

IMT Atlantique Bretagne-Pays de la Loire École Mines-Télécom

EPIC>>

EPIC Grant Agreement No. 760150

Design of Next-Generation Tbps Turbo Codes

Presented by:

Vinh Hoang Son Le

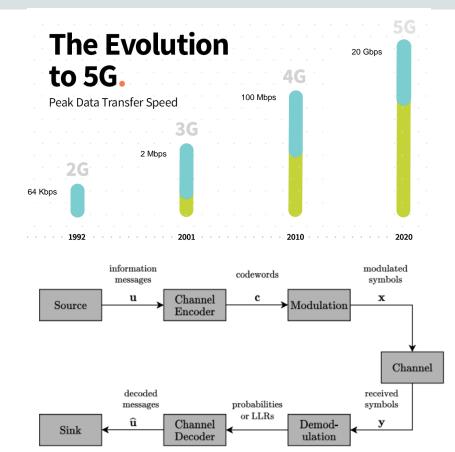
Thesis directors:

Supervisor:

Reviewers:

Examiner: Invited Members: Catherine Douillard Emmanuel Boutillon Charbel Abdel Nour

Charly Poulliat Guido Masera Christophe Jego Jean-François Helard David Gnaedig


Introduction

IMT Atlantique Bretagne-Pays de la Loire École Mines-Télécom

INTRODUCTION

- The evolution of the data throughput
 - From 2G with 64 Kbps to 5G with 20 Gbps
 - With this trend: beyond 5G?
- With the advent of THz communications
 - Data throughput: hundreds of Gbps, up to Tbps
- Forward Error Correction (FEC)
 - Plays a critical role in enabling the communication link
 - Use redundancy information to correct corrupted information

INTRODUCTION

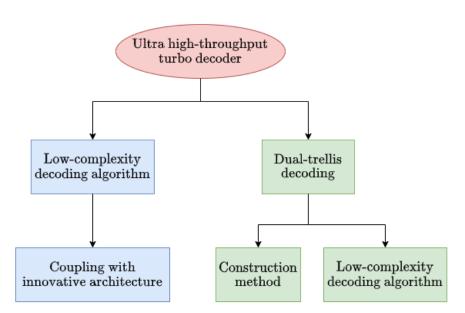
4/49

- ► The European H2020 project EPIC:
 - Develop FEC technologies for wireless Tbps use cases

« The upgrade to Tbps wireless data rates will not be smooth. The improvement carried by silicon technology progress will significantly fall short of meeting the Tbps FEC challenge »

- Major algorithmic and architectural innovations are required
 - Polar codes (5G NR)
 - LDPC codes (5G NR)
 - Turbo codes (LTE Advanced Pro)

INTRODUCTION


Objectives, contributions

The thesis focuses on turbo decoders

- Allow the decoder to achieve Tbps transmission.
- Other criteria: complexity, latency, energy, flexibility...

Contributions

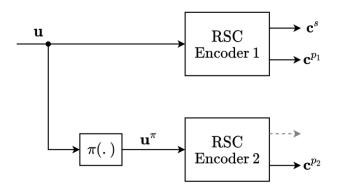
- Novel low-complexity decoding algorithm
- Coupling with innovative very high-throughput decoder architecture
- Study of turbo decoding using the dual-trellis.

OUTLINE

IMT Atlantique Bretagne-Pays de la Loire École Mines-Télécom

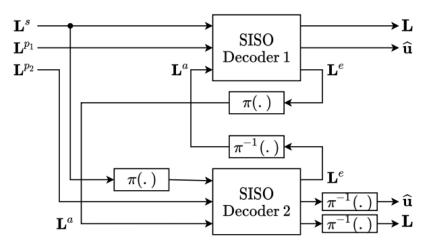
1. TURBO CODES

- 2. NOVEL LOW-COMPLEXITY DECODING ALGORITHM: THE LOCAL SOVA
- 3. LOCAL-SOVA WITH UXMAP ARCHITECTURE
- 4. DECODING WITH THE DUAL-TRELLIS
- 5. CONCLUSION


