Design Of Ultra-High Throughput Rate NB-LDPC Decoder

Prepared by Hassan HARB

11/07/2018

Supervisors:

Prof. Emmanuel Boutillon

Dr. Ali Chamas Al Ghouwayel

Dr. Laura Conde-Canencia

Prof. Ali Alaeddine

Jury:

Prof. Olivier Berder (President)

Prof. Andreas Burg (Reviewer)

Prof. Zhengya Zhang (Reviewer)

Prof. Catherine Douillard

Guest:

Dr. Bertrand Le Gal

Principle of Channel coding

Principle of Channel Coding

Rate of the code CR = K/N

Binary codes very efficient for Gaussian channel, BPSK modulation

Where NB-LDPC codes can be efficient

NB-LDPC code in CCSDS standard (space communication)

NB-LDPC for "no error floor" application: Memory

Small packet for IoT at SNR around -15 dB CCSK + NB-LDPC

Potential gain of 1.5 db with 2x2 MIMO system around 4 bits/s/hertz

But NB-LDPC remains limited in practical applications due to high decoding complexity!

PhD Objective: Low complexity and high throughput NB-LDPC decoder

Outline

- Introduction
- > NB-LDPC Codes
- EMS Algorithm and Architectures
- Proposed Parallel and Pipelined NB-LDPC Decoder Architecture
- Extra Related Works
- Conclusion, Perspectives and Publications

Outline

- Introduction
- > NB-LDPC Codes
 - Galois Field
 - Definition
 - Decoding Algorithms
- EMS Algorithm and Architecture
- Proposed Parallel and Pipelined NB-LDPC Decoder Architecture
- > Extra Related Works
- Conclusion, Perspectives and Publications

Galois Filed of characteristic q (GF(q)) is a finite field that contains q elements. All the operations (+,*,-, /) are performed "modulo q", where q is a power of prime number.

Example: $m=3, q=2^{m}=8, GF(q=8)$

GF element	bit representation	
0	000	
$lpha^0$	100	Addition: $X = (x_0 x_1 x_2), Y = (y_0 y_1 y_2) \in GF(8) \Longrightarrow X \oplus Y = X \underline{XOR} Y$ Example: $\alpha^4 \oplus \alpha^1 = 0.011 \underline{XOR} 0.010 = 0.001 = \alpha^2$
α^1	010	Example. $a^2 \oplus a^2 = 011$ AOK $010 = 001 = a^2$
α^2	001	Multiplication:
α^3	110	$0.\alpha^{i} = 0$ $\alpha^{i} \alpha^{i} = \alpha^{(i+i) \mod(q-1)}$
α^4	011	$\alpha \cdot \alpha - \alpha \cdot \beta = \alpha \cdot \beta$
α^5	111	<i>Example</i> : $\alpha^4 \cdot \alpha^3 = \alpha^{7 \mod(7)} = \alpha^0$
α^6	101	

Lab⁻SHCC

LDPC definition

Definition

 $v_{0}.h_{0,0} \oplus v_{1}.h_{0,1} \oplus v_{2}.h_{0,2} = 0.$ $v_{1}.h_{1,1} \oplus v_{3}.h_{1,3} \oplus v_{4}.h_{1,4} = 0.$ $v_{0}.h_{2,0} \oplus v_{3}.h_{2,3} \oplus v_{5}.h_{2,5} = 0.$ $v_{2}.h_{3,2} \oplus v_{4}.h_{3,4} \oplus v_{5}.h_{3,5} = 0.$

 \bigoplus : GF addition

#: Number of VN: Variable Node CN: Check Node N: Code-length, # columns (VNs) M: # rows (CNs) d_c : # non-zero elements per row d_v : # non-zero elements per column CR=K/N: Code Rate B: Binary NB: Non-Binary GF: Galois Field **Example:** M=4, N=6, $d_c=3$ and $d_v=2$

> h_{ij} belong to: > GF(2): B-LDPC > GF(q=2^m), m > 1, NB-LDPC

[1] R. Gallager, 1963.

[2] R.M. Tanner. 1981.

 n_{it} : Maximum number of iterations N=6 and M=4

N=6 and M=4

 n_{it} : Maximum number of iterations N=6 and M=4

Definition: Iterative decoding process

N=6 and *M*=4

- No mathematical approximations
- Not feasible to implement on hardware

[3] M.C. Davey and D. MacKay, 1998.
[4] L. Barnault and D. Declercq, 2003.
[5] H. Wymeersch, H. Steendam, and M. Moeneclaey, 2004
[6] Hongxin Song and J.R. Cruz. 2003.

- Mathematical approximations
- Hardware Friendly
- [3] M.C. Davey and D. MacKay, 1998.
 [4] L. Barnault and D. Declercq, 2003.
 [5] H. Wymeersch, H. Steendam, and M. Moeneclaey, 2004
 [6] Hongxin Song and J.R. Cruz. 2003.

- [16] Erbao Li, D. Declercq, and K. Gunnam. July 2013.
- [27] G. Sarkis, S. Mannor, and W. J. Gross, June 2009.

[8] Voicila, A., Declercq, D., Verdier, F., Fossorier, M., and Urard, P. June 2007.

[9] V. Savin. 2008.

[15] J. O. Lacruz, F. Garcia-Herrero, M. J. Canet, and J. Valls. Aug 2016.

[16] Erbao Li, D. Declercq, and K. Gunnam. July 2013.

