of 500 MHz, the minimum throughput reached is 68.27 Gbps for

precision (qch = 3, q = 2). While for precision (qch = 3, q = 3), (qch = 4, q = 3), and

(qch = 4, q = 4), the minimum throughput reached is 53.89 Gbps. The average number

of decoding iterations in the SP-MS decoder at Eb/N0 = 4.75 dB is around 3, hence,

the decoding throughput reached is around 341.33 Gbps.

From the analysis of the SP-MS decoders with post-processing using qch ∈ {3,4}

bits LLRs and q ∈ {2,3,4} bits messages, we can conclude that: (i) the (3,2)-bit SP-MS

decoder is the smallest decoder, (ii) the (qch, q = qch −1)-bit SP-MS decoder uses less

area and consumes less power than the (qch, q = qch)-bit SP-MS decoder, and (iii) the

(4,3)-bit SP-MS decoder occupies an area slightly greater than the (3,3)-bit SP-MS

decoder (both decoders have the same number of wires).

Table 5.15 ASIC synthesis results using the 28 nm FDSOI library for only one VNU of
degree dv = 6 and only one CNU of degree dc = 32.

IEEE 802.3 ETHERNET code, SP-MS decoders
Precision Freq. Area Power EpB Throughput
(qch, q) (MHz) (mm2) (mW) (pJ/bit) (Gbps)
(3,3)

500 1.185272 (0.0%) 307.41 (0.0%) 4.5029 (0.0%) 68.27
(3,2) 0.877948 (−25.93%) 237.98 (−22.59%) 4.4160 (−1.93%) 53.89
(4,4)

500 1.619418 (0.0%) 383.25 (0.0%) 5.6137 (0.0%) 68.27
(4,3) 1.228852 (−24.12%) 304.41 (−20.57%) 4.4589 (−20.57%) 68.27

Fig. 5.26 illustrates the are used for the (qch, q)-bit SP-MS decoders. We can see

that the (3,2)-bit SP-MS decoder is the smallest decoder, the (4,4)-bit SP-MS decoder
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is the biggest decoder, and the (4,3)-bit SP-MS decoder occupies an area slightly

greater than the (3,3)-bit SP-MS decoder.
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Fig. 5.26 The area utilization and power consumption of the (qch, q)-bit SP-MS decoders
with post-processing.

Comparing the results of Table 5.8 and Table 5.15, one can see that for a fixed

precision (qch, q), the post-processing increases the core area of SP-MS decoders. For

very low precision (qch = 3, q = 2), the area of 0.774 mm2 is increased by 13.38% to

0.878 mm2, while for precision (qch = 4, q = 3), the area is increased by 10.20%, i.e.,

from 1.115 mm2 to 1.229 mm2.

5.7.3 Place and Route results

The place and route results of SP-MS decoders presented in this section are preliminary

results. We implement two decoders using Sx̂ < 21: (i) the first decoder considers

a maximum of 9 iterations of (3,3)-bit SP-MS + 6 iterations as maximum of post-

processing (message biasing), (i) the second decoder considers a maximum of 11

iterations of (3,2)-bit SP-MS + 8 iterations as maximum of post-processing (proposed

algorithm of Section 5.6).
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The place and route of the (3,3)-bit SP-MS decoder is done in 28 nm FDSOI

obtaining 2.56 mm2, a density of 40%, and clock frequency of 500 MHz. In the worst

case that corresponds to 15 iterations, the decoding throughput is 68.27 Gbit/s and

the guaranteed hardware efficiency is 26.67 Gbit/s/mm2, see Table 5.16. A decoding

throughput of 384.96 Gbit/s and a hardware efficiency of 150.38 Gbit/s/mm2 are

achieved using 2.66 iterations in average at an SNR level of 5.5 dB.

Table 5.16 Place and Route results of the (3,2)-bit SP-MS and the (3,3)-bit SP-MS
decoders using post-processing.