IMT Atlantique Bretagne-Pays de la Loire École Mines-Télécom

TURBO CODES Encoding & decoding

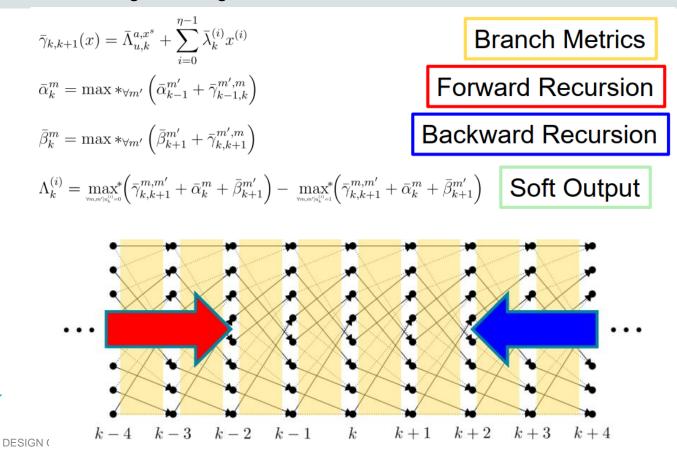
Encoding


IMT Atlantique

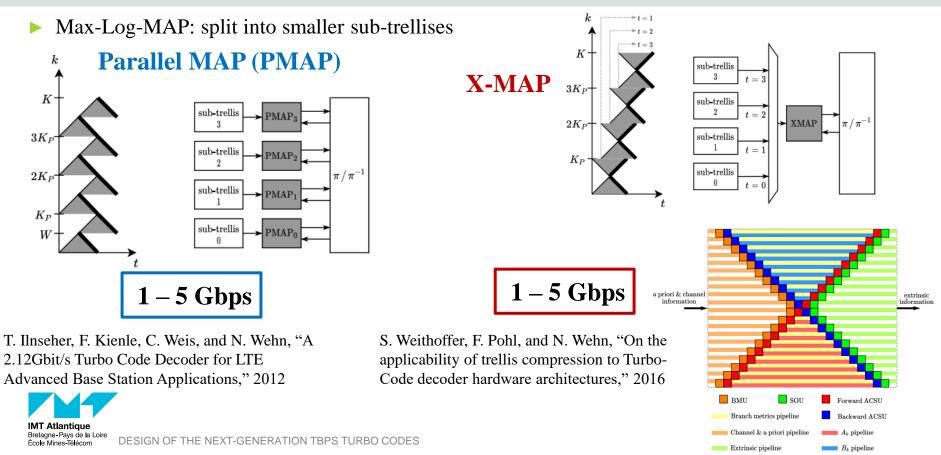
- Parallel concatenated convolutional codes
- Recursive systematic convolutional encoders
- Interleaver

► Decoding

- Iterative decoding: 1 iteration = 2 half-iterations
- Producing *extrinsic information* each half-iteration
- Soft-input soft-output (SISO) decoders.

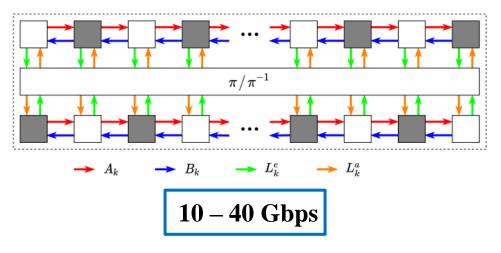


Atlantique


Bretagne-Pays de la Loire

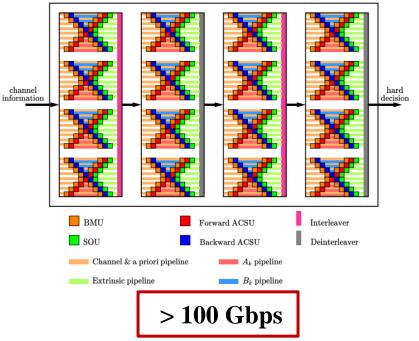
École Mines Télécom

SISO decoder: Max-Log-MAP algorithm



High-throughput decoder architectures: several Gbps

Very high-throughput turbo decoder architecture: 10 – 100 Gbps


Fully-parallel MAP

A. Li, L. Xiang, T. Chen, R. G. Maunder, B. M. Al-Hashimi, and L. Hanzo, "VLSI implementation of fully parallel LTE turbo decoders," 2016

IMT Atlantique Bretagne-Pays de la Loire Foche Mines-Traferom DESIGN OF THE NEXT-GENERATION TBPS TURBO CODES Unrolled XMAP (iteration pipelined)

11/49

S. Weithoffer, C. A. Nour, N. Wehn, C. Douillard, and C. Berrou, "25 Years of Turbo Codes: From Mb/s to beyond 100 Gb/s," 2018

tlantique

Architecture comparison

XMAP [6]

6144

1.3

0.49

2.32

Architecture	UXMAP [1]	FPMAP [2]	FPMAP [1]	РМАР [3]	РМАР [4]	XMAP [5]
K	128	6144	128	6144	6144	6144
Throughput (Gb/s)	102.4	15.8	1.6	3.3	2.15	1.67
Area (mm^2)	23.61	24.09	1.04	2.44	1.70	1.04
Area Eff. (Gb/s/mm ²)	4.34	1.65	1.53	2.17	2.81	2.68

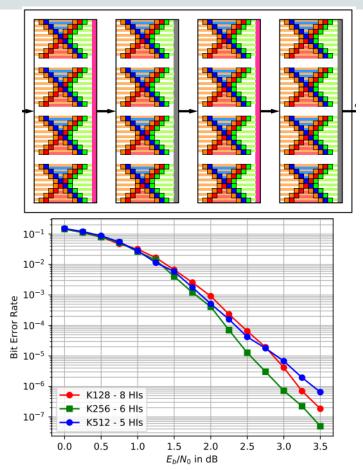
The UXMAP architecture can deliver ultra high-throughput with high area efficiency

[1] S. Weithoffer, C. A. Nour, N. Wehn, C. Douillard, and C. Berrou, "25 Years of Turbo Codes: From Mb/s to beyond 100 Gb/s," 2018 [2] A. Li, L. Xiang, T. Chen, R. G. Maunder, B. M. Al-Hashimi, and L. Hanzo, "VLSI implementation of fully parallel LTE turbo decoders," 2016 [3] R. Shrestha and R. P. Paily, "High-Throughput Turbo Decoder With Parallel Architecture for LTE Wireless Communication Standards," 2014 [4] T. Ilnseher, F. Kienle, C. Weis, and N. Wehn, "A 2.12Gbit/s Turbo Code Decoder for LTE Advanced Base Station Applications," 2012 [5] G. Wang et al. "Parallel Interleaver Design for a High throughput HSPA+/LTE MultiStandard Turbo Decoder," 2014 [6] S. Weithoffer, F. Pohl, and N. Wehn, "On the applicability of trellis compression to Turbo-Code decoder hardware architectures," 2016

The UXMAP architecture

► Properties:

IMT Atlantique Bretagne-Pays de la Loire


École Mines Télécom

- Performance increases with K with same # iterations
- K bits decoded / clock cycle => throughput increases with K

Increase K and reduce the number of iterations

Configuration (K, #half-iter)	$\begin{array}{c} \text{Area} \\ (\text{mm}^2) \end{array}$	Throughput (Gb/s)	Area efficiency $(Gb/s/mm^2)$
(128, 8)	12	102.4	8.5
(256, 6)	18	204.8	11.37
(512, 5)	30	409.6	13.65

DESIGN OF THE NEXT-GENERATION TBPS TURBO CODES

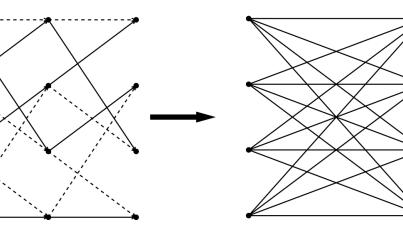
What could be done for the UXMAP architecture?