[27] G. Sarkis, S. Mannor, and W. J. Gross, June 2009.

Outline

- > Introduction
- NB-LDPC Codes
- EMS Algorithm and Architectures
 - Definition of LLR value and Intrinsic Candidates
 - CN and VN processing
 - > CN and Pre-Sorting: state of the art and proposed architectures
- Proposed Parallel and Pipelined NB-LDPC Decoder Architecture
- > Extra Related Works
- Conclusion, Perspectives and Publications

Definition of LLR value and Intrinsic Candidates

q=8, m=3, GF(8)

$$y_i = \ln\left(\frac{P(x_i \neq 0/a_i)}{P(x_i = 1/a_i)}\right) = \frac{2a_i}{\sigma^2} \qquad U^+ \approx \sum_{i=0}^{m-1} |y_i| \Delta(x_i, y_i)$$

U^\oplus	1	0	0
------------	---	---	---

a_i: Observed bit *i y_i*: LLR value of *a_i i* = 0, ..., 2 *U*[⊕] ∈ GF(8), *U*⁺: LLR value of *U*[⊕] BPSK: Binary Phase Shift Keying. BPSK(1) = -1, BPSK(0) = 1 $\Delta(a, b) = 0$ if sign(a) = sign(b), $\Delta(a, b) = 1$ otherwise

Definition of LLR value and Intrinsic Candidates

q=8, m=3, GF(8)

$$y_{i} = \ln \left(\frac{P(x_{i} \neq 0/a_{i})}{P(x_{i} = 1/a_{i})} \right) = \frac{2a_{i}}{\sigma^{2}} \qquad U^{+} \approx \sum_{i=0}^{m-1} |y_{i}| \Delta(x_{i}, y_{i})$$

$BPSK(U^{\oplus}) =$	-1	1	1
----------------------	----	---	---

 a_i : Observed bit *i* y_i : LLR value of a_i i = 0, ..., 2 $U^{\oplus} \in GF(8), U^+$: LLR value of U^{\oplus} BPSK: Binary Phase Shift Keying. BPSK(1) = -1, BPSK(0) = 1 $\Delta(a, b) = 0$ if sign(a) = sign(b), $\Delta(a, b) = 1$ otherwise

Definition of LLR value and Intrinsic Candidates

q=8, m=3, GF(8)

$$y_{i} = \ln \left(\frac{P(x_{i} \neq 0/a_{i})}{P(x_{i} = 1/a_{i})} \right) = \frac{2a_{i}}{\sigma^{2}} \qquad U^{+} \approx \sum_{i=0}^{m-1} |y_{i}| \Delta(x_{i}, y_{i})$$

$BPSK(U^{\oplus}) =$	-1	1	1
----------------------	----	---	---

<i>Y</i> -2.3	-1.7	3.4
---------------	------	-----

a_i: Observed bit *i y_i*: LLR value of *a_i i* = 0, ..., 2 *U* [⊕] ∈ GF(8), *U*⁺: LLR value of *U* [⊕] BPSK: Binary Phase Shift Keying. BPSK(1) = -1, BPSK(0) = 1 $\Delta(a, b) = 0$ if sign(a) = sign(b), $\Delta(a, b) = 1$ otherwise

Definition of LLR value and Intrinsic Candidates

q=8, m=3, GF(8)

$$y_{i} = \ln\left(\frac{P(x_{i} \neq 0/a_{i})}{P(x_{i} = 1/a_{i})}\right) = \frac{2a_{i}}{\sigma^{2}} \qquad U^{+} \approx \sum_{i=0}^{m-1} |y_{i}| \Delta(x_{i}, y_{i})$$

-2.3

Y

$$\Delta(U^{\oplus}, Y) = \begin{array}{|c|c|} 0 & 1 & 0 \end{array}$$

 a_i : Observed bit *i* y_i : LLR value of a_i i = 0, ..., 2 $U^{\oplus} \in GF(8), U^+$: LLR value of U^{\oplus} BPSK: Binary Phase Shift Keying. BPSK(1) = -1, BPSK(0) = 1 $\Delta(a, b) = 0$ if sign(a) = sign(b), $\Delta(a, b) = 1$ otherwise

-1.7

3.4

Definition of LLR value and Intrinsic Candidates

q=8, m=3, GF(8)

$$y_{i} = \ln\left(\frac{P(x_{i} \neq 0/a_{i})}{P(x_{i} = 1/a_{i})}\right) = \frac{2a_{i}}{\sigma^{2}} \qquad U^{+} \approx \sum_{i=0}^{m-1} |y_{i}| \Delta(x_{i}, y_{i})$$

a_i: Observed bit *i y_i*: LLR value of *a_i i* = 0, ..., 2 *U* [⊕] ∈ GF(8), *U*⁺: LLR value of *U* [⊕] BPSK: Binary Phase Shift Keying. BPSK(1) = -1, BPSK(0) = 1 $\Delta(a, b) = 0$ if sign(a) = sign(b), $\Delta(a, b) = 1$ otherwise