Place and Route
Decoder (3,2)-bit SP-MS (3,3)-bit SP-MS

Frequency (MHz) 421 500
Core area (mm2) 1.76 2.56

Density 60% 40%
Throughput (Gbps)† 45.38 68.27

Hardware Eff. (Gbps/mm2)† 25.78 26.67
† The worst case.

The place and route of the (3,2)-bit SP-MS decoder is also done 28 nm FDSOI,

we obtain an area of 1.76 mm2, a density of 60%, and a clock frequency of 421 MHz.

In this case, using 19 iterations, the decoding throughput is 45.38 Gbit/s and the

guaranteed hardware efficiency is 25.78 Gbit/s/mm2. At a SNR level of 5.5 dB, where

2.70 iterations is used in average, the decoding throughput is 319.34 Gbit/s and the

hardware efficiency is 181.44 Gbit/s/mm2, as is shown in Table 5.17. When comparing

the area used by the two SP-MS decoders, the precision (qch = 3, q = 2) reduces an area

of 2.56 mm2 by 31.25% to 1.76 mm2, this result confirms the conclusions obtained in

Section 5.7.2.

From the results of density, we can see that the (3,2)-bit SP-MS decoder helps alle-

viate the routing congestion problem of the (3,3)-bit SP-MS decoder. When comparing

the hardware efficiency of both decoders at high SNR levels, where the average number
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iterations is almost the same for both decoders, we can conclude that the (3,2)-bit

SP-MS is the best decoder. It must be taken into account that at high SNR levels, the

use of the post-processing is infrequent and most codewords are decoded using very

few iterations.

Table 5.17 Average number of iterations, decoding throughput, and hardware efficiency
of the (3,2)-bit SP-MS and the (3,3)-bit SP-MS decoders using post-processing.

Decoder SNR (dB) 3.0 3.5 4.0 4.5 5.0 5.5

11 iter of (3,2)-bit SP-MS Average iterations† 13 10.91 6.74 4.27 3.26 2.70

+ 8 iter of post-proc. Throughput (Gbps) 66.32 79.03 127.92 201.92 264.48 319.34
Hardware Eff. (Gbps/mm2) 37.68 44.90 72.68 114.72 150.27 181.44

9 iter of (3,3)-bit SP-MS Average iterations† 12.75 10.12 6.45 4.16 3.19 2.66

+ 6 iter of post-proc. Throughput (Gbps) 80.31 101.19 158.76 246.15 321.0 384.96
Hardware Eff. (Gbps/mm2) 31.37 39.53 62.02 96.15 125.39 150.38

† A clock cycle used for the initialization of the variable-to-check messages is considered.

The (3,2)-bit SP-MS and the (3,3)-bit SP-MS decoders were synthesized from a

VHDL description using Synopsys Design Compiler and the placed and routed using

Cadence Encounter Digital Implementation. The layout of the (3,2)-bit SP-MS decoder

is shown in Fig. 5.27.

Fig. 5.27 Layout for the (3,2)-bit SP-MS decoder.
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5.7.4 Comparison with other works

In the literature there are many implemented decoders for the IEEE 802.3 ETHERNET

code, some of them are listed in Table 5.18 in order to compare them with our SP-MS

decoders. Note that the maximum frequency of [54, 58] is set to 1000 MHz in 28 nm

(after scaling) to have a more realistic and non-optimistic decoder. Comparing the

hardware efficiency, we can see that the (3,2)-bit SP-MS is 5.0 (resp. 2.5) times more

efficient than the decoder of [63] (resp. [54]).