- 14/49
- > Alternative low-complexity decoding algorithm: increase throughput and area efficiency
 - Current algorithm: Max-Log-MAP

Novel algorithm: low-complexity, negligible loss in performance

- The use of high-radix decoding for high throughput
 - Decode multiple bits in parallel
 - Higher radix => lower latency & higher throughput
 - Max-Log-MAP: complexity increases exponentially with number of decoded bits in parallel

Novel algorithm: low-complexity even when use high radix (radix 8, radix 16)



IMT Atlantique Bretagne-Pays de la Loire École Mines-Télécom

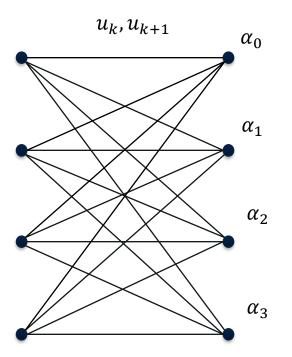
High-radix decoding

THE LOCAL-SOVA

- High-radix trellis
 - Concatenate consecutive radix-2 trellis sections
 - Decode more than 1 bit per section
 - Complexity can be higher
- ▶ Going from radix-2 to radix-4 in UXMAP:
 - Reduce pipeline stages => saving area, lower latency
 - Higher throughput
- Radix-8 and radix-16 are not suitable with Max-Log-MAP

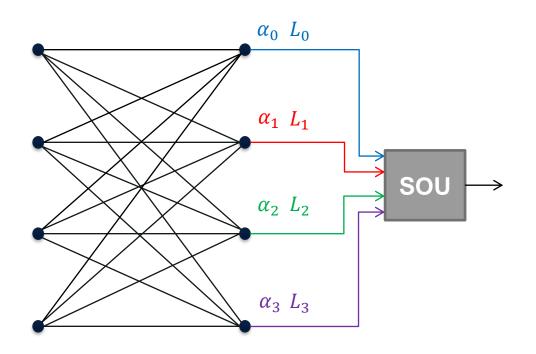
Radix-4 Max-Log-MAP

Calculation of alpha (ACSU)


- Max 4 branches: α_0
- Max 4 branches: α_1
- Max 4 branches: α_2
- Max 4 branches: α_3

Soft-output bit u_k (SOU)

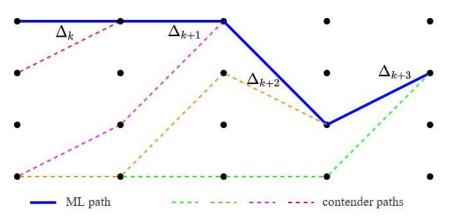
- Max 8 branches: $L_k(0)$
- Max 8 branches: $L_k(1)$
- $L(u_k) = L_k(1) L_k(0)$
- **Soft-output bit** u_{k+1} (SOU)
 - Max 8 branches: $L_{k+1}(0)$
 - Max 8 branches: $L_{k+1}(1)$
 - $L(u_{k+1}) = L_{k+1}(1) L_{k+1}(0)$

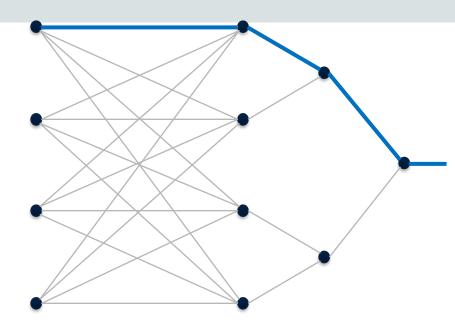

The idea

- Incorporate alpha calculation and soft-output calculation
- ► Alpha calculation:
 - Carry a soft information for each winning branch
- ► Soft-output:
 - Process only 4 branches per decoded bit

Tasks:

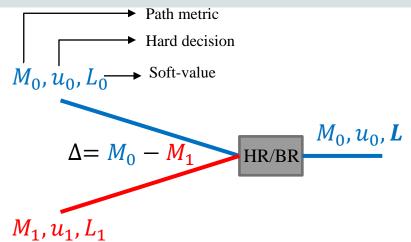
- Define soft-information
- How to use them to get soft-output?





The Local-SOVA based on SOVA

- ► Final winning branch:
 - Compared with several branches
 - Similar to the Soft-Output Viterbi Algorithm



- Update the soft-output by comparing the ML path with contender paths
 - Apply to the Local-SOVA

The update rules: Hagenauer's rule and Battail's rule

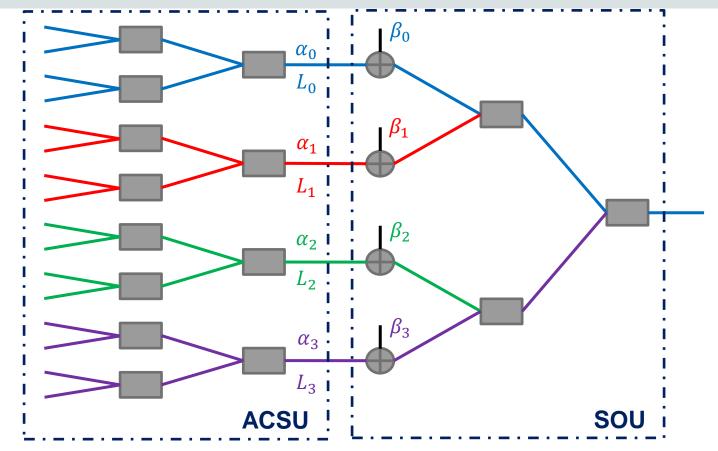
- When two branches meet each other:
 - Select the highest path metric & hard decision
 - Update the soft value
- ► Update rules:
 - <u>Hagenauer's rule</u>: different hard decisions
 - Battail's rule: same hard decision

- <u>HR:</u> if $u_0 \neq u_1$ $L = \min(L_0, \Delta)$
- <u>BR</u>: if $u_0 = u_1$ $L = \min(L_0, L_1 + \Delta)$

Remarks:

- Single architecture for both rules: 1 adder, 1 compare-select
- Employ only HR = lower complexity. Performance?

The Local-SOVA architecture



- ► Local-SOVA:
 - BMU (idem MLM)
 - ACSU
 - SOU

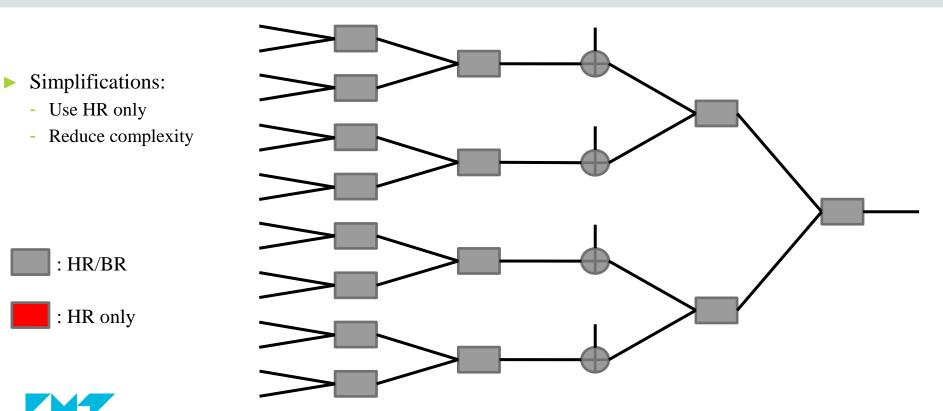
: HR/BR update

Max-Log-MAP is a particular instance of the Local-SOVA

22/49

Complexity analysis

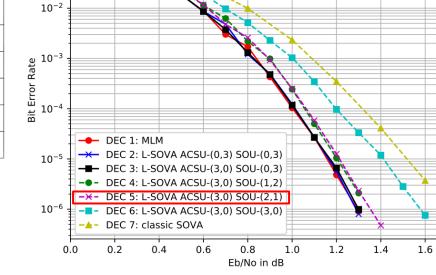
- Computational complexity for a trellis section:
 - Adder = Compare-Select = 1 unit
 - Same memory consumption
 - Same performance


Schemes	$\mathcal{C}_{ ext{MLM}}$	$\mathcal{C}_{ ext{LSOVA}}$	$rac{\mathcal{C}_{ ext{LSOVA}}}{\mathcal{C}_{ ext{MLM}}}$	$\frac{\mathcal{C}_{\mathrm{MLM}}}{\#\mathrm{bits}}$	$\frac{\mathcal{C}_{\text{LSOVA}}}{\#\text{bits}}$
Radix-2	79	77	0.975	79	77
Radix-4	206	151	0.733	103	75.5
Radix-8	493	361	0.732	164.3	120.3

The Local-SOVA is 27% less complex than the Max-Log-MAP for radix 4 & radix 8

Further simplification for the Local-SOVA

IMT Atlantique


École Mines Télécom

THE LOCAL-SOVA Applying simplification for radix-8 Local-SOVA

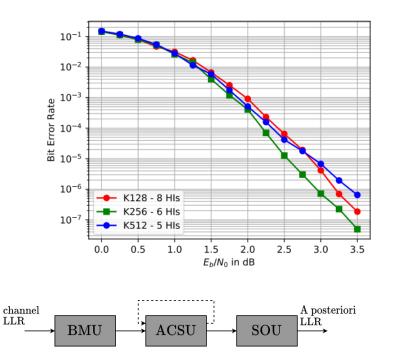
		24	/49	
				_
N.				

Algorithm	ComputationalComplexitycomplexitynormalization		Performance loss at BER 10^{-6} (dB)		
MLM	493	1	_		
DEC 2	361	0.73	0.0		
DEC 3	329	0.67	0.0		
DEC 4	317	0.64	0.05		
DEC 5	311	0.63	0.05		
DEC 6	308	0.62	0.3		

Further lower complexity for high radix Save 37% with negligible loss in performance

 10^{-1}

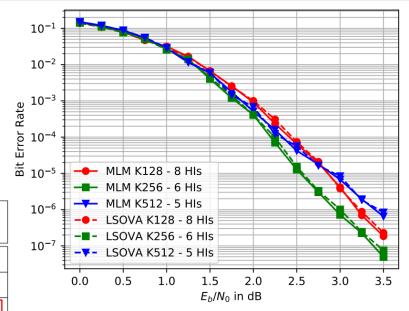
IMT Atlantique


THE LOCAL-SOVA IN THE UXMAP ARCHITECTURE

IMT Atlantique Bretagne-Pays de la Loire École Mines-Télécom

LOCAL-SOVA WITH UXMAP Settings

- UXMAP architecture
 - UXMAP + radix-4 Max-Log-MAP
 - UXMAP + radix-4 Local-SOVA
 - UXMAP + radix-8 Local-SOVA, radix-16 Local-SOVA
- Performance in fixed-point 6-bit input
 - Compare with Max-Log-MAP
 - (K,HIs) = {(128,8), (256,6), (512,5)}
- Comparison conditions:
 - BMU, ACSU, SOU for 12 radix-2 trellis sections
 - 6 radix-4, 4 radix-8, and 3 radix-16 trellis sections.