Definition of LLR value and Intrinsic Candidates

q=8, m=3, GF(8)

$$y_{i} = \ln\left(\frac{P(x_{i} \neq 0/a_{i})}{P(x_{i} = 1/a_{i})}\right) = \frac{2a_{i}}{\sigma^{2}} \qquad U^{+} \approx \sum_{i=0}^{m-1} |y_{i}| \Delta(x_{i}, y_{i})$$

a_i: Observed bit *i y_i*: LLR value of *a_i i* = 0, ..., 2 *U* [⊕] ∈ GF(8), *U*⁺: LLR value of *U* [⊕] BPSK: Binary Phase Shift Keying. BPSK(1) = -1, BPSK(0) = 1 $\Delta(a, b) = 0$ if sign(a) = sign(b), $\Delta(a, b) = 1$ otherwise

Definition of LLR value and Intrinsic Candidates

q=8, m=3, GF(8)

$$y_i = \ln\left(\frac{P(x_i \neq 0/a_i)}{P(x_i = 1/a_i)}\right) = \frac{2a_i}{\sigma^2}$$
 $U^+ \approx \sum_{i=0}^{m-1} |y_i| \Delta(x_i, y_i)$

a_i: Observed bit *i y_i*: LLR value of *a_i i* = 0, ..., 2 *U* [⊕] ∈ GF(8), *U*⁺: LLR value of *U* [⊕] BPSK: Binary Phase Shift Keying. BPSK(1) = -1, BPSK(0) = 1 $\Delta(a, b) = 0$ if sign(a) = sign(b), $\Delta(a, b) = 1$ otherwise

Definition of LLR value and Intrinsic Candidates

q=8, m=3, GF(8)

$$y_{i} = \ln \left(\frac{P(x_{i} \neq 0/a_{i})}{P(x_{i} = 1/a_{i})} \right) = \frac{2a_{i}}{\sigma^{2}} \qquad U^{+} \approx \sum_{i=0}^{m-1} |y_{i}| \Delta(x_{i}, y_{i})$$

<i>Y</i> -2.3	-1.7	3.4
---------------	------	-----

a_i: Observed bit *i y_i*: LLR value of *a_i i* = 0, ..., 2 $U^{\oplus} \in GF(8), U^+$: LLR value of U^{\oplus} BPSK: Binary Phase Shift Keying. BPSK(1) = -1, BPSK(0) = 1 $\Delta(a, b) = 0$ if sign(a) = sign(b), $\Delta(a, b) = 1$ otherwise

Definition of LLR value and Intrinsic Candidates

q=8, m=3, GF(8)

$$y_{i} = \ln \left(\frac{P(x_{i} \neq 0/a_{i})}{P(x_{i} = 1/a_{i})} \right) = \frac{2a_{i}}{\sigma^{2}} \qquad U^{+} \approx \sum_{i=0}^{m-1} |y_{i}| \Delta(x_{i}, y_{i})$$

MS algorithm

a_i: Observed bit *i y_i*: LLR value of *a_i i* = 0, ..., 2 $U^{\oplus} \in GF(8), U^+$: LLR value of U^{\oplus} BPSK: Binary Phase Shift Keying. BPSK(1) = -1, BPSK(0) = 1 $\Delta(a, b) = 0$ if sign(a) = sign(b), $\Delta(a, b) = 1$ otherwise

0

0

Definition of LLR value and Intrinsic Candidates

q=8, m=3, GF(8)

 U^\oplus

1

$$y_{i} = \ln \left(\frac{P(x_{i} \neq 0/a_{i})}{P(x_{i} = 1/a_{i})} \right) = \frac{2a_{i}}{\sigma^{2}} \qquad U^{+} \approx \sum_{i=0}^{m-1} |y_{i}| \Delta(x_{i}, y_{i})$$

MS Algorithm

8 Intrinsic messages I								
GF	000	001	010	011	100	101	110	111
LLR	4	7.4	2.3	5.7	1.7	5.1	0	3.4

Definition of LLR value and Intrinsic Candidates

q=8, m=3, GF(8)

 U^\oplus

1

0

0

$$y_i = \ln\left(\frac{P(x_i \neq 0/a_i)}{P(x_i = 1/a_i)}\right) = \frac{2a_i}{\sigma^2} \qquad U^+ \approx \sum_{i=0}^{m-1} |y_i| \Delta(x_i, y_i)$$

EMS Algorithm

8 Intrinsic messages I								
GF	000	001	010	011	100	101	110	111
LLR	4	7.4	2.3	5.7	1.7	5.1	0	3.4

Min-Sum Algorithm: CN update

 U_2

GF(q = 4)

0	
α0	
α1	
α^2	

Extrinsic messages CN_0 to U_0

			U_2^{\oplus}	1	
	\oplus	0	α^0	α^1	α^2
	0	0	α0	α^1	α^2
U_1^{\oplus}	α^0	α_0	0	α^2	α1
	α^1	α^1	α ²	0	α0
	α^2	α ²	α^1	α_0	0

 $MIN(U_{1}^{+}[i] + U_{2}^{+}[j])/U_{1}^{\oplus}[i] + U_{2}^{\oplus}[j] = 0, \alpha^{k}$

Min-Sum Algorithm: CN update

 U_2

U₀U₁U₁

			U_2^{\oplus}	I	
	\oplus	0	α_0	α^1	α^2
	0	0	α_0	α^1	α^2
U_1^{\oplus}	α^0	α_0	0	α ²	α^1
	α^1	α^1	α ²	0	α^0
	α^2	α^2	α^1	α_0	0

 u^+ : LLR value of v u^{\oplus} : GF value of v $i, j = 0, ..., q^{-1}$ $k = 0, ..., q^{-2}$

 CN_0 to U_0

 U_2^+ +() U_1^+

Min-Sum Algorithm: CN update

 U_2

0

 α^0

 α^1

 α^2

Extrinsic messages

 CN_0 to U_0

U₀U₁U₁

6

10-

			U_2^{\oplus}	I	
	\oplus	0	α_0	α^1	α^2
	0	0	α_0	α^1	α^2
U_1^{\oplus}	α^0	α0	0	α ²	α^1
	α^1	α1	α ²	0	α0
	α ²	α ²	α1	α0	0

 U_2^+

7

10

7

19

13

9

12

9

21

15

()

3

0

12

6

18

21

18

30

24

+

3

0

12

6

 U_1^+

Min-Sum Algorithm: CN update

 CN_0 to U_0

 U_2^{\oplus} \oplus α^0 α^2 0 α^1 α^0 α^2 0 α^1 0 α^0 α^0 α^2 0 α^1 α^2 α^1 α^0 α^1 0 α^2 α^2 α^1 α^0 0

 U_2^+

7

10

7

19

13

9

12

9

21

15

0

3

0

12

6

18

21

18

30

24

+

3

0

12

6

Min-Sum Algorithm: CN update

 α^2

 α^2

 α^1

 α^0

0

()

3

0

12

6

 α^1

 α^1

 α^2

0

 α^0

9

12

9

21

15

Min-Sum Algorithm: VN update

EMS Algorithm: CN update

 U^+ : LLR value of v U^{\oplus} : GF value of v $i, j = 0, ..., n_m - 1$ k = 0, ..., q-2

EMS Algorithm: VN update

Extrinsic messages CN_0 to U_0

α^1	1
α^2	8

0	0
α_0	7
α^1	1
α^2	5

Intrinsic U_0 MS algorithm

EMS Algorithm: VN update

EMS Algorithm: VN update

1

Extrinsic messages CN_0 to U_0

EMS Algorithm: VN update

EMS Algorithm: VN update

EMS Algorithm: VN update

• Use of mathematical approximations.

Min-Sum [5]

• Size of exchanged messages.

 n_m (LLR, GF)

[8] Voicila, A., Declercq, D., Verdier, F., Fossorier, M., and Urard, P. June 2007.
[9] V. Savin. 2008.
[15] J. O. Lacruz, F. Garcia-Herrero, M. J. Canet, and J. Valls. Aug 2016.
[16] Erbao Li, D. Declercq, and K. Gunnam. July 2013.
[27] G. Sarkis, S. Mannor, and W. J. Gross, June 2009.

CN and Presorting: State-of-the-art: Forward Backward CN (FB-CN)

ECN: Elementary Check Node

CN and Presorting: State-of-the-art: Forward Backward CN (FB-CN)

 $3n_m$ -4

Forward Layer

ECN

Merge Layer

Backward Layer

ECN: Elementary Check Node

CN and Presorting: State-of-the-art: Forward Backward CN (FB-CN)

 $3n_m$ -4

Forward Layer

ECN

Merge Layer

Backward Layer

ECN: Elementary Check Node

CN and Presorting: State-of-the-art: Forward Backward CN (FB-CN)

 $3n_m$ -4

ECN

ECN: Elementary Check Node

CN and Presorting: State-of-the-art: Syndrome Based CN (SB-CN)

SG: Syndrome Generator \triangle : Set of deviation paths $i = 0, ..., |\triangle| - 1$ $|\triangle|$: Cardinality of \triangle DU: Decorrelation Unit RE: Redundant Elimination

[17] P Schl¨afer, N Wehn, M Alles, T Lehnigk-Emden, E Boutillon. "Syndrome based check node processing of high order NB-LDPC decoders". International Conference on Telecommunications, Apr 2015, Sydney, Australia.

• Use of mathematical approximations.

[8] Voicila, A., Declercq, D., Verdier, F., Fossorier, M., and Urard, P. June 2007.

[9] V. Savin. 2008.

[15] J. O. Lacruz, F. Garcia-Herrero, M. J. Canet, and J. Valls. Aug 2016.

[16] Erbao Li, D. Declercq, and K. Gunnam. July 2013.

[27] G. Sarkis, S. Mannor, and W. J. Gross, June 2009.

CN and Presorting: State-of-the-art: Presorting Algorithm

- [13] C. Marchand and E. Boutillon. "NB-LDPC check node with pre-sorted input. In 9th International Symposium on Turbo Codes & Iterative Information Processing, September 2016.
- [14] H. Harb, C. Marchand, A. A. Ghouwayel, L. Conde-Canencia, and E. Boutillon, "Pre-sorted forwardbackward NB-LDPC check node architecture," in IEEE International Workshop on Signal Processing Systems (SiPS), Oct 2016, pp. 142-147, Dallas, USA.

CN and Presorting: State-of-the-art: Presorting Algorithm

- [13] C. Marchand and E. Boutillon. "NB-LDPC check node with pre-sorted input. In 9th International Symposium on Turbo Codes & Iterative Information Processing, September 2016.
- [14] H. Harb, C. Marchand, A. A. Ghouwayel, L. Conde-Canencia, and E. Boutillon, "Pre-sorted forwardbackward NB-LDPC check node architecture," in IEEE International Workshop on Signal Processing Systems (SiPS), Oct 2016, pp. 142-147, Dallas, USA.

CN and Presorting: State-of-the-art: Presorting Algorithm

- [13] C. Marchand and E. Boutillon. "NB-LDPC check node with pre-sorted input. In 9th International Symposium on Turbo Codes & Iterative Information Processing, September 2016.
- [14] H. Harb, C. Marchand, A. A. Ghouwayel, L. Conde-Canencia, and E. Boutillon, "Pre-sorted forwardbackward NB-LDPC check node architecture," in IEEE International Workshop on Signal Processing Systems (SiPS), Oct 2016, pp. 142-147, Dallas, USA.

CN and Presorting: State-of-the-art: Presorting Algorithm

- [13] C. Marchand and E. Boutillon. "NB-LDPC check node with pre-sorted input. In 9th International Symposium on Turbo Codes & Iterative Information Processing, September 2016.
- [14] H. Harb, C. Marchand, A. A. Ghouwayel, L. Conde-Canencia, and E. Boutillon, "Pre-sorted forwardbackward NB-LDPC check node architecture," in IEEE International Workshop on Signal Processing Systems (SiPS), Oct 2016, pp. 142-147, Dallas, USA.

CN and Presorting: State-of-the-art: Presorting Algorithm

- [13] C. Marchand and E. Boutillon. "NB-LDPC check node with pre-sorted input. In 9th International Symposium on Turbo Codes & Iterative Information Processing, September 2016.
- [14] H. Harb, C. Marchand, A. A. Ghouwayel, L. Conde-Canencia, and E. Boutillon, "Pre-sorted forwardbackward NB-LDPC check node architecture," in IEEE International Workshop on Signal Processing Systems (SiPS), Oct 2016, pp. 142-147, Dallas, USA.

CN and Presorting: State-of-the-art: Presorting Algorithm

- [13] C. Marchand and E. Boutillon. "NB-LDPC check node with pre-sorted input. In 9th International Symposium on Turbo Codes & Iterative Information Processing, September 2016.
- [14] H. Harb, C. Marchand, A. A. Ghouwayel, L. Conde-Canencia, and E. Boutillon, "Pre-sorted forwardbackward NB-LDPC check node architecture," in IEEE International Workshop on Signal Processing Systems (SiPS), Oct 2016, pp. 142-147, Dallas, USA.

CN and Presorting: State-of-the-art: Presorting Algorithm

- [13] C. Marchand and E. Boutillon. "NB-LDPC check node with pre-sorted input. In 9th International Symposium on Turbo Codes & Iterative Information Processing, September 2016.
- [14] H. Harb, C. Marchand, A. A. Ghouwayel, L. Conde-Canencia, and E. Boutillon, "Pre-sorted forwardbackward NB-LDPC check node architecture," in IEEE International Workshop on Signal Processing Systems (SiPS), Oct 2016, pp. 142-147, Dallas, USA.

CN and Presorting: State-of-the-art: Presorting Algorithm

- [13] C. Marchand and E. Boutillon. "NB-LDPC check node with pre-sorted input. In 9th International Symposium on Turbo Codes & Iterative Information Processing, September 2016.
- [14] H. Harb, C. Marchand, A. A. Ghouwayel, L. Conde-Canencia, and E. Boutillon, "Pre-sorted forwardbackward NB-LDPC check node architecture," in IEEE International Workshop on Signal Processing Systems (SiPS), Oct 2016, pp. 142-147, Dallas, USA.

CN and Presorting: State-of-the-art: Presorting Algorithm

- [13] C. Marchand and E. Boutillon. "NB-LDPC check node with pre-sorted input. In 9th International Symposium on Turbo Codes & Iterative Information Processing, September 2016.
- [14] H. Harb, C. Marchand, A. A. Ghouwayel, L. Conde-Canencia, and E. Boutillon, "Pre-sorted forwardbackward NB-LDPC check node architecture," in IEEE International Workshop on Signal Processing Systems (SiPS), Oct 2016, pp. 142-147, Dallas, USA.

CN and Presorting: State-of-the-art: Presorting Algorithm

- [13] C. Marchand and E. Boutillon. "NB-LDPC check node with pre-sorted input. In 9th International Symposium on Turbo Codes & Iterative Information Processing, September 2016.
- [14] H. Harb, C. Marchand, A. A. Ghouwayel, L. Conde-Canencia, and E. Boutillon, "Pre-sorted forwardbackward NB-LDPC check node architecture," in IEEE International Workshop on Signal Processing Systems (SiPS), Oct 2016, pp. 142-147, Dallas, USA.

CN and Presorting: State-of-the-art: Presorting Algorithm

- [13] C. Marchand and E. Boutillon. "NB-LDPC check node with pre-sorted input. In 9th International Symposium on Turbo Codes & Iterative Information Processing, September 2016.
- [14] H. Harb, C. Marchand, A. A. Ghouwayel, L. Conde-Canencia, and E. Boutillon, "Pre-sorted forwardbackward NB-LDPC check node architecture," in IEEE International Workshop on Signal Processing Systems (SiPS), Oct 2016, pp. 142-147, Dallas, USA.

CN and Presorting: State-of-the-art: Presorting Algorithm

- [13] C. Marchand and E. Boutillon. "NB-LDPC check node with pre-sorted input. In 9th International Symposium on Turbo Codes & Iterative Information Processing, September 2016.
- [14] H. Harb, C. Marchand, A. A. Ghouwayel, L. Conde-Canencia, and E. Boutillon, "Pre-sorted forwardbackward NB-LDPC check node architecture," in IEEE International Workshop on Signal Processing Systems (SiPS), Oct 2016, pp. 142-147, Dallas, USA.

CN and Presorting: State-of-the-art: Presorting Algorithm

- [13] C. Marchand and E. Boutillon. "NB-LDPC check node with pre-sorted input. In 9th International Symposium on Turbo Codes & Iterative Information Processing, September 2016.
- [14] H. Harb, C. Marchand, A. A. Ghouwayel, L. Conde-Canencia, and E. Boutillon, "Pre-sorted forwardbackward NB-LDPC check node architecture," in IEEE International Workshop on Signal Processing Systems (SiPS), Oct 2016, pp. 142-147, Dallas, USA.

CN and Presorting: State-of-the-art: Presorting Algorithm

- [13] C. Marchand and E. Boutillon. "NB-LDPC check node with pre-sorted input. In 9th International Symposium on Turbo Codes & Iterative Information Processing, September 2016.
- [14] H. Harb, C. Marchand, A. A. Ghouwayel, L. Conde-Canencia, and E. Boutillon, "Pre-sorted forwardbackward NB-LDPC check node architecture," in IEEE International Workshop on Signal Processing Systems (SiPS), Oct 2016, pp. 142-147, Dallas, USA.

CN and Presorting: Proposed: FB-CN with Presorting

$d_c = 12 [14]$

[14] H. Harb, C. Marchand, A. A. Ghouwayel, L. Conde-Canencia, and E. Boutillon, "Pre-sorted forward-backward NB-LDPC check node architecture," in IEEE International Workshop on Signal Processing Systems (SiPS), Oct 2016, pp. 142-147, Dallas, USA.

CN and Presorting: Proposed: FB-CN with Presorting

 $d_c = 12 [14]$

FB-CN: 1680 bubbles (red bubbles)

S-FB: 648 bubbles (square bubbles)

[14] H. Harb, C. Marchand, A. A. Ghouwayel, L. Conde-Canencia, and E. Boutillon, "Pre-sorted forward-backward NB-LDPC check node architecture," in IEEE International Workshop on Signal Processing Systems (SiPS), Oct 2016, pp. 142-147, Dallas, USA.

CN and Presorting: Proposed: FB-CN with Presorting

 $d_c = 12 [14]$

 $26 \text{ ECNs} \equiv 86.6 \%$

FB-CN: 1680 bubbles (red bubbles)

S-FB: 648 bubbles (square bubbles)

[14] H. Harb, C. Marchand, A. A. Ghouwayel, L. Conde-Canencia, and E. Boutillon, "Pre-sorted forward-backward NB-LDPC check node architecture," in IEEE International Workshop on Signal Processing Systems (SiPS), Oct 2016, pp. 142-147, Dallas, USA.

CN and Presorting: Proposed: Extended Forward CN (EF-CN)

[17] P Schl[¬]afer, N Wehn, M Alles, T Lehnigk-Emden, E Boutillon. "*Syndrome based check node processing of high order NB-LDPC decoders*". International Conference on Telecommunications, Apr 2015, Sydney, Australia.

CN and Presorting: Proposed: Extended Forward CN (EF-CN)

CN and Presorting: Proposed: EF-CN and Hybrid CN (H-CN)

Extended Forward CN (EF-CN)

CN and Presorting: Proposed: EF-CN and Hybrid CN (H-CN)

Hybrid CN (H-CN)

CN and Presorting: Proposed: H-CN with Presorting

Latency reduction

CN and Presorting: Performance and Synthesis Analysis

[15] J. O. Lacruz, F. Garcia-Herrero, M. J. Canet, and J. Valls. "Reduced-Complexity Non-Binary LDPC Decoder for High-Order Galois Fields Based on Trellis Min-Max Algorithm". IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 24, no. 8, pp. 2643-2653, Aug 2016.

CN and Presorting: Performance and Synthesis Analysis

Post synthesis results on a Xilinx Virtex 6 FPGA

ECN	OS	F (MHz)
1B	7	714
S-1B	17	714
S-1B+1	35	349
S-2B	82	334
S-4B	138	269

		OS						
d_c	Case	Sorter	Switch	CN	Total	Gain		
6	FB-CN	-	-	1617	1617	50/		
0	S-FB	50	93	1268	1532	3%		
0	FB-CN	-	-	2481	2481	170/		
0	S-FB	77	142	1701	2061	1/%		
10	FB-CN	-	-	4666	4666	420/		
12	S-FB	160	283	1858	2653	43%		
20	FB-CN	-	-	6519	6519	540/		
20	S-FB	386	495	1232	2955	34%		

 P_{clk} : Critical path

CL: Cycle Latency $T = \frac{1}{2} \int CL (lower) V Number of$

 $T_{CN} = F_{clk}$ /CL(layer): Number of computed CN per second

AE= T_{CN} /Area: Area Efficiency

 $EE=T_{CN}$ /Power: Energy Efficiency

CN and Presorting: Performance and Synthesis Analysis

CN and Presorting: Performance and Synthesis Analysis

T-MM: Trellis Min-MAX algorithm [15]

[15] J. O. Lacruz, F. Garcia-Herrero, M. J. Canet, and J. Valls. "Reduced-Complexity Non-Binary LDPC Decoder for High-Order Galois Fields Based on Trellis Min-Max Algorithm". IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 24, no. 8, pp. 2643-2653, Aug 2016.

CN and Presorting: Performance and Synthesis Analysis

Post-synthesis results for CN architectures on 28 nm FD-SOI technology

CN	Area	Power	P _{clk}	CL(CN)	
GF(64)	(mm ²)	(mW)	(ns)	(cycles)	
FB-CN	0.140	94	1.02	22	Factor Gain
H-CN Presorted	0.0227	14.9	1.03	15	6.16
CN	Area	Power	P _{clk}	CL(CN)	
GF(256)	(mm ²)	(mW)	(ns)	(cycles)	
CN	Area	Power	P _{clk}	CL(CN)	Factor Gain
GF(256)	(mm ²)	(mW)	(ns)	(cycles)	
FB-CN	0.328	210	1.14	22	

*d*_c=12

CN and Presorting: Conclusion

- [14] H. Harb, C. Marchand, A. A. Ghouwayel, L. Conde-Canencia, and E. Boutillon, "Pre-sorted forward-backward NB-LDPC check node architecture," in IEEE International Workshop on Signal Processing Systems (SiPS), Oct 2016, pp. 142-147, Dallas, USA.
- [18] Cédric Marchand, Emmanuel Boutillon, Hassan Harb, Laura Conde-Canencia and Ali Al Ghouwayel, "Hybrid Check Node Architectures for NB-LDPC Decoders", Accepted in IEEE Transactions on Circuits And Systems-I, August 2018.

Outline

- Introduction
- > NB-LDPC Codes
- > EMS Algorithm and Architectures
- Proposed Parallel and Pipelined NB-LDPC Decoder Architecture
- > Extra Related Works
- Conclusion, Perspectives and Publications

Used PCM

 $N = 144, M = 24, d_c = 12, d_v = 2, CR = 5/6.$

2 Layers.

http://www-labsticc.univ-ubs.fr/nb_ldpc/

Parallel Pipelined LLR Generator Architecture

Generation of the n_m =4 intrinsic candidates, GF(64) \overline{X}

					★			
$y_5 \rightarrow$		$\rightarrow y_5 \rightarrow$		\rightarrow ($s_2^+, \pi(2)$) \rightarrow		$\rightarrow J_0 \rightarrow$	n - 4	$\rightarrow I_0$
	AVG		5-to-3	$\rightarrow (s^+, \pi(1)) \rightarrow$	Candidates		$n_m = 4$	
Vo	110		sorter	$(z_1^+, \pi(1))$	generator	T	detector	· · ·
<i>y</i> 0 -		$ y_0 $		\rightarrow ($S_0, \pi(0)$) \rightarrow		$\rightarrow J_4 \rightarrow$	ucicciói	$\rightarrow I_3$

LLR	n _m	OS	OS F	Periodicity (CCs)		Factor gain	Factor gain
generator			(MHZ)	Proposed	[10]	efficiency	throughput
Proposed	12	516	402	1	8	4	15.3
	4	167	556		1	2.15	2.65
[10]	All cases	137	210	Efficiency	(MHz/	(OS) = F/(OS)	xPeriodicity)

OS: Occupied slices F: Frequency in MHz CCs: Clock Cycles <u>Y:</u> Observed Symbol X: Hard Decision on Y Throughput (Msymbols/s) = (Fxn_m) /Periodicity

[10] A.A. Ghouwayel and E. Boutillon. 2011.

Here and the second sec

Proposed Decoder

Serial Processing

 $GF(64), n_{m_in} = 4, n_{m_out} = 20$

 n_{m_in} : Length of each CN input vector n_{m_out} : Length of each CN output vector

Parallel Processing

 $GF(64), n_{m_in} = 4, n_{m_out} = 20$

 $d_c \mathbf{x} n_{m_i}$

 $n_{m_{in}}$: Length of each CN input vector $n_{m_{out}}$: Length of each CN output vector

100 Lab STICC Offset slution

[13] C. Marchand and E. Boutillon. "NB-LDPC check node with pre-sorted input. In 9th International Symposium on Turbo Codes & Iterative Information Processing, September 2016.

Predefined Offset

Predefined Offset

Redundant Elimination

H-CN with Presorting: Parallel Approach

CN block, $d_c = 12$

H-CN with Presorting: Parallel Approach

CN block, $d_c = 12$

Number of reordered symbols is reduced from 272 down to 48 symbols

Simulation, Emulation and Throughput Results

$$y_i = \operatorname{sat}((\operatorname{floor}(Q \ge a_i / \sigma) + 0.5), Q)$$

$$Q=15$$

$$\operatorname{Sat}(a, b) = b \text{ if } a > b$$

$$-b \text{ if } a < -b$$

$$a \text{ Otherwise}$$

n_{it} : Number of iterations

Simulation, Emulation and Throughput Results

$n_{it} = 30$ OMS: Offset-Min Sum

Simulation, Emulation and Throughput Results

Name: Bertrand Surname: Le Gal Occupation: Doctor at IMS LAB in Bordeaux.

Simulation, Emulation and Throughput Results

Throughput (Gbits/s) = $\frac{\log_2(q) \times K \times F}{10^3 \times a_{it} \times M}$

a_{it}: Average number of iterations

Proposed Decoder

Synthesis Results

					$\begin{bmatrix} 20 \\ - \\ 18 \end{bmatrix}$ Proposed decoder, $n_{it} = 30$	-
	[24]	[25]	[26]	Proposed		-
Technology	40 nm	90 nm	65 nm	28 nm	Sisting 12	
Design	Synthesis	Synthesis	Silicon	Synthesis	n 10 hdu nou 8	-
N (symbols)	3888	837	160	144		
CR	8/9	13/15	1/2	5/6	2	_
GF	4	32	64	64	0 ⁴ 3 4 5 6 7 8 9	10
Decoding Algorithm	T-EMS	IL-MwBRB	EMS	EMS	E _b /N ₀ (dB)	
Decoding schedule	Layered	-	Flooding	Flooding	- <u>-</u> Proposed, Simulation, n _t =3	30 0
Gate Count (NANDs)	4M	4.54M	2.78M	0.79	10-2	
Frequency (MHz)	1000	207.04	700	650		
Iterations	10	10	10-30	1-30		
Throughput (Mb/s)	3600	21661.56	1221	1600-19500		
Throughput Efficiency (Mbps/M-gate)	900	4771.27	439.2	2025-24683	$\mathbf{L} = \begin{bmatrix} 10^{-7} \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ $	

[24] Erbao Li, D. Declercq, and K. Gunnam. Trellis-Based Extended Min-Sum Algorithm for Non-Binary LDPC Codes and its Hardware Structure. Communications, IEEE Transactions on, 61(7) :2600-2611, July 2013.

- [25] J. Tian, J. Lin, and Z. Wang. A 21.66Gbps Non-Binary LDPC Decoder for High-Speed Communications. IEEE Transactions on Circuits and Systems II: Express Briefs, vol. PP, no. 99, pp. 1-1, 2017.
- [26] Y. S. Park, Y. Tao, and Z. Zhang. A Fully Parallel Nonbinary LDPC Decoder With Fine-Grained Dynamic Clock Gating. IEEE Journal of Solid-State Circuits, vol. 50, no. 2, pp. 464-475, Feb 2015.

Outline

- Introduction
- > NB-LDPC Codes
- > EMS Algorithm and Architectures
- > Proposed Parallel and Pipelined NB-LDPC Decoder Architecture
- Extra Related Works
- Conclusion, Perspectives and Publications

Extra Related Works

Proposition of a new sorting algorithm to select the two extrema values from a set of cardinality Ns.

Outline

- Introduction
- > NB-LDPC Codes
- > EMS Algorithm and Architectures
- > Proposed Parallel and Pipelined NB-LDPC Decoder Architecture
- Extra Related Works
- Conclusion, Perspectives and Publications

Conclusion

Code:

- Matrix construction
- NB-LDPC codes construction

Sorter Algorithm

Hardware design:

- CN:
 - Extended Forward
 - o Hybrid
 - Presorted Forward Backward
 - Presorted Extended Forward
 - Presorted Hybrid
 - Skip processing CNs
- Parallel pipelined NB-LDPC decoder
- Variable Node and Decision Making blocks

PhD Objective met

Low complexity and high throughput NB-LDPC decoder has been developed

- Optimization of parallel Hybrid architecture for all value of d_c and GF(q).
- Automatic generation of the hardware architecture from a given NB-LDPC matrix.
- Merging of the H-CN and the T-EMS algorithm.
- Applying the acquired knowledge of the NB-LDPC codes on the Turbo codes.

Publications (Accepted, submitted and in preparation)

- H. Harb, C. Marchand, A. A. Ghouwayel, L. Conde-Canencia, and E. Boutillon, "Pre-sorted forwardbackward NB-LDPC check node architecture," in IEEE International Workshop on Signal Processing Systems (SiPS), Oct 2016, pp. 142-147, Dallas, USA.
- 2. Titouan Gendron, Hassan Harb, Alban Derrien, Cédric Marchand, Laura Conde-Canencia, Bertand Le Gal and Emmanuel Boutillon, "Demo: Construction of good Non-Binary Low Density Parity Check codes", Demo night at SIPS'2017, Lorient, France, Oct. 2017.
- 3. C. Marchand, H. Harb, E. Boutillon, A. Al Ghouwayel, and L. Conde-Canencia, "Extended-forward architecture for simplied check node processing in NB-LDPC decoders," in IEEE International Workshop on Signal Processing Systems (SiPS), October. 2017, Lorient, France.
- Cédric Marchand, Emmanuel Boutillon, Hassan Harb, Laura Conde-Canencia and Ali Al Ghouwayel, "Hybrid Check Node Architectures for NB-LDPC Decoders", in IEEE Transactions on Circuits And Systems-I, August 2018.
- 5. Hassan Harb, Emmanuel Boutillon, Bertrand Le Gal, "Real-time evaluation of NBLDPC codes thanks to HLS-based hardware emulation", Demo night at DASIP'2018, Porto, Portugal, Oct. 2018.
- 6. Ali Al-Ghouwayel, Member, IEEE, Hassan Harb and Emmanuel Boutillon, Senior Member, IEEE, "First-Then-Second Extrema Selection,". Submitted.
- Hassan Harb, Ali Al Ghouwayel, Cédric Marchand, Laura Conde-Canencia, Emmanuel Boutillon, "Throughput Rocket EMS NB-LDPC Decoder Based On A Parallel And Pipelined Architecture,". In preparation.
- 8. Hassan Harb, Ali Al Ghouwayel and Emmanuel Boutillon, "Parallel pipelined LLR generator,". In preparation.

THANK YOU

Emmanuel

Laura

Cedric

Ali Al Ghouwayel

Ali Alaeddine

Hassan