The error correction performance of the proposed decoders are compared with the

(4,4)-bit OMS decoder of [54] and with (4,3)-bit LUT-based decoder of [63]. Fig. 5.28

shows the FER performance of the SP-MS decoders. We can see that all the SP-MS

decoders exhibit better FER performance than the (4,3)-bit LUT-based, For a FER

= 10−10 we obtain a SNR gain of 0.5 dB for the very low precision (3,2), 0.52 dB

for low precision (3,3), and 0.56 dB for intermediate precision (4,3) and the largest

precision (4,4). We can also observe that the (4,4)-bit SP-MS and the (4,3)-bit SP-MS

decoders have slightly better FER performance than the (4,4)-bit OMS. Also, the

SP-MS decoder using (qch = 3, q = 2) bits (resp. (qch = 3, q = 3) bits) of precision is 0.1

dB (resp. 0.08 dB) away from the (4,4)-bit OMS at a FER = 10−10.
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5.8 Conclusion

In this chapter we have proposed an fully parallel architecture for regular and irregular

LDPC codes, the architecture can be easily adapted to implement different decoders

using different precision for messages and for LLRs. Using the proposed architecture,

we have shown that the SP-MS decoder consumes slightly less area than the OMS

decoder. We have also presented that when the precision of messages is reduced from

q = qch bits to q = qch −1 bits, the area consumed by the SP-MS decoder is reduced by

at least 25%.

From the study conducted in detail of the the IEEE 802.3 ETHERNET code, we

have proposed a post-processing algorithm and two post-processing architectures. We

have exhibited that our post-processing algorithm is very efficient in very low precision

decoders, lowering the error floor below a FER of 10−10. We have also presented that

the algorithm is easily adaptable in a low precision decoder. Additionally, we have

shown that the proposed algorithm converges rapidly using on average 3 to 4 iterations.

On the other hand, we have demonstrated that the proposed architectures do not

degrade the error correction performance in the waterfall region.

we have implemented the (qch = 3, q = 2)-bit SP-MS decoder that incorporates

our post-processing algorithm and we have obtained an area of 1.76 mm2, a decoding

throughput of 319.34 Gbit/s, and a hardware efficiency of 181.44 Gbit/s/mm2. When

making the comparison with other decoders proposed in the literature, (qch = 3, q = 2)-

bit SP-MS decoder is among one with the best hardware efficiency and good error

correction performance.



Chapter 6

Conclusions

This thesis has proposed two low precision iterative decoders for low-density parity-

check codes, the NAN-MS decoder and the SP-MS decoder. These decoders have

been investigated and analyzed in the asymptotic limit of the code length using a

noisy version of density evolution. The finite-length Monte Carlo simulations have

corroborated the DE analysis. From the study carried out, it has been shown that the

proposed decoders can reach a SNR gain of up to 0.43 dB. A much more exhaustive

study of the SP-MS decoders has demonstrated that the precision of messages can

be reduced by one bit maintaining the same error-correcting performance. It has also

been presented that the SP-MS decoder consumes slightly smaller area than the OMS

decoder when using the same precision. Additionally, it has been revealed that the

reduction of one bit in the precision of the messages helps to reduce the area consumed

by the SP-MS decoder by at least 25%.

This thesis has also proposed a post-processing algorithm. It has been shown that

the post-processing algorithm is very efficient in correcting the absorbing set errors

of iterative decoders, especially for very low precision decoders. The post-processing

algorithm was implemented in a fully parallel architecture, and the emulation results

have exhibited that the error floor is lowered below a frame error rate level of 10−10
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for the IEEE 802.3 ETHERNET code. Additionally, it has been determined that the

algorithm converges quickly using on average 3 to 4 iterations.

The SP-MS decoder that incorporates the post-processing algorithm has been

implemented obtaining an area of 1.76 mm2, a decoding throughput of 319.34 Gbit/s,

and a hardware efficiency of 181.44 Gbit/s/mm2.