- Radix-4 Local-SOVA:
 - ACSU: HR/BR
 - SOU: HRs, except the last one is HR/BR
 - Same performance
- Area complexity

Algorithm	BMU	ACSU	SOU	6 radix-4 trellis sections
Max-Log-MAP	$1200 \ \mu \mathrm{m}^2$	$3885~\mu\mathrm{m}^2$	$10485~\mu\mathrm{m}^2$	93420 μm^2
Local-SOVA	$1200~\mu\mathrm{m}^2$	$4076~\mu\mathrm{m}^2$	$5267~\mu\mathrm{m}^2$	$63258~\mu\mathrm{m}^2$
Local-SOVA Max-Log-MAP	1.0	1.05	0.5	0.677

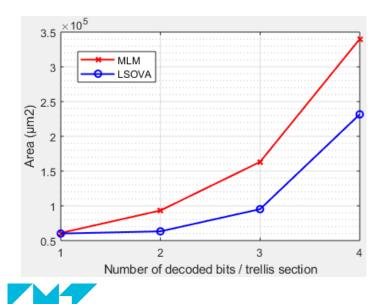
Lower-complexity implementation: save 33% area complexity

m DESIGN OF THE NEXT-GENERATION TBPS TURBO CODES

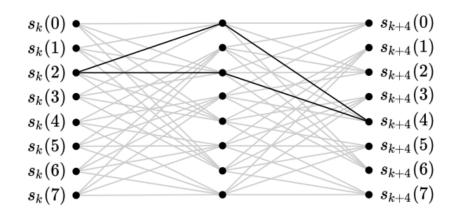
25/05/2021

- ► Generalize the radix-4 Local-SOVA with same structure
 - Same performance
 - Lower latency & higher throughput
- ► Area complexity

Algorithm	BMU	ACSU	SOU	4 radix-8 trellis sections
Max-Log-MAP	$5341~\mu\mathrm{m}^2$	$9022~\mu\mathrm{m}^2$	$26444~\mu\mathrm{m}^2$	$163228~\mu\mathrm{m}^2$
Local-SOVA	$5341~\mu\mathrm{m}^2$	$11673~\mu\mathrm{m}^2$	$6792~\mu\mathrm{m}^2$	95224 $\mu \mathrm{m}^2$
Local-SOVA Max-Log-MAP	1.0	1.29	0.26	0.58



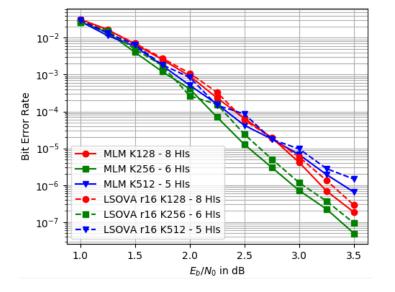
Radix-16:

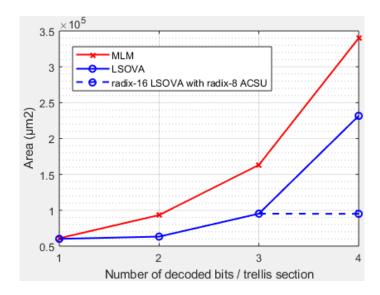

IMT Atlantique

École Mines Télécom

- The area increases exponentially
- Due to the radix-16 ACSU 2

- Solution:
 - Parallel branches between states
 - Eliminate 1 branch in the BMU
 - ACSU is radix 8




30/49

- ► Radix-16 Local-SOVA:
 - Lower latency & higher throughput
 - Performance: small degradation due to simplifications

- Area complexity (in μm^2)

Architecture	BMU	ACSU	SOU	3 radix-16 trellis sections
Max-Log-MAP	$22457~\mu\mathrm{m}^2$	$26301~\mu\mathrm{m}^2$	$64574~\mu\mathrm{m}^2$	339996 $\mu \mathrm{m}^2$
Local-SOVA	$5491~\mu\mathrm{m}^2$	$16996~\mu\mathrm{m}^2$	$9174~\mu\mathrm{m}^2$	94983 $\mu \mathrm{m}^2$
Local-SOVA Max-Log-MAP	0.24	0.65	0.14	0.28

LOCAL-SOVA WITH UXMAP

Conclusion

- A new decoding algorithm: Local-SOVA
 - Is a general algorithm: Max-Log-MAP is an instance
 - Decoding high radix more efficiency

- Implementation with UXMAP architecture
 - Radix-4 Local SOVA is more suitable than radix-4 Max-Log-MAP
 - 33 % saving area => increase 33% in throughput (from 400 Gbps to 532 Gbps)
 - Radix 8, radix 16: lower latency by 1.5 and 2 times.
 - TurboLEAP project (*Turbo decoding with Less Energy, Area and more Parallelism for higher throughput*)

IMT Atlantique Bretagne-Pays de la Loire École Mines-Télécom

33/49

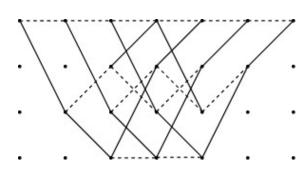
Why high coding rates?

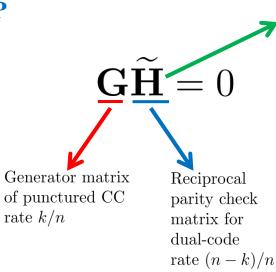
- ▶ The demand for Tbps communication wireless link:
 - Wireless intra-device communications [1], mobile virtual/augmented reality [2],...
 - Move the radio frequency to above 100 GHz (Terahertz communications).
- > At the PHY layer, the error control coding employ **high-rate schemes**: less redundancy bits
 - The available spectrum is more efficiently used.

Require high coding rates high-throughput (up to Tbps) channel decoders.

[1] V. Petrov, A. Pyattaev, D. Moltchanov, and Y. Koucheryavy, "Terahertz band communications: Applications, research challenges, and standardization activities," in Proc. 8th Int. Congr. Ultra Modern Telecommun. Control Syst. Workshops (ICUMT), Oct. 2016, pp. 183–190.

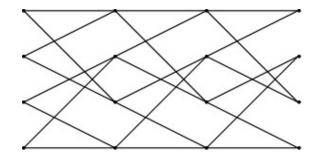
[2] T. S. Rappaport et al., "Wireless Communications and Applications above 100 GHz: Opportunities and Challenges for 6G and Beyond," IEEE Access, vol. 7, July 2019, pp. 78729–57.

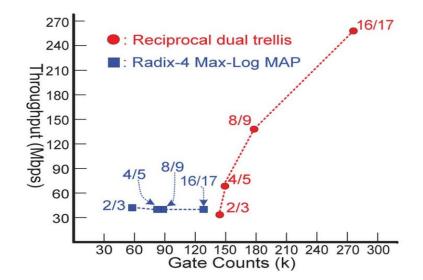

DESIGN OF THE NEXT-GENERATION TBPS TURBO CODES


Encoding: Puncturing rate-1/2 mother code \rightarrow High-rate code with coding rate k/n

Decoding:

Log-MAP or Max-Log MAP


- Decode on the **original trellis**
- Decode 1 bit per trellis section


Dual-Log-MAP

- Decode on the **dual trellis**
- Decode *k* bits per trellis section

Advantages of dual-trellis decoding

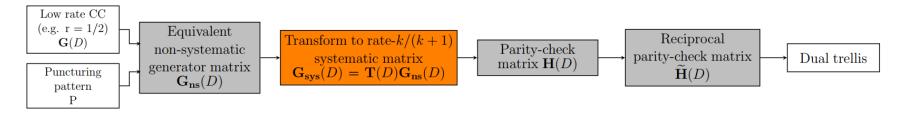
[3] C. Lin, C. Wong, and H. Chang, "A 40 nm 535 Mbps multiple code-rate turbo decoder chip using reciprocal dual trellis," IEEE J. Solid-State Circuits, vol. 48, no. 11, pp. 2662–2670, Nov. 2013.

For high code rates, using the dual-log-MAP decoder increases the decoder throughput

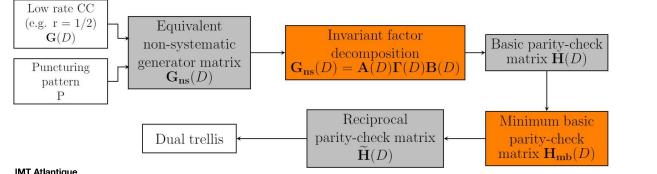
Issues & contributions

- Dual-trellis construction:
 - Only for rate k/(k+1) available in the SoA (e.g. 4/5, 8/9 or 16/17)
 - The code rate might be k/n, where $n \neq (k+1)$

Propose a novel and generic way to construct the dual trellis


- Dual-Log-MAP decoding algorithm:
 - Produces k soft-outputs simultaneously for rate k/n
 - Employs a large number of LookUp Tables (LUTs)

Find a sub-optimal, low-complexity decoding algorithm



Proposed dual-trellis construction method

- ► The dual-trellis is generated by the *reciprocal parity-check matrix*
- For rate k/(k+1) punctured convolutional codes [1]:

• Our proposal: using the invariant factor decomposition proposed by Forney [2]:

[1] A. Graell i Amat, G. Montorsi, and S. Benedetto,
"Design and decoding of optimal high-rate convolutional codes," IEEE Trans. Inf. Theory, vol. 50, no. 5, pp. 867–881, May 2004.

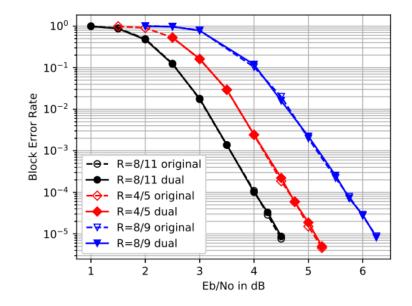
37/49

[2] G. Forney, "Convolutional codes I: Algebraic structure," IEEE Trans. Inf. Theory, vol. 16, no. 6, pp. 720–738, November 1970.

IMT Atlantique Bretagne-Pays de la Loire

École Mines-Télécom DESIGN OF THE NEXT-GENERATION TBPS TURBO CODES

Validate the dual-trellis construction method


- Turbo code: LTE constituent RSC code, 6 decoding iterations
- K = 400, BPSK, AWGN, different code rates

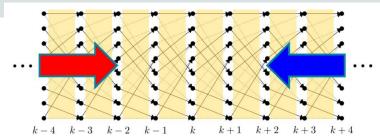
Parity puncturing pattern for ${\cal K}=400$

Turbo rate	Parity puncturing pattern				
8/11	110000000000010				
4/5	010000000000000000000000000000000000000				
8/9	0100000000000000				

ARP INTERLEAVER PARAMETERS FOR K = 400

Q	P	$\left(S(0),\ldots,S(Q-1)\right)$
16	383	(8, 80, 311, 394, 58, 55, 250, 298, 56, 197, 280, 40, 229, 40, 136, 192)

Same performance \rightarrow confirm the validity of the dual-trellis construction method

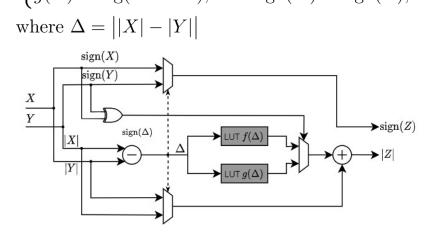

DESIGN OF THE NEXT-GENERATION TBPS TURBO CODES

25/05/2021

The dual-Log-MAP decoder

- **Basic** architecture
 - Branch Metric Unit ÷.,
 - Add-Compare-Select Unit -
 - Soft-Output Unit -

Calculation steps	Steps	Max-Log-MAP	Dual-Log-MAP		
	Channel LLR	l_j^I	$L_j^I = \operatorname{sign}(l_j^I) \times \log \tanh\left(l_j^I \right)$		
	BMU	$\gamma_k(s,s') = \sum_{i=1}^n l_i^I$	$\Gamma_k(s,s') = \bigoplus_{j=1}^n (L_j^I)^{b_j}$		
	ACSU	$\alpha_{k+1}(s') = \max_s(\alpha_k(s) + \gamma_k(s, s'))$	$A_{k+1}(s') = \overbrace{\max_{s}} A_k(s) \bigoplus \Gamma_k(s, s'))$		
		$\beta_k(s) = \max_{s'}(\beta_{k+1}(s') + \gamma_k(s, s'))$	$B_k(s) = \underbrace{\max_{s'}} B_{k+1}(s') \bigoplus \Gamma_k(s, s'))$		
	SOU	$l_{j}^{O} = \max_{s,s' u_{j}=1} \left(\alpha_{k}(s) + \gamma_{k}(s,s') + \beta_{k+1}(s') \right)$	$L_j^O = \underbrace{\max}_{s,s' u_j=1} A_k(s) \bigoplus \Gamma_k(s,s') \bigoplus B_{k+1}(s') $		
		$-\max_{s,s'\mid u_j=0} \left(\alpha_k(s) + \gamma_k(s,s') + \beta_{k+1}(s') \right)$	$ \underbrace{\max_{s,s' u_j=0}} A_k(s) \bigoplus \gamma_k(s,s') \bigoplus B_{k+1}(s') $		
IMT Atlantique Bretagne-Pays de la Loire École Mines-Télécom		$) sign(Y) \times (X + Y)) sign(Y) \times (X - Y)$			



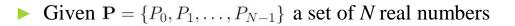
The \overline{max} function

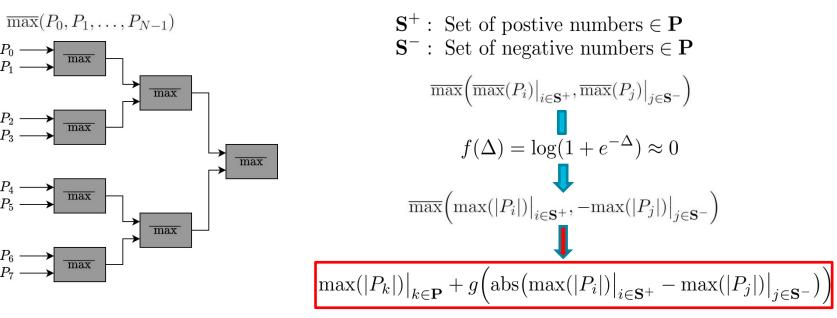
$$\overline{\max}(X,Y) = \begin{cases} \operatorname{sign}(X) \times \left(|X| + \log(1 + \operatorname{sign}(X)\operatorname{sign}(Y)e^{|Y| - |X|})\right), & \text{if } |X| > |Y| \\ \operatorname{sign}(Y) \times \left(|Y| + \log(1 + \operatorname{sign}(X)\operatorname{sign}(Y)e^{|X| - |Y|})\right), & \text{otherwise.} \end{cases}$$

► Depends on $\operatorname{sign}(X)\operatorname{sign}(Y)$, we have $\begin{cases} f(\Delta) = \log(1 + e^{-\Delta}), & \text{if } \operatorname{sign}(X) \neq \operatorname{sign}(Y), \\ g(\Delta) = \log(1 - e^{-\Delta}), & \text{if } \operatorname{sign}(X) = \operatorname{sign}(Y), \end{cases}$

• Architecture of \overline{max} : two LUTs

- The SOU employs extensively \overline{max} :
 - Producing *k* soft-output in parallel
 - $2^{n-k} \overline{max}$ per soft-output

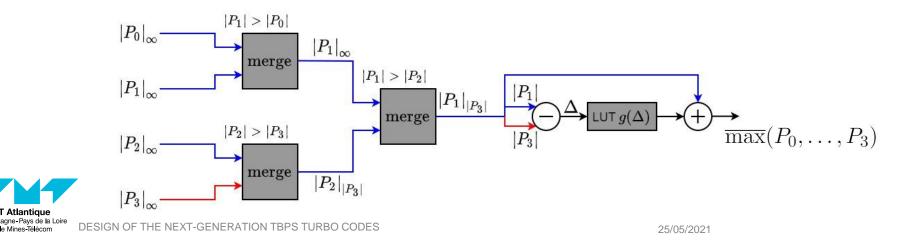

Complexity due to number of LUTs increasing with the code rate


In Loire DESIGN OF THE NEXT-GENERATION TBPS TURBO CODES

41/49

Proposed simplification

Bretagne-Pays de la Loire École Mines-Télécom



Proposal: Finding $\max(|P_k|)|_{k \in \mathbf{P}}$ and $\operatorname{abs}\left(\max(|P_i|)|_{i \in \mathbf{S}^+} - \max(|P_j|)|_{j \in \mathbf{S}^-}\right)$

Applying the Local-SOVA

- Each path: 1 main-value, 1 sign, 1 sub-value
- Merge operation between two paths:
 - Main-value & sign: select the higher main-value and sign (the winner path)
 - Sub-value:
 - 1. If same sign: select min between two sub-values
 - 2. If different sign: select min between sub-value of the winner path and the main value of the other path

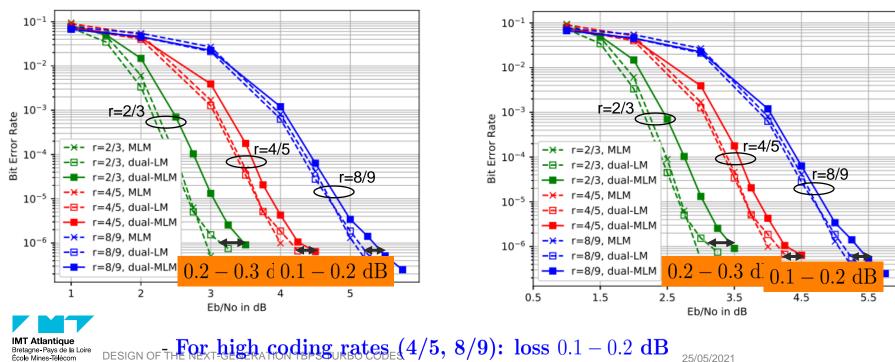
43/49

Computational complexity analysis

Compare dual-log-MAP and dual-max-log-MAP for 8-state convolutional codes

Coding rate	Dual-Log-MAP			Dual-Max-Log-MAP			Max-Log-MAP
	Adders	LUTs		Adders	LUTs		$\mathbf{Adders}^{(*)}$
		$\mathbf{f}(\mathbf{\Delta})$	$\mathbf{g}(\mathbf{\Delta})$	Auders	$\mathbf{f}(\mathbf{\Delta})$	$\mathbf{g}(\mathbf{\Delta})$	Adders
4/5	168	72	72	184	0	24	412
8/9	288	128	128	320	0	32	824
16/17	528	240	240	592	0	48	1648

(*): radix-4 Max-Log-MAP reuse the radix-4 computational units for different coding rates


Drastically reduce the number of required LUTs

Inherit the high-throughput for high code rates of the dual-log-MAP

Performance of the dual-Max-Log-MAP

▶ LTE turbo codes: BPSK, AWGN channel, 8 iterations, different code rates

K = 400 bits

44/49

K = 992 bits

Conclusion

- ▶ New dual trellis construction method:
 - General way for arbitrary coding rate k/n

Sub-optimal, low-complexity dual-trellis decoding algorithm: dual-Max-Log-MAP

- Same throughput as dual-Log-MAP: throughput increase with coding rates
- Lower the use of the lookup tables down to only 10%
- Small degradation of 0.1 dB in performance in high coding rate target (4/5, 8/9).
- Hardware implementation will be investigated to complete the study

CONCLUSION & FUTURE WORKS

IMT Atlantique Bretagne-Pays de la Loire École Mines-Télécom

CONCLUSION

Conclusion

47/49

Very high throughput turbo decoder in EPIC framework

- Innovative architecture UXMAP: up to 400 Gbps
- Local-SOVA: novel decoding algorithm
- Low complexity compared to the Max-Log-MAP with same performance
- Save 33% area for radix 4, lower latency options with radix 8 and radix 16

- Dual-trellis decoding
 - Decoding throughput increases with coding rate
 - Generalization of the construction method for the dual trellis
 - Novel low-complexity decoding algorithm: dual-Max-Log-MAP

CONCLUSION

- Local-SOVA in UXMAP architecture
 - A full decoder implementation is necessary for radix 4, radix 8 and radix 16
 - Numerous trade-offs between complexity and performance can be exploited
 - Radix 32 and radix 64 can be investigated for very low latency requirements.
- Local-SOVA in other architectures
 - Consider replacing the Max-Log-MAP in other turbo decoder architectures
 - Use in soft-decoder for convolutional codes with high number of states
- Dual-trellis decoding
 - Implementation of the dual-Max-Log-MAP

LIST OF PUBLICATIONS & PRESENTATIONS

[1] V. H. S. Le, C. A. Nour, E. Boutillon, and C. Douillard, "Revisiting the Max-Log-Map algorithm with SOVA update rules: new simplifications for high-radix SISO decoders," IEEE Trans. Comm., vol. 68, no. 4, pp. 1991-2004, 2020.

[2] V. H. S. Le, C. A. Nour, E. Boutillon, and C. Douillard, "Dual trellis construction for high-rate punctured convolutional codes," in IEEE PIMRC Workshops, Istanbul, Turkey, Sept. 2019, pp. 1-7.

[3] V. H. S. Le, C. A. Nour, E. Boutillon, and C. Douillard, "A low-complexity dual trellis decoding algorithm for highrate convolutional codes," in IEEE Wireless Communications and Networking Conference (WCNC), Seoul, South Korea, May 2020.

[4] V. H. S. Le, "Dual trellis construction for high-rate punctured convolutional codes (invited talk)," in GdR ISIS Workshop: Enabling Technologies for sub-TeraHertz and TeraHertz communications, Maisons-Alfort, France, Sept. 2019.

[5] V. H. S. Le, "Local-SOVA: Revisiting the Max-Log MAP algorithm with modified SOVA update rules (invited talk)," in EPIC project meeting, Brest, France, Oct. 2019.

THANK YOU FOR LISTENING

IMT Atlantique Bretagne-Pays de la Loire École Mines-Télécom