Future works that can be addressed from the results and conclusions presented in

this thesis are: (i) the study of the SP-MS decoders in LDPC codes of the 5G, (ii) to

use the concept of preserving the sign of the messages in FAIDs, and (iii) to adapt and

extend the post-processing algorithm to other LDPC codes for storage applications. In

addition, the concepts presented in this thesis can be adapted and extended to other

codes such as the Turbo-code or the Polar code that need low precision decoders.
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Titre: Décodeur bruit contre bruit
Mot clés : Correction d’erreur, codes LDPC, Density Evolution

Résumé : Dans cette thèse, nous nous intéressons
à l’amélioration des performances de décodeur
Low-Density Parity-Check (LDPC) code forte-
ment quantifié (3 ou 4 bits de précision en en-
trée). Le premier décodeur proposé, appelé dé-
codeur Noise-Against-Noise Min-Sum (NAN-MS),
intègre une certaine quantité de perturbations
aléatoires dues à une injection délibérée de bruit
dans le processus de décodage. L’autre décodeur,
appelé décodeur Sign-Preserving Min-Sum (SP-
MS), conserve toujours le signe des messages et
utilise toutes les combinaisons possibles pouvant
être générées pour une précision donnée. Nous
montrons de plus qu’un décodeur SP-MS quantifi-
ant ces entrées sur 3 ou 4 bits peut échanger des
messages en internes quantifiés respectivement sur
2 ou 3 bits sans affecter le seuil de convergence
du code dès lors que le degré des variables est
supérieur à 4. Les décodeurs NAN-MS et SP-MS

présentent un gain de SNR pouvant atteindre 0,43
dB dans la zone de convergence de la courbe de per-
formances. D’autre part, nous avons proposé une
modification d’un algorithme de post-traitement
existant qui permet de réduire le taux d’erreur
résiduelle (zone appelée « error floor ») pour les
décodeurs avec seulement 2 bits de précision pour
les messages échangés. Appliqué au code IEEE 10
Gigabit ETHERNET, l’algorithme SP-MS com-
biné avec l’algorithme de post-processing permet
de réduire le niveau d’erreur au-dessous d’un taux
d’erreur par trame de 10−10. Nous avons implé-
menté ce décodeur en technologie ASIC 28 nm
avec une architecture entièrement parallèle. La
surface obtenue est de 1,76 mm2, et le débit de
décodage de 319,34 Gbit/s pour un rapport signal
à bruit de 5,5 dB, soit une efficacité matérielle de
181,44 Gbit/s/mm2.

Title: Noise-Against-Noise Decoder
Keywords : Error correction, LDPC codes, Density Evolution

Abstract : In this thesis, we are interested in
improving the performance of the highly quan-
tized Low-Density Parity-Check (LDPC) code de-
coder (3 or 4 bits of precision input). The first pro-
posed decoder, named Noise-Against-Noise Min-
Sum (NAN-MS) decoder, incorporates a certain
amount of random perturbation due to deliber-
ate noise injection into the decoding process. The
other decoder, named Sign-Preserving Min-Sum
(SP-MS) decoder, always preserve the sign of the
messages and it uses all the possible combinations
that can be generated for a given precision. We
further show that a SP-MS decoder quantizing its
inputs in 3 or 4 bits can reduce the precision of in-
ternal messages respectively to 2 or 3 bits without
affecting the threshold of convergence of the code
when the degree of the variable nodes is greater

than 4. The NAN-MS decoder and the SP-MS
decoder present a SNR gain of up to 0.43 dB in
the waterfall region of the performance curve. On
the other hand, we proposed a modification of an
existing post-processing algorithm which makes it
possible to reduce the residual error rate (region
called "error floor") for the decoders with only 2
bits of precision for the exchanged messages. Ap-
plied to the IEEE 10 Gigabit ETHERNET code,
the SP-MS algorithm combined with the post-
processing algorithm reduces the error level below
a frame error rate of 10−10. We implemented this
decoder in 28 nm ASIC technology with a com-
pletely parallel architecture. The resulting area is
1.76 mm2, and the decoding rate of 319.34 Gbit/s
for a signal-to-noise ratio of 5.5 dB, giving a hard-
ware efficiency of 181.44 Gbit/s/mm2.
